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Abstract Cutting plane methods are an important component in solving the mixed integer
programming (MIP). By carefully studying the coefficient strengthening method, which is
originally a presolving method, we are able to generalize this method to generate a family of
valid inequalities called generalized coefficient strengthening (GCS) inequalities. The invari-
ant property of the GCS inequalities is established under bound substitutions. Furthermore,
we develop a separation algorithm for finding the violated GCS inequalities for a general
mixed integer set. The separation algorithm is proved to have the polynomial time complex-
ity. Extensive numerical experiments are made on standard MIP test sets, which demonstrate
the usefulness of the resulting GCS separator.
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1 Introduction

Consider the mixed integer programming (MIP) of the form

min
x

cT x

s.t. Ax ≤ β

l ≤ x ≤ u

x ∈ Z
p × R

n−p, (1)

where A ∈ Q
m×n is a rational matrix, c ∈ Q

n , β ∈ Q
m and l, u ∈ Z

p × Q
n−p .

Cutting plane methods, which were proposed in [1] more than 50years ago, have become
one of the indispensable ingredients for solving MIP. As they can automatically improve the
formulation of the original problem, cutting plane methods are contained in state of the art
MIP solvers. General cutting planes, which do not require any knowledge about the problem
structure, include Gomory Mixed Integer (GMI) Cuts [1], Mixed Integer Rounding (MIR)
Cuts [2], Strong Chvátal–Gomory Cuts [3], Zero-half Cuts [4], Implied Bound Cuts [5],
Clique Cuts [6,7] and Disjunctive Cuts [8]. For special cutting planes, which make use of
the problem structure, we have Knapsack Cover Cuts [6,9], Flow Cover Cuts [11,12], Flow
Path Cuts [10], GUBCover Cuts [13], Multi-commodity Flow Cuts [14], etc. The article [15]
studied the impact of cutting plane methods in the commercial MIP solver CPLEX [16] and
a 6.1× speedup is concluded on the set of test instances which required at least 10 s to solve
by at least one version of the solvers.

Another key ingredient for solving MIP is the presolving method. It contains a set of
routines that reduce the size of problem and strengthen the formulation of a given model. See
[17] for a good survey about presolving methods. Here we just mention that the coefficient
strengthening method [6,18,19] is one of the presolving methods and attempts to repair a
bad formulation of the original problem (see also Sect. 2).

Although the coefficient strengthening method is a presolving method, we are able to
generalize this method to generate the so-called generalized coefficient strengthening (GCS)
inequality. Specifically, the GCS inequality is derived based on the general mixed integer set

MI = M ∩ (Zp × R
n−p), (2)

where M is the relaxation set

M = {x ∈ R
n : aT x ≤ b, l ≤ x ≤ u}. (3)

Here aT = (a1, a2, a3, . . . , an) is any row of A and b is the corresponding right hand side.
We show that GCS inequalities are invariant under bound substitutions. Furthermore, by
analyzing variables bounds and utilizing the violated information, we are able to generalize
the idea of [20] to develop a separation algorithm for finding GCS inequalities for the gen-
eral mixed integer set MI . The separation algorithm is proved to have the polynomial time
complexity. Our numerical experiments demonstrated the usefulness of the resulting GCS
separator.

Here we should notice that in [21], the authors considered a special case of MI , that is

M (0)
I = {(x, y) ∈ R

n × Z :
n∑

i=1

xi ≤ Dy, 0 ≤ x ≤ u, y ≥ 0}, (4)

where D > 0. They studied the convex hull of M (0)
I and derived an exponential family

of valid inequalities, called residual capacity inequalities. It will be shown in Sect. 3 that
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such residual capacity inequalities are special GCS inequalities. Furthermore, a linear time
separation algorithm is presented in [20] for finding the violated residual capacity inequalities.
The separation algorithm proposed in this paper is based on [20], but can handle arbitrary
variables bounds and arbitrary coefficients.

This paper is arranged as follows. In Sect. 2, we review the coefficient strengthening
method. In Sect. 3, we extend the idea of the coefficient strengthening method by using
more redundant information of MI , which leads to the family of GCS inequalities. We show
that GCS inequalities are invariant under bound substitutions. In Sect. 4, we first discuss the
importance of infinite bounds for generating GCS inequalities. Then a polynomial time sep-
aration algorithm is presented to find the violated cuts. In Sect. 5, we test the effectiveness of
the GCS cuts by inserting it as a separator in the open source solver SCIP [22]. Computational
results on the test sets MIPLIB 3.0 [23], 2003 [24] and 2010 [25] are presented. Finally, in
Sect. 6, we draw some conclusions and give some directions of future research.

Throughout this paper, we assume that the data is rational. Without loss of general-
ity, we assume that ai �= 0 for all 1 ≤ i ≤ n since if ai = 0, xi can be dropped.
Let N := {1, 2, 3, · · · , n} and I := {1, 2, 3, . . . , p} be the index set of all variables
and integer variables, respectively. We denote α be the maximal activity of aT x which
defined as α := max{aT x : l ≤ x ≤ u} = ∑

i : ai>0 aiui + ∑
i : ai<0 ai li . The inequal-

ity πT x ≤ π0 is called a valid inequality for MI if it is satisfied by all points in MI . Given
any valid inequality πT x ≤ π0 for MI , we say πT x ≤ π0 dominates aT x ≤ b on M if
M ′ := {x ∈ R

n : πT x ≤ π0, l ≤ x ≤ u} ⊆ M . Moreover, if M ′
� M , then πT x ≤ π0

strictly dominates aT x ≤ b on M .

2 Coefficient strengthening method

In this section, we review the coefficient strengthening method [6,18,19]. The basic idea of
the coefficient strengthening method is to change the coefficient of one integer variable and
the right hand side via the redundant information so that the relaxation set M [as defined
in (3)] is tighter without affecting the mixed integer set MI . In this case, the constraint
will become redundant if the corresponding variable does not take the value of the lower or
upper bound. The details of the method is described in the following proposition. A proof is
presented for completeness.

Proposition 1 Let MI be the mixed integer set in (2). For a j > 0, j ∈ I , if 0 < α −b < a j ,
then a′T x ≤ b′ is valid for MI , where

⎧
⎪⎨

⎪⎩

a′
i = ai , i �= j,

a′
j = α − b,

b′ = b − (a j − a′
j )u j .

Furthermore, a′T x ≤ b′ strictly dominates aT x ≤ b on M.

Proof Notice that 0 < a′
j < a j . Given any point x ′ ∈ MI , consider the following two cases.

(i) x ′
j ∈ MI ∩ {x ∈ R

n : x j ≤ u j − 1}. In this case, we have that
a′T x ′ ≤ α − a ju j + a′

j x
′
j ≤ α − a ju j + a′

j (u j − 1)
= α − (a j − a′

j )u j + b − α = b′,
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where the first inequality follows from the definition of α=∑
i : ai>0 aiui +

∑
i : ai<0 ai li .

(ii) x ′
j ∈ MI ∩ {x ∈ R

n : x j = u j }. In this case, it follows that

a′T x ′ = aT x ′ + (a′
j − a j )x j ≤ b + (a′

j − a j )u j = b′.

Combining the above, we know that a′T x ≤ b′ is valid for MI .
For the second part, we first prove that {x ∈ R

n : a′T x ≤ b′, l ≤ x ≤ u} ⊆ M .
In fact, for any point x ′ with a′T x ′ ≤ b′ and l ≤ x ′ ≤ u, it follows that

aT x ′ = a′T x ′ + (a j − a′
j )x

′
j ≤ b′ + (a j − a′

j )u j = b.

It remains to show that there exists x ′ with l ≤ x ′ ≤ u such that aT x ′ ≤ b and a′T x ′ > b′.
Pick x ′ with x ′

i = ui if ai > 0, x ′
i = li if ai < 0 for all i �= j and u j − 1 < x ′

j <
b−α+a j u j

a j
.

It follows that

aT x ′ = α − a ju j + a j x
′
j ≤ α − a ju j + a j

b − α + a ju j

a j
= b

and

a′T x ′ = α − a ju j + a′
j x

′
j > α − a ju j + a′

j (u j − 1) = b − (a j − a′
j )u j = b′.

Therefore, a′T x ≤ b′ strictly dominates aT x ≤ b on M . 	

Remark 1 Consider n = 2 and assume that I = {1}. If 0 < α − b < a1, it is not difficult to
verify that the two points (u1−1, α−a1u1

a2
) and (u1,

b−a1u1
a2

) are extreme points of Conv(MI ).
Combining the two extreme points gives the valid inequality a′

1x1 + a2x2 ≤ b′, where
a′
1 = α − b and b′ = b − (a1 − a′

1)u1.

From the above proof, we know that if 0 < α − b < a j , aT x ≤ b will be satisfied when
x j ≤ u j − 1. This is also the reason why the coefficient a j can be strengthened.

By Proposition 1, we know that under suitable assumptions, a tighter relaxation set can be
obtained without affecting the mixed integer set MI by replacing aT x ≤ b with a′T x ≤ b′.
This can also be interpreted as modifying one coefficient a j and the right hand side b in the
original constraint that aT x ≤ b. A similar conclusion can be drawn for the case that a j < 0,
j ∈ I . Thus all coefficients of integer variables are likely to be strengthened to tighten the
relaxation set.

3 Generalized coefficient strengthening inequality

The condition that 0 < α−b < a j is quite strong as it requires that x j plays a significant role
in the inequality that aT x ≤ b. This restricts the applications of the coefficient strengthening
method for solving MIP [17]. Assume again that a j > 0 for some j ∈ I . To weaken the
condition, we may look for some integer r ∈ {0, 1, 2, . . . , u j − l j − 1} such that ra j <

α − b < (r + 1)a j . Then we can see that the inequality that aT x ≤ b is redundant for
x j ≤ u j − r − 1. Motivated by this observation, we will derive a family of valid inequalities
called generalized coefficient strengthening (GCS) inequalities. Moreover, we will provide
the invariant features of the GCS inequalities. As will be seen, although this generalization of
the coefficient strengthening method cannot act as a presolving method any more, the GCS
inequalities can be used as cutting planes to cut off the current relaxation solution.

123



J Glob Optim (2018) 70:289–306 293

Proposition 2 Assume that a j > 0 for some j ∈ I . If there exists some integer r ∈
{0, 1, 2, . . . , u j − l j − 1} such that ra j < α − b < (r + 1)a j , then

(1) a′T x ≤ b′ is valid for the mixed integer set MI in (2), where
⎧
⎪⎨

⎪⎩

a′
i = ai , i �= j,

a′
j = α − b − ra j ,

b′ = b − (a j − a′
j )(u j − r);

(2) a′T x ≤ b′ dominates aT x ≤ b on M ∩ {x ∈ R
n : x j ≤ u j − r} and aT x ≤ b dominates

a′T x ≤ b′ on M ∩ {x ∈ R
n : x j ≥ u j − r}.

Proof Let x ′ ∈ MI ∩ {x ∈ R
n : x j ≤ u j − r − 1}. It follows from a′

j > 0 and the defintion
of α that

a′T x ′ ≤ α − a ju j + a′
j x

′
j ≤ α − a ju j + a′

j (u j − r − 1) = b′.

In case of x ′
j ∈ MI ∩ {x ∈ R

n : x j ≥ u j − r}, we also have that

a′T x ′ = aT x ′ − a j x
′
j + a′

j x
′
j ≤ b − (a j − a′

j )(u j − r) = b′.

Thus a′T x ′ ≤ b′ is valid for MI .
For the second part, we may just consider the case x j ≤ u j −r , as the other case is similar.

In this case, for any point x ′ with l ≤ x ′ ≤ u and a′T x ′ ≤ b′, it follows from a′
j < a j that

aT x ′ = a′T x ′ + (a j − a′
j )x

′
j ≤ b′ + (a j − a′

j )(u j − r) = b.

This completes the proof. 	

Remark 2 Consider the disjunction M1 := MI ∩ {x ∈ R

n : x j ≤ u j − r − 1} and
M2 := MI ∩ {x ∈ R

n : x j ≥ u j − r}. In the proof of Proposition 2, we prove the validity
of the inequality a′T x ≤ b′ by verifying that it is valid for M1 and M2. Therefore, a′T x ≤ b′
may be viewed as a special disjunctive cut [8].

Similarly, we have the following result for the case that a j < 0 for j ∈ I .

Proposition 3 Assume that a j < 0 for some j ∈ I . If there exists r ∈ {0, 1, 2, . . . , u j−l j−1}
such that −ra j < α − b < −(r + 1)a j , then

(1) a′T x ≤ b′ is valid for the mixed integer set MI in (2), where
⎧
⎪⎨

⎪⎩

a′
i = ai , i �= j,

a′
j = −(α − b + ra j ),

b′ = b − (a j − a′
j )(l j + r),

(2) a′T x ≤ b′ dominates aT x ≤ b on M ∩ {x : x j ≥ l j + r} and aT x ≤ b dominates
a′T x ≤ b′ on M ∩ {x : x j ≤ l j + r}.
For convenience, we call the valid inequality derived in Propositions 2 or 3 generalized

coefficient strengthening (GCS) inequality. Notice that in the case that r = 0, Proposition 2
reduces to Proposition 1 since M ∩ {x ∈ R

n : x j ≤ u j − r} = M . Comparing with
Proposition 1, the condition that ra j < α−b < (r+1)a j for some r ∈ {0, 1, 2, . . . , u j−l j−
1} in Proposition 2 is more general, but its conclusion is not so strong as that in Proposition 1.
As illustrated in the following example, although the GCS inequality is still valid for MI , we
can not make a simple substitution to the original constraint that aT x ≤ b.
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Example 1 Consider the mixed integer set

M (1)
I = {(x1, x2) ∈ Z

2 : 2.7x1 + 2.2x2 ≤ 11, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4}.
It is easy to see that the maximal activity of aT x over the set M (1)

I is α = 16.9. For variable
x1, since 2 × a1 < α − b = 5.9 < 3 × a1, let r = 2. Take a′

1 = 5.9 − 2 × 2.7 = 0.5 and
b′ = 11 − (2.7 − 0.5) × (3 − 2) = 8.8. By Proposition 2, we know that the inequality

0.5x1 + 2.2x2 ≤ 8.8

is valid for M (1)
I . However, simply replacing 2.7x1 + 2.2x2 ≤ 11 with 0.5x1 + 2.2x2 ≤ 8.8

in M (1)
I brings an extra integer point (3, 3), which is not feasible to the original set M (1)

I .

Nevertheless, we may add the GCS inequality to the MIP formulation to tighten the
relaxation set.

Proposition 4 Consider the GCS inequality derived in Proposition 2. There must exist some
x ′ ∈ M such that aT x ′ ≤ b but a′T x ′ > b′. Thus, adding a′T x ≤ b′ into the constraints of
MI leads to a more compact relaxation set.

Proof Take any x ′ satisfying
∑

i �= j

ai x
′
i = α − a ju j and x ′

j ∈ (u j − r − 1,
b − α + a ju j

a j
].

By direct calculations, we know that

aT x ′ = α − a ju j + a j x
′
j ≤ α − a ju j + a j

b − α + a ju j

a j
= b

and
a′T x ′ = α − a ju j + a′

j x
′
j > α − a ju j + a′

j (u j − r − 1)

= α − a ju j + a′
j (u j − r) − α + b + ra j = b′.

This completes our proof. 	

Therefore, although the above generalization of the coefficient strengthening method can-

not be used as a presolvingmethod anymore as the purpose of presolvingmethod is to reduce
the size of the original problem, we may add the new valid inequality to the MIP formulation
as a cutting plane to tighten the relaxation set. This will also be helpful to solve MIP as
demonstrated by our numerical experiments in Sect. 5.

In what follows, we describe the invariant property of the GCS inequality. For any variable
xk , it is shown that the GCS inequality is invariant under either of the bound substitutions

yk := xk − lk and yk := uk − xk . (5)

Proposition 5 Assume that MI is themixed integer set in (2). For any k ∈ N, let yk := xk−lk
and yi := xi , i �= k and consider the corresponding transformed mixed integer set

My
I := {y ∈ Z

p × R
n−p : aT y ≤ b − aklk, l

y ≤ y ≤ uy},
where l yk = 0, uy

k = uk − lk and l yi = li , u
y
i = ui , i �= k. If there exists a GCS inequality

that a′T x ≤ b′ for MI given by Propositions 2 or 3, then there also exists a GCS inequality
for My

I which is equivalent to a′T x ≤ b′.
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Proof Wemay just consider the case that a′T x ≤ b′ is generated by Proposition 2 as the other
case is similar. The definition ofMy

I indicates that α
y = α−aklk and αy−(b−aklk) = α−b.

By Proposition 2, a′T y ≤ b − aklk − (a j − a′
j )(u

y
j − r) is valid for My

I . Now consider the
following two cases.

(i) If k �= j , then uy
j = u j .

(ii) If k = j , then uy
j = u j − l j .

In either case, the substitution that yk = xk − lk and yi = xi , i �= k leads to the same GCS
inequality a′T x ≤ b′. 	


Similarly, we have the following proposition.

Proposition 6 Assume that MI is the mixed integer set in (2). For any k ∈ N,
let yk := uk − xk and yi := xi , i �= k and consider the corresponding transformed mixed

integer set
My

I := {y ∈ Z
p × R

n−p : (ay)T y ≤ b − akuk, l
y ≤ y ≤ uy},

where ayk = −ak, l
y
k = 0, uy

k = uk − lk and a
y
i = ai , l

y
i = li , u

y
i = ui , i �= k. If there exists

a GCS inequality that a′T x ≤ b′ for MI given by Propositions 2 or 3, then there also exists
a GCS inequality for My

I which is equivalent to a′T x ≤ b′.

Now we shall mention more possibilities of generating the GCS inequalities. At first, for
the same constraint, different GCS inequalities may be generated if different integer variables
are chosen. Consider Example 1 again. It is easy to verify that, if we pick the integer variable
x2, the GCS inequality that 2.7x1 + 1.5x2 ≤ 9.6 will be generated, which is valid for X as
well. In addition, we may also drop some terms of the constraint to derive GCS inequalities,
as illustrated in the following example.

Example 2 Consider the mixed integer set

M (2)
I = {(x1, x2, x3) ∈ Z

3 : 2.7x1 + 2.2x2 + 2.2x3 ≤ 11,
0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 4}.

If dropping the term 2.2x3 from the linear inequality of M (2)
I , we are led to the reduced

inequality that 2.7x1 + 2.2x2 ≤ 11, which is valid for M (2)
I due to 2.2x3 ≥ 0. Furthermore,

by Example 1, we can generate the GCS inequality that 0.5x1 + 2.2x2 ≤ 8.8 based on the
reduced mixed integer set, which is exactly M (1)

I in Example 1. This GCS inequality is valid

for M (2)
I as well. In a similar way, dropping the term 2.2x2 from the linear inequality of M (2)

I
can yield another GCS inequality that 0.5x1 + 2.2x3 ≤ 8.8.

As amatter of fact, we can also consider to dropmultiple terms of the constraint to generate
GCS inequalities. As shown in the next section, this approach is very important for how to
make better use of the GCS technique in solvingMIP. For convenience, for i ∈ N , we call the
term ai xi is an inactive term if it is dropped from the inequality and the corresponding variable
xi is called an inactive variable. The term ai xi which remains in the inequality is called an
active term and the corresponding variable xi is called an active variable. In addition, for
j ∈ I , we call the integer variable x j by GCS variable if we are going to consider the GCS
inequality based on this variable. All GCS inequalities generated by choosing different GCS
variables and different active variables constitute the family of GCS inequalities.

To end this section, we remark that the residual capacity inequality [21] for the set M (0)
I

in (4) is a GCS inequality.
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Proposition 7 Consider the mixed integer set M (0)
I in (4). Let S ⊆ N, η = �

∑
i∈S ui
D � and

τ = ∑
i∈S ui − D(η − 1). If 0 < τ < D, then the residual capacity inequality

∑

i∈S
xi ≤ τ y + (η − 1)(D − τ) (6)

is a GCS inequality.

Proof Consider the inequality with active variables being y and xi , i ∈ S,
∑

i∈S
xi ≤ Dy. (7)

The maximal activity of (7) over M (0)
I is α = ∑

i∈S ui . Since 0 < τ < D,

−(−D)(η − 1) <
∑

i∈S
ui − 0 < −(−D)η.

Choosing y to be the GCS variable, Proposition 3 gives the following GCS inequality
∑

i∈S
xi − τ y ≤ −(−D + τ)(0 + η − 1),

which is exactly the residual capacity inequality (6). 	


4 Separation algorithm for finding violated GCS inequalities

As there are usually many GCS inequalities for a mixed integer set, like other cutting planes,
only some of them can be allowed to add into the problem. Therefore, we have to develop
an efficient strategy for trying to generate the most effective ones. The basic thing is that,
given any LP relaxation x∗, we attempt to find some GCS inequalities which cut off x∗. After
some considerations about the importance of infinite bounds on variables for generating GCS
inequalities, a mixed integer nonlinear programming model is formulated for the separation
problem. By using the violated information, a separation algorithm is designed for solving the
separation problem. It is proved that the separation algorithm is a polynomial time algorithm.

4.1 Variables bounds on generating GCS inequalities

As mentioned in Sect. 3, different GCS inequalities can be generated by choosing different
active variables. In the following, we shall consider which variables must be active or not.
In order to keep the validity of the inequality, we may adopt either of the following bound
substitutions

yi := xi − li and yi := ui − xi .

to disregard the term ai xi by dropping ai yi or−ai yi . A key observation is that those variables
with infinite bounds play an important role in generating GCS inequalities.

Proposition 8 Consider the mixed integer set MI in (2) and any variable xi .

(1) If ai > 0, li �= −∞, ui = ∞ or ai < 0, li = −∞, ui �= ∞, no GCS inequalities can be
generated unless xi is an inactive variable;

(2) If ai > 0, li = −∞, ui �= ∞ or ai < 0, li �= −∞, ui = ∞, xi should be active in every
GCS inequality;

(3) If li = −∞ and ui = ∞, no GCS inequalities can be generated.

123



J Glob Optim (2018) 70:289–306 297

Proof Consider the case that ai > 0, li �= −∞, ui = ∞. If xi is an active variable, then
α = ∞, which implies that α − b > (r + 1)ai for any r . Therefore, no GCS inequalities can
be generated unless xi is an inactive variable. The proof is similar for the case that ai < 0,
li = −∞, ui �= ∞.

For the second part, we may only consider the case that ai > 0, li = −∞, ui �= ∞. As
li = ∞ and ai (xi − ui ) ≤ 0, in order to keep the validity of the inequality, xi should be
active in every GCS inequality.

Combining the above, if xi is a free variable, the maximal activity α must be ∞ and xi
should be active in every GCS inequality. Thus, no GCS inequalities can be generated. 	


Due to Proposition 8, the remaining case is that li �= −∞ and ui �= ∞. In fact, the variable
xi could be either active or inactive in this case. More exactly, xi may stay in the constraint
as an active variable or become an inactive variable by dropping ai (xi − li ) if ai > 0 or
−ai (ui − xi ) if ai < 0.

Furthermore, by Propositions 5 and 6, the GCS inequality is invariant under bound sub-
stitutions. Therefore, in the remainder of this paper, we assume that for any variable xi ,

li = 0, ui < ∞, if ai > 0;
li = 0, ui = ∞, if ai < 0.

(8)

Under the assumption (8), disregarding the term ai xi with ai > 0 does not affect the right
hand side b and the term ai xi with ai < 0 must be an active term.

4.2 An MINLP model for the separation problem

To begin with, we shall analyze the effect of disregarding the term ai xi for any variable xi
with ai > 0. On one hand, observe that the difference between the new maximal activity α′
and the right hand side decreases, since

α′ − b = α − aiui − b < α − b.

This is beneficial to find a suitable r such that ra j < α − b < (r + 1)a j . On the other hand,
consider the current relaxation x∗ with the activity t∗ = aT x∗. After disregarding the term
ai xi , the difference between the new activity t ′∗ and the right hand side is decreasing as well,
since we have

t ′∗ − b = t∗ − ai x
∗
i − b ≤ t∗ − b.

This is not in accordancewith our purpose,which aims to find a violated inequality. Therefore,
it is difficult to choose those active terms directly.

As mentioned in Sect. 1, a linear time separation algorithm is proposed in [20] for the spe-
cial mixed integer set M (0)

I . With the help of the analysis of variables bounds in Proposition 8
and the invariant property of the GCS inequality under bound substitutions in Propositions 5
and 6, we are able to adapt the algorithm in [20] to develop a separation algorithm for finding
GCS inequalities for the general mixed integer set MI .

Assume that MI is the normalized mixed integer set satisfying (8) and denote x∗ to be
the current relaxation point. Then by Proposition 8, we know that all variable xi should be
active in every GCS inequality for i ∈ K2 := {i ∈ N : ai < 0}. Fixing any GCS variable x j
with a j > 0, we shall ask whether it is possible to choose an integer value of r and the index
set of active variables, S ⊆ K1 := {i ∈ N : ai > 0, i �= j}, such that
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a′
j x

∗
j +

∑

i∈S
ai x

∗
i +

∑

i∈K2

ai x
∗
i > b′, (9)

where
a′
j =

∑

i∈S
ai ui + a ju j − b − ra j and b′ = b − (a j − a′

j )(u j − r).

This is a combinatorial optimization problem. By introducing binary variables, such a prob-
lem can be reformulated to look for suitable zi ∈ {0, 1} for i ∈ K1 such that

a′
j x

∗
j +

∑

i∈K1

ai x
∗
i zi +

∑

i∈K2

ai x
∗
i > b′, (10)

where

a′
j =

∑

i∈K1

aiui zi + a ju j − b − ra j and b′ = b − (a j − a′
j )(u j − r).

If a feasible solution z which satisfies (10) can be found, then a violated GCS inequality will
be generated by Proposition 2.

It is easy to see that the relation (10) is equivalent to
∑

i∈K1

ai (ui − x∗
i )zi −

∑

i∈K2

ai x
∗
i < a′

j (r + 1 + x∗
j − u j ). (11)

To develop an efficient strategy for trying to generate the most effective ones, we formulate
the following separation problem, which is amixed integer nonlinear programming (MINLP)
problem.

ξ = min
z,r,a′

j

∑

i∈K1

ai (ui − x∗
i )zi −

∑

i∈K2

ai x
∗
i − a′

j (r + 1 + x∗
j − u j )

s.t. a′
j =

∑

i∈K1

aiui zi + a ju j − b − ra j

0 < a′
j < a j

0 ≤ r ≤ u j − l j − 1, r ∈ Z

zi ∈ {0, 1}, i ∈ K1. (12)

If the optimal value ξ < 0, the GCS inequality corresponding to an optimal solution (z, r, a′
j )

separates x∗. Otherwise, there exist no violated GCS inequalities while fixing variable x j .
It is not known to us yet whether the problem (12) can efficiently be solved. However, our
purpose is not to find the optimal solution of (12) for all the cases but to solve (12) only when
ξ < 0. The violated information that ξ < 0 is crucial and will help us to design a polynomial
time algorithm to solve (12).

4.3 Separation algorithm

To develop an efficient algorithm, we shall make use of the violated information that ξ < 0
to derive the relationship between r and the current value x∗

j if the variable x j is fixed as the
GCS variable.

Proposition 9 Consider variable x j with j ∈ I and a j > 0. If x∗
j ≤ u j−r−1 or x∗

j ≥ u j−r ,
there are no GCS inequalities on variable x j that cuts off x∗.
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Proof Suppose that some GCS inequality that a′T x ≤ b′ is generated on variable x j with
a j > 0. If x∗

j ≤ u j − r − 1, it follows that

a′T x∗ ≤ α − a ju j + a′
j x

∗
j ≤ α − a ju j + a′

j (u j − r − 1) = b′.

Therefore, no GCS inequalities on variable x j can be generated to cut off x∗. If x∗
j ≥ u j − r ,

it follows from a′
j < a j that

a′T x∗ − b′ = aT x∗ + (a′
j − a j )x

∗
j − b + (a j − a′

j )(u j − r)

= aT x∗ − b + (a j − a′
j )(u j − r − x∗

j ) ≤ aT x∗ − b ≤ 0.

Thus no violated GCS inequalities exist on variable x j . 	

By Proposition 9, we can assume that �x∗

j � = u j − r − 1. In this case, r can be regarded
as a constant in problem (12). After the elimination of the variable a′

j , problem (12) can be
translated into the following mixed integer linear programming problem:

min
z

∑

i∈K1

ak(ui − x∗
i − ui f

∗
j )zi −

∑

i∈K2

ai x
∗
i + (b + ra j − a ju j ) f

∗
j

s.t. 0 <
∑

i∈K1

aiui zi + a ju j − b − ra j < a j

zi ∈ {0, 1}, i ∈ K1

r = u j − 1 − �x∗
j �, f ∗

j = x∗
j − �x∗

j �. (13)

The direct solution of problem (13) is still hard to compute. To circumvent the difficulty, we
provide two more propositions. Let T be the index set of variables with negative objective
coefficients in problem (13), namely,

T := {i ∈ K1 : ui − x∗
i − ui f

∗
j < 0}. (14)

Proposition 10 For a relaxation solution x∗ with x∗
j /∈ Z, a j > 0 and j ∈ I , if there exists

a violated GCS inequality on x j given by some subset C ⊆ K1 with

a′
j x

∗
j +

∑

i∈C
ai x

∗
i +

∑

i∈K2

ai x
∗
i > b′,

then there also exists a violated GCS inequality on x j given by some subset S ⊆ T .

Proof Assume that there exists a violated GCS inequality given by some subset C ⊆ K1.
From the constraints of problem (13),

a′
j =

∑

i∈C
aiui + a ju j − b − ra j .

If
∑

i∈C\T ai ui < a′
j , we have that

b + ra j − a ju j <
∑

i∈C∩T
ai ui ≤

∑

i∈C
aiui < b + (r + 1)a j − a ju j .

Therefore, the set S := C ∩ T is corresponding to a feasible point of problem (13) and its
objective value does not exceed the one related to C .
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In the case that
∑

i∈C\T ai ui ≥ a′
j , it follows that

∑

i∈C∩T
ai ui ≤ b + ra j − a ju j .

The objective value of problem (13) related to C is
∑

i∈C
ai (ui − x∗

i − ui f
∗
j ) −

∑

i∈K2

ai x
∗
i + (b + ra j − a ju j ) f

∗
j

≥
∑

i∈C
ai (ui − x∗

i − ui f
∗
j ) +

∑

i∈C∩T
ai ui f

∗
j −

∑

i∈K2

ai x
∗
i

=
∑

i∈C\T
ai (ui − x∗

i − ui f
∗
j ) +

∑

i∈C∩T
ai (ui − x∗

i ) −
∑

i∈K2

ai x
∗
i

≥ 0,

which contradicts the violated assumption that ξ < 0. 	

Proposition 11 If either

∑

i∈T
ai ui ≤ b + ra j − a ju j or

∑

i∈T
ai ui ≥ b + (r + 1)a j − a ju j ,

then there exist no violated GCS inequalities on variable x j .

Proof The case that
∑

k∈T ai ui ≤ b + ra j − a ju j is straightforward due to the proof of
Proposition 10. Now consider the case

∑
i∈T ai ui ≥ b + (r + 1)a j − a ju j . Assume that

there exists a subset S ⊆ T which leads to a violated GCS inequality. The objective value of
problem (13) for S is

∑

i∈S
ai (ui − x∗

i − ui f
∗
j ) + (b + ra j − a ju j ) f

∗
j −

∑

i∈K2

ai x
∗
i

≥
∑

i∈T
ai (ui − x∗

i − ui f
∗
j ) + (b + ra j − a ju j ) f

∗
j −

∑

i∈K2

ai x
∗
i

=
∑

i∈T
ai (ui − ui f

∗
j ) +

∑

i∈T
ai (−x∗

i ) + (b + ra j − a ju j ) f
∗
j −

∑

i∈K2

ai x
∗
i

≥[b + (r + 1)a j − a ju j ](1 − f ∗
j ) − b + a j x

∗
j + (b + ra j − a ju j ) f

∗
j

= 0,

which contradicts the violated assumption that ξ < 0. 	

Propositions 10 and 11 indicate that, if having fixed the GCS variable x j with a j > 0, only

the set T [as defined in (14)] is required to be considered in generating the GCS inequalities.
More exactly, if the following conditions hold,

b + ra j − a ju j <
∑

i∈T
ai ui < b + (r + 1)a j − a ju j (15)

and ∑

i∈T
ai (ui − x∗

i − ui f
∗
j ) −

∑

i∈K2

ai x
∗
i + (b + ra j − a ju j ) f

∗
j < 0, (16)
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then themost violated inequality based on variable x j given by T can be generated.Otherwise,
we can claim that no GCS inequalities exist on variable x j .

Now we are able to provide Algorithm 1, which can generate all the most violated GCS
inequalities on integer variables with positive coefficients. A similar separation algorithm
can be obtained for the case a j < 0, j ∈ I by Proposition 3.

Input: Relaxation solution x∗, aT x ≤ b, l ≤ x ≤ u, x j ∈ Z, j ∈ I
Output: Valid inequalities F which cut off x∗

1 Normalize the set MI to satisfy (8); Initialize F := ∅;
2 for all variables x j , j ∈ I and a j > 0 with x∗

j /∈ Z do
3 if (15) and (16) hold then
4 Generate the inequality a′

j x j + ∑
i∈T ai xi + ∑

ai<0 ai xi ≤ b′;
5 Recover the inequality to the original space if necessary;
6 Add the violated inequality to F ;
7 end if
8 end for

Algorithm 1: Separation algorithm for aT x ≤ b on x∗

Proposition 12 The separation problem (13) can be solved by Algorithm 1 inO(n|I |) oper-
ations, where n is the number of nonzero coefficients.

Proof Notice that there are atmost |I | integer variableswith x∗
j /∈ Z. Thework ofAlgorithm1

in recovering the inequality to the original space and calculating (15) and (16) can be done in
O(n) operations. Therefore, the separation problem (13) can be solved inO(n|I |) operations.

	

To end this section, we summarize two advantages of GCS inequalities. On one hand,

the separation problem can efficiently be solved since the number of nonzero coefficients in
one constraint is usually small in real problems. On the other hand, as the GCS inequality
is generated by the original constraint, it probably does not contain too large or too small
coefficient values. Therefore, these GCS inequalities are usually sparse and stable.

5 Numerical results

We evaluated the performance of GCS inequalities by implementing it as an additional
separator in the open source MIP solver SCIP 3.2.1 [22] with the default LP solver SOPLEX
2.2.1 [26]. For convenience, the corresponding separator is called as the GCS separator. All
numerical tests described in this section were implemented on a cluster of Intel Core i7-4790
3.60GHz computer, with 8MB cache and 8GBRAM. The operating system is Ubuntu 16.04.
According to [27], in order to have a fair comparison, we used the most infeasible branching
strategy and disable restart presolving technique and all primal heuristics.

Instances from MIPLIB 3.0 [23], MIPLIB 2003 [24] and the benchmark set of MIPLIB
2010 [25] (denoted by MMM) were used for our numerical experiments. We excluded 3
infeasible instances named ash608gpia-3col, enlight14 and ns1766074, and one instance
which runs out of memory at the root node in SCIP, namely mspp16. This leaves us 164
instances in the MMM test set.
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Fig. 1 Gap closed by individual separators

In order to study the performance of the GCS separator more exhaustively, we try to ask
the three questions as follows.

(1) What effect does the GCS separator make individually?
(2) Does the GCS separator improve the dual bound when invoking it along with other

separators in a MIP solver?
(3) What is the impact of the GCS separator on the overall running time?

If one expects the GCS separator to have some positive effects, the GCS separator must
generate some efficient cuts for real application problems. On the other hand, since it can
tighten the relaxation set, we want to know how tight it is after the addition of the GCS
inequalities. That is the reason why we ask the first question. Since there are some other
separators in MIP solvers, we want to know whether the GCS separator is covered by other
separators or not. That is the motivation to ask the second question. Finally, by asking the
third question, we want to know whether the separator is effective for solving MIP instances.

For the first question, we tested the individual performance of the GCS separator and
compared it with some other separators. Since the separators affect one another, we disable
all the other separators except the tested one. In order to describe the performance, we use
the root gap closed [27] defined as follows:

100 · ž − zLP
zM I P − zLP

,

where ž is the dual bound at the root node before branching, zLP is the value of LP relaxation
after presolving and zM I P is the optimal (or best known) value of MIP.

Figure 1 shows the arithmetic mean of the gap closed by all separators in SCIP. For the
MMM test set, the gap closed by the GCS separator is 15.90%, which is better than Implied
Bounds, Knapsack Cover, Clique, MCF and Disjunctive separators but worse than MIR,
GMI, Strong CG and Flow Cover separators. This indicates that the GCS separator has a
modest effect in improving the dual bound on real data problems. Furthermore, among 164
instances in the MMM test set, it affects 105 instances, more than half of the instances.

For the second question, we tested the performancewhen invoking it with other separators.
As before, the root gap closed is used to evaluate the performance. At this time, we did not
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Table 1 Overall gap closed Setting All Affected Better

Gap Imp (%) Gap Imp (%)

GCS 46.11 58.84 39

No GCS 45.81 58.37 22

Table 2 Time and nodes
performances

Setting Nodes Time Solved Better

GCS 3403.73 41.75 40 8

No GCS 4061.99 51.21 40 6

disable other separators but compared the default setting as described above with the version
turning on the GCS separator.

As Table 1 shows, the average root gap closed increases by 0.30% for all 164 instances
if the GCS separator is called. For the affected 105 models, the gap closed is improved by
0.47%. Looking at the number of better gap closed instances, it is 39 while the worse cases
is only 22. This shows that although the GCS is likely to be covered by other separators in
most cases, there exist some cuts which are not generated by the other separators. This result
will further be verified at the end of this section.

For the third question, we studied the time and nodes performances after calling the GCS
separator in an MIP solver. We only considered those affected instances that can be solved
in 3600s by at least one of the two settings. This leaves us 40 instances.

Table 2 presents the time and nodes performances when adding the GCS separator com-
paring with the default setting as described above (One can also see Table 3 in “Appendix”
for the details). In either case, all of the 40 instances are solved. Interestingly, we see from
Table 2 that the geometric mean1 of time and nodes is significantly improved. Furthermore,
8 instances are at least 10% time faster if calling the GCS separator, while only 6 instances
are at least 10% time faster when turning the GCS separator off. This indicates that GCS
separator has a positive effect for solving MIP.

To end this section, we illustrate one instance which is much improved by calling GCS
separator. The name of such an instance is quet1, which was once studied in [28]. We found
that the solution time decreases from 342.3 to 3.6 s by calling the GCS separator. Looking at
its structure further, it contains the following type of constraints:

∑

i∈C
ai xi ≤ y1 + qy2,

where xi ∈ B, y1, y2 ∈ Z
+, ai > 0, i ∈ C and q > 1. Moreover, 1 <

cy2
cy1

< q , where

cy1 and cy1 are the objective coefficients of y1 and y2, respectively. Combining all these
conditions, the solution of LP relaxation (x∗, y∗) is usually such that y∗

2 /∈ Z. The GCS
separator generates the following type of valid inequalities,

∑

i∈S
ai xi ≤ y1 + q ′y2 + γ,

where S ⊆ C , 0 < q ′ < q and γ is a constant, to separate (x∗, y∗). To the best of our
knowledge, these inequalities are hardly generated by the other separators in SCIP. By the

1 Shifted geometric mean, 10 s for average time and 100 for average nodes [19].
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addition of the GCS separator, the gap closed increases from 88.48% to 95.78% and hence
leads to a significant improvement in the solution time.

6 Conclusion and future work

We have proposed the family of GCS inequalities by generalizing the idea of the coefficient
strengthening method. By studying the invariant property of GCS inequalities, analyzing the
variables bounds and using the violated information, we have provided a separation algorithm
to find the violated inequalities, which leads to the GCS separator. Our computational results
demonstrate that, although the generatedGCS cuts are likely to be covered by those generated
by some other separators in most cases, there also exist some GCS cuts that are not covered
and the proposed GCS separator improves the performance for these instances on average.

There still exist some ideas to be explored to improve the efficiency of GCS cuts. For
example, it appears important to aggregate some constraints and use the GCS separator on
the aggregated constraint to generate cuts (see [2] for this idea). Comparing with dropping
terms directly, the advantage of this technique is that it affects the difference between the
current activity and the right hand side as small as possible. Another interesting topic is only
to generate the GCS cuts which cannot be generated by other separators, especially by the
MIR separator. In our numerical experiments, we observed that the MIR separator generates
some identical inequalities as GCS separator generates for some instances including bell5
and bab5. It remains to be explored how to avoid these redundant works.

Appendix

See Table 3.

Table 3 Detail results of nodes and time performance

Instance GCSC No GCSC

Closed gap (%) Nodes Time Closed gap (%) Nodes Time

aflow30a 67.04 51285 82.9 67.97 36,996 68.1

bell3a 47.97 32262 5.8 47.97 33,197 5.9

bell5 27.55 4137 0.5 26.46 2148 0.2

binkar10_1 66.54 1,069,939 940.8 65.81 1,636,080 1306

bley_xl1 100.00 52 229.2 100.00 12 172.2

bnatt350 100.00 41,451 692.3 100.00 48,732 733

dcmulti 81.42 1352 0.7 81.42 1001 0.5

dsbmip 100.00 14 0.2 100.00 63 0.4

fiber 93.18 472 1 95.42 388 0.9

fixnet6 74.34 34,845 22 75.80 29,506 21.4

gen 100.00 1 0 100.00 1 0

gesa2 99.89 33 0.4 99.20 143 0.4

gesa2_o 99.03 83 0.5 98.69 109 0.5
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Table 3 continued

Instance GCSC No GCSC

Closed gap (%) Nodes Time Closed gap (%) Nodes Time

gesa3 86.69 121 0.6 86.96 90 0.5

gesa3_o 90.95 79 0.5 89.62 95 0.4

gt2 100.00 4107 0.6 100.00 40 0

khb05250 99.91 11 0.1 99.91 11 0.1

lseu 68.35 821 0.1 60.34 767 0.1

map20 18.91 31,402 3372.6 18.62 31,992 3493.6

mitre 100.00 1 3.6 100.00 1 3.6

mod011 76.13 1274 62.4 72.47 1643 53.2

neos-1109824 80.20 529,551 1158.1 75.25 1,036,293 2417.3

neos-686190 4.77 335,231 1074.2 4.77 472,344 1530.7

noswot 78.46 21,789,353 2902.6 78.46 12,076,736 1570.6

ns1208400 0.00 9022 1234.7 0.00 9617 1637.7

ns1688347 79.23 32,356 631.4 79.27 70,235 1237.6

opt1217 100.00 146 0.5 100.00 44 0.4

p0033 100.00 1 0 100.00 1 0

p0282 76.54 2120 0.7 83.94 2001 0.7

p0548 100.00 1 0.1 100.00 1 0.1

p2756 98.47 1211 1.5 98.51 819 1.1

pg5_34 98.81 606,644 1835.2 98.81 530,422 1250.8

pk1 0.00 828,160 122.3 0.00 808,824 120.8

qnet1 95.78 2386 3.6 88.48 423,198 342.3

qnet1_o 94.90 632 1.5 90.74 244,136 213.8

rentacar 46.83 30 1 46.83 30 1.1

rgn 100.00 1 0.1 100.00 1 0.1

satellites1-25 0.00 6454 759.7 13.33 2072 464.7

sp98ir 2.49 158,616 643.3 2.49 193049 853.8

vpm2 72.71 1907 0.6 72.59 2166 0.6

all 73.17 3403.73 41.75 73.00 4061.99 51.21

Bold represents the difference in time by more than 10%
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