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Abstract A hybrid method called JointNMF is presented which is applied to latent infor-
mation discovery from data sets that contain both text content and connection structure
information. The new method jointly optimizes an integrated objective function, which is
a combination of two components: the Nonnegative Matrix Factorization (NMF) objective
function for handling text content and the Symmetric NMF (SymNMF) objective function for
handling network structure information. An effective algorithm for the joint NMF objective
function is proposed so that the efficient method of block coordinate descent framework can
be utilized. The proposed hybrid method simultaneously discovers content associations and
related latent connections without any need for postprocessing of additional clustering. It
is shown that the proposed method can also be applied when the text content is associated
with hypergraph edges. An additional capability of the JointNMF is prediction of unknown
network information which is illustrated using several real world problems such as citation
recommendations of papers and leader detection in organizations. The proposed method can
also be applied to general data expressed with both feature space vectors and pairwise sim-
ilarities and can be extended to the case with multiple feature spaces or multiple similarity
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measures. Our experimental results illustrate multiple advantages of the proposed hybrid
method when both content and connection structure information is available in the data for
obtaining higher quality clustering results and discovery of new information such as unknown
link prediction.

Keywords Joint nonnegative matrix factorization · Symmetric NMF · Constrained low
rank approximation · Content clustering · Graph clustering · Hybrid content and connection
structure analysis

1 Introduction

Constrained low rank approximation (CLRA) such as Nonnegative matrix factorization
(NMF) has played an important role in data analytics, providing a foundational framework
for formulating key analytics tasks such as text clustering, graph clustering, and recommen-
dation system [16–19] problems. In this paper, we propose a joint NMF algorithm which
jointly optimizes the standard NMF for content clustering and Symmetric NMF (SymNMF)
for graph clustering. Detailed discussions of NMF and SymNMF can be found in [14,15] and
[19], respectively. The goal is to simultaneously cluster data sets that contain both content
and connection structure, utilizing both information sources, to obtain higher quality clus-
tering results. This type of fusion can be done at the data level (early fusion) or at the result
level (late fusion). An advantage of NMF and SymNMF is that both are formulated using
one framework of CLRA, and therefore, we can naturally design a joint objective function
to obtain the objective function level fusion as we illustrate in a later section.

Numerous data sets contain both text content and connection structure. For example, in a
data set of research papers or patents, papers or patents have text content where the citations
or co-author relationships define the connection structure; in a data set of emails, email
messages have text content and the sender–recipient relations define a hypergraph structure
where one email may have multiple recipients. When the connection structure is represented
as edges in a graph, in the former case the text content is associated with graph nodes while
in the latter case the text content is associated with hypergraph edges. A hybrid clustering
method is designed to utilize both content and connection structure information, thus taking
advantage of the full information provided in the data.

Manymethodologies exist for data clustering.However, our frameworkusingCLRAoffers
multiple advantages. The proposed method is simple to implement based on an existing
numerical routine to solve a nonnegativitiy constrained least squares (NLS) and widely
applicable. Also the proposed method can provide valuable insights about the data when
there is not enough knowledge about the underlying data model or when one desires only a
quick glance at results. In fact, in the area of text and graph clustering, CLRAmethods (NMF
and SymNMF) have been demonstrated to have superior performance in terms of speed and
accuracy [17–19]; The two CLRA based methods, NMF for content clustering and SymNMF
for graph clustering, have the same underlying matrix factorization framework, and, can be
merged at the objective function level and the result is easily interpretable as clustering
result without requiring an additional step for clustering unlike in many of the spectral
methods.

In this paper we discuss data with associated text content and connection structure. In
addition to text content, other types of information may also be associated with connection
structure, such as images and attributes that appear in structured data like a person’s age and
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gender, etc. Our hybrid clustering method can naturally extend to other content information
as long as the raw data can be encoded as nonnegative vectors.

This paper is organized as follows: We start with a simpler case where the text content can
be associatedwith graph nodes, and extend the idea to the casewhereweneed a hypergraph for
connection representation and the text content is associated with hypergraph edges (Sect. 2).
We then summarize some related work in Sect. 3. We have conducted extensive experiments
using patent citation data sets and two other types of data sets to show the effectiveness
of our method (Sect. 4). In addition to demonstrating improvements of clustering quality,
we list several potential applications of our hybrid clustering approach, including citation
recommendation on a paper data set and the application of our hypergraph extension to an
Enron email data set (Sect. 5). Discussions and conclusions can be found in Sect. 6.

2 Hybrid clustering via joint NMF

We have designed fast, scalable algorithms for some variants of NMF for key data ana-
lytics problems [3,15,17]. Currently one of the fastest algorithms for hierarchical and
flat (non-hierarchical) topic modeling and clustering that also produce consistently high
quality solutions are HierNMF2 and FlatNMF2, which are available in our open source soft-
ware package in C++ called SmallK (http://smallk.github.io/). SmallK also includes Python
drivers, pysmallk, that allow seamless integration of SmallK into existing Python applica-
tions.

First we assume that the text content is associated with the graph nodes. For example,
a collection of research papers or patents can be represented in a graph where the content
information of each paper or patent is a graph node and the citation information provides the
graph connection information. We assume that a data set’s text information is represented
in a nonnegative matrix X ∈ R

m×n+ and the graph structure is represented in a nonnegative
symmetric matrix S ∈ R

n×n+ , where m is the number of features, the columns of X represent
the n data items, the (i, j)-th element of S represents a relationship such as similarity between
the i-th and j-th data items, and R+ denotes the real nonnegative numbers. Then the NMF
formulation for text clustering/topic modeling [16] is

min
W≥0,H≥0

‖X − WH‖F (1)

and the SymNMF formulation for graph clustering [18,19] is

min
H≥0

‖S − HT H‖F (2)

whereW ∈ R
m×k+ and H ∈ R

k×n+ , and a given integer k, which is typically much smaller than
m or n, represents the reduced dimension, i.e., number of clusters, number of communities,
or number of topics [14]. In (1), each column of W , subject to some scaling, is regarded as
the representative of each cluster or a topic in the document collection. The matrix H can be
seen as a low rank (rank k) representation of the data points since each data item in X can
be explained by an additive linear combination of the representative columns in W , i.e., the
columns of H are approximative coordinates of data items in X with columns of W as basis
vectors. Similarly, in (2), H is a low rank representation of the nodes in the graph. Such a
low rank approximation also gives us k clusters, since Hi, j can be seen as a measurement
of strength that the j-th data item belongs to the i-th cluster. Therefore, each column of H
gives the soft clustering assignment information. By taking the row index with the maximum
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value in each column vector of H as the cluster index of each data item, one can also perform
hard clustering [14,15].

The hybrid clustering method we propose finds a low rank representation that simultane-
ously represents the text content and the graph structure of the data items by jointly optimizing
the combined NMF and SymNMF objective functions:

min
W≥0,H≥0

α1||X − WH ||2F + α2||S − HT H ||2F . (3)

where α1 ≥ 0 and α2 ≥ 0 are the weighting parameters. By adjusting the parameters αi , we
can emphasize one over the other. In the extreme case, some αi can be set to zero: e.g. when
α2 = 0 in the above, we are only concerned with the content, when α1 = 0, we only pay
attention to the structural information and ignore the content. Excluding these special cases,
we can assume α1 = 1 without loss of generality and Eq. (3) becomes

min
W≥0,H≥0

||X − WH ||2F + α||S − HT H ||2F . (4)

with α ≥ 0 as the weighting parameter.
Now we extend our method to hypergraphs where the text content is associated with

hypergraph nodes. Once this is done, it would be natural to extend our method further to the
cases where text is associated with graph or hypergraph edges due to the duality that exists
between edges and nodes of a hypergraph and the fact that a graph can be treated as a special
case of a hypergraph.

A hypergraph H is a pair H = (V , E ), where V = {v1, . . . , vm} is the set of vertices
and E = {e1, . . . , en : ei ⊂ V } is the set of hyperedges. Unlike a graph edge, a hypergraph
edge ei may connect more than two vertices in the graph. Such a hypergraph H can be
represented by an incidence matrix M = (mi j ) ∈ R

m×n , where

mi j =
{
1, vi ∈ e j ;
0, otherwise.

The dual hypergraph H ∗ is the hypergraph corresponding to the incidence matrix MT .
Assume there’s a k-way partition of the vertices (V1, . . . ,Vk) where V1 ∪ · · · ∪ Vk = V

and Vi ∩ V j = ∅ for all 1 ≤ i �= j ≤ k. Define the matrix H = (hi j ) ∈ R
k×n as

hi j = [v j ∈ Vi ]
√
dv( j)

⎛
⎝ ∑

vl∈V i

1

dv(l)

⎞
⎠

1/2 (5)

which is a normalized partition indicator matrix where

[v j ∈ Vi ] =
{
1, v j ∈ Vi ;
0, otherwise.

and dv(l) = ∑n
j=1 ml j is the degree of vertex vl . It is shown in [35] that the following

optimization problem

max
H

tr HSHT (6)
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is equivalent to minimizing the hypergraph normalized cut as defined in [35], where

S = D−1/2
v MD−1

e MT D−1/2
v (7)

is symmetric,

Dv = diag(dv(1), . . . , dv(m)), De = diag(de(1), . . . , de(n)),

and de(l) = ∑m
i=1 mil is the degree of edge el . Following the same argument as in [18], it

can be shown that (6) is equivalent to minH ‖S − HT H‖2F and by relaxing constraint (5) to
H ≥ 0, we obtain the objective function of SymNMF. Therefore, in the case of a hypergraph,
we can use the matrix S defined in Eq. (7) as the similarity matrix in Eq. (4).

There are many ways to find a solution for the objective function (4). Theoretically,
a Newton-like algorithm can be developed to directly solve (4). However, as pointed out
in [19], a Newton-like algorithm can not utilize the sparsity of X and S for speeding up
because the matrices X − WH and S − HT H need to be computed explicitly and thus the
sparsity will be destroyed. On the other hand, an alternating nonnegative least square (ANLS)
algorithm can be sped up with sparsity. To apply an ANLS-like algorithm that can utilize the
sparse nature of text documents and associated networks, we propose reformulating (4) in
the following form with a penalty term

min
W,H,H̃≥0

||X − WH ||2F + α||S − H̃ T H ||2F + β‖H̃ − H‖2F . (8)

where H̃ ∈ R
k×n+ and β ≥ 0 is the regularization parameter. This reformulation is moti-

vated from our earlier work to generate an algorithm that is based on the block coordinate
descent (BCD) scheme so that each sub-problem in the BCD is a nonnegativity constrained
least squares (NLS) problem for which we have developed a highly efficient algorithm and
optimized open-source software [7]. Then Eq. (8) can be solved using a 3-block coordinate
descent (BCD) scheme, i.e. minimize the objective function with respect to W , H̃ and H in
turn. Specifically, we solve the following three subproblems in turn:

min
W≥0

‖HTWT − XT ‖F (9)

min
H̃≥0

∥∥∥∥
[√

αHT√
β Ik

]
H̃ −

[ √
αS√
βH

]∥∥∥∥
F

(10)

min
H≥0

∥∥∥∥∥∥
⎡
⎣ W√

α H̃ T√
β Ik

⎤
⎦ H −

⎡
⎣ X√

αS√
β H̃

⎤
⎦

∥∥∥∥∥∥
F

(11)

where each subproblem is simply a nonnegative least squares problem (NLS), which is con-
vex. Thus, an active-set-based algorithm can find the optimal solution in a finite number
of operations and ensures that the solution is in the feasible region. The active-set-based
algroithm has an additional advantage when dealing with a rank-deficient input matrix as
it does not run into a subproblem of passive set indices which involve inlinearly dependent
vectors, which has profound implications for real-world applications such as chemical detec-
tion where false negatives and false positives can increase dramatically in the presence of
rank deficiency. For details, see [6]. The above three block BCD algorithm converges to a
stationary point according to Bertsekas’ theorem [1]. The identity submatrices Ik in the above
equations make the problem better conditioned than the subproblems in the standard NMF
that uses two block BCD alternating updating W and H . We solve each NLS problem using
the block principal pivoting (BPP) algorithm [15]. Theoretically, to force H to be identical to

123



866 J Glob Optim (2019) 74:861–877

H̃ , the value of the parameter β has to be infinity. This problem has been studied extensively
and we use a scheme similar to that proposed in [32]. It should be pointed out that in [15]
it is shown that algorithms based on the BCD framework have guaranteed convergence to a
stationary point, whereas, popular and easy to implement algorithms such as Multiplicative
Updating (MU) may not converge. In addition, extensive experiments show that the BPP
method is faster and more accurate than MU.

3 Related work

The use of joint matrix factorization for clustering can also be seen in [11,21,29], all of
which consider clustering using information from different sources. [29] is also a method for
hybrid clustering of connection structure and content data. Their formulation (2JointMF) is
minW0,W1,H ‖A − W0H‖2F + ‖X − W1H‖2F + λ

∑n
j=1 ‖H(:, j)‖21 + η(‖W0‖2F + ‖W1‖2F ),

with the constraints H ≥ 0 and 0 ≤ W0H ≤ 1, where A is the adjacency matrix of the
graph (can be an asymmetric matrix representing a directed graph) and X is the feature-data
matrix. Our JointNMF is different from 2JointMF in the following ways: (1) JointNMF has
nonnegative constraints on all matrix factors while 2JointMF has nonnegative constraint on
H only. The nonnegative constraints on all factors usually lead to better interpretations of
the result. For example, the W factor in our formulation can be interpreted as topic vectors
due to its nonnegativity. (2) 2JointMF factors the graph matrix in a way similar to factoring
a general feature matrix, while the symmetric factorization from JointNMF acknowledges
the symmetric similarity relation encoded in a graph and also relates itself with minimizing
normalized cut. (3) The constraint 0 ≤ W0H ≤ 1 makes 2JointMF computationally much
more difficult [12,13]. The algorithm in [21] also jointly minimizes several NMF objectives.
However, they do not consider graph information and therefore SymNMF was not in their
formulation. Although the objective function in [11] looks very similar to what we propose
in the paper, the matrices in the formulas have different meanings and their formulation is
used only in the context of graph clustering.

Some other methods for hybrid clustering (of graph and node content) can be summarized
into the following categories: (1)Generativemodels [2,4,9,10,22,25]. These algorithms learn
a latent cluster indicator for each node, based onwhich all the content and links are generated.
Such latent cluster indicator could be a vector that measures how likely a node belongs to
each cluster (for soft clustering), or a single variable that assigns a node to a specific cluster
(hard clustering). (2) Discriminative models [34]. The authors of [34] argue that generative
models fail to consider additional factors that could affect the community memberships and
isolate the content that is irrelevant to community memberships. They propose a discrimi-
native algorithm, PCL-DC, to overcome these two shortcomings. (3) Topic modeling with
network regularization [24,28]. These methods start with the objective function of a topic
modeling method and add the graph related part as a regularization term. (4) Augmenting
the graph with content information [26]. This method reduces the hybrid clustering problem
to a graph clustering problem by augmenting the graph with new vertices and edges that
reflect the text content. (5) Entropy based [5]. This method jointly minimizes the entropy of
document clusters and maximizes modularity of graph clusters. (6) Cluster ensembles [27]
This algorithm assembles the result of a graph clustering algorithm and the result of a docu-
ment clustering algorithm into a combined result (late fusion). (7) Cluster selection [8]. This
method selects a graph clustering algorithm when the graph has clear structure information
and selects content only algorithms when the graph has ambiguous structure information.
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Fig. 1 An example classification
label in the CPC scheme

4 Clustering US patent, BlogCatalog and Flickr data

All experiments were performed on a server with two Intel(R) Xeon(R) CPU E5-2680 v3
CPUs and 377GB memory.

The main data set used for the experiments is the US patent claim and citation data from
PatentsView.1 Some advantages of using US patents as a data source are: (1) the openness,
centralized management and availability of relatively structured data format makes the patent
data easier to obtain and process; (2) the abundance of the patent database ensures enough
samples that can be studied; (3) patents were carefully assigned with classification labels,
and such labels were examined by patent examiners; therefore the classification information
can be used as a relatively reliable ground truth.

Weuse theCooperative PatentClassification (CPC) system,where each classification label
has the scheme illustrated in Fig. 1.We select 13CPCclasses (A22,A42, B06, B09, B68, C06,
C13,C14,C40,D02,D10, F22,Y04) and use patents under each class to construct 13 different
data sets.2 For each data set, we first construct the term-document matrix representing the
patent claims and the graph adjacency matrix representing the patent citation relations. Our
algorithm requires a symmetric adjacency matrix and therefore we treat the citation graph
as undirected by ignoring the directions. We then clean the data by removing terms that
appear very infrequently and documents that are too short or duplicated, and extract the
largest connected components of the graph. Finally, we apply tf-idf to the term-document
matrix, normalize its columns to have unit 2-norm, obtaining the matrix X , and let S be
D−1/2AD−1/2, where A ∈ R

n×n is the adjacency matrix, D = diag(d1, . . . , dn) and di =∑n
j=1 Ai j is the degree of vertex i . We use CPC groups as ground truth clusters. Some

statistics about these data sets (after cleaning) are listed in Table 1.
To verify our algorithm on other types of data, we also use the BlogCatalog data set

from [30] and the Flickr data set from [31]. These data sets have users as graph nodes and
represent user commenting and friendship relations as graph edges. The content comes from
user generated keywords/tags that are used to describe their blog articles (BlogCatalog) or
photos (Flickr), which is different from traditional text content. The ground truth clusters of
BlogCatalog data set are defined by categories of each blog and the ones for the Flickr data
set are defined by user groups. We apply the same preprocessing as for the US patent data
sets. Some statistics regarding these two data sets (after preprocessing) are listed in Table 2.

We now define the measures for the evaluation of the clustering results. Assume we
computed k clusters B1, . . . , Bk and the ground truth has k′ clustersG1, . . . ,Gk′ .We compute
the confusion matrix C = (ci j )k×k′ , where ci j = |Ai ∩ Bj |. Then we define the average F1
score [33] as

1 http://www.patentsview.org.
2 These data sets are available at http://smallk.github.io/pages_about.html.
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Table 1 Some statistics of US
patent data sets

Class #Patents #Citations #Groups

A22 4976 28,746 230

A42 4213 29,285 134

B06 2938 11,549 82

B09 3522 17,302 38

B68 790 2433 93

C06 3347 17,562 141

C13 1010 3717 87

C14 583 1125 69

C40 3748 28,854 41

D02 3170 11,216 158

D10 2548 8486 154

F22 3040 7977 359

Y04 3242 21,518 76

Table 2 Some statistics of BlogCatalog and Flickr data sets

Data #Nodes #Edges #Tags #Groud truth clusters

BlogCatalog 31,228 782,584 5387 60

Flickr 32,576 2,749,800 77,234 170

F1 = 1

2

⎛
⎝1

k

k∑
i=1

max
j

F1(Ai , Bj ) + 1

k′
k′∑
j=1

max
i

F1(Bj , Ai )

⎞
⎠

where

F1(Ai , Bj ) = F1(Bj , Ai ) = 2ci j
|Ai | + |Bj |

This score measures how well an algorithm can recover the ground truth clusters. We also
use another measure called rand index [23], which measures how well an algorithm can
predict the connections among data items. Assume there are n data items in total. For each
of the n(n − 1)/2 pairs of data items, we say the two items are c-connected if they belong
to the same cluster, otherwise we call them c-disconnected (prefix c is added to distinguish
from connectivity in graph theory). Clustering results can also be treated as a prediction of
c-connectivity of each pair of data items. A prediction regarding one pair of data items can
have four cases of true positive (TP), true negative (TN), false positive (FP) or false negative
(FN) according to the rules listed in Table 3. Then the rand index can be defined as

RI = #T P + #T N

#T P + #T N + #FN + #FP
= #T P + #T N

n(n − 1)/2

We compare our algorithm with NMF and SymNMF, which have leading performance
in text clustering and graph clustering, respectively. For hybrid clustering, we choose PCL-
DC [34] to compare with based on its popularity and source code availability. While our
method is based on nonnegative matrix factorization, PCL-DC is a probabilistic method
that combines a conditional model for link analysis and a discriminative model for content
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Table 3 Type of predictions In prediction In ground truth Type

c-connected c-connected TP

c-disconnected c-disconnected TN

c-connected c-disconnected FP

c-disconnected c-connected FN

Fig. 2 Parameter sensitivity of PCL-DC and JointNMF. The parameter of PCL-DC is λ and the parameter of
JointNMF is α

analysis. Although we mentioned many other algorithms in Sect. 3, we found that for other
algorithms, either the code is not available or the code is available but we encountered runtime
errors during experimental tests. Both JointNMF and PCL-DC have parameters to set. For
JointNMF, we let the default parameter be α = ‖X‖2F/‖S‖2F , meaning half-half balance
between graph clustering and text clustering, and set β = α‖S‖max , where ‖S‖max is the
maximum absolute value of elements in S. The authors of PCL-DC do not provide a method
to specify its regularization parameter λ. Therefore, it is important to first study how the
parameter change will affect the algorithm performance. It is found that for λ < 1, PCL-DC
sometimes becomes extremely slow, such that it may take weeks to run over all the data
sets (estimated based on sampling run). Therefore, λ is varied within [1, 20]. In Fig. 2, we
show how the average F1 score changes when λ varies in that range for the first four data
sets listed in Table 1. The code of PCL-DC3 provides two models (popularity link model
and productivity link model), which we label as PCL-DC-1 and PCL-DC-2, respectively.

3 https://homepage.cs.uiowa.edu/~tyng/codes/community_detection.zip.
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Table 4 Comparison of average F1 scores

Class JointNMF NMF SymNMF PCL-DC-1 PCL-DC-2

A22 0.3730 0.2293 0.3457 0.1351 0.1369

A42 0.3215 0.1779 0.3199 0.1201 0.1280

B06 0.2502 0.1905 0.2307 0.2393 0.2373

B09 0.3336 0.2449 0.2690 0.3101 0.3014

B68 0.3806 0.3044 0.3730 0.4034 0.3671

C06 0.2257 0.1830 0.2004 0.1156 0.1158

C13 0.2990 0.2664 0.2953 0.2616 0.2224

C14 0.3584 0.3232 0.3603 0.2692 0.2659

C40 0.1939 0.1709 0.1673 0.1951 0.1981

D02 0.2990 0.2131 0.2683 0.1756 0.2268

D10 0.3046 0.2452 0.2783 0.1612 0.2999

F22 0.3006 0.2211 0.2926 0.1533 0.1388

Y04 0.2489 0.2029 0.2019 0.2599 0.2596

BlogCatalog 0.2038 0.2150 0.0750 0.2754 0.2754

Flickr 0.1545 0.0748 0.1660 0.0855 0.0855

The performance change of JointNMF when its parameter α varies in the same range is also
studied.

We observe that the PCL-DC is either worse than JointNMF or very sensitive to the
parameters, and it is concluded that when λ exceeds a certain threshold (depending on the
data), there is a large drop in clustering quality. Therefore, to have a tolerable run time while
having a fair clustering quality, λ = 1 is chosen for the comparison experiments. The results
of the comparison are listed in Tables 4, 5 and 6, where each value is the average over 10
runs, and the bold font denotes best results.

Using these patent data sets, from our experiments it can be observed that: (1) JointNMF
usually has the best average F1 scores, and its average F1 score is almost always better than
that of NMF or SymNMF alone; (2) JointNMF and SymNMF have the best rand index; (3)
SymNMF is usually the fasted algorithm; (4) The run time varies in a very different pattern
between NMF based methods and PCL-DC. The algorithms for both NMF based methods
and PCL-DC are iterative. For NMF based methods, the run time of each iteration is linear
with respect to data size (e.g. number of nodes and edges) and cubic with respect to the
number of clusters [17]. For PCL-DC, the run time of each iteration is linear with respect
to both data size and the number of clusters [34]. If we compare Table 6 with Table 1, we
can observe that for NMF methods the number of clusters does dominate the run time but
for PCL-DC the run time is rather unpredictable, which may suggest that the convergence
behavior of PCL-DC is not consistent over different data sets. On BlogCatalog and Flickr
data sets, which have different kinds of content and graph edges, the performance varies
depending on the data. However, the performance of JointNMF is comparable to the best
method with the exception of run time on the Flickr data set.

In conclusion, for patent data sets, based on content and citations, JointNMF produces
better quality solutions for clustering; for prediction of pairwise connection, both JointNMF
and SymNMF perform well; speed-wise, JointNMF is not the fastest, but is comparable to
other methods. On other types of data, the performance of eachmethod varies, and JointNMF
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Table 5 Comparison of rand index

Class JointNMF NMF SymNMF PCL-DC-1 PCL-DC-2

A22 0.9785 0.9768 0.9772 0.9274 0.9489

A42 0.9650 0.9633 0.9647 0.9225 0.9318

B06 0.9368 0.9357 0.9024 0.8775 0.8815

B09 0.8497 0.8387 0.7600 0.8464 0.8333

B68 0.9496 0.9423 0.9508 0.9272 0.8897

C06 0.9175 0.9150 0.9182 0.8969 0.8967

C13 0.8918 0.8873 0.8927 0.8598 0.8485

C14 0.9086 0.9036 0.9071 0.8233 0.7934

C40 0.6575 0.6507 0.6820 0.6593 0.6692

D02 0.9612 0.9594 0.9578 0.8922 0.8831

D10 0.9080 0.9048 0.9075 0.8676 0.8771

F22 0.9811 0.9797 0.9816 0.9554 0.9549

Y04 0.8879 0.8853 0.8697 0.8668 0.8622

BlogCatalog 0.7572 0.7652 0.6173 0.7259 0.7259

Flickr 0.0560 0.0409 0.0782 0.0620 0.0620

Table 6 Comparison of run time
(seconds)

Class JointNMF NMF SymNMF PCL-DC-1 PCL-DC-2

A22 769.4 304.4 219.2 55.6 57.5

A42 311.9 161.9 163.1 24.3 24.8

B06 193.8 115.8 59.8 444.5 1800.8

B09 145.6 109.6 48.2 406.6 588.8

B68 48.2 60.8 7.6 288.3 439.0

C06 489.8 269.0 160.6 21.1 20.9

C13 70.9 76.1 8.8 421.5 377.2

C14 29.5 25.0 4.7 220.6 83.8

C40 240.8 127.8 54.3 394.0 597.3

D02 534.5 238.5 117.3 1623.5 831.8

D10 280.8 155.4 95.9 14.7 1728.4

F22 1294.1 404.4 267.2 38.4 36.7

Y04 291.9 125.8 103.8 1568.3 987.6

BlogCatalog 401.3 222.8 1515.6 4463.4 4522.4

Flickr 12455.6 2437.9 3504.5 1181.3 1236.0

generates comparable results. The JointNMFmethod has other advantages: its parameter has
explicit meanings (weight between text and graph), the clustering quality is not very sensitive
to the parameter setting, and its default parameter works very well.

5 Other applications

In this section we present additional applications of our JointNMF framework beyond
clustering. We demonstrate our JointNMF on other potential applications such as citation
recommendations of papers/patents and activity/leader detection in an organization.
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5.1 Citation recommendation

When applied to papers/patents with citations or web pages with hyperlinks, the formulation
(4) can also be understood as finding a basis W for the text space, such that under this basis,
the representation (coordinates) of the documents can also reflect their linkage information.
Therefore, when we express a new vector x in the text space using the basis W , i.e. finding
a vector h that solves the following optimization problem

min
h≥0

‖x − Wh‖2, (12)

we can use closeness of h to the column vectors in H to decide how likely the new document
represented by h should cite some of the documents in H . For example, one can recommend
a new document to cite the i-th original document if the i-th entry of HT h is larger than
certain threshold. Since the matrix S is approximated by HT H , we can treat HT h as an
augmented column of S, representing the relation between the original documents and the
new document. Another method is to set the threshold for the cosine similarity between h
and column vectors in H . It will be observed that each method has its advantages.

For this task, we use the paper title/abstract and citation data cit-HepTh from SNAP[20],
which contains 27,770 papers from January 1993 to April 2003 in the hep-th (high energy
physics—theory) section of arXiv. Note that this is a different task from clustering and
therefore the data preprocessing procedure is a little different: the raw adjacency matrix for
S (i.e. S = A) is used. The normalized version D−1/2AD−1/2 is related to minimizing the
normalized cut [18] and therefore good for clustering. Here the raw adjacency matrix is a
better indicator of citations, which is used as an input that the algorithm learns from, instead
of a basis for clustering.

To evaluate our method, the data is separated into training and test sets by treating papers
published earlier than 2003 as the training set and papers published in 2003 as the test set. We
use JointNMF to learn a matrix W from the document and citation relations in the training
set, and then make predictions of citations for documents in the test set and compare the
predictions with the actual citations.

To verify that the W computed by our algorithm indeed reflects the network structure
better,we also design several baselinemethods.Anaivemethod is to predict citations based on
number of words shared by two documents. One method based on NMF is to learn the matrix
W used in (12) only by NMF, i.e. minW≥0,H≥0 ‖Xtrain −WH‖F . Another method based on
NMF is to directly learn the h vector in (12) using minW,H,h≥0 ‖[Xtrain, x] − W [H, h]‖F .
For the two NMF-based methods, the rest of the steps for making predictions are the same
as JointNMF, once the matrix W or the vector h is obtained. In this subsection, we denote
these two NMF based methods as NMF-1 and NMF-2, respectively.

For both prediction methods (compute HT h, the inner product , or compute cosine sim-
ilarity scores), a threshold is needed. Instead of evaluating these algorithms with a fixed
threshold, we show the receiver operating characteristic (ROC) curve, which plots the true
positive rate against the false positive rate at various threshold values. In general, the closer the
curve is to the upper left corner of the graph, the better the algorithm results. Or quantitatively,
the larger the area under the curve (AUC) is, the better.

Paper abstracts are used to extract text content. The experimental results are shown in
Fig. 3. Some observations are: when cosine similarity is used, JointNMF makes the overall
best predictions, and when inner product is used, at certain threshold values JointNMF can
achieve relatively high true positive rate with a very low false positive rate. One can choose
which method to use based on requirements. A heuristic explanation of such a difference
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Fig. 3 ROC curves for citation recommendation algorithms applied to paper abstract and citation data. The
left uses cosine similarity for the prediction, while the right uses inner product
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Fig. 4 ROC curves for citation recommendation algorithms applied to paper title and citation data. The left
uses cosine similarity for the prediction, while the right uses inner product

caused by using cosine similarity or inner product is as follows: The cosine similarity ignores
the length of the similar content while the inner product does not. Thus, the low false positive
rate on the right sub-figures of Figs. 3 and 4 suggests that if two papers’ abstracts/titles share
a large amount of content (in the sense of bag-of-word model), it is very likely that one paper
would cite the other.

The experiments are repeated using only paper titles as text content; similar results are
observed, as shown in Fig. 4. From the results we can observe that even with very little text
information (such as paper titles), our method still works well.

5.2 Activity and leader detection from Enron email data

In an organization where various groups of people work on different subjects and engage in
different activities, JointNMF can be used to detect such group structure, reveal the work-
ing subject/activities and find administrators/leaders in the organization. We assume that (1)
within-group communications (e.g. emails) reflects the subject on which the team is work-
ing/activities engaged in and (2) people involved inmultiple groupswould likely hold a higher
position in the organization, since they may be in charge of these groups. Each communica-
tion can be seen as a hypergraph edge that connects all people involved in the communication
and the communication content is the text associated with the edge. Clustering the text data
can distinguish and identify different working subjects/activities and clustering the graph data
can divide people into workgroups. JointNMF utilizes both types of data simultaneously and
therefore can distinguish different groups of people working on the same subject and dif-
ferent subjects worked on by the same group of people. After clustering, one can count and
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Table 7 Frequency of number of
memberships

#Memberships 1 2 3 4 5 6 7 11

#Employees 1069 149 45 17 8 7 1 1

Table 8 Employees that has j
memberships ( j ≥ 6) and their
positions in Enron

j Name Position in Enron

11 Steven Kean Chief of staff

7 Jeff Dasovich Governmental affairs executive

6 Susan Mara California director of regulatory affairs

Richard Shapiro VP of regulatory affairs

Paul Kaufman VP of government affairs

James Steffes VP of government affairs

Tim Belden Head of trading

Richard Sanders VP of Enron whole sale services

Joe Hartsoe VP of Federal regulatory affairs
VP vice president

compare the number of groups/clusters each person belongs to—the more groups a person
belongs to, the more likely the person is in a leadership or administrative position.

A subset of Enron email data extracted by a group from UC Berkeley, 4 containing 1702
emails is used. First we construct the term documentmatrix from email content and the hyper-
graph incidence matrix from email-sender/recipient relations. The hypergraph has Enron
employees as vertices and their emails as edges, and a vertex is connected by an edge if and
only if the corresponding employee is the sender or a recipient of the corresponding email.
After that, we clean the data by removing terms that appear very infrequently and emails that
are too short or duplicated, and extracting the largest connected components of the hyper-
graph. The tf-idf transformation is then applied to the term-document matrix, its columns
are normalized to have unit 2-norm, which obtains the matrix X . S is computed using (7) in
which M is the incidence matrix of the dual hypergraph. Finally, we apply JointNMF with
α = ‖X‖2F/‖S‖2F and β = α‖S‖max to find 20 groups of employees. Note that since the
dual hypergraph is used, the resulting clusters are clusters of emails rather than clusters of
employees. To induce clusters of employees, one simply inserts employees involved in the
same cluster of emails into one employee cluster. In this way, we can actually induce overlap-
ping employee clusters from non-overlapping email clusters. It is assumed that an employee
has j memberships if the employee belongs to j clusters. The number of memberships is
counted for each employee and the frequency of each number is listed in Table 7.

Employees that had at least 6 memberships are examined in online news and we found
that they all held relatively high positions in Enron. Their names and positions are listed in
Table 8. To see the effect of our algorithm on topic modeling, we list some topic keywords for
each cluster in Table 9. It can be observed that some emails are communications about/with
other companies and regulatory agencies (0,3,19); some are about administrative tasks or
daily work (5,7,8,13,15,16,18); some are about legal issues (6,10); and some are related to
the California energy crisis (2,11).

4 http://bailando.sims.berkeley.edu/enron_email.html
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Table 9 Topic keywords of
clusters

# Keywords

0 Ubs, warburg, forecast, confidential, win

1 Blackberry, handheld, wireless

2 California, power, confidential, tariff, pursuant

3 Caiso, refund, ferc, proceedings

4 Burrito, peace, things, price, market, board, california

5 Document, fax, tonight, sign, back, attach, thanks

6 Wholesale, policy, compliance, receipt, legal, service

7 Enron, please, know, attach, meeting, contact, call, any, time

8 London, conference, meeting, next, week

9 Handheld, blackberry, wireless, agreement, confidential

10 Testify, witness, fault, burden, cut, budget

11 California, electricity, energy, price, market, power, rate, bill

12 Recommendation, template, participant, management

13 Passcode, please, effective, confidential, change

14 Stanford, university, expert, try, best, mail, california

15 Account, invoice, trust, fund, transfer

16 Expense, report, employee, name , approve, amount

17 Folder, info, audit, access, apollo, email, sensitivity, server

18 Sent, talk, presentation, thanks, infrastructure, amendment

19 Hpl, aep, agreement, compete, deal, arrangement

6 Conclusions and discussions

With a simple CLRA formulation in (4), JointNMF is able to solve a variety of problems.
The basic application of JointNMF is to cluster hybrid data with both content and connec-
tion structure, where the connection structure can be either a graph or a hypergraph, and
the content can be associated with either the hypergraph nodes or the edges. When X is
any nonnegative feature-data matrix and S is a nonnegative data-data similarity matrix, the
JointNMF formulation (4) naturally applies without any modification. When there are mul-
tiple feature-data matrices X1, . . . , X p and multiple similarity matrices S1, . . . , Sq , one can
extend (4) to

min
Wi≥0,H≥0

p∑
i=1

αi ||Xi − Wi H ||2F +
q∑
j=1

γ j ||S j − HT H ||2F

JointNMFcan also be applied to predict paper/patent citations and detect activities and leaders
in an organization.

As a hybrid clustering method, JointNMF, with easy-to-set parameters, successfully
improves the cluster quality over content-only and connection-only clustering algorithms. It
also outperforms one of the leading hybrid clustering methods in the sense of average F1
score and rand index.

Although the current default parameters (α = ‖X‖2F/‖S‖2F and β = α‖S‖max ) for
JointNMF are usually good enough, it was noticed in our experimental results that these
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are not optimal. We plan to study this further in future research to better understand these
parameter values.

Our next research effort, in addition to those noted above, is to accelerate the JointNMF
algorithm using a divide-and-conquer approach, as in [17]. In our experiments, JointNMF
also demonstrates excellent potential for predicting paper/patent citations and activities and
leaders in an organization. The application of JointNMF to citation recommendation and
activity/leader detection will be further explored and more experimental results on additional
data sets will serve to compare JointNMF with other algorithms in these two important areas
that have many applications in critical domains such as organized crime detection.
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