
J Glob Optim (2018) 70:517–549
https://doi.org/10.1007/s10898-017-0565-2

A proximal bundle method for constrained nonsmooth
nonconvex optimization with inexact information

Jian Lv1 · Li-Ping Pang2 · Fan-Yun Meng3

Received: 19 November 2016 / Accepted: 29 August 2017 / Published online: 14 September 2017
© Springer Science+Business Media, LLC 2017

Abstract We propose an inexact proximal bundle method for constrained nonsmooth non-
convex optimization problems whose objective and constraint functions are known through
oracles which provide inexact information. The errors in function and subgradient evalua-
tions might be unknown, but are merely bounded. To handle the nonconvexity, we first use
the redistributed idea, and consider even more difficulties by introducing inexactness in the
available information. We further examine the modified improvement function for a series
of difficulties caused by the constrained functions. The numerical results show the good per-
formance of our inexact method for a large class of nonconvex optimization problems. The
approach is also assessed on semi-infinite programming problems, and some encouraging
numerical experiences are provided.

Keywords Constrained optimization · Nonconvex optimization · Nonsmooth optimization ·
Inexact oracle · Proximal bundle method

Mathematics Subject Classification 90C26 · 49J52 · 93B40

Partially supported by Huzhou science and technology plan on No. 2016GY03 and Natural Science
Foundation of China Grant 11626051.

B Li-Ping Pang
lppang@dlut.edu.cn

Jian Lv
lvjian328@163.com

1 School of Finance, Zhejiang University of Finance and Economics, Hangzhou 310018, China

2 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

3 School of Computer, Qingdao Technological University, Qingdao 266033, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-017-0565-2&domain=pdf

518 J Glob Optim (2018) 70:517–549

1 Introduction

We consider the constrained nonconvex nonsmooth optimization problem

min
x∈Rn

f (x)

s.t. c(x) ≤ 0, x ∈ X ,
(1.1)

where f, c: Rn → R are locally Lipschitz functions, and X is a convex compact subset of
Rn . Further, we assume that for fixed accuracy tolerances, the approximate function values
and subgradients of f and c can be obtained by some inexact oracle for each given point.
The errors in the function values and subgradients might be unknown, but are bounded by
universal constants.

The above framework (1.1) arises in many optimization problems from real-life appli-
cations. For some problems, as in H∞-control problems [2,42], SIP problems [43] and
stochastic programming problems, computing exact information is too expensive, or even out-
of-reach, whereas evaluating some inexact information is still possible. Most methods based
on exact information can only be used for solving some simplifications of these problems.

Nonsmooth optimization problems are, in general, difficult to solve, even when they are
unconstrained. Bundle methods are currently recognized as the most robust and reliable for
nonsmooth optimization; see e.g., [1,21,24,31] for more detailed comments. In particular,
bundle methods can be thought of as replacing the objective function f by a cutting-plane
model to formulate a subproblem whose solution gives the next iteration and obtains the new
bundle elements.

Bundle methods for nonconvex problems using exact information were developed in [14,
15,18,26,29,36,37,40,54,55] for more detailed comments. Except for [18,55], all of these
methods that desired positive linearization errors did so by redefining them. That is, most of
previous methods handle nonconvexity by downshitfing the so-called linearization errors if
they are negative. The cutting-planes models in [18,55] are special in the sense that they no
longer model the objective function f but rather certain local convexification. Our proximal
bundle method here is along the lines of [18].

Bundle methods capable of handling inexact oracles have received much attention in
the last few years. They have been discussed in [25] since 1985. Inexact evaluations of
subgradient in subgradient methods date back to [5,30,41] in the convex setting, and [47] for
nonconvex optimization. Different from earlier works [41,47], allow nonvanishing errors.
Nonvanishing errors of both functions and subgradient values in convex bundle methods
were first considered in [48], and further studied in [31]. Besides, several variants have
been developed, i.e., [20,31] for general approaches [9], for energy planning [6,10], for a
stochastic optimization framework [33], for a combinatorial context [43], for SIP problems,
and [7] for a detailed summary. As far as we know, the only two other works dealing with
inexact information in bundle methods for nonconvex optimization are [19,42].

For constrained problems, such as problem (1.1) considered here, more sophisticated
methods need to come into play. One possibility is to solve an equivalent unconstrained
problem with an exact penalty objective function; see [27,28] for convex constrained prob-
lems, and [55] for nonconvex case. These approaches, however, possess some shortcomings,
which are typical whenever a penalty function is employed. Specifically, computing a suit-
able value of the penalty parameter is sometimes too expensive. Besides, if a large value
of the penalty parameter is required to guarantee the exactness of a given penalty function,
then numerical difficulties arise. Hence, bundle methods in [35,46] introduce a so-called
improvement function

123

J Glob Optim (2018) 70:517–549 519

hτ (x) = max { f (x) − τ, c(x)} , (1.2)

where τ is generated by the former iterative points. It is one of the most effective tools to
handle constrained optimization. In this paper, we change τ into the f (xk) plus a weighted
measure of its feasibility. Thus there is a balance between the search for feasibility and the
reduction of the objective function. The details will be discussed in Sect. 2.1

The cutting-plane model in our method no longer approximates penalty function of the
objective function as in [55], or the improvement function as in [24,46]. It is given by a
maximum value function of the piecewise linear models of the local convexification of the
objective function f and constraint function c. Hence, our approach can not be viewed as an
unconstrained proximal bundle method applied to the function hτ (x). Another feature of our
algorithm is infeasibility in this paper. With respect to [24,39], the advantage is that it is not
necessary to compute a feasible point to start the algorithm. Also, since serious steps can be
infeasible, monotonicity in f is not enforced. Infeasible bundle methods are very rare and
valuable.

In this paper, we propose an infeasible proximal bundle method with inexact information
for solving (1.1). Above all, the sequence of iterative points of our inexact bundle method
converges to an approximate optimal point at most ε asymptotically under amild assumption.
To be specific, the limit value f ∗ and c∗ of the sequences { f k} and {ck}, respectively, satisfy

if c∗ ≤ 0: f ∗ ≤ f (y) + ε

for all y in a neighbourhood. If the feasible set of (1.1) is empty, then c∗ ≤ c(y)+ ε for all y.
This paper is organized as follows. In Sect. 2, we state basic conceptual comments, inexact

oracle and basic properties of the improvement function. The cutting-planes model and the
algorithm itself are stated in Sect. 3, where some preliminary properties also are established.
Asymptotic analysis is considered in Sect. 4, and convergence analysis is provided in Sect. 5.
Numerical experiments are presented in Sect. 6.

2 Background, assumptions and notation

The description of this work starts with conceptual comments and results of variational
analysis, then passes to technical details gradually. We assume that the objective function f
and constraint function c are proper [44, p. 5], regular [44, Def 7.25], and locally Lipschitz
with full domain.

2.1 Background and assumptions

In this subsection, we first recall concepts and results of variational analysis that will be of
use in this paper. The closed ball inRn with the center in x ∈ Rn and radius ρ > 0 is denoted
by Bρ(x). We shall use ∂ f (x̄) to denote the subdifferential of f at the point x̄ . By noting the
regularity of f , the subdifferential mapping is well-defined and is given by

∂ f (x̄) := {
v ∈ Rn : f (x) ≥ f (x̄) + 〈v, x − x̄〉 + ◦(|x − x̄ |), for all x ∈ Rn} , (2.1)

and each element of this subdifferential is called subgradient. Besides, the Clarke directional
derivative [3] in x in direction d ∈ Rn is given as

f 0(x, d) := lim
h→0,

sup
t↓0

f (x + h + td) − f (x + h)

t
,

123

520 J Glob Optim (2018) 70:517–549

and alternative definition is

f 0(x, d) := max
g∈∂ f (x)

gTd.

Given an open setO containing X , a locally Lipschitz function f :O → R, is called to be
lower-C1, if on some neighborhood V of every ỹ ∈ O, there exists an expression as [49]:

f (y) := max
s∈S g(y, s), (2.2)

where the derivative Dyg is jointly continuous and the index set S is a compact set. Our
nonconvex proximal bundle method is given for lower-C1 functions, and we define the
following equivalence given in [8, The 2, Cor 3] and [49, Prop 2.4] as

• The locally Lipschitz function f is lower-C1 on O.
• Its Clarke subdifferential ∂ f is submonotone at every ỹ ∈ O. That means for every ỹ ∈ O

and for all θ > 0 there exists ρ > 0 such that
〈
q1 − q2, z1 − z2

〉 ≥ −θ‖z1 − z2‖,
for all z1, z2 ∈ Bρ(ỹ) and q1 ∈ ∂ f (z1), q2 ∈ ∂ f (z2).

• For all ỹ ∈ O and for all θ > 0 there exists ρ > 0 such that ∀ y ∈ Bρ(ỹ) and q ∈ ∂ f (y)

f (y + u) − f (x) ≥ 〈q, u〉 − θ‖u‖, (2.3)

whenever ‖u‖ < ρ and y + u ∈ Bρ(ỹ).
• For every ỹ ∈ O and for all θ > 0 there exists ρ > 0 such that

f (t y1 + (1 − t)y2) ≤ t f (y1) + (1 − t) f (y2) + θ t (1 − t)‖y1 − y2‖,
for all t ∈ (0, 1) and y1, y2 ∈ Bρ(ỹ).

If the optimal value fmin of the problem (1.1) is known in advance, the solution of (1.1)

can be obtained by minimizing hmin(y) = max
{
f (y) − fmin, c(x)

}
. Notice that if x∗ is a

solution of the problem (1.1), then hmin(x∗) = 0. Hence, Lemaréchal [35] first changed fmin

into a lower bound f k . The sequence { f k}, however, is not available, thus it is not possible
for proximal bundle methods. Some alternatives were proposed in [1,23,32,35,43,46]. For
instance [43], replaced f k by the objective function value at the current stability center xk

as

hxk (y) = max
{
f (y) − f (xk), c(y)

}
. (2.4)

However, all of them may not be suitable for nonconvex optimization with inexact oracle in
this paper. Based on [32], we replace τ by f (xk) plus a weighted measure of its feasibility

hxk (y) := max
{
f (y) − θ xk

1 , c(y) − θ xk
2

}
, (2.5)

with

θ xk
1 := f (xk) + sk max{0, c(xk)}, θ xk

2 := tk max{0, c(xk)}, (2.6)

where sk > 0 and tk > 0 are penalty parameters. The penalty parameters sk and tk are
bounded, andupdateddependingona constant along the iterative process.Moreover, as shown
below hxk (·) is nonnegative at each stability center, and used for the optimality measure.

We introduce the following extended MFCQ (see [22,51]) for this nonsmooth SIP.

123

J Glob Optim (2018) 70:517–549 521

Assumption 1 (The constraint qualification) Suppose that x∗ is a local solution of the prob-
lem (1.1). There exists some direction d of F := {x ∈ X : c(x) ≤ 0} at x∗, satisfies

c0(x∗, d) < 0. (2.7)

We now give the following necessary condition of optimality measure.

Lemma 2.1 Suppose x∗ is a local solution of the problem (1.1), and there exists a constant
ρ∗ such that f (y) ≥ f (x∗) for all y ∈ Bρ∗(x∗)

⋂X . Then the following statements hold:

(i) For all y ∈ X , it holds that

min {hx∗(y): y ∈ X } = hx∗(x∗) = 0, f or all y ∈ Bρ∗(x∗) ∩ X . (2.8)

(ii) 0 ∈ ∂hx∗(x∗), and there exist μ0 and μ1 satisfying

0 ∈ μ0∂ f (x
∗) + μ∂c(x∗) + ∂iX (x∗),

μ ≥ 0, μ + μ0 = 1, μc(x∗) = 0, c(x∗) ≤ 0, (2.9)

where iX (x∗) denotes the indicator function of the set X .
(iii) If, in addition, Assumption 1 holds, then x∗ is a KKT point of the problem (1.1).

Proof Since x∗ is a local solution of the problem (1.1), we conclude that

c(x∗) ≤ 0 and f (x∗) ≤ f (y), f or all y ∈ Bρ∗(x∗) ∩ X .

Together with the relation (2.6), we can obtain

θ x∗
1 = f (x∗) and θ x∗

2 = 0.

That means, for all y ∈ Bρ∗(x∗) ∩ X ,

hx∗(y) = max
{
f (y) − f (x∗), c(y)

}
≥ 0 = hx∗(x∗),

which implies that the relation (2.8) holds. From here, the first item (i) follows.
It follows from [24, Lemma 2.15] that 0 ∈ ∂(hx∗(x∗) + iX (x∗)). Hence the point x∗ is a

FJ point of (1.1) and the conditions (2.9) hold. To see item (iii),

0 ∈ ∂(hx∗(x∗) + iX (x∗))
= conv

{
∂ f (x∗) ∪ ∂c(x∗)

}
+ ∂iX (x∗).

If μ0 is zero in condition (2.9) we obtain μ = 1 and −g∗ ∈ ∂iX (x∗) for some g∗ ∈ ∂c(x∗).
By noting d is a feasible direction of F , we get that 〈g∗, d〉 ≥ 0. Thus we obtain

0 ≤ max
{〈g, d〉|g ∈ ∂c(x∗)

} = c0(x∗, d),

which is an contradiction with (2.7). Hence the constant μ0 is strictly positive. Together with
the conditions (2.9), we obtain that

0 ∈ ∂ f (x∗) + ν∂c(x∗) + ∂iX (x∗),
ν ≥ 0, c(x∗) ≤ 0, νc(x∗) = 0,

since one may take ν = μ
μ0

. Hence, x∗ is a KKT point of the problem (1.1). ��

123

522 J Glob Optim (2018) 70:517–549

2.2 Available information

The algorithm herein will hinge around previously generated information. Suppose that y j

is an iterative point at j th step, and xk denotes the kth stability center. Let jk denote the j th
iteration giving the stability center xk , i.e., xk := y jk . The stability center is considered as
the “best” known point up to the kth iteration.

We assume that at any y j , the oracle provides
{

f j and c j estimate for the function values, and
g j
f and g j

c estimate for the respective subgradients.
(2.10)

For each y j ∈ X , the oracle provides us with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f -oracle information

[
f j = f (y j) − σ j and
g j
f ∈ ∂ f (y j) + Bε j (0);

c-oracle information

[
c j = c(y j) − σ j and
g j
c ∈ ∂c(y j) + Bε j (0).

(2.11)

At each stability center xk , for simplicity, we denote
[
f̂ k = f (xk) − σ̂k and
ĝkf ∈ ∂ f (xk) + Bε̂k (0);

[
ĉk = c(xk) − σ̂k
ĝkc ∈ ∂c(xk) + Bε̂k (0).

(2.12)

Since the sign of error σ j is not specified, the exact function values may be either underes-
timated or overestimated by f j and c j . Throughout this section we will make the assumption
that the error on each of these estimates is bounded, i.e., there exist corresponding bounds σ̄

and ε̄, such that

−σ̄ ≤ σ j ≤ σ̄ and 0 ≤ ε j ≤ ε̄ for all j,

where both bounds σ̄ and ε̄ are generally unknown.

3 Defining the inexact algorithm

3.1 The model

Based on the modified improvement function (2.5) and the inexact oracle (2.11), we define
the kth inexact modified improvement function at the stability center xk as follows:

hk(y) := max
{
f y − θk1 , cy − θk2

}
, (3.1)

where f y := f (y) − σy, cy := c(y) − σy , and

θk1 = f̂ k + sk max{0, ĉk}, θk2 = tk max{0, ĉk}. (3.2)

Both penalty parameters sk and tk are updated depending on a constant
 > 0, and satisfy

sk ≥ 0, tk ∈ [0, 1] satisfying sk − tk ≥
. (3.3)

123

J Glob Optim (2018) 70:517–549 523

Since penalty parameters sk and tk are bounded, they must be well-defined along the iterative
process. Considering (3.1) and the oracle assumption, we obtain

hk(x
k) = max

{
− sk max{0, ĉk}, ĉk − tk max{0, ĉk}

}

=
{
0, if ĉk ≤ 0,
(1 − tk)ĉk, if ĉk > 0.

(3.4)

The strategy (3.3) for updating sk and tk can ensure the nonnegativity hk(xk) ≥ 0.
It is worth noting that the past information gives the cutting plane model. Just as a classic

method in [46], if f and c are convex functions with exact oracle, then the cutting plane
model was given as

ϕl(y) = max
i∈Bl

{
hxk (y

i) + 〈gih, y − yi 〉
}
, where gih ∈ ∂hxk (y

i). (3.5)

However, considering the negativity of the linearization error and the non-monotonicity for
the nonconvex function hxk (·), as a result many more difficulties are introduced. Besides,
the computations for the value hk(yi) and its subgradient gih , at each iteration, are relatively
expensive. Thus, the formula (3.5) does not apply to our nonconvex optimization in our
setting. Then we have to deal with them adequately along the iterative process.

The oracle output is collected along the iterative process to form the “Bundle” of infor-
mation

B f
k :=

{
(x j , f j , g j

f): j ∈ L f
k

}
for L f

k ⊂ {1, . . . , k};
Bc
k :=

{
(x j , c j , g j

c): j ∈ Lc
k

}
for Lc

k ⊂ {1, . . . , k}, (3.6)

where L f
k and Lc

k are respectively index sets for the objective function and the constrained
function at the kth iteration. We now define respectively the linearization errors for f and c
at xk as

ekf j := f̂ k − f j −
〈
g j
f , x

k − y j
〉
, j ∈ L f

k ,

ekc j := ĉk − c j −
〈
g j
c , x

k − y j
〉
, j ∈ Lc

k . (3.7)

Possible negativity of linearization errors is more strictly linked to nonconvexity of f and c
compared to inexact oracle information. Some appropriate adjustments should be introduced,
such as by adding the second-order relation

pkj := μk

2
‖y j − xk‖2

where μk is the so-called convexification parameter.
Having this information, the kth approximate piecewise-linear models for f, c are gener-

ated by

f̌k(y) = max
j∈L f

k

{
f kj +

〈
ĝkf j , y − y j

〉}

= f̂ k + max
j∈L f

k

{
−êkf j +

〈
ĝkf j , y − xk

〉}
, (3.8a)

čk(y) = max
j∈Lc

k

{
ckj +

〈
ĝkc j , y − y j

〉}

= ĉk + max
j∈Lc

k

{
−êkc j +

〈
ĝkc j , y − xk

〉}
, (3.8b)

123

524 J Glob Optim (2018) 70:517–549

where
f kj := f j + pkj and êkf j := ekf j + pkj , for all j ∈ L f

k , (3.9a)

ckj := c j + pkj and êkc j := ekc j + pkj , for all j ∈ Lc
k, (3.9b)

ĝkf j := g j
f + μk(y

j − xk), j ∈ L f
k and ĝkc j := g j

c + μk(y
j − xk), j ∈ Lc

k . (3.9c)

The challenge is therefore to select μk sufficiently large that êkf j ≥ 0 and êkc j ≥ 0 for all
j but sufficiently small to remain manageable. Inspired by [17], we define the parameter as
follows:

μk := max
{

max
j∈L f

k /{ jk }

−2ekf j
‖y j − xk‖2 , max

j∈Lc
k/{ jk }

−2ekc j
‖y j − xk‖2 , 0

}
+ ι, where ι > 0. (3.10)

Different from (3.5), having piecewise-linear models (3.8), the kth inexact improvement
function is modelled by the following model function:

k(y) =
{
f̌k(y) − θk1 , čk(y) − θk2

}
, (3.11)

By this mean, the model function will maintain powerful relationships with the original
functions f and c.

3.2 Inexact proximal bundle method

Let ‖ · ‖ be the Euclidean norm, ‖ · ‖k primal metrics and | · |k dual metrics. The iterative
point yk+1 is nothing but the computation of the proximal point of the model function (3.11),
with prox-center (stability center) xk and a variable prox-metric depending on matrices Mk .
More specifically, the positive definite matrix Mk of order n has the form

Mk := Ak + ηk I,

where the parameter ηk > 0, Ak is a symmetric n × n matrix, and I the identity matrix of
order n. As a result, we introduce the corresponding primal and dual metrics for each z ∈ Rn

as follows:

primal metrics: ‖z‖2k := zTMkz and dual metrics: |z|2k := zT(Mk)
−1z.

(3.12)

Let λmax and λmin denote, respectively, the maximum eigenvalue and the minimum eigen-
value, then

λmax(Mk) = λmax(Ak) + ηk and λmin((Mk)
−1) = 1

λmax(Ak) + ηk
. (3.13)

As a result, by the Euclidean norm, it holds that

‖z‖2k ≥ (λmin(Ak) + ηk)‖z‖2 and |z|2k ≥ 1

(λmax(Ak) + ηk)
‖z‖2. (3.14)

Given a positive definite matrix Mk , the next iterative point yk+1 is generated by solving
the following quadratic programming (QP) problem

min
y∈X
k(y) + 1

2
‖y − xk‖2k . (3.15)

123

J Glob Optim (2018) 70:517–549 525

If yk+1 satisfies the descent condition, then xk+1 = yk+1 declares a serious point (a new
stability center). Otherwise, it declares a null step, i.e., xk+1 = xk and only updates the next
piecewise linear model. With (3.15) as a QP(Bk) with an extra scalar variable r as follows

min
(y,r)∈X×R

r + 1
2‖y − xk‖2k,

s.t. f̂ k − θk1 − êkf j +
〈
ĝkf j , y − xk

〉
≤ r, j ∈ L f

k ,

ĉk − θk2 − êkc j +
〈
ĝkc j , y − xk

〉
≤ r, j ∈ Lc

k .

(3.16)

More precisely, let (λk, γ k) ∈ R
|L f

k |
+ ×R

|Lc
k |+ denote the optimal solution of the dual problem

of (3.16), considering the primal and dual optimal variables, then the following relations are
easily recognized to hold:

yk+1 = xk − M−1
k (Gk + αk) (3.17)

where

Gk := ∑

j∈L f
k

λkj ĝ
k
f j

+ ∑

j∈Lc
k

γ k
j ĝ

k
c j ∈ ∂
k(yk+1), αk ∈ ∂iX (yk+1),

(3.18a)

∑

j∈L f
k

λkj +
∑

i∈Lc
k

γ k
j = 1, with λkj ≥ 0, j ∈ L f

k and γ k
j ≥ 0, j ∈ Lc

k . (3.18b)

After solving the problem (3.16), the aggregate linearization

ψk(y) :=
k(y
k+1) +

〈
Gk, y − yk+1

〉
(3.19)

which is an affine function, and implies thatψk(yk+1) =
k(yk+1), Gk = ∇ψk(y). Clearly,
because Gk ∈ ∂
k(yk+1),

ψk(y) ≤
k(y), for all y ∈ Rn . (3.20)

The another ingredient in the bundle method is given by the aggregate error, defined by

Vk := hk(x
k) − ψk(x

k)
(3.21)

= hk(x
k) −
k(y

k+1) −
〈
Gk, xk − yk+1

〉
.

For our setting, the noise introduced by the nonconvexity and inordinate noise is judged
“too large” when the function value at the stability center is below the minimummodel value.
To judge the inordinate noise, we check the following noise measurement quantity as

hk(x
k) −

(

k(y

k+1) + 1

2
‖yk+1 − xk‖2k

)
< 0. (3.22)

To measure progress towards the solution of (1.1), we define the predicted decrease

δk := hk(x
k) −
k(y

k+1) +
〈
αk, xk − yk+1

〉
. (3.23)

By using the relations (3.12), (3.17) and (3.21), we can obtain

δk = Vk +
〈
Gk + αk, xk − yk+1

〉

= Vk + ‖xk − yk+1‖2k (3.24)

= Vk + |Gk + αk |2k .

123

526 J Glob Optim (2018) 70:517–549

Only when the measurement (3.22) does not hold, i.e., the noise is acceptable, then we
examine the new iterative point yk+1 by checking the descent condition

{
f k+1 ≤ f̂ k − mδk and ck+1 ≤ 0, if ĉk ≤ 0,
ck+1 ≤ ĉk − mδk, if ĉk > 0

(3.25)

to ensure whether yk+1 is good enough to develop into a new stability center. Otherwise, it
declares a null step, and the stability center is fixed. The descent condition (3.25) measures
the progress towards the solution of (1.1) from two ways. If ĉk ≤ 0, it reduces the objective
value without losing feasibility by checking the first condition in (3.25). Otherwise, when
ĉk > 0, the emphasis is put on reducing infeasibility by checking the second condition in
(3.25).

Lemma 3.1 Suppose (rk, yk+1) is the optimal solution of QP(Bk). The aggregate lineariza-
tion error Vk satisfies the following relation:

Vk ≥
∑

j∈L f
k

λkj ê
k
f j +

∑

j∈Lc
k

γ k
j ê

k
c j > 0 (3.26)

Proof The Lagrange function of (3.16) can be rewritten as

L(yk+1, λk , γ k) = ∑

j∈L f
k

λkj (f̂
k − θk1) + ∑

j∈Lc
k

γ k
j (ĉ

k − θk2) + 1
2‖yk+1 − xk‖2k

+ ∑

j∈L f
k

λkj

(
−êkf j +

〈
ĝkf j , y

k+1 − xk
〉)

+ ∑

j∈Lc
l

γ l
j

(
−êkc j +

〈
ĝkc j , y

k+1 − xk
〉)

,

which implies that

L(yk+1, λk, γ k) =
∑

j∈L f
k

λkj (f̂
k − θk1) +

∑

j∈Lc
k

γ k
j (ĉ

k − θk2) + 1

2
‖yk+1 − xk‖2k

−
⎛

⎜
⎝

∑

j∈L f
k

λkj ê
k
f j +

∑

j∈Lc
k

γ k
j ê

k
c j

⎞

⎟
⎠ +

〈
Gk, yk+1 − xk

〉
.

On the other hand,

L(yk+1, λk, γ k) =
k(y
k+1) + 1

2
‖yk+1 − xk‖2k,

implies that
∑

j∈L f
k

λkj ê
k
f j +

∑

j∈Lc
k

γ k
j ê

k
c j =

∑

j∈L f
k

λkj (f̂
k − θk1)

+
∑

j∈Lc
k

γ k
j (ĉ

k − θk2) −
k(y
k+1) +

〈
Gk, yk+1 − xk

〉
. (3.27)

By noting (3.1), we can obtain that

hk(x
k) = max

{
f̂ k − θk1 , ĉk − θk2

}
≥

∑

j∈L f
k

λkj

(
f̂ k − θk1

)
+

∑

j∈Lc
k

γ k
j

(
ĉk − θk2

)
.

123

J Glob Optim (2018) 70:517–549 527

Together with the functional relations (3.19) and (3.21), we obtain that

Vk ≥
∑

j∈L f
k

λkj ê
k
f j +

∑

j∈Lc
k

γ k
j ê

k
c j .

It follows from (3.10) for selecting μk that the relation (3.26) holds. From here, the required
result follows. ��

Our method is based on the ideas of [31], and extend them to nonconvex constrained
optimization problems. We now give our bundle method for solving problem (1.1)

Algorithm 3.1
Step 0 Initialization.
Choose an initial point x0 ∈ Rn , set y0 = x0, and compute g0f ∈ f (y0), g0c ∈ c(y0).

Initialize k = 0, and set the bundle index sets L f
0 := {0}, and Lc

0 := {0}.
Choose a stopping tolerance tolstop ≥ 0, an Armijo-like parameter m ∈ (0, 1), a
positive constant ι > 0.
Select two initial parameters η0 and μ0, penalty parameters s0 and t0 satisfying (3.3).
Choose a symmetric matrix A0 of order n and a prox-parameter η0 ensuring that the
matrix M0 = A0 + η0 I is positive definite.

Step 1 Trial step generation.
Having the current model
k(·) defined by (3.11), find an unique solution yk+1 of the
quadratic programming (3.15), i.e.,

yk+1 = arg min
y∈X

{

k(y) + 1

2
‖y − xk‖2k

}
.

Compute the aggregate error Vk and the predicted decrease δk ,

Vk := hk(xk) − ψk(xk) and δk := Vk + ‖yk+1 − xk‖2k .
Call the inexact oracle at yk+1 to compute f k+1, ck+1, gk+1

f , gk+1
c satisfying (2.11).

Step 2 Stopping test.
If δk ≤ tolstop, stop.

Step 3 Acceptance test.
If the descent condition (3.25) holds, declare a new stability center xk+1 = yk+1, f̂ k+1

= f k+1, and ĉk+1 = ck+1. Compute a new symmetric matrix Ak+1 and a prox-
parameter ηk+1 ≥ 0 such that Mk+1 = Ak+1 + ηk+1 I is positive definite. Choose two
new penalty parameters sk+1, tk+1 satisfying (3.3).
Otherwise, declare a null step xk+1 = xk , f̂ k+1 = f̂ k , and ĉk+1 = ĉk . Let Ak+1 := Ak ,
and select ηk+1 ≥ ηk, Mk+1 = Ak+1 + ηk+1 I . Let the penalty parameters sk+1 = sk
and tk+1 = tk .

Step 4 Bundle management.
Select the new parameter μk+1 as (3.10). Choose the next index set satisfying

{
L f
k+1 ⊇ {k + 1, jk} and L f

k+1 ⊇ { j ∈ L f
k : λkj > 0},

Lc
k+1 ⊇ {k + 1, jk} and Lc

k+1 ⊇ { j ∈ Lc
k : γ k

j > 0}. (3.28)

Increase k by 1 and go to Step 1.

123

528 J Glob Optim (2018) 70:517–549

We now suppose that {μk} is bounded. Boundedness of the sequence of {μk} has been
proved in [17,55] for the lower-C2 functions with an exact oracle. In theory, inexactness may
result in an unbounded μk in our setting. The numerical experiments in Sect. 6 show that
{μk} is bounded under various kinds of perturbations, and our inexact method is satisfactory.

4 Asymptotic analysis

We now analyze the different cases that can arise when Algorithm 3.1 loops forever. As usual
in the convergence analysis of bundle methods, we consider the following two possible cases:

• either there are infinitely many serious steps, or
• there is an finite number of serious steps, followed by infinitely many null steps.

We start with the case of infinitely many serious steps.

4.1 Infinite serious steps

Theorem 4.1 Suppose that Algorithm 3.1 generates an infinite sequence {xk} of serious
steps. Let Ls denote the set gathering indices of serious steps. Then δk → 0 and Vk → 0 as
Ls � k → ∞.

• In addition, if the series
∑

k∈Ls
1

λmax(Ak)+ηk
is divergent, then lim infk→∞ ‖Gk+αk‖ = 0.

Besides, there exists some subsequenceKs ⊆ Ls andanaccumulation x̂ such that xk → x̂
and Gk → Ĝ as Ks � k → ∞.

• If, instead of the above weaker condition, the sequence {λmax(Ak) + ηk} is bounded
above, then limk→∞ ‖Gk + αk‖ = 0, and same assertions hold for all accumulation
points of the sequence {xk}.

Proof We examine the following two different possibilities respectively. In the first case, if
there exists some k̃ such that ĉk̃ ≤ 0, together with satisfaction of the first condition in (3.25),
this means that

ĉk+1 ≤ 0, for all Ls � k ≥ k̃.

and

0 < mδk ≤ f̂ k − f̂ k+1, for all Ls � k ≥ k̃. (4.1)

Together with the basic assumptions on f , we can obtain that the sequence { f̂ k}Ls is decreas-
ing and bounded. Hence there exists some f̂ such that the sequence { f̂ k}Ls converges to f̂
satisfying f̂ ≤ f̂ k for all k ≥ k̃ in Ls . Summing up the relations (4.1), we obtain that

∑

Ls�k≥k̃

δk ≤ 1

m

∑

Ls�k≥k̃

(f̂ k − f̂ k+1) = 1

m
(f̂ k̃ − f̂),

which implies δk → 0 as Ls � k → ∞.
On the other hand, if ĉk > 0 for all k ∈ Ls , then (3.25) implies that

0 < δk ≤ 1

m
(ĉk − ĉk+1).

By the same argument, the sequence {ĉk} is decreasing and bounded below. Then it converges
to a value ĉ satisfying ĉ ≤ ĉk for all k ≥ k̃ in Ls . As a result, summing up the above relation

123

J Glob Optim (2018) 70:517–549 529

over all Ls , we see that

∑

k∈Ls

δk ≤ 1

m

∑

k∈Ls

(ĉk − ĉk+1) = 1

m
(ĉ0 − ĉ),

which means limk∈Ls δk = 0. Together with (3.14) and (3.24) we see that

0 ≤ Vk ≤ δk and
1

λmax(Ak) + ηk
‖Gk + αk‖2 ≤| Gk + αk |2k≤ δk,

and, hence Vk → 0 as Ls � k → ∞.
By noting the relation (3.24), we obtain that

∑

k∈Ls

δk =
∑

k∈Ls

(
Vk+ | Gk + αk |2k

)
< ∞.

Since all the quantities are nonnegative, and together with (3.14), it holds that

0 <
∑

k∈Ls

1

λmax(Ak) + ηk
‖Gk + αk‖2 ≤

∑

k∈Ls

| Gk + αk |2k< ∞.

If a weaker condition holds, i.e.,
∑

k∈Ls
1

λmax(Ak)+ηk
is divergent, then we can obtain

lim infk→∞ ‖Gk +αk‖ = 0. Passing onto the subsequenceKs , if necessary, we can suppose
{xk} → x̂ and Gk → Ĝ as Ks � k → ∞. From here first item is now proven. Furthermore,
if the sequence {λmax(Ak) + ηk} is bounded above, we obtain that

‖Gk + αk‖ → 0, Ls � k → ∞, (4.2)

which implies that the same assertions can be proven for all accumulations of {xk}. From
here all results have been proven. ��
4.2 Infinitely many consecutive null steps

The another case refers to finitely many serious steps, which implies Algorithm 3.1 makes

infinitely many consecutive null steps. Let k̂ denote the last serious index, and x̂ := xk̂ be
the last stability center. By adjusting the strategy of the bundle management, the model is
ensured to satisfy the following conditions whenever k and k + 1 are two consecutive null
indexes:

f̌k+1(y) ≥ f̂ k+1 − êk+1
fk+1

+
〈
ĝk+1
fk+1

, y − x̂
〉
,

čk+1(y) ≥ ĉk+1 − êk+1
ck+1

+
〈
ĝk+1
ck+1

, y − x̂
〉
, (4.3)

and

k+1(y) ≥ ψk(y). (4.4)

Moreover, let rk denote the objective function optimal value of the (3.15), i.e.,

rk :=
k(y
k+1) + 1

2
‖yk+1 − xk‖2k . (4.5)

We first prove the following preliminary result regarding relations between consecutive terms
of the sequence {rk}.

123

530 J Glob Optim (2018) 70:517–549

Lemma 4.1 Suppose that Algorithm 3.1 takes a finite number of serious steps. The optimal
values rk+1 and rk satisfy

rk+1 ≥ rk + 1

2
‖yk+2 − yk+1‖2k . (4.6)

Then, the following relations hold:

lim
k→∞ ‖yk+2 − yk+1‖2k = 0

lim
k→∞

(
rk+1 − rk − 1

2‖yk+2 − yk+1‖2k
) = 0.

(4.7)

Proof By noting the definition of ψk in (3.19), it is easy to see that

ψk(y) =
k(y
k+1) +

〈
Gk, y − yk+1

〉

=
k(y
k+1) + (x̂ − yk+1)TMk(y − yk+1) −

〈
αk, y − yk+1

〉

≥
k(y
k+1) + 1

2
‖yk+1 − x̂‖2k + 1

2
‖y − yk+1‖2k − 1

2
‖y − x̂‖2k

= rk + 1

2
‖y − yk+1‖2k − 1

2
‖y − x̂‖2k,

where the inequality has used αk ∈ ∂iX (yk+1), and the last equality follows from (4.5).
Hence we can obtain that

ψk(y) + 1

2
‖y − x̂‖2k ≥ rk + 1

2
‖y − yk+1‖2k . (4.8)

By evaluating at y = x̂ , it follows that

rk + 1

2
‖x̂ − yk+1‖2k ≤ ψk(x̂) ≤
k(x̂),

where the last inequality has used (3.20), i.e., ψk(y) ≤
k(y). Hence the sequence {rk} is
bounded from above. From (4.4), (4.8), and by noting the fact Mk+1 � Mk , we can obtain
that

rk + 1

2
‖y − yk+1‖2k ≤
k+1(y) + 1

2
‖y − x̂‖2k ≤
k+1(y) + 1

2
‖y − x̂‖2k+1.

By evaluating at y = yk+2, we obtain that

rk + 1

2
‖yk+2 − yk+1‖2k ≤ rk+1 =
k+1(y

k+2) + 1

2
‖yk+2 − x̂‖2k+1,

which implies that the relation (4.6) holds. Since the sequence {rk} is monotone increasing
and bounded from above, we also obtain the result (4.7) holds. ��
Theorem 4.2 Suppose that Algorithm 3.1 generates a finite sequence of serious steps, and
the sequence {μk} be bounded. Let Ln denote the set gathering indices of iterations larger
than k̂. Then δk → 0 and Vk → 0 as Ln � k → ∞.

• If, in addition, lim infk→∞ 1
ηk

> 0, then there exists a subsequence Kn ⊆ Ln, such that

‖Gk + αk‖ → 0, yk → x̂ and Gk → Ḡ as Kn � k → ∞.
• If, instead of the above weaker condition, there exists ηmax > 0 such that ηk ≤ ηmax,

then ‖Gk + αk‖ → 0 and yk → x̂ as → ∞.

123

J Glob Optim (2018) 70:517–549 531

Proof For convenience, let x̂ = xk, f̂ = f̂ k, ĉ = ĉk, Â = Ak̂ θ̂1 = θk1 , θ̂2 = θk2 , and

ĥ = hk(xk) for all k ≥ k̂. By noting the definition of the inexact improvement function, we
can obtain that

hk(y
k+1) = max

{
f k+1 − θk1 , ck+1 − θk2

}

=
⎧
⎨

⎩

max
{
f k+1 − f̂ − sk ĉ, ck+1 − tk ĉ

}
, if ĉ > 0,

max
{
f k+1 − f̂ , ck+1

}
, if ĉ ≤ 0

If ĉ > 0, yields,

hxk (y
k+1) ≥ ck+1 − tk ĉ

≥ ĉ − tk ĉ − mδk

= ĥ − mδk, (4.9)

where the second inequality follows from (3.25), and the last equality has used the relation
(3.4).

On the other hand, if ĉ ≤ 0, it follows from (3.4) that ĥ = 0. By combining with (3.25),
we get

hk(yk+1) ≥
{
f k+1 − f̂ , and
ck+1

>

{−mδk, if f k+1 > f̂ − mδk,

0, if ck+1 > 0
≥ ĥ − mδk .

(4.10)

By adding δk to both terms, we can obtain that

0 ≤ (1 − m)δk < hk(y
k+1) − ĥ + δk ≤ hk(y

k+1) −
k(y
k+1), (4.11)

where the last inequality has used the relation (3.23), that is

−ĥ + δk = −
k(y
k+1) + 〈αk, x̂ − yk+1〉 ≤ −
k(y

k+1).

Following (3.9) and (4.3), we can observe that

f̌k+1(y
k+2) ≥ f̂ − êk+1

fk+1
+

〈
ĝk+1
fk+1

, yk+2 − x̂
〉

= f k+1+
〈
g fk+1 , x̂−yk+1

〉
− μk+1

2
‖yk+1− x̂‖2+

〈
g fk+1 + μk+1(y

k+1 − x̂), yk+2 − x̂
〉

≥ f k+1 +
〈
g fk+1 , y

k+2 − yk+1
〉
+ μk+1

〈
yk+1 − x̂, yk+2 − yk+1

〉

= f k+1 +
〈
ĝk+1
fk+1

, yk+2 − yk+1
〉
. (4.12)

By the same argument, we obtain that

čk+1(y
k+2) ≥ ck+1 +

〈
ĝk+1
ck+1

, yk+2 − yk+1
〉
. (4.13)

Besides, from (3.11), (4.12) and (4.13), we get

k+1(y
k+2) =

{
f̌k+1(y

k+2) − θ̂1, čk+1(y
k+2) − θ̂2

}

≥
{
f k+1 +

〈
ĝk+1
fk+1

, yk+2 − yk+1
〉
− θ̂1, c

k+1 +
〈
ĝk+1
ck+1

, yk+2 − yk+1
〉
− θ̂2

}
.

123

532 J Glob Optim (2018) 70:517–549

By noting the sequence {yk} ⊂ X , there exists a positive constant N > 0 such that ‖yk− x̂‖ ≤
N for all k. Therefore,

k+1(y
k+2) ≥

{
f k+1 − θk1 , ck+1 − θk2

}
− (L + μk+1N)‖yk+2 − yk+1‖

= hk(y
k+1) − (L + μk+1N)‖yk+2 − yk+1‖,

where the inequality has used the fact that gk+1
c and gk+1

f are bounded (recall that f and c
are locally Lipschitzian). By combining with (4.11), we obtain that

0 ≤ (1 − m)δk

<
k+1(y
k+2) −
k(y

k+1) + (L + μk+1N)‖yk+2 − yk+1‖
= rk+1 − 1

2
‖yk+2 − x̂‖2k+1 − rk + 1

2
‖yk+1 − x̂‖2k + (L + μk+1N)‖yk+2 − yk+1‖,

where the last equality comes from the relation (4.5). From the relation (3.14) and the con-
dition Mk+1 � Mk , we get

0 ≤ (1 − m)δk

< rk+1 − rk − 1
2 ‖yk+2 − x̂‖2k + 1

2 ‖yk+1 − x̂‖2k + (L + μk+1N)‖yk+2 − yk+1‖
= 1

2 ‖yk+2 − yk+1‖2k − 1
2 ‖yk+2 − x̂‖2k + 1

2 ‖yk+1 − x̂‖2k
+ (L + μk+1N)‖yk+2 − yk+1‖ + rk+1 − rk − 1

2 ‖yk+2 − yk+1‖2k
= 〈yk+2 − yk+1, M−1

k (Gk + αk)〉 + (L + μk+1N)‖yk+2 − yk+1‖ + rk+1 − rk − 1
2 ‖yk+2 − yk+1‖2k

≤ 〈yk+2 − yk+1, 1
λmin(Â)+η̂

(Gk + αk)〉 + (L + μk+1N)‖yk+2 − yk+1‖ + rk+1 − rk − 1
2 ‖yk+2 − yk+1‖2k

≤
(
L + μk+1N + 1

λmin(Â)+η̂
‖Gk‖

)
‖yk+2 − yk+1‖ + rk+1 − rk − 1

2 ‖yk+2 − yk+1‖2k
≤

(
L + μk+1N + L

λmin(Â)+η̂

)
‖yk+2 − yk+1‖ + rk+1 − rk − 1

2 ‖yk+2 − yk+1‖2k ,

where the last inequality follows from Gk ∈ conv{g j
f , g j

c , j ∈ Lk} and η̂ := ηk̂ ≤ ηk for

all k ≥ k̂. Passing to the limit as k → ∞, and using (4.7) in Lemma 4.1, we obtain that
limk→∞ δk = 0. Together with (3.14) and (3.24) we see that

0 ≤ Vk ≤ δk and
1

(
λmax(Â) + ηk

)‖Gk + αk‖2 ≤| Gk + αk |2k≤ δk,

Since lim infk→∞ 1
ηk

> 0, we obtain that limK�k→∞ Vk = 0 and limK�k→∞ ‖Gk + αk‖ =
0 for some subsequence K. Furthermore, it is follows from (3.17) and Mk+1 � Mk that
limK�k→∞ yk = x̂ . If ηk ≤ ηmax, it is obviously that ‖Gk +αk‖ → 0 and yk → x̂ as → ∞.
From here the results have been proved. ��

5 Convergence results

One of purposes of conditions (3.3) is to ensure satisfaction of the relations stated in the
following lemma. Let x∗ denote an accumulation point of {xk}, (f ∗, c∗) and (s∗, t∗) be the
limit points of {(f k, ck)} and {(xk, tk)} respectively. We can define the constant
 in (3.3)
satisfying
 > 1

c∗ (maxx∈X { f (y) − c(y)} − f ∗), which implies that the penalty parameters
sk, tk satisfy

sk − tk >

(
max
x∈X { f (y) − c(y)} − f ∗

)/
c∗. (5.1)

123

J Glob Optim (2018) 70:517–549 533

Theorem 5.1 Suppose that Algorithm 3.1 solves (1.1) satisfying (2.11), (2.12) with penalty
parameters sk and tk satisfying (3.3).

If the algorithm loops forever, then for each θ∗ > 0, there exists a positive constant ρ∗
such that

•
(1 − t∗)max{c∗, 0} ≤ max

{
f (y) − f ∗ − s∗ max{c∗, 0}, c(y) − t∗ max{c∗, 0}

}
+ ε,

(5.2)

for all y ∈ Bρ∗(x∗)
⋂X , where ε := (θ∗ + ε̄)ρ∗ + σ̄ .

• If c∗ > 0 then

c∗ ≤ c(y) + ε for all y.

• If c∗ < 0 and Xε := {y ∈ X : c(y) < −ε} is not empty set, it holds that
f ∗ ≤ f (y) + ε for all y ∈ Xε .

Proof If Algorithm 3.1 loops forever, since the set X is compact and xk ∈ X , there exists
an index set L′ such that {xk}k∈L′ → x∗, and recalling that when L′ = Ls eventually
x∗ = limk→∞ yk . Let q j

f ∈ ∂ f (x j) and by noting (3.7) and (3.9), we obtain that

f̂ k +
〈
g j
f , y − xk

〉
+ pkj − êkf j

= f j +
〈
g j
f , y − y j

〉

= f (y j) +
〈
q j
f , y − y j

〉
− σ j +

〈
g j
f − q j

f , y − y j
〉
, (5.3)

where the last equality follows from (2.11). By noting the definition of lower-C1, then for all
y j and θ j > 0, there exists ρ j > 0 such that

f (y) − f (y j) ≥ 〈q j
f , y − y j 〉 − θ j‖y − y j‖, for all y ∈ Bρ j (y j),

which combined with the relation (5.3), implies that

f̂ k +
〈
g j
f , y − xk

〉
+ pkj − êkf j

≤ f (y) + (θ j + ε j)‖y − y j‖ − σ j

≤ f (y) + (θ j + ε j)ρ
j − σ j . (5.4)

Together with satisfaction of (3.9c), i.e., g j
f = ĝkf j − μk(y j − xk), it holds that

f (y) + (θ j + ε j)ρ
j − σ j

≥ f̂ k +
〈
g j
f , y − xk

〉
+ pkj − êkf j

= f̂ k − êkf j +
〈
ĝkf j , y − xk

〉
− μk

〈
y j − xk, y − xk

〉
+ pkj

≥ f̂ k − êkf j +
〈
ĝkf j , y − xk

〉
− μk

〈
y j − xk, y − xk

〉
,

where the last inequality follows from pkj ≥ 0. The above relation will eventually mean that

f (y) ≥ f̂ k − êkf j +
〈
ĝkf j , y − xk

〉
− μk

〈
y j − xk, y − xk

〉
− (θ j + ε j)ρ

j + σ j . (5.5)

123

534 J Glob Optim (2018) 70:517–549

By same argument, it holds that

c(y) ≥ ĉk − êkc j + 〈ĝkc j , y − xk〉 − μk〈y j − xk, y − xk〉 − (θ j + ε j)ρ
j + σ j . (5.6)

It follows from (5.5) and (5.6) that

max
{
f (y)−θk1 , c(y)−θk2

}
+(θ j +ε̄)ρ j +σ̄

≥ −
⎛

⎜
⎝

∑

j∈L f
k

λkj ê
k
f j +

∑

j∈Lc
k

γ k
j ê

k
c j

⎞

⎟
⎠+ 〈Gk, y − xk〉+

∑

j∈L f
k

λkj (f̂
k − θk1) +

∑

j∈Lc
k

γ k
j (ĉ

k − θk2)

−μk〈
∑

j∈L f
k

λkj (y
j − xk) +

∑

j∈Lc
k

γ k
j (y

j − xk), y − xk〉.

Besides, by noting (3.27) and (3.23) it holds that
∑

j∈L f
k

λkj (f̂
k − θk1) +

∑

j∈Lc
k

γ k
j (ĉ

k − θk2)

=
∑

j∈L f
k

λkj ê
k
f j +

∑

j∈Lc
k

γ k
j ê

k
c j +
k(y

k+1) − 〈Gk, yk+1 − xk〉

=
∑

j∈L f
k

λkj ê
k
f j +

∑

j∈Lc
k

γ k
j ê

k
c j + hk(x

k) − δk+ | Gk + αk |2k

=
∑

j∈L f
k

λkj ê
k
f j +

∑

j∈Lc
k

γ k
j ê

k
c j + hk(x

k) − Vk, (5.7)

which implies that

max
{
f (y) − θk1 , c(y) − θk2

}
+ (θ j + ε̄)ρ j + σ̄

≥ hkx
k) − Vk +

〈
Gk, y − xk

〉
− μk

〈
∑

j∈L f
k

λkj (y
j − xk) +

∑

j∈Lc
k

γ k
j (y

j − xk), y − xk
〉

.

By noting Theorem 4.1, Theorem 4.2 and Lemma 5.1, and passing to the limit in above
relation as k → ∞, we obtain that

max
{
f (y) − f ∗ − s∗ max{c∗, 0}, c(y) − t∗ max{c∗, 0}

}
+ (θ∗ + ε̄)ρ∗ + σ̄

≥ (1 − t∗)max{c∗, 0} + 〈Ḡ, y − x̄〉.
As already seen, Gk +αk → G∗ +α∗ = 0 and α∗ ∈ ∂iX (x∗), implies that−G∗ ∈ ∂iX (x∗),
thus 〈−G∗, y − x∗〉 ≤ 0. From here the result in first item has been proven.

To show second item, consider the condition of c∗ > 0. Recalling the relation (5.1), yields

(s∗ − t∗)c∗ > f (y) − c(y) − f ∗,

which implies that

f (y) − f ∗ − s∗ max{c∗, 0} < c(y) − t∗ max{c∗, 0}.
Together with the relation (5.2), we obtain that

c∗ ≤ c(y) + ε.

123

J Glob Optim (2018) 70:517–549 535

Then the result in second item has been proven.
Finally, to see item (iii), consider condition c∗ < 0. According to (5.2), it holds that

0 ≤ max
{
f (y) − f ∗, c(y)

}
+ ε,

which means f ∗ ≤ f (y) + ε for x ∈ Xε . From here all results have been proven. ��

From the third statement of lower-C1 in (2.3), the constants θ∗ and ρ∗ for the point x∗
can be set small enough. Thus Theorem 5.1 states that, as long as θ∗ and ρ∗ are chosen
properly, the constant ε should meet the required precision accordingly. Besides, Theorem
5.1 also indicate that, if the parameter sk is updated quickly (see e.g., sk+1 = 2sk if ĉk > 0,
and sk+1 = sk otherwise), Algorithm 3.1 will eventually find a point infeasible up to the
accuracy problem (1.1). Meanwhile, by noting the relation c(y) > c∗ − ε, then the feasible
set of (1.1) may be empty set or very small. Otherwise, the set Xε should be nonempty as
long as the accuracy ε is small enough and an approximate local solution of (1.1) will be
detected.

Our inexact bundle method can also be given for lower-C2 functions. The function f
is lower-C2 on a open set M as long as it is finite value on an open set M and for any
point x̄ ∈ M there exists a constant Rth > 0 such that f + r

2 | − x̄ |2 is convex on an open
neighborhoodM′ of x̄ for all r > Rth. It has been shown the lower-C2 functions are locally
Lipschitz continuous.

The prox-regularity is essentialwhenworkingwith proximal points in a nonconvex setting.
Specifically, if f is a prox-regular locally Lipschitz function, then it is lower-C2 function.
The finite convex function is lower-C2 [44, Theorem 10.31]. There are also some other lower-
C2 functions, i.e., C2 functions, strongly amenable functions, and if f is l.s.c., proper, and
prox-bounded, then the opposite of Moreau envelopes eλ f is lower-C2.

By applying [38, Prop. 10.54] and [55, Lemma 4.2], we obtain that there exist two thresh-
olds μ f , μc, such that for all μ ≥ ρid := max{μ f , μc}, and any given point y ∈ L0 (a
nonempty compact set), the functions f (·) + μ

2 | · −y|2, c(·) + μ
2 | · −y|2 are convex on

L0. Besides, the positive threshold ρid can be updated along iterations, by using data in the
bundle generated by Algorithm 3.1. Besides, from [55, Lemma 4.2] the parameterμk remain
unchanged eventually, that is there exist k̂ > 0 and μ̄ > 0, such that μk = μ̄, for all k > k̂.
The similar results as Theorem 5.1 can be proved naturally.

6 Numerical experiments

To assess practical performance of our inexact proximal bundle method, we coded Algo-
rithm 3.1 in Matlab and ran it on a PC with 1.80GHz CPU. Quadratic programming solver
is QuadProg.m, which is available in the Optimization Toolbox.

6.1 Parameters for the proximal bundle method

We first set, respectively, the minimum and maximum positive thresholds to be ηmin =
10−5 and ηmax = 109. Once the number of active elements in the bundle Gl is more than
num(Gmax) = 50, the bundle should be compressed. The initial value of the prox-parameter
is started η0 = 1.

123

536 J Glob Optim (2018) 70:517–549

We first compute η̃k by using the reverse quasi-Newton scalar

η̃k :=
{ |χk − χk−1|2

(χk − χk−1)T(yk − yk−1)
:χk = Gk + αk, χk−1 = Gk−1 + αk−1

}
.

Just as [37], the prox-parameter ηk+1 will be updated at each serious steps as below.

ηk+1 = min{η, ηmax},
where

η :=
⎧
⎨

⎩

max{ηmin, ηk,−1.01λmin(Ak)}, if λmin(Ak) < 0
max{ηmin, η̃k, }, if λmin(Ak) = 0
max{0, λmin(Ak) − η̃k}, if λmin(Ak) > 0.

(6.1)

If the kth iteration declares a null step, then the prox-parameter ηk remains constant. This
strategy satisfies the condition of the parameters in Theorems 4.1 and 4.2. If necessary, ηk+1

is projected so that ηk+1 = [ηmin, ηmax].
Let ι = 2, and update the convexification parameter μk by using the relation (3.10), i.e.,

μk := max

{

max
j∈L f

k ,y j �=xk

−ekf j
1
2‖y j − xk‖2 , max

j∈Lc
k ,y

j �=xk

−ekc j
1
2‖y j − xk‖2 , 0

}

+ ι,

which is similar to the strategy in [18]. And in [18, Lem 3] and [55, Lem 4.2], for the exact
oracle (i.e., σ̄ = 0 and ε̄ = 0) it has proven that the sequence {μk} is boundedness. Yet the
boundedness of {μk} would be difficult to prove without additional coercive assumptions on
the behavior of the errors in our setting. It is worth noting that the penalty parameters sk
and tk is updated, which depends on a constant
 defining in (5.1). Considering the basic
assumptions on f, c and X , we can obtain that the values of both functions on the set X are
bounded. Thus the constant
 is bounded, and as a result sk and tk are well-defined in this
work.

6.2 Examples for nonconvex optimization problems

In this subsection, we first introduce the nonconvex test problems. We prefer a series of
polynomial functions developed in [11]; see also [12,18]. For each i = 1, 2, . . . , n, the
function hi : Rn → R is defined by

hi (x) =
n∑

j=1

x j + (i x2i − 2xi), (6.2)

where M is a fixed constant. There are five classes of test functions defined by hi in [12] as
objective functions

f1(x) :=
n∑

i=1

|hi (x)|, (6.3a)

f2(x) := max
i=1,...,n

|hi (x)|, (6.3b)

f3(x) :=
n∑

i=1

|hi (x)| + 1

2
|x |2, (6.3c)

f4(x) :=
n∑

i=1

|hi (x)| + 1

2
|x |, (6.3d)

123

J Glob Optim (2018) 70:517–549 537

It has been proved in [12,18] that they are nonconvex, globally lower-C1, bounded on compact
X , and level coercive.Wecanobtain that 0 = minx fi and {0} ⊆ argminx fi for i = 1, 2, 3, 4.
Thus we can define the compact X := B15(0).

For constraint functions, we consider the pointwise maximum of a finite collection of
quadratic functions developed in [17], i.e.,

c(x) := max
i=1,2,...,n

{〈x, Ai x〉 + 〈Bi , x〉 + Ci } , (6.4)

where Ai are n×nmatrices, Bi ∈ Rn , andCi ∈ R for i = 1, 2, . . . , n. Here all the coefficients
Ai , Bi , and Ci are uniformly distributed in [−5, 5], which are chosen randomly by matlab
code.The functions as (6.4) havemany important practical advantages. Firstly, they are always
lower-C2 (semiconvex), prox-bounded, and prox-regular, but may be nonconvex since Ai are
not necessary to be positive definite. Secondly, the sequence of the convexification parameter
{μk} for c(·) is fixed as

μ = max
{|Ai + AT

i |: i = 1, 2, . . . n
}
.

As a result, the large enough convexification parameters μ for c(·) can be estimated in
advance. Thirdly, many different examples are easily obtained just by randomly generating
Ai , bi and ci and choosing values for n and N . Lastly, the oracles (2.11) and (2.12) are easy
to obtain the inexact information of the constrained functions.

We considered the following test problems

min
x∈Rn

fi (x)

s.t. c(x) ≤ 0, x ∈ X ,

for i = 1, . . . , 4 and n = 5, . . . , 15, 20. For each test, it is well known that the optimum
point is x∗ = (0, . . . , 0) ∈ Rn . Hence, each fi is clearly bounded below by 0. To check
the precision, we will report the objective function value in last serious point. The remaining
parameters of all of these tests are the same and listed below:

• stopping tolerance tolstop = 1.0e − 06, initial starting point x0 = (1, . . . , 1);
• prox-parameter η0 = 5, convexification parameter μ0 = 5;
• Armijo-like parameter m = 0.55, positive constant ι = 2;
• penalty parameters s0 = 15 and t0 = 0, stopping tolerance tolstop = 10−6;
• initial variable prox-metric A0 = I (n × n identity matrix).

6.3 Comparison with penalty proximal bundle method

In this subsection, we examine the performances of Algorithm 3.1 with inexact oracles. At
each evaluation,we use inexact function values and subgradients as f (y j)−σ j , g

j
f = g̃ j

f +ε j

and c(y j) − σ j , g
j
c = g̃ j

c + ε j , where g̃ j
f ∈ ∂ f (y j) and g̃ j

c ∈ ∂c(y j). To provide a brief
comparison of Algorithm 3.1 to other research, we compared our results with those obtained
by the penalty proximal bundle method (PPBM) in [55].

Our results for deterministic tests are summarized in following tables, in which n denotes
dimension. The following notations are used as

Time − −the CPU time(sec.) x∗ − −the optimal point,
f f inal − −the final objective value, c f inal − −the final constrained value,
Ni − −the number of iterations, Ki − −the number of serious iterations.

123

538 J Glob Optim (2018) 70:517–549

Table 1 Comparison between Algorithm 3.1 and PPBM for f1 with n = 5, . . . 10

n Alg. x∗ f f inal c f inal Ki Ni Time

5 Algorithm 3.1 1.0e−04 (−0.3254, 0.3775,
−0.1408, −0.0421, −0.5506)

2.88e−004-34.9981 16 23 1.1040

PPBM 1.0e−004 (0.09, −0.17, 0.09, 0.40,
−0.20)

1.83e−004-35.0012 – 22 1.3703

6 Algorithm 3.1 (−0.0001, 0.0000, −0.0001, 0.0000
0.0001, −0.0000)

0.0001 -11.0000 18 29 1.0271

PPBM (−0.0165, −0.0099, −0.0091,
−0.0081, 0.0176, 0.0088)

0.1060 -10.0756 – 20 1.4273

7 Algorithm 3.1 1.0e−06 (−0.6163, −0.0445,
−0.2178, 0.4750, −0.0514,
−0.2268, 0.4710)

4.03e−006-1.0000 21 33 2.4432

PPBM (0.0020, 0.0025, −0.0188, 0.0101,
0.0024, 0.0024, 0.0024)

0.0713 -1.3740 – 38 3.2513

8 Algorithm 3.1 1.0e−04 (0.1636, −0.1932,
−0.1637, 0.0126, −0.3128,
0.0874, 0.2132, 0.0102)

2.68e−04-53.9991 24 32 1.9312

PPBM (0.0219, 0.0221, 0.0407, 0.0227,
0.0229, 0.0068, 0.0026, −0.0014)

0.2712 -55.0488 – 36 2.4381

9 Algorithm 3.1 1.0e−03 (−0.1036, −0.0289,
0.0083, −0.0563, −0.0079,
0.1961, −0.1785, 0.0436, 0.0894)

0.0014 -6.9989 32 41 1.3706

PPBM (−0.1165, 0.0286, 0.0290, 0.0295,
−0.0208, 0.0305, 0.0202, 0.0318,
0.0223)

0.4327 -10.3862 – 39 2.3319

10 Algorithm 3.1 1.0e−03 (−0.0598, −0.7086,
−0.1750, 0.25, 0.1534, 0.0865,
0.2471, 0.0470, −0.1707, 0.0044)

0.0049 −16.9802 27 36 1.7860

PPBM (−0.0003, 0.0116, −0.0015,
−0.0017, −0.0017, −0.0031,
−0.0017, −0.0017, −0.0017,
−0.0017)

0.0321 -16.7810 – 38 2.4939

Ournumerical results for general nonconvex examples are reported inTables 1, 2, 3, 4, 5, 6, 7
and 8, which show a reasonable performance of Algorithm 3.1.

We analyze the results in more detail as follows:

• For objective function f1, we tested 12 nonconcex examples with n = 5, . . . , 15, 20. We
use constant noise σ j = 0.01 and ε j = 0.01 ∗ ones(n, 1) for all j . Tables 1 and 2 show
that values of f f inal obtained by Algorithm 3.1 are two orders of magnitude smaller
than PPBM in most cases. Thus, Algorithm 3.1 succeeds in obtaining a reasonably high
accuracy, while spend less time in all cases. Besides, the percentage of serious steps (Ki)
in total iterations (Ni) is above 90% in many cases, which means that most iterations are
reliable and Algorithm 3.1 is effective.

• To introduce errors in the available information, we use random noises σ j = 0.1 ∗
random(‘Normal’, 0, 0.1) and ε j = 0.1 ∗ random(‘Normal’, 0, 0.1, n, 1), which
generates random numbers from the normal distribution with mean 0 and standard devi-
ation 0.1, and scalars n and 1 are the row and column dimensions. Tables 3 and 4 show
the results of Algorithm 3.1 as compared to PPBM for the objective function f2 with

123

J Glob Optim (2018) 70:517–549 539

Table 2 Comparison between Algorithm 3.1 and PPBM for objective function f1 with n = 11, . . . , 15, 20

n Alg. f f inal c f inal Ki Ni Time

11 Algorithm 3.1 0.0051 −16.9514 39 63 0.9206

PPBM 0.0204 −17.9861 – 54 1.7934

12 Algorithm 3.1 0.0018 −17.0068 49 61 1.1334

PPBM 0.0079 −11.1753 – 74 4.0303

13 Algorithm 3.1 2.4845e−004 −17.0000 49 70 1.1524

PPBM 0.0037 −14.0561 – 96 5.3781

14 Algorithm 3.1 2.0912e−004 −16.9997 63 82 2.0177

PPBM 0.0028 −17.0030 – 104 4.0706

15 Algorithm 3.1 1.9762e−004 −16.9999 51 72 1.5128

PPBM 0.0711 −14.0310 – 132 4.7832

20 Algorithm 3.1 1.8412e−004 −16.9992 55 80 1.8021

PPBM 0.0003 −17.1310 – 179 7.8291

Table 3 Comparison between Algorithm 3.1 and PPBM for f2 with n = 5, . . . , 10

n Alg. x∗ f f inal c f inal Ki Ni Time

5 Algorithm 3.1 1.0e−06 (−0.0680, −0.0680,
−0.0728, 0.1409, −0.0712)

4.20e−007 −35.0000 37 37 1.1875

PPBM 1.0e−06 (−0.0684, 0.0198, 0.0214,
0.0225, −0.3134)

3.63e−07 −35.0000 55 55 4.5731

6 Algorithm 3.1 1.0e−06 (−0.1243, 0.3156, −0.0936,
−0.0796, −0.1176, −0.0961)

8.26e−07 −11.0000 21 25 1.4540

PPBM (0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000,)

1.20e−05 −11.0006 – 24 1.5329

7 Algorithm 3.1 1.0e−04 (0.0357, 0.0348, 0.2194,
−0.1765, −0.1295, 0.0302,
−0.0472)

4.71e−05 −1.0600 23 31 1.4573

PPBM 1.0e−05 (3.30, 3.30, 3.30, 3.30, 3.30,
3.30, 3.30)

1.67e−04 −1.0076 – 30 4.1749

8 Algorithm 3.1 1.0e−06 (0.0988, 0.1196, 0.1308,
0.0588, 0.1333, −0.0459,
−0.3481, 0.1167)

9.60e−07 −54.0000 31 39 2.01268

PPBM 1.0e−4 (1.16, 1.16, 1.16, 1.16, 1.16,
1.16, 1.16, 1.16)

6.99e−04 −54.0273 – 31 2.3108

9 Algorithm 3.1 1.0e−06 (−0.0423, −0.0258,
−0.0369, 0.4380, −0.1142,
−0.1310, −0.0820, −0.0416,
−0.0416)

9.53e−007 −7.0000 29 39 3.1590

PPBM 1.0e−04 (4.27, 4.28, 4.28, 4.28, 4.28,
4.28, 4.28, 4.28, 4.28)

0.0030 −7.1867 – 38 4.9357

10 Algorithm 3.1 1.0e−05 (0.1017, −0.6883, 0.0995,
0.0238, 0.1000, 0.0739, 0.2273,
0.0975, 0.0893, 0.0523)

1.5536e−005 −17.0001 41 52 5.8139

PPBM 1.0e−04 (3.30, 3.30, 3.30, 3.30, 3.30,
3.30, 3.30, 3.30, 3.30, 3.30,)

0.0026 −17.2078 – 36 6.0814

123

540 J Glob Optim (2018) 70:517–549

Table 4 Comparison between Algorithm 3.1 and PPBM for f2 with n = 11, . . . , 15, 20

n Alg. f f inal c f inal Ki Ni Time

11 Algorithm 3.1 4.29e−005 −17.0004 107 119 8.6199

PPBM 0.0141 −17.1286 – 134 13.4316

12 Algorithm 3.1 3.84e−006 −10.3833 107 118 7.9933

PPBM 0.0073 −16.9998 – 162 25.6711

13 Algorithm 3.1 0.0022 −17.0316 107 115 9.0743

PPBM 0.0139 −17.0075 – 142 14.6779

14 Algorithm 3.1 8.03e−004 −8.1707 107 113 8.9709

PPBM 0.0375 −18.2312 – 133 14.4552

15 Algorithm 3.1 0.0071 −17.0847 134 142 16.0570

PPBM 0.0177 −17.4762 – 150 19.6917

20 Algorithm 3.1 0.0060 −7.2063 113 125 9.1701

PPBM 0.0843 −17.5780 – 169 28.3983

n = 5, . . . , 15, 20. We observe that Algorithm 3.1 only needs one-half of the cpu time
of PPBM. In particular, if n = 20, the value of time of our method is just one-third of
PPBM. We also see that Algorithm 3.1 always produces better (lower) objective values
than PPMB for all examples.

• For the objective function f3, we also tested 12 nonconvex examples with n =
5, . . . , 15, 20 from randomly generated initial points. For these nonconvex exam-
ples, we introduce random noises σ j = 0.1 ∗ unifrnd(0, 1) and ε j = 0.1 ∗
unifrnd(0, 1, n, 1). The matlab code unifrnd(0, 1, n, 1) returns an n−dimensional
column vector, and all elements are generated from the same distribution in the interval
[0, 1]. From Tables 5 and 6, it observes that Algorithm 3.1 always produces better (lower)
objective values than PPMB, while spend less time in most cases. Thus, Algorithm 3.1
performs better than PPBM for the objective function f3.

• For the objective function f4, we also tested 12 nonconvex examples with n =
5, . . . , 15, 20 from a fixed initial point x0 = ones(n, 1). For these nonconvex exam-
ples, we introduce random noises σ j = 0.1 ∗ normrnd(0, 0.2) and ε j = 0.1 ∗
normrnd(0, 0.2, n, 1). Thematlab codenormrnd(0, 0.2, n, 1)generates randomnum-
bers from the normal distribution withmean 0 and standard deviation 0.2, where scalars n
and 1 are the row and column dimensions. From Tables 7 and 8, it seems that our method
succeeds in obtaining better objective values, at the price of less time than PPBM. In
most of cases, the number of serious steps (Ki) is much more than the number of null
steps, which implies that our inexact method is high efficiency.

6.4 Impact of noise on solution accuracy

To analyse the errors in the available information, we test five different types of inexact
oracle:

• NN (No noise): σ j = σ̄ = 0 and ε j = ε̄ = 0, for all j ,
• CN (Constant noise): σ̄ = σ j = 0.01 and ε j = ε̄ = 0.01, for all j ,

• VN (Vanishing noise): σ̄ = 0.01, σ j = min{0.01, ‖y j‖
100 }, ε j = min{0.01, ‖y j‖

100 }, for all
j ,

123

J Glob Optim (2018) 70:517–549 541

Table 5 Comparison between Algorithm 3.1 and PPBM for objective function f3 with n = 5, . . . , 10

n Alg. x∗ f f inal c f inal Ki Ni Time

5 Algorithm 3.1 1.0e−07 (0.5703, −0.1791,
−0.2646, 0.0749, 0.3721)

3.1958e−007 −35.0000 37 37 0.6183

PPBM 1.0e−07 (0.5703, −0.1791,
−0.2646, 0.0749, 0.3721)

2.4010e−07 −35.0000 39 39 0.7031

6 Algorithm 3.1 1.0e−07 (−0.1302, −0.0660,
−0.0649, 0.1863, 0.1840,
−0.1119)

1.48e−007 −11.0000 27 32 0.6342

PPBM 1.0e−05 (0.19, −0.58, 0.19, 0.19,
0.19, 0.19)

1.56e−05 −11.0000 – 35 1.2176

7 Algorithm 3.1 1.0e−06 (−0.0558, −0.6342,
0.0814, −0.9637, 0.6600,
−0.3018, 0.4242)

7.18e−006 −1.0000 31 49 0.5457

PPBM (−0.0033, −0.0033, 0.0132,
−0.0033, −0.0033, −0.0033,
−0.0033)

0.0328 −0.6933 – 33 1.3189

8 Algorithm 3.1 1.0e−04 (0.1681, −0.2523,
−0.2771, −0.4971, 0.5511,
−0.6311, 0.5777, 0.0761)

6.06e−004 −177 34 44 0.8901

PPBM (−0.0024, 0.0004, −0.0110, 0.0104,
0.0005, 0.0004, 0.0021, 0.0004)

0.0520 −53.9515 – 48 5.8792

9 Algorithm 3.1 1.0e−05 (0.0766, 0.0606, −0.1501,
0.0269, −0.2047, −0.0171,
−0.0621, 0.1573, −0.0162)

1.81e−005 −7.0000 31 39 1.4310

PPBM (0.0219, −0.0110, −0.0029,
−0.0029, −0.0029, −0.0029,
−0.0029, −0.0005, −0.0017)

0.0732 −6.3529 – 48 2.3984

10 Algorithm 3.1 1.0e−05 (−0.1146, −0.0321,
−0.1081, −0.0787, 0.2241,
0.3012, 0.1565, 0.0618, −0.2185,
−0.0004)

3.10e−005 −17.0003 39 50 0.8654

PPBM 1.0e−04 (1.03, −0.067, −0.402,
0.045, 0.045, −0.513, −0.402,
−0.401, 0.045, 0.045)

6.87e−04 −16.9944 – 58 4.3127

• CGN (Constant Gradient noise): σ̄ = σ j = 0 and ε j = ε̄ = 0.05, for all j ,

• VGN (Vanishing Gradient noise): σ̄ = σ j = 0 and ε j = min{0.01, ‖y j‖
100 }, for all j .

Considering the optimum value of all the test problems is zero, we can use the formula
Precision= | log10(f f inal)| to check the performance of the various methods. Figures 1
and 2 report the average performance of Algorithm 3.1 when noise is introduced (the results
are averaged across all 10 runs). To better reveal the influence of noise, we also report the
results of NN (no noise). Figure 1 reports the results for constant noise (CN and CGN) with
tol = 10−6. We can observe that Algorithm 3.1 can achieve an acceptable accuracy for the
type CN. The results of CGN are better than those of CN, although still notably deviations than
when exact calculations are available. Figure 2 reports the precision results of Algorithm 3.1
for vanishing noise (VN and VGN). The vanishing noise results in reducing the accuracy for
tol = 10−6, generally better than in the constant noise cases.

123

542 J Glob Optim (2018) 70:517–549

Table 6 Comparison between Algorithm 3.1 and PPBM for f3 with n = 11, . . . , 15, 20

n Alg. f f inal c f inal Ki Ni Time

11 Algorithm 3.1 1.50e−004 −16.9995 49 68 1.1577

PPBM 2.16e−004 −16.9995 – 72 1.3178

12 Algorithm 3.1 5.13e−006 −17.0000 55 71 1.5879

PPBM 5.70e−007 −17.0000 – 83 1.6647

13 Algorithm 3.1 2.52e−004 −16.9988 53 76 1.3958

PPBM 6.15e−004 −17.0039 – 91 2.7469

14 Algorithm 3.1 2.10e−004 −17.0002 59 80 1.5253

PPBM 2.01e−004 −16.9997 – 74 2.3840

15 Algorithm 3.1 0.0021 −17.0003 46 66 0.9866

PPBM 0.0430 −21.8734 – 64 1.1668

20 Algorithm 3.1 0.0047 −17.0346 79 107 5.0972

PPBM 0.0537 −19.8410 – 123 11.8231

Table 7 Comparison between Algorithm 3.1 and PPBM for objective function f4 with n = 5, . . . , 10

n Alg. x∗ f f inal c f inal Ki Ni Time

5 Algorithm 3.1 1.0e−03 (0.0972, −0.3890,
−0.1623, 0.3057, −0.2618)

0.0028 −34.9938 26 27 0.2066

PPBM (0.0010, 0.0002, −0.0012, 0.0001,
−0.0001)

0.0067 −34.97004 – 30 0.6941

6 Algorithm 3.1 (0.0011, −0.0003, −0.0000,
−0.0004, −0.0006, −0.0004)

0.0056 −10.9829 25 34 0.3667

PPBM (0.0027, −0.0011, 0.0004, −0.0022,
−0.0006, −0.0027)

0.0244 −10.8834 – 29 0.3413

7 Algorithm 3.1 1.0e−03 (−0.2013, −0.0510, 0.0403,
0.0701, 0.3010, 0.0610, −0.0804)

0.0020 −1.0024 39 46 1.7304

PPBM 1.0e−03 (−0.21, −0.05, 0.04, 0.07,
0.30, 0.06, −0.08)

0.0020 −1.0020 – 77 5.9351

8 Algorithm 3.1 (0.0003, −0.0000, 0.0000, −0.0005,
0.0012, 0.0000, −0.0002,
−0.0009)

0.0080 −53.9897 31 39 0.4567

PPBM (−0.0005, 0.0005, −0.0013,
−0.0005, 0.0010, −0.0007,
0.0004, 0.0001)

0.0129 −53.9849 – 40 1.2455

9 Algorithm 3.1 1.0e−03 (−0.2814, −0.4280,
0.4075, −0.3852, −0.3361,
0.4444, 0.0724, −0.6250, 0.2739)

0.0084 −6.9478 32 56 1.4601

PPBM (0.0032, −0.0004, 0.0003, −0.0003,
−0.0010, −0.0003, −0.0018,
0.0006, −0.0007)

0.0207 −6.9562 – 49 1.9936

10 Algorithm 3.1 (−0.0003, 0.0001, −0.0001,
−0.0005, −0.0016, 0.0006, 0.0023,
−0.0008, 0.0006, −0.0005)

0.0181 −16.9381 18 37 1.1475

PPBM (0.0004, −0.0001, −0.0005,
−0.0006, −0.0004, −0.0004,
0.0005, 0.0010, −0.0015, 0.0008)

0.0155 −16.9304 – 88 7.2973

123

J Glob Optim (2018) 70:517–549 543

Table 8 Comparison between Algorithm 3.1 and PPBM for f4 with n = 11, . . . , 15, 20

n Alg. f f inal c f inal Ki Ni Time

11 Algorithm 3.1 0.0091 −16.9981 40 57 1.6717

PPBM 0.0117 −16.9787 – 81 11.2496

12 Algorithm 3.1 0.0122 −17.0241 29 571 1.3205

PPBM 0.0124 −16.9781 – 79 1.6228

13 Algorithm 3.1 0.0104 −17.0109 28 52 0.3696

PPBM 0.0503 −17.0037 – 99 2.4906

14 Algorithm 3.1 0.0131 −17.0043 33 54 1.4138

PPBM 0.0593 −16.9997 – 74 2.3840

15 Algorithm 3.1 0.0014 −17.0409 49 76 1.0356

PPBM 0.0463 −17.0313 – 84 3.7320

20 Algorithm 3.1 0.0169 −17.0802 37 66 1.7420

PPBM 0.0778 −17.0141 – 119 5.8107

6.5 Comparison with FSQP-GS and SLQP-GS

In this subsection, we aim to compare the practical effectiveness of Algorithm 3.1 with a
sequential quadratic programming algorithm (SLQP-GS) [4] and a feasible SQP-GS algo-
rithm (FSQP-GS) [52]. We test the following two examples, which are taken from [4,45]
respectively. In all numerical experiments, we choose the same initial points as FSQP-GS in
[52] for all examples in this subsection.

To analyse the errors in the available information, we consider four different types of
inexact oracle:

• Constant noise (CN): σ j = 0.01 and ε j = 0.01 ∗ ones(n, 1) for all j ;
• σ j = 0.1∗random (‘Normal’, 0, 0.1) and ε j = 0.1∗random (‘Normal’,0, 0.1, n, 1)

for all j ;
• σ j = 0.1 ∗ unifrnd(0, 1) and ε j = 0.1 ∗ unifrnd(0, 1, n, 1) for all j ;
• σ j = 0.1 ∗ normrnd(0, 0.2) and ε j = 0.1 ∗ normrnd(0, 0.2, n, 1) for all j .

Example 1 Constrained nonsmooth Rosenbrock problem [4]:

min
x

8|x21 − x2| + (1 − x1)2

s.t. max{√2x1, 2x2} ≤ 1

The solution of this problem is x∗ = (
√
2
2 , 1

2) at which both the objective function and the
constraint function are nondifferentiable. In this numerical experiment, we set the initial
points (0.066661,−0.350366)T and (0.433746,−1.447530)T respectively.

Example 2 Rosen–Suzuki problem [45]:

min
x

f (x) = max{ fi (x): i = 1, . . . , 4}
s.t. max{ci (x): i = 1, 2, 3} ≤ 0,

where f1(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4, f2(x) = f1(x) +
10c1(x), f3(x) = f1(x) + 10c2(x), f4(x) = f1(x) + 10c3(x), c1(x) = x21 + x22 + x23 +

123

544 J Glob Optim (2018) 70:517–549

n=5 n=6 n=7 n=8 n=9 n=10 n=11 n=12 n=13 n=14 n=15 n=20
0

1

2

3

4

5

6

7

8

Pr
ec

is
io
n

CN
CGN
NN

Fig. 1 Precision for Algorithm 3.1 for noise forms NN, CN and CGN with tol = 10−6

n=5 n=6 n=7 n=8 n=9 n=10 n=11 n=12 n=13 n=14 n=15 n=20
0

1

2

3

4

5

6

7

8

Pr
ec

is
io
n

VN
VGN
NN

Fig. 2 Precision for Algorithm 3.1 for noise forms NN, VN and VGN with tol = 10−6

x24 + x1 − x2 + x3 − x4 − 8, c2(x) = x21 + 2x22 + x23 + 2x24 − x1 − x4 − 10, c3(x) =
x21 + x22 + x23 + 2x1 − x2 − x4 − 5. In our numerical experiment, we set the initial points
(1, 1, 1, 1)T and (0, 0, 0, 0)T respectively.

From Tables 9 and 10, it observes that Algorithm 3.1(CN) needs a fewer number of
iterations than FSQP-GS and SLQP-GS for all examples. Tables 9 and 10 also show that

123

J Glob Optim (2018) 70:517–549 545

Table 9 Comparison with FSQP-GS and SLQP-GS for Examples 1

x0 Alg. f f inal Ki Ni Time

(0.0666,−0.3504)T Algorithm 3.1(CN) 0.0857850 56 64 1.8

Algorithm 3.1(rand) 0.0857863 63 71 2.0

Algorithm 3.1(unifrnd) 0.0857982 59 73 2.4

Algorithm 3.1(normrnd) 0.0861583 53 68 3.7

SLQP-GS 0.0857869 – 69 3.0

FSQP-GS 0.0857870 – 65 2.4

(0.4337,−1.4475)T Algorithm 3.1(CN) 0.0857851 46 57 1.6

Algorithm 3.1(rand) 0.0857993 52 63 1.9

Algorithm 3.1(unifrnd) 0.0857824 50 59 2.1

Algorithm 3.1(normrnd) 0.0857863 38 61 2.8

SLQP-GS 0.0857864 – 59 2.1

FSQP-GS 0.0857910 – 68 2.2

Table 10 Comparison with FSQP-GS and SLQP-GS for Examples 2

x0 Alg. f f inal Ki Ni Time

(1, 1, 1, 1)T Algorithm 3.1(CN) 43.99800 39 47 3.405

Algorithm 3.1(rand) 43.99840 43 52 3.817

Algorithm 3.1(unifrnd) 44.00027 37 49 3.701

Algorithm 3.1(normrnd) 43.99910 46 55 4.504

SLQP-GS 44.00000 – 43 4.619

FSQP-GS 43.99800 – 51 4.011

(0, 0, 0, 0)T Algorithm 3.1(CN) 43.99820 49 54 3.346

Algorithm 3.1(rand) 43.99900 52 67 3.716

Algorithm 3.1(unifrnd) 44.00024 59 71 3.970

Algorithm 3.1(normrnd) 43.99902 50 64 3.281

SLQP-GS 44.00000 – 51 4.093

FSQP-GS 43.99905 – 57 3.887

Algorithm 3.1(CN) always obtains similar objective values with SLQP-GS and FSQP-GS,
while spends less time for most cases. In general, Algorithm 3.1(CN) performs slightly better
than FSQP-GS and SLQP-GS for all examples. Besides, we also consider random noises,
which are generated randomly by using matlab codes random, unifrnd and normrnd.
From Tables 9 and 10, it observes that Algorithm 3.1(rand) and Algorithm 3.1(unifrnd)
are comparable for FSQP-GS and SLQP-GS for most cases. Algorithm 3.1(normrnd)
spends much time for some cases, than FSQP-GS and SLQP-GS.

6.6 Results for semi-infinite programming problems

For benchmarking purposes we will investigate the computational behaviour and conver-
gence results for SIP problems. We will compare the performance of Algorithm 3.1 by using

123

546 J Glob Optim (2018) 70:517–549

Constant noise with the central cutting plane algorithm (CCPA) [34] and the SIP solver
fseminf in MATLAB toolbox. The SIP problem has the following abstract structure

min
x

f (x),

s.t. g(x, v) ≤ 0, for all v ∈ V,
(6.5)

where f (x):Rn → R is locally Lipschitz and not necessary differentiable; g: Rn × V → R
is twice continuously differentiable; and V is a nonempty compact subset of Rn .

We first consider the so-called lower level problem

min
v∈V −g(x̄, v), (6.6)

to obtain the global solution. The difficulty lies in the fact that −g(x̄, vglob) is the globally
optimal value of (6.6) which might be hard to obtain numerically. In fact, most of standard
nonlinear problem solvers can only be expected to output a local minimizer vloc. Many
works aim at structuring a sequence of convexifications of the lower level problem by using
the technologies in [13,50] to solve the auxiliary problems with convex lower levels. In fact,
the function c needs only an inexact value with a given fixed accuracy ω. That is we only
want to obtain an approximate solution v(x̄) such that c(x̄, v(x̄)) ≥ c(x̄) − ω. The iterative
rules in [14,19] can generate more and more accurate solutions to (6.6), until a ω-optimal
solution.

The numerical results are listed in Table 11, where the following notations are used as

x∗: the optimal point, f ∗: the final objective value,
Time(s): the CPU time of Algorithm 3.1, Timemax(s): the CPU time for (6.6),
Iter: the number of iterations of Algorithm 3.1,

Example 3 Finding the Chebyshev approximation of the function, and has been tested by
Floudas and Stein [13, Example 5.1]:

min f (x) = x4,
s.t. g1(x, y) = sin(πy) − x3y2 − x2y − x1 − x4 ≤ 0,

g2(x, y) = −sin(πy) + x3y2 + x2y + x1 − x4 ≤ 0,
for all Y = [0, 1].

Example 4 The following SIP problem is tested by Kortanek and No [34], and stemmed
from Tichatschke and Nebeling [53]:

min f (x) = (x1 − 2)2 + (x2 − 0.2)2,
s.t. g(x, y) = (5sin(π

√
y)/(1 + y2))x21 − x2 ≤ 0,

for all Y = [0, 1].
Example 5 The problem is discussed by Goberna and Löpez [16], and Zhang and Wu [56]:

min f (x) = x21 + x22 ,
s.t. g(x, y) = cos(y)x1 + sin(y)x2 − (1 + cos(y) + sin(y)) ≤ 0,

for all Y = [π, 3
2π],

Although the feasible set is not bounded, the objective function is level bounded on the
feasible set.

Example 6 Consider the following problem, which was tested by Kortanek and No [34]:

min f (x) = x21 + x22 + x32 ,
s.t. g(x, y) = x1 + x2 exp(x3y) + exp(2y) − 2 sin(4y) ≤ 0,

for all Y = [0, 1].

123

J Glob Optim (2018) 70:517–549 547

Table 11 Comparison of results for Examples 3–7

Example Algorithm x∗ f ∗ Time Iter Timemax Itermax

3 Algorithm 3.1 (CN) (0.0275, 4.0000, −4.0000, 0.0274) 0.0274 11.14 23 2.06 15

CCPA (0.0275, 4.0000, −4.0000, 0.0274) 0.0274 25.12 17 – –

fseminf (0.0283, 4.0000, −3.7010, 0.0289) 0.0289 25.51 23 – –

4 Algorithm 3.1 (CN) (0.2055, 0.2000) 3.2202 1.20 21 0.92 7

CCPA (0.2052, 0.2000) 3.2211 1.75 47 – –

fseminf (0.2052, 0.2000) 3.2211 2.09 16 – –

5 Algorithm 3.1 (CN) (0.2052, 0.2000) 0.0821 2.96 18 0.43 8

CCPA (0.2052, 0.2000) 0.0821 7.32 32 – –

fseminf (0.3012, 0.3101) 0.1868 1.98 53 – –

6 Algorithm 3.1 (CN) (−0.2131, −1.3611, −1.8530) 5.3317 1.41 21 0.54 7

CCPA (−0.2133, −1.3615, −1.8535) 5.3346 2.71 27 – –

fseminf (−0.2133, −1.3615, −1.8535) 5.3346 3.17 46 – –

7 Algorithm 3.1 (CN) (0.5858, 0.5858) 0.6863 0.24 15 0.21 5

CCPA (0.5858, 0.5858) 0.6863 0.30 9 – –

fseminf (0.5858, 0.5858) 0.6863 17.01 107 – –

Example 7 The following convex SIP problem has been tested by Kortanek and No [34]:

min f (x) = x21 + x22 ,
s.t. c(x, y) = (x21 + x22 − 4)y1 + ((x1 − 2)2 + (x22 − 2)2 − 4)y2 ≤ 0,

x1 ∈ [0, 2], x2 ∈ [0, 2], Y = [0, 1] × [0, 1].
Observe that the problem satisfies the Slater CQ and the feasible set is bounded.

The numerical results of Examples 3–7 are reported in Table 11. One can observe in
Table 11 that Algorithm 3.1 performs well and provides an optimal solution to each example.
Besides, the inexact solution of subproblem (6.6) can be obtained effectively, which means
the inexact oracle is reasonable. To obtain a similar optimal solution, the SIP solver fseminf
and the CCPA tookmuch time than ourmethod. In our opinion, the performance ofAlgorithm
3.1 for solving Examples 3–7 is better than that of the CCPA and the SIP solver fseminf.

Acknowledgements The authors wish to thank Editor-in-Chief Sergiy Butenko, the preceding managing
editors and the anonymous reviewers for their helpful comments on the earlier version of this paper, which
considerably improved both the presentation and the numerical experiments. We also gratefully acknowledge
the support of the Huzhou science and technology plan on No. 2016GY03 and Natural Science Foundation of
China Grant 11626051.

References

1. Ackooij, W., Sagastizábal, C.: Constrained bundle methods for upper inexact oracles with application to
joint chance constrained energy problems. SIAM J. Optim. 24, 733–765 (2014)

2. Apkarian, P., Noll, D., Prot, O.: A proximity control algorithm to minimize nonsmooth and nonconvex
semi-infinite maximum eigenvalue functions. J. Convex Anal. 16, 641–666 (2009)

3. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples, 2nd
edn. Springer, Berlin (2006)

123

548 J Glob Optim (2018) 70:517–549

4. Curtis, F.E., Overton, M.L.: A sequential quadratic programming algorithm for nonconvex, nonsmooth
constrained optimization. SIAM J. Optim. 22, 474–500 (2012)

5. d’Antonio, G., Frangioni, A.: Convergence analysis of deflected conditional approximate subgradient
methods. SIAM. J. Optim. 20, 357–386 (2009)

6. de Oliveira, W., Sagastizábal, C., Scheimberg, S.: Inexact bundle methods for two-stage stochastic pro-
gramming. SIAM J. Optim. 21, 517–544 (2011)

7. de Oliveira, W., Sagastizábal, C., Lemaréchal, C.: Convex proximal bundle methods in depth: a unified
analysis for inexact oracles. Math. Program. 148, 241–277 (2014)

8. Daniilidis, A., Georgiev, P.: Approximate convexity and submonotonicity. J. Math. Anal. Appl. 291,
292–301 (2004)

9. Emiel, G., Sagastizábal, C.: Incremental-like bundle methods with application to energy planning. Com-
put. Optim. Appl. 46, 305–332 (2010)

10. Fábián, C., Szöke, Z.: Solving two-stage stochastic programming problems with level decomposition.
Comput. Manag. Sci. 4, 313–353 (2007)

11. Ferrier, C.: Bornes Duales de Problémes d’Optimisation Polynomiaux, Ph.D. thesis. Laboratoire Approx-
imation et Optimisation, Université Paul Sabatier, Toulouse (1997)

12. Ferrier, C.: Computation of the distance to semi-algebraic sets. ESAIM Control Optim. Calc. Var. 5,
139–156 (2000)

13. Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-infinite
programming. SIAM J. Optim. 18, 1187–1208 (2007)

14. Fuduli, A., Gaudioso, M., Giallombardo, G.: A DC piecewise affine model and a bundling technique in
nonconvex nonsmooth optimization. Optim. Methods Softw. 19, 89–102 (2004)

15. Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting
planes and proximity control. SIAM J. Optim. 14, 743–756 (2004)

16. Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, New-York (1998)
17. Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math. Program. 116,

221–258 (2009)
18. Hare, W., Sagastizábal, C.: A redistributed proximal bundle method for nonconvex optimization. SIAM

J. Optim. 20, 2442–2473 (2010)
19. Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonconvex functions with inexact

oracles. Comput. Optim. Appl. 63, 1–28 (2016)
20. Hintermüller, M.: A proximal bundle method based on approximate subgradients. Comput. Optim. Appl.

20, 245–266 (2001)
21. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. II, Volume 306 of

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
Springer, Berlin (1993). Advanced theory and bundle methods

22. Jongen, H.T., Rückmann, J.-J., Stein, O.: Generalized semi-infinite optimization: a first order optimality
condition and examples. Math. Program. 83, 145–158 (1998)

23. Karas, E., Ribeiro, A., Sagastizȧbal, C., Solodov, M.: A bundle-filter method for nonsmooth convex
constrained optimization. Math. Program. 116, 297–320 (2009)

24. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics.
Springer, Berlin (1985)

25. Kiwiel, K.C.: An algorithm for nonsmooth convex minimization with errors. Math. Comput. 45, 171–180
(1985)

26. Kiwiel, K.C.: A linearization algorithm for nonsmooth minimization. Math. Oper. Res. 10, 185–194
(1985)

27. Kiwiel, K.C.: An exact penalty function algorithm for nonsmooth convex constrained minimization prob-
lems. IMA J. Numer. Anal. 5, 111–119 (1985)

28. Kiwiel, K.C.: Exact penalty functions in proximal bundle methods for constrained convex nondifferen-
tiable minimization. Math. Program. 52, 285–302 (1991)

29. Kiwiel, K.C.: Restricted step and Levenberg–Marquardt techniques in proximal bundle methods for
nonconvex nondifferentiable optimization. SIAM J. Optim. 6, 227–249 (1996)

30. Kiwiel, K.C.: Convergence of approximate and incremental subgradientmethods for convex optimization.
SIAM. J. Optim. 14, 807–840 (2004)

31. Kiwiel, K.C.: A proximal bundle method with approximate subgradient linearizations. SIAM. J. Optim.
16, 1007–1023 (2006)

32. Kiwiel, K.C.: A method of centers with approximate subgradient linearizations for nonsmooth convex
optimization. SIAM J. Optim. 18, 1467–1489 (2008)

33. Kiwiel, K.C., Lemaréchal, C.: An inexact bundle variant suited to column generation. Math. Program.
118, 177–206 (2009)

123

J Glob Optim (2018) 70:517–549 549

34. Kortanek,K.O.,No,H.:A central cutting plane algorithm for convex semi-infinite programming problems.
SIAM J. Optim. 3, 901–918 (1993)

35. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69,
111–147 (1995)

36. Lukšan, L., Vlček, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Pro-
gram. 83, 373–391 (1998)

37. Lv, J., Pang, L.P., Wang, J.H.: Special backtracking proximal bundle method for nonconvex maximum
eigenvalue optimization. Appl. Math. Comput. 265, 635–651 (2015)

38. Mifflin, R.: An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2,
191–207 (1977)

39. Mifflin, R.: A modification and extension of Lemarechal’s algorithm for nonsmooth minimization. Math.
Program. Stud. 17, 77–90 (1982)

40. Mifflin, R.: A quasi-second-order proximal bundle algorithm. Math. Program. 73, 51–72 (1996)
41. Nedić, A., Bertsekas, D.P.: The effect of deterministic noise in subgradient methods. Math. Program. 125,

75–99 (2010)
42. Noll, D.: Bundle method for non-convex minimization with inexact subgradients and function values.

Comput. Anal. Math. 50, 555–592 (2013)
43. Pang, L.P., Lv, J.: Constrained incremental bundle method with partial inexact oracle for nonsmooth

convex semi-infinite programming problems. Comput. Optim. Appl. 64, 433–465 (2016)
44. Rockafellar, R.T., Wets, J.J.-B.: Variational Analysis. Springer, Berlin (1998)
45. Rustem, B., Nguyen, Q.: An algorithm for the inequality-constrained discrete minimax problem. SIAM

J. Optim. 8, 265–283 (1998)
46. Sagastizábal, C., Solodov, M.: An infeasible bundle method for nonsmooth convex constrained optimiza-

tion without a penalty function or a filter. SIAM J. Optim. 16, 146–169 (2005)
47. Solodov, M.V., Zavriev, S.K.: Error stabilty properties of generalized gradient-type algorithms. J. Optim.

Theory Appl. 98, 663–680 (1998)
48. Solodov, M.V.: On approximations with finite precision in bundle methods for nonsmooth optimization.

J. Optim. Theory Appl. 119, 151–165 (2003)
49. Spingarn, J.E.: Submonotone subdifferentials of Lipschitz functions. Trans. Am. Math. Soc. 264, 77–89

(1981)
50. Stein, O.: Bi-Level Strategies in Semi-Infinite Programming. Kluwer, Boston (2003)
51. Stein, O.: On constraint qualifications in nonsmooth optimization. J. Optim. Theory. Appl. 121, 647–671

(2004)
52. Tang, C.M., Liu, S., Jian, J.B., Li, J.L.: A feasible SQP-GS algorithm for nonconvex, nonsmooth con-

strained optimization. Numer. Algor. 65, 1–22 (2014)
53. Tichatschke, R., Nebeling, V.: A cutting plane method for quadratic semi-infinite programming problems.

Optimization. 19, 803–817 (1988)
54. Wolfe, P.: A method of conjugate subgradients for minimizing nondifferentiable functions. In: Balinski,

M.L., Wolfe, P. (eds.) Nondifferentiable Optimization. Math. Program. Stud., 3, pp. 145–173. North-
Holland, Amsterdam (1975)

55. Yang, Y., Pang, L.P., Ma, X.F., Shen, J.: Constrained nonconvex nonsmooth optimization via proximal
bundle method. J. Optim. Theory Appl. 163, 900–925 (2014)

56. Zhang, L.P., Wu, S.-Y., López, M.A.: A new exchange method for convex semi-infinite programming.
SIAM J. Optim. 20, 2959–2977 (2010)

123

	A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information
	Abstract
	1 Introduction
	2 Background, assumptions and notation
	2.1 Background and assumptions
	2.2 Available information

	3 Defining the inexact algorithm
	3.1 The model
	3.2 Inexact proximal bundle method

	4 Asymptotic analysis
	4.1 Infinite serious steps
	4.2 Infinitely many consecutive null steps

	5 Convergence results
	6 Numerical experiments
	6.1 Parameters for the proximal bundle method
	6.2 Examples for nonconvex optimization problems
	6.3 Comparison with penalty proximal bundle method
	6.4 Impact of noise on solution accuracy
	6.5 Comparison with FSQP-GS and SLQP-GS
	6.6 Results for semi-infinite programming problems

	Acknowledgements
	References

