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Abstract We introduce a proximal bundle method for the numerical minimization of a
nonsmooth difference-of-convex (DC) function. Exploiting some classic ideas coming from
cutting-plane approaches for the convex case, we iteratively build two separate piecewise-
affine approximations of the component functions, grouping the corresponding information in
two separate bundles. In the bundle of the first component, only information related to points
close to the current iterate are maintained, while the second bundle only refers to a global
model of the corresponding component function. We combine the two convex piecewise-
affine approximations, and generate a DC piecewise-affine model, which can also be seen
as the pointwise maximum of several concave piecewise-affine functions. Such a nonconvex
model is locally approximated by means of an auxiliary quadratic program, whose solution
is used to certify approximate criticality or to generate a descent search-direction, along with
a predicted reduction, that is next explored in a line-search setting. To improve the approx-
imation properties at points that are far from the current iterate a supplementary quadratic
program is also introduced to generate an alternative more promising search-direction. We
discuss the main convergence issues of the line-search based proximal bundle method, and
provide computational results on a set of academic benchmark test problems.
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1 Introduction

Consider the problem:

min
x∈Rn

f (x) (1)

where we assume that f : Rn �→ R is a DC function, according to the following

Definition 1 A function f : R
n → R is a DC function if there exist convex functions

f1, f2 : Rn → R such that:

f (x) = f1(x) − f2(x).

Here f1 − f2 is called a DC decomposition of f , while f1 and f2 are called DC components
of f . A function f is locally DC if for any x0 ∈ R

n , there exist ε > 0 such that f is DC on
the ball B(x0, ε). It is well known that every locally DC function is DC.

Problem (1) is knownas aDCprogramand some typical problemswhich can bemodeled in
such form are the bridge location problem, the design centering problem, the packing problem
[1], the production-transportation planning [18], the location planning problem [23], cluster
analysis [5,22], clusterwise linear regression analysis [7] and supervised data classification
[2]. To date, DC programming has been mostly considered as a part of global optimization.
Several algorithms are available to solve this problem globally [19,27].

Nonsmooth DC programming is an important subclass of DC programming problems.
Several algorithms have been developed to solve such problems. An algorithm based on
quasidifferentials of DC functions and discrete gradients is developed in [3]. A codifferential
method is introduced in [6] and a proximal linearized algorithm is proposed in [24]. The
paper [21] introduces a proximal bundle method that utilizes nonconvex cutting planes. A
gradient splitting method introduced in [14] can be modified for minimizing DC functions.
General references on bundle methods are [4,17], while possible variants are [8,12,15].

In this paper, we develop a proximal bundlemethod for the numericalminimization of non-
smooth DC functions by iteratively building two separate piecewise-affine approximations of
the component functions. Combining these two convex piecewise-affine approximations we
generate a DC piecewise-affine model, which can also be seen as the pointwise maximum of
several concave piecewise-affine functions. Such a nonconvexmodel is then tackled bymeans
of two auxiliary quadratic programs, that have different local approximation properties.

The rest of the paper is organized as follows. Section 2 presents some definitions and pre-
liminary results on DC functions and DC programs. A cutting plane model for DC functions
is introduced in Sect. 3. The description of the proposed method is given in Sect. 4. Termina-
tion properties of the algorithm, as well as some results on its convergence are discussed in
Sect. 5. Computational results are reported in Sect. 6, and Sect. 7 contains some concluding
remarks.

2 Some preliminary results

In the followingwe focus only on a few theoretical results regarding some relevant stationarity
conditions that will be useful for later developments. We refer the reader to [1,16,25,26],
and the references therein, for a thorough analysis of DC optimality conditions.
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Definition 2 A point x∗ is called a local minimizer of the problem (1) if f1(x∗) − f2(x∗) is
finite and there exists a neighborhood N of x∗ such that

f1(x
∗) − f2(x

∗) ≤ f1(x) − f2(x), ∀x ∈ N . (2)

In general, nonsmooth DC functions are not regular, and the Clarke subdifferential calculus
exists for such functions in the form of inclusions. Such a calculus cannot be used to compute
subgradients of the DC function since

∂cl f (x) ⊆ ∂ f1(x) − ∂ f2(x), (3)

where the symbol ∂cl f (·) denotes Clarke’s subdifferential.
Nonsmooth DC functions are quasidifferentiable. Depending on generalized subgradients

used to approximate nonsmooth DC functions, different stationary points can be defined for
them. A point x∗ is called inf-stationary for problem (1) if

∅ 
= ∂ f2(x
∗) ⊆ ∂ f1(x

∗). (4)

A point x∗ is called Clarke stationary for problem (1) if

0 ∈ ∂cl f (x
∗). (5)

Finally, a point x∗ is called a critical point of the function f if

∂ f2(x
∗) ∩ ∂ f1(x

∗) 
= ∅. (6)

It is interesting to analyze the relationships between different stationary points. Consider
the special case where the function f1 is nonsmooth convex and the function f2 is smooth
convex.

Proposition 1 The generalized subdifferential of the DC function f , obtained as the dif-
ference between a nonsmooth convex function f1 and a smooth convex function f2, can be
computed as

∂cl f (x) = ∂ f1(x) − ∇ f2(x).

Proof Let D(x) = ∂ f1(x) − ∇ f2(x). The inclusion ∂cl f (x) ⊆ D(x) follows from the
calculus for generalized subdifferentials. Therefore we prove only the opposite inclusion.
As convex functions f1 and f2 are directionally differentiable, then f is also directionally
differentiable and

f ′(x, d) = f ′
1(x, d) − f ′

2(x, d), d ∈ R
n .

It is known that

f ′
1(x, d) = max

ξ∈∂ f1(x)
ξ�d, f ′

2(x, d) = ∇ f2(x)
�d.

Then
f ′(x, d) = f ′

1(x, d) − f ′
2(x, d) = max

ξ∈∂ f1(x)
(ξ − ∇ f2(x))

�d (7)

for all d ∈ R
n . This means that f ′(x, d) ≥ u�d for all d ∈ R

n and u ∈ D(x), which in turn,
due to the convexity and compactness of the set D(x), implies that D(x) ⊆ ∂cl f (x). ��

Now assume that f1 is smooth and f2 is any convex nonsmooth function.
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Proposition 2 The generalized subdifferential of the DC function f , obtained as the dif-
ference between a smooth convex function f1 and a nonsmooth convex function f2, can be
computed as

∂cl f (x) = ∇ f1(x) − ∂ f2(x).

Proof The proof follows from Proposition 1 and from the fact if f is a DC function, then
− f is also DC. ��
Proposition 3 Let Sin f be a set of inf-stationary points, Scl a set of Clarke stationary points
and Scr a set of critical points of the function f . Then

(1) Sin f ⊆ Scl ⊆ Scr ;
(2) if the function f1 is continuously differentiable in Rn then Scl = Scr ;
(3) if the function f2 is continuously differentiable in Rn then Sin f = Scl = Scr .

Proof (1) First we show that Sin f ⊆ Scl . Take any x ∈ Sin f . Let f 0(x, d) be a generalized
directional derivative of the function f at the point x in a direction d ∈ R

n [4]:

f 0(x, d) = lim sup
y→x,α↓0

f (y + αd) − f (y)

α
.

Since both functions f1 and f2 are directionally differentiable, taking into account inf-
stationarity of the point x , we get

f 0(x, d) ≥ f ′(x, d) = f ′
1(x, d) − f ′

2(x, d) ≥ 0

for all d ∈ R
n . This implies that 0 ∈ ∂cl f (x), hence that x ∈ Scl . The inclusion

Scl ⊆ Scr is obvious since according to (3) for any x ∈ Scl one gets 0 ∈ ∂ f1(x)− ∂ f2(x)
and therefore ∂ f1(x) ∩ ∂ f2(x) 
= ∅.

(2) Now assume that the function f1 is continuously differentiable in R
n , then ∇ f1(x) ∈

∂ f2(x) for any x ∈ Scr . In this case Proposition 2 implies that 0 ∈ ∂cl f (x) that is
x ∈ Scl .

(3) Finally, if the function f2 is continuously differentiable inRn , then∇ f2(x) ∈ ∂ f1(x) for
any x ∈ Scr . In this case, according to Proposition 1, 0 ∈ ∂cl f (x). Therefore x ∈ Sin f
and x ∈ Scl .

��
In the next sections we will introduce a method requiring no differentiability assumptions

of both f1 and f2, for which we will prove finite termination at a point approximately
satisfying the criticality condition (6).

3 The model function

Our approach is based on some ideas coming from the classic cutting plane method for
minimizing convex functions. In particular we assume that, within an iterative procedure, a
certain set of couples (x j , g

(2)
j ), j = 1, . . . , k, with x j ∈ R

n and g(2)
j ∈ ∂ f2(x j ) are given.We

single out the point xk from the set of points x j , j = 1, . . . , k, and calculate g(1)
k ∈ ∂ f1(xk).

Convexity of f2 implies that the following inequalities hold for any x ∈ R
n :

f2(x) ≥ f2(x j ) + g(2)�
j (x − x j ), j = 1, . . . , k, (8)
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which, by introducing the change of variables d � x − xk , can be rewritten in the form:

f2(xk + d) ≥ f2(xk) + g(2)�
j d − α

(2)
j , j = 1, . . . , k, (9)

where α
(2)
j , j = 1, . . . , k, is the linearization error associated to the j th first order expansion

of f2 rooted at x j and is defined as

α
(2)
j = f2(xk) −

(
f2(x j ) + g(2)�

j (xk − x j )
)

. (10)

It follows from the definition of the ε-subdifferential ∂ε fi (·) of the convex function fi (·),
with i = 1, 2 and ε ≥ 0, that g(2)

j ∈ ∂
α

(2)
j

f2(xk). Similarly, for any given x ∈ R
n and

g(1) ∈ ∂ f1(x), it holds that g(1) ∈ ∂α f1(xk), with α � f1(xk) − f1(x) − g(1)�(xk − x).
We observe that the following inequality

f2(xk + d) ≥ f2(xk) + max
j=1,...,k

{
g(2)�
j d − α

(2)
j

}
(11)

follows from (9), and thus we obtain:

f (xk +d) = f1(xk +d)− f2(xk +d) ≤ f1(xk +d)−
(
f2(xk) + max

j=1,...,k

{
g(2)�
j d − α

(2)
j

})
.

(12)
The right-hand side of (12) is still DC, with f2(xk + d) being replaced by its lower approxi-
mation provided by the convex cutting plane function

f2(xk) + �
(k)
2 (d),

with
�
(k)
2 (d) � max

j=1,...,k

{
g(2)�
j d − α

(2)
j

}
. (13)

Now we define a concave model hk(d) for the difference function f (xk + d) − f (xk). We
first note that from (12) it follows

f (xk + d) − f (xk) = f1(xk + d) − f2(xk + d) − f1(xk) + f2(xk)

≤ f1(xk + d) −
(
f2(xk) + �

(k)
2 (d)

)
− f1(xk) + f2(xk)

= f1(xk + d) − f1(xk) − �
(k)
2 (d). (14)

Next, by substituting f1(xk + d) with the affine approximation f1(xk) + g(1)�
k d in (14), we

have:

hk(d) � g(1)�
k d − �

(k)
2 (d) = min

j=1,...,k

{
(g(1)

k − g(2)
j )�d + α

(2)
j

}
. (15)

We observe that hk(·) interpolates the difference function at d = 0, since α
(2)
j ≥ 0 for

every j = 1, . . . , k, with, in particular, α(2)
k = 0.

The rationale of our approach is the following. Suppose any direction d̄ is calculated such
that hk(d̄) < 0. If for a given m ∈ (0, 1) it is

f (xk + d̄) − f (xk) < mhk(d̄),

then a decrease has been achieved and a new iterate can be generated by setting xk+1 = xk+d̄ .
Suppose, on the contrary, that

f (xk + d̄) − f (xk) ≥ mhk(d̄),
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and consider any g(1)
+ ∈ ∂ f1(xk + d̄). Convexity of f1 implies

f1(xk) ≥ f1(xk + d̄) − g(1)�
+ d̄,

which, taking into account (11) and (13), leads to

g(1)�
+ d̄ − �

(k)
2 (d̄) ≥ f1(xk + d̄) − f1(xk) − �

(k)
2 (d̄)

≥ f1(xk + d̄) − f1(xk) − ( f2(xk + d̄) − f2(xk))

= f (xk + d̄) − f (xk)

≥ mhk(d̄). (16)

The latter formula is of relevant importance as it will be used in the sequel in order to get
better and better models of the objective function whenever descent is not achieved. In fact,
suppose that the condition

f (xk + d̄) − f (xk) ≥ mhk(d̄) (17)

is satisfied with xk + d̄ very close to xk , so that g(1)
+ can be considered to approximately

belong to ∂ f1(xk). More precisely, let

0 ≤ α
(1)
+ � f1(xk) − f1(xk + d̄) + g(1)�

+ d̄, (18)

and, for some given ε > 0, assume that

α
(1)
+ ∈ [0, ε] (19)

and
g(1)
+ ∈ ∂

α
(1)
+

f1(xk). (20)

Then, a better model Hk(·) than hk(·) at d̄ , can be obtained by letting

Hk(d) � max
{
g(1)�
k d − �

(k)
2 (d), g(1)�

+ d − α
(1)
+ − �

(k)
2 (d)

}
. (21)

Indeed, noting that (18) is equivalent to

g(1)�
+ d̄ − α

(1)
+ = f1(xk + d̄) − f1(xk), (22)

and taking into account (21), (22), (11), (17), and hk(d̄) < 0, we obtain

Hk(d̄) ≥ g(1)�
+ d̄ − α

(1)
+ − �

(k)
2 (d̄)

= f1(xk + d̄) − f1(xk) − �
(k)
2 (d̄)

≥ f1(xk + d̄) − f1(xk) − ( f2(xk + d̄) − f2(xk))

= f (xk + d̄) − f (xk)

≥ mhk(d̄)

> hk(d̄). (23)

Hence, at the point d̄ , if a large gap between hk(d̄) and f (xk + d̄) − f (xk) occurs, then
Hk(d̄) is significantly higher than hk(d̄).

More in general, given any set {g(1)
1 , . . . , g(1)

s } of α
(1)
i -subgradients of f1 at xk , with

α
(1)
i ≤ ε, i = 1 . . . , s, we redefine the nonconvex model Hk(·) as the following maximum

of finitely many concave piecewise-affine functions
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Hk(d) � max
i=1,...,s

{
g(1)�
i d − α

(1)
i − �

(k)
2 (d)

}
. (24)

Next, we examine some differential properties of the model function Hk . Note that, taking
into account definitions (13) and (24), function Hk(d) may be rewritten in the form

Hk(d) = max
i∈I h(i)

k (d), (25)

where I � {1, . . . , s} and h(i)
k (d), i ∈ I , is a concave piecewise-affine function defined as

h(i)
k (d) � min

j∈J

{
(g(1)

i − g(2)
j )�d − α

(1)
i + α

(2)
j

}
(26)

with J � {1, . . . , k}. Thus, the function Hk(d) is of the maxmin type, it is directionally
differentiable, and its directional derivative H ′

k(d; ξ) along any direction ξ ∈ R
n depends on

the directional derivatives of the functions h(i)
k (d), i ∈ I as follows:

H ′
k(d; ξ) = max

i∈I (d)
h(i)′
k (d; ξ),

where

I (d) � {i ∈ I |Hk(d) = h(i)
k (d)},

and

h(i)′
k (d; ξ) = min

j∈J (d)
{(g(1)

i − g(2)
j )�ξ}

with

J (d) � { j ∈ J |g(2)�
j d − α

(2)
j = �

(k)
2 (d)}.

For an in-depth analysis of the differential properties of functions of the maxmin type we
refer the reader to the historical paper [9].

In the following remark an approximate criticality condition for xk is highlighted as a
result of the minimization of Hk(d).

Remark 1 Assume that d = 0 is a minimizer for Hk(d). This implies that H ′(0; ξ) ≥ 0, for
every ξ ∈ R

n , which, in turn, is equivalent to infeasibility of the following inequality:

max
i∈I (0) min

j∈J (0)

{
(g(1)

i − g(2)
j )�ξ

}
< 0. (27)

Now observe that I (0) and J (0) contain each at least one index assigned to a subgradient of
f1(xk) and of f2(xk), respectively. Hence, defining the following system S j of |I (0)| linear
inequalities

(g(1)
i − g(2)

j )�ξ < 0 i ∈ I (0),

for each index j ∈ J (0), we have that infeasibility of (27) implies infeasibility of all systems
S j , j ∈ J (0). By Gordan’s theorem the latter is equivalent to

g(2)
j ∈ conv{g(1)

i , i ∈ I (0)}, j ∈ J (0),

and, consequently,

conv{g(2)
j , j ∈ J (0)} ⊆ conv{g(1)

i , i ∈ I (0)},
which can be interpreted as an approximation of the criticality condition (6) at the point xk .
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4 The algorithm

The approximate criticality condition presented in Remark 1, along with the properties of
Hk(·) summarized in (23), would suggest to develop a method for solving problem (1) which
is based on iterative minimizations of Hk(d). The model function Hk(d) is, as previously
mentioned, of the maxmin type and can also be seen as the pointwise maximum of a (finite)
number of concave functions. Although there exist several algorithms dealing with mini-
mization of such a family of functions, the idea of direct minimization, at each iteration k,
of Hk(d) does not seem viable in terms of computational effort. Thus, borrowing some ideas
from the approach proposed in [13] for the minimization of piecewise-concave functions, we
introduce an iterative algorithm that does not require the direct minimization of the model
function Hk(d). In particular, at each iteration of the algorithm, a displacement vector dk is
calculated, such that Hk(dk) < 0, along which a line search for function f is performed.
The calculation of the search direction dk is made on the basis of the solution of an auxiliary
quadratic program that locally approximates Hk(d), hence next referred to as the local pro-
gram. In fact, we note that ∂h(i)

k (0), the subdifferential of h(i)
k (d) at d = 0, has the following

expression

∂h(i)
k (0) = conv{(g(1)

i − g(2)
j )| j ∈ J (0)},

where J (0) = { j ∈ J | α
(2)
j = 0}. Hence, any subgradient ui , ui ∈ ∂h(i)

k (0), can be
calculated by selecting any index ji ∈ J (0) and setting

ui = g(1)
i − g(2)

ji
.

We observe that in case the set J (0) is a singleton, that is ji = j , i ∈ I , the function Hk(d)

has the form

Hk(d) = max
i∈I {(g(1)

i − g(2)
j )�d − α

(1)
i },

which is convex piecewise-affine. To make its minimization well-posed we add to Hk(d)

the strictly convex term 1
2‖d‖2, thus coming out with the minimization of the maximum of

finitely many strictly convex functions of d . Such a problem can be equivalently formulated
as the following auxiliary local problem QP(I )

z = min
d∈Rn ,v∈R v + 1

2
‖d‖2

v ≥ u�
i d − α

(1)
i ∀i ∈ I.

QP(I )

Denoting by (d̄, v̄) the unique optimal solution of (QP(I )), a standard duality argument
ensures that

d̄ = −
∑
i∈I

λ̄i ui , (28)

v̄ = −
∥∥∥∥∥
∑
i∈I

λ̄i ui

∥∥∥∥∥
2

−
∑
i∈I

λ̄iα
(1)
i (29)

where λ̄i ≥ 0, i ∈ I , with
∑

i∈I λ̄i = 1, are the optimal variables of the dual of QP(I ).
Although, in principle, the set J (0) may contain multiple indices (i.e., multiple affine pieces
of f2 may be active at xk), next we will adopt the strategy of forcing J (0) to be a singleton.
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We focus now on the properties of the solution returned by QP(I ). We observe that when
|v̄| is small, by taking into account equation (29), the condition (6) for the point xk to be
critical is approximately satisfied. On the contrary, when |v̄| is large, since

0 ≥ v̄ = max
i∈I {u�

i d̄ − α
(1)
i } ≥ max

i∈I h(i)
k (d̄) = Hk(d̄) (30)

we observe that a “good agreement” between the predicted reductions v̄ and Hk(d̄), denotes
that the local program is still a good approximation of Hk at d̄ , hence d̄ can be considered as
a possible descent direction for function f . In case a “poor agreement” between v̄ and Hk(d̄)

is detected, we propose to refine calculation of the search direction, by constructing a more
accurate model of function Hk at d̄, i.e., away from d = 0. In particular, we calculate, for
every i ∈ I , the index j̄i ∈ J such that

h(i)
k (d̄) = (g(1)

i − g(2)
j̄i

)�d̄ − α
(1)
i + α

(2)
j̄i

and we introduce the following auxiliary away problem QP(I, J̄ )

min
d∈Rn ,v∈R v + 1

2
‖d‖2

v ≥ ū�
i d − α

(1)
i + α

(2)
j̄i

∀i ∈ I
(QP(I, J̄ ))

again a (strictly) convex quadratic program, where ūi � g(1)
i −g(2)

j̄i
and J̄ is the set of indices

j̄i , i ∈ I . It is worth noting that while problem QP(I, J̄ ) embeds the function

max
i∈I {ū�

i d − α
(1)
i + α

(2)
j̄i

} (31)

which interpolates the maxmin model Hk at d̄ , the problem QP(I ) uses the function

max
i∈I {u�

i d − α
(1)
i }, (32)

which, in turn, interpolates Hk at d = 0. Function (31) resembles Hk around d̄ , but it can be
a poor representation for small values in norm of d , as it does not even interpolate Hk (and
f ) at d = 0, provided α

(2)
j̄i

> 0 for at least one index i ∈ I . As a consequence, denoting by

(d̂, v̂) the (unique) optimal solution of QP(I, J̄ ), we will adopt d̂ as an alternative search
direction in case the predicted reduction Hk(d̂) is strictly lower than Hk(d̄).

We are now ready to describe our DCPiecewise-Concave algorithm (DCPCA). A compact
description ofDCPCA is first given in Scheme 1,where its essential steps are highlighted. The
comments therein refer to the actual steps of DCPCA, which is fully detailed in Algorithm 1.

DCPCA takes as an input any starting point x0 ∈ R
n , and returns an approximate critical

point x∗. We assume that the set

S0 � {x ∈ R
n | f (x) ≤ f (x0)}

is bounded. The following parameters are to be set: the optimality parameter θ > 0, the
subgradient threshold η > 0, the linearization-error threshold ε > 0, the approximate line-
search parameter m ∈ (0, 1), the step-size reduction parameter σ ∈ (0, 1), the agreement
rate ρ ∈ (0, 1).

Some explanatory comments about the structure of the algorithm are in order. Given
the current iterate xk , DCPCA first determines the main search-direction d̄ and the main
predicted-reduction v̄ by solving QP(I ). Next, the condition v̄ < ρHk(d̄) checked at step 7
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Scheme 1 DCPCA at a glance
A1: Initialization; � Steps 1–3
A2: Find the main search-direction and the main predicted-reduction at the current iterate

by solving QP(I ), and if an approximate criticality condition holds then terminate; � Steps 4–6
A3: Check, if appropriate, for an alternative more promising search-direction

at the current iterate by solving QP(I, J̄ ), then set the strong predicted-reduction; � Steps 7–17
A4: As long as the displacement along the selected search-direction is not too small make a

backtracking line-search looking for a sufficient descent, then update the current
iterate and go to A4 (serious step achieved); � Steps 18–28

A5: If appropriate restore the main search-direction, update the strong predicted-reduction
and go to A5; � Steps 29–32

A6: If appropriate restore the main predicted-reduction and go to A5; � Steps 33–34
A7: Accumulate first order information in the f1 bundle and go to A2 (null step execution). � Steps 35–39

is meant to detect if a “good agreement” holds between v̄ and the strong predicted reduction
Hk(d̄) provided by the model at d̄. Then, in case of “poor agreement” between v̄ and Hk(d̄),
DCPCA generates an alternative search-direction d̂ by solving QP(I, J̄ ), and selects the
search direction dk at steps 11–15 as the most promising one between d̄ and d̂ . Independent
of the selected search-direction, an Armijo-type line-search is executed adopting the strong
predicted-reduction yielded by the nonconvex model at dk , i.e., Hk(dk). As soon as the line-
search is successful (a sufficient decrease is achieved at step 18), a serious step is made,
namely, the current estimate of the minimum is updated and a new iteration takes place. It
is worth noting that the failure of the line-search, at a point that is very close to the current
iterate, does not immediately imply a null-step execution (i.e., information enrichment of
B1 about the subdifferential of f1 at xk) at steps 35–39. In fact, the role of the preliminary
steps 29–34 is to prevent the algorithm from certifying the line-search failure, until the main
search-direction has been checked for sufficient descent with respect to the main predicted-
reduction. We note that, whenever g(1)

+ is inserted into B1 at step 36, then t‖dk‖ ≤ η implies

that g(1)
+ ∈ ∂ε1 f1(xk) for ε1 ≤ 2ηL1, where L1 is the Lipschitz constant of f1 on the set

S0(η) �
{
x ∈ R

n : dist(x, S0) ≤ η
}
.

Finally, the following remark aims at clarifying the role of the stopping condition in terms
of an approximate stationarity condition for problem (1).

Remark 2 The stopping condition v̄ ≥ −θ , checked at step 5 of DCPCA, is an approximate
θ -criticality condition for x∗. Indeed, taking into account (29), the stopping condition ensures
that

∥∥∥∥∥
∑
i∈I

λ∗
i g

(1)
i −

∑
i∈I

λ∗
i g

(2)
ji

∥∥∥∥∥ ≤ √
θ and

∥∥∥∥∥
∑
i∈I

λ∗
i α

(1)
i

∥∥∥∥∥ ≤ √
θ,

which in turn implies that there exist g(1)∗ ∈ ∂θ f1(x∗) and g(2)∗ ∈ ∂ f2(x∗) such that

‖g(1)∗ − g(2)∗ ‖2 ≤ θ,

namely, that

dist
(
∂θ f1(x

∗), ∂ f2(x∗)
) ≤ θ,

an approximate θ -criticality condition for x∗, see (6).

123



J Glob Optim (2018) 71:37–55 47

Algorithm 1 DCPCA
Input: a starting point x0 ∈ R

n , parameters θ > 0, η > 0, ε > 0, m ∈ (0, 1), σ ∈ (0, 1), ρ ∈ (0, 1)
Output: an approximate critical point x∗ ∈ R

n

1: Calculate g(1)
0 ∈ ∂ f1(x0), g

(2)
0 ∈ ∂ f2(x0) and set α

(1)
0 = α

(2)
0 = 0 � Initialization

2: Set B1 = {(g(1)
0 , α

(1)
0 )} and B2 = {(g(2)

0 , α
(2)
0 )} �

3: Set I = {1}, J = {1}, and set k = 0 �
4: Solve QP(I ) and obtain (d̄, v̄) � Find the main search-direction and the main predicted-reduction
5: if |v̄| ≤ θ then � Stopping test
6: set x∗ = xk and exit � Return x∗
7: else if v̄ < ρHk (d̄) then � Good agreement between v̄ and Hk (d̄)

8: set dk = d̄ � Select d̄ as the descent search-direction
9: else � Poor agreement between v̄ and Hk (d̄)

10: solve QP(I, J̄ ) and obtain (d̂, v̂) � Find an alternative search-direction at xk
11: if Hk (d̂) < Hk (d̄) then � Select the most promising direction at xk
12: set dk = d̂ �
13: else �
14: set dk = d̄ �
15: end if �
16: end if
17: Set vk = Hk (dk ) and t = 1 � Set the strong predicted-reduction and start the line-search
18: if f (xk + tdk ) − f (xk ) ≤ mtvk then � Descent test
19: set xk+1 = xk + tdk � Make a serious step

20: calculate g(1)
k+1 ∈ ∂ f1(xk+1) and g(2)

k+1 ∈ ∂ f2(xk+1) �
21: update α

(1)
i := α

(1)
i + f1(xk+1) − f1(xk ) − tg(1)�

i dk for all i ∈ I �
22: update α

(2)
j := α

(2)
j + f2(xk+1) − f2(xk ) − tg(2)�

j dk for all j ∈ J �
23: set B1 = B1 \ {(g(1)

i , α
(1)
i ) : α

(1)
i > ε, i ∈ I } ∪ {(g(1)

k+1, 0)} �
24: set B2 = B2 ∪ {(g(2)

k+1, 0)} �
25: update appropriately I and J , set k = k + 1 and go to 4 �
26: else if t‖dk‖ > η then � Closeness test
27: set t = σ t and go to 18 � Reduce the step-size and iterate the line-search
28: end if
29: if dk = d̂ then
30: set dk = d̄ � Restore the main search-direction
31: set vk = Hk (dk ) � Update the strong predicted-reduction
32: set t = 1 and go to 18 � Restart the line-search
33: else if vk < v̄ then
34: set vk = v̄ and go to 18 � Restore the main predicted-reduction and proceed with the line-search
35: else � The line-search has failed with dk = d̄ and vk = v̄

36: calculate g(1)
+ ∈ ∂ f1(xk + tdk ) � Make a null step

37: calculate α
(1)
+ = f1(xk ) − f1(xk + tdk ) + tg(1)�

+ dk �
38: set B1 = B1 ∪ {(g(1)

+ , α
(1)
+ )}, update appropriately I , and go to 4 �

39: end if

5 Termination properties

Before introducing the main theorem about convergence of Algorithm 1, in the following
lemma we give a bound on the size of the search-directions.

Lemma 1 Let L1 and L2 be the Lipschitz constants of f1 and f2, respectively, on the set
S0(η). Then the following bound holds

‖dk‖ ≤ 2L (33)
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where L � max{L1, L2}.
Proof Assume first that dk = d̄, then the result follows by taking into account (28). Next,
assuming that dk = d̂ , the result follows by observing that Hk(d̂) < Hk(d̄) < 0 (see steps
11 and 12, and, consequently, that d̂ belongs to the set Ŝ where the objective function of
problem QP(I, J̄ ) is negative. Then, the property follows by noting that Ŝ ⊂ S′, with

S′ = {d|ū′�d + 1

2
‖d‖2 ≤ 0}

where ū′ = g(1)
i − g(2)

j̄i
for the index i with corresponding α

(1)
i = 0, independently of the

choice of the index j̄i . ��
Next we present the convergence results. We start by proving finiteness of the null-step
sequence.

Lemma 2 At any given iterate xk ∈ S0, the sequence of null-step execution made by
Algorithm 1 terminates after finitely many iterations either fulfilling the sufficient decrease
condition at step 18 or satisfying the stopping condition at step 5.

Proof We need to show that the algorithm cannot loop infinitely many times between 38 and
step 4. Observe, indeed, that a null step ismade, with consequent enrichment of bundleB1 and
return to step 4, only when the main search-direction dk = d̄ reveals itself unsuccessful with
respect to themain predicted-reduction vk = v̄, see step 35. Now suppose, for a contradiction,
that an infinite sequence of null steps occurs, and, to simplify the notation, let {v̄h}, {d̄h},
{z̄h} and {th} be the corresponding sequences of values of v̄, d̄, z̄ and of the step-size t ,
respectively, where

z̄h = v̄h + 1

2
‖d̄h‖2.

Indexing by h + 1 the bundle element {(g(1)
+ , α

(1)
+ )} inserted into B1 at the hth null-step

iteration, we observe that from condition

f (xk + th d̄h) − f (xk) > mth v̄h, (34)

taking into account (22) and applying the subgradient inequality (9) to f2, it follows that
(
g(1)
h+1 − g(2)

j

)�
d̄h > mv̄h + 1

th
α

(1)
h+1, j ∈ J (0), (35)

which in turn implies that
(
g(1)
h+1 − g(2)

j

)�
d̄h − α

(1)
h+1 > mv̄h +

(
1

th
− 1

)
α

(1)
h+1 ≥ mv̄h, j ∈ J (0) (36)

since th ≤ 1. From (36) it follows that, once the element {(g(1)
h+1, α

(1)
h+1)} is inserted into B1,

a cut is introduced in the feasible region of problem QP(I ) and, consequently, the sequence
{z̄h} is monotonically increasing and convergent, being negative, to a limit z̃ ≤ 0. Moreover,
see (33), the sequence {d̄h} admits a convergent subsequence, corresponding to a certain set
of indices H, and let d̃ be its limit point. Hence, the corresponding subsequence {v̄h}h∈H is
convergent as well to a limit ṽ ≤ 0. Consider now two successive indices p, q ∈ H. From
(36) and the definition of problem QP(I ) we have, for j ∈ J (0), that

(
g(1)
p+1 − g(2)

j

)�
d̄p − α

(1)
p+1 > mv̄p,
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and
(
g(1)
p+1 − g(2)

j

)�
d̄q − α

(1)
p+1 ≤ v̄q .

They in turn imply that

v̄q − mv̄p >
(
g(1)
p+1 − g(2)

j

)�
(d̄q − d̄p)

which, passing to the limit, would imply

(1 − m)ṽ ≥ 0,

a contradiction, since in an infinite sequence of null steps the stopping condition can never
be satisfied. ��
Now we can prove finite termination of the algorithm

Theorem 1 For any starting point x0 ∈ R
n, Algorithm 1 terminates after finitely many

iterations at a point x∗ satisfying the stopping criterion at step 5.

Proof Suppose for a contradiction that the stopping criterion at step 5 is never fulfilled.
Lemma 2 ensures that, in such a case, an infinite sequence of serious steps can only occur,
with the algorithm looping infinitely many times between step 25 and step 4.

Observe now that whenever the main search-direction dk = d̄ is adopted (see steps 8, 14,
or 30), it follows from (30) that vk = Hk(d̄) ≤ v̄ (see steps 17 and 31). On the other hand,
whenever the alternative search-direction dk = d̂ is adopted (see steps 11 and 12), it holds
vk = Hk(d̂) < Hk(d̄) ≤ v̄ (see step 17). Summing up, every time a serious step is entered at
step 19, taking into account the failed stopping test at step 5, it is

vk ≤ v̄ ≤ −θ < 0. (37)

Furthermore, it also holds that either t = 1 or t‖dk‖ > ση. As a consequence, the fulfillment
of the sufficient decrease condition at step 18 implies that either

f (xk + tdk) − f (xk) < −mθ, (38)

in case t = 1, or

f (xk + tdk) − f (xk) < −mσηθ

2L
, (39)

in case t‖dk‖ > ση, since Lemma 1 implies that −t < − ση
‖dk‖ ≤ − ση

2L . Hence, inequalities
(38) and (39) imply that the decrease in the objective function value is bounded away from
zero every time a serious step is made. This contradicts the fact that an infinite number of
descent steps occurs, under the assumption that S0 is bounded. ��

6 Numerical results

In order to evaluate the practical behavior of the proposed approach, in the following we
report on the computational performance of DCPCA applied to the solution of a set of 46
academic test problems, presented in [21], that belong to 10 different instance classes, with
size ranging from n = 2 to n = 50000. The 10 instance classes all refer to nonsmooth DC
problems, at least one DC component being always nonsmooth. Moreover, a starting point is
given as a feature of each instance. A summary of some relevant information regarding the
test set is provided in Table 1, where for each instance we report
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Table 1 Summary of test instances

id n f ∗ f (x0) id n f ∗ f (x0)

1.01 2 2 20.0000 5.10 350 0 18.7973

2.01 2 0 22.2000 5.11 400 0 18.8226

3.01 4 0 402.2000 5.12 500 0 18.8581

4.01 2 0 1.0000 5.13 1000 0 18.9290

4.02 5 0 10.0000 5.14 1500 0 18.9527

4.03 10 0 45.0000 5.15 3000 0 18.9763

4.04 50 0 1225.0000 5.16 10,000 0 18.9929

4.05 100 0 4950.0000 5.17 15,000 0 18.9953

4.06 150 0 11,175.0000 5.18 20,000 0 18.9965

4.07 200 0 19,900.0000 5.19 50,000 0 18.9986

4.08 250 0 31,125.0000 6.01 2 −2.5 0.1000

4.09 350 0 61,075.0000 7.01 2 0.5 103.0000

4.10 500 0 124,750.0000 8.01 3 3.5 5.0000

4.11 750 0 280,875.0000 9.01 4 1.8333 43.0000

5.01 2 0 4.7500 10.01 2 −0.5 −0.0500

5.02 5 0 10.4592 10.02 4 −2.5 0.0000

5.03 10 0 13.6738 10.03 5 −3.5a 0.1500

5.04 50 0 17.6128 10.04 10 −8.5 2.9500

5.05 100 0 18.2916 10.05 20 −18.5 26.8000

5.06 150 0 18.5270 10.06 50 −48.5 424.3500

5.07 200 0 18.6452 10.07 100 −98.5 3373.6000

5.08 250 0 18.7162 10.08 150 −148.5 11,347.8500

5.09 300 0 18.7635 10.09 200 −198.5 26,847.1000

a An anonymous reviewer pointed out that this better estimate ( f ∗ = −3.5) of the optimum exists than the
one available in [21]

– id, an instance identifier,
– n, the number of variables,
– f ∗, the known best value of the objective function,
– f (x0), the objective function value at the starting point.

Algorithm DCPCA has been implemented in Java, and the tests have been executed on a
3.50 GHz Intel Core i7 computer. The QP solver of IBM ILOG CPLEX 12.6 [20] has been
used to solve the quadratic subprograms. The following set of parameters has been adopted:
θ = 10−6, η = 0.7, m = 10−4, ρ = 0.95, and ε = 0.95. Furthermore, the setting of the
step-size reduction parameter σ depends on the instance size as follows: σ = 0.05 if n < 10,
and σ = 0.6 if σ ≥ 10.

We have compared the computational behavior of DCPCA against NCVX, a state-of-the-
art general-purpose solver for nonconvex nonsmooth optimization introduced in [12], and
against PBDC, a proximal bundle method for nonsmooth DC programs introduced in [21]
where its practical efficiency has been thoroughly verified. We remark that PBDC termi-
nates as soon as the distance between the convex hulls of subgradients of f1 and f2, in a
neighborhood of the current iterate, is below a given threshold, while the stopping criterion
of NCVX is based on the distance from zero of the Goldstein ε-subdifferential of f at the
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current point, as it does not exploit at all the DC structure of f . Since the stopping criteria and
the related tolerance parameters are significantly different between the adopted algorithms,
the rationale of the tolerance tuning of each algorithm has been to guarantee similar level of
precision for as many instances as possible across the three algorithms. We have adopted a
double-precision Fortran 95 implementation of PBDC, and a Java implementation of NCVX,
running the experiments on the same machine.

A summary of the computational behavior of the three solvers is presented in Table 2
where, for each instance and each solver, we report an appropriate subset of the following
results:

– f (x∗), the objective function value returned by the algorithm upon termination,
– N f , the number of the objective function evaluations,
– cpu, the CPU execution time measured in seconds,
– Ng1 , the number of subgradient evaluations for f1,
– Ng2 , the number of subgradient evaluations for f2,
– Ng , the number of subgradient evaluations for f .

The results show the good performance of DCPCA, both in terms of effectiveness, as it
attains the known best value of the objective function for 45 out of 46 instances, and in terms
of efficiency, since very good precision is attained for almost all cases, and the number of
function evaluations is always kept to reasonably low levels, along with the corresponding
computational time.

Focusing on the comparison against PBDC, we report only the number of function eval-
uations and the number of subgradient evaluations for f1 and f2, being the cpu execution
times not comparable due to the different implementation languages adopted. We observe
a slight advantage of DCPCA over PBDC in terms of effectiveness, as PBDC attains the
known best value of the objective function for 43 out of 46 instances, while DCPCA and
PBDC have comparable performance in terms of the number of function evaluations, with
the former seemingly more suitable for large-scale instances. A sharper difference in favor
of DCPCA can be observed considering the total number of subgradient evaluations, since
the simpler structure of DCPCA allows to achieve remarkable performance even for large-
scale instances by using fewer subgradients and, hence, by solving quadratic subproblems
of smaller size.

Focusing, finally, on the comparison against NCVX, we observe that although DCPCA
seems to have lower efficiency than NCVX in terms of the number of function eval-
uations, still DCPCA has a clear advantage in terms of effectiveness, as NCVX can
find the known best value of the objective function for only 38 out of 46 instances.
Making a fair comparison in terms of the number of subgradient evaluations is not
straightforward, nevertheless we observe that for large instances DCPCA performs bet-
ter than NCVX even comparing Ng with the sum of Ng1 + Ng2 . A similar trend
can also be seen analyzing the cpu execution times. In summary, the simpler struc-
ture of the bundle management phase, coupled with the line-search approach, makes
DCPCA more suited than NCVX to deal even with large-scale instances, although
at the expenses of a possibly larger number of function evaluations for small-scale
instances.
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7 Conclusions

We have introduced a proximal bundle method for the unconstrained minimization of a
nonsmooth DC function. The main novelty of the approach is represented by the model
adopted to approximate the function reduction, which is of the piecewise concave type,
pieces being piecewise-affine, hence it is nonconvex. In particular, the model is built by
using two separate piecewise-affine approximations of the DC components, which combine
themselves into a DC piecewise-affine model. Rather than directly tackling the minimization
of the nonconvex model, we resort to an auxiliary convex quadratic program, whose solution
returns a descent search-direction, or certifies stationarity. Furthermore, in order to cope
with possible poor approximation properties of the former model, at points that are far
from the current estimate of the minimizer, we have introduced another auxiliary convex
quadratic program, with improved approximation properties far from the current iterate,
that can possibly provide an alternative more promising search-direction. Such two search-
directions are then explored via a line-search approach aiming at finding a sufficient descent or
a model improvement. We have proved finite termination of the method at points that satisfy
an approximate criticality condition, and have tested the approach on a set of academic
instances, with sizes ranging from extra-small to extra-large, obtaining rather encouraging
performance in terms of effectiveness and efficiency. Future work would be focused on the
possibility of adopting appropriate aggregation schemes to keep the bundle size limited.
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