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Abstract Completely positive (CP) tensors, which correspond to a generalization of CP
matrices, allow to reformulate or approximate a general polynomial optimization problem
(POP) with a conic optimization problem over the cone of CP tensors. Similarly, com-
pletely positive semidefinite (CPSD) tensors, which correspond to a generalization of positive
semidefinite (PSD) matrices, can be used to approximate general POPs with a conic opti-
mization problem over the cone of CPSD tensors. In this paper, we study CP andCPSD tensor
relaxations for general POPs and compare them with the bounds obtained via a Lagrangian
relaxation of the POPs. This shows that existing results in this direction for quadratic POPs
extend to general POPs. Also, we provide some tractable approximation strategies for CP
and CPSD tensor relaxations. These approximation strategies show that, with a similar com-
putational effort, bounds obtained from them for general POPs can be tighter than bounds for
these problems obtained by reformulating the POP as a quadratic POP, which subsequently
can be approximated using CP and PSD matrices. To illustrate our results, we numerically
compare the bounds obtained from these relaxation approaches on small scale fourth-order
degree POPs.

Keywords Copositive programming · Convex relaxation · Completely positive tensor ·
Completely positive semidefinite tensor

1 Introduction

Polynomials appear in a wide variety of areas in science. It is not surprising then that opti-
mizing a polynomial optimization problem (POP), in which both the objective function
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and constraints are defined by multivariate polynomials, continues to be the focus of novel
researchwork (cf., [3]). Here, the interest is the class of non-convex, non-linear POPs. Clearly,
a non-convex quadratic program (QP) belongs to this class of problems, and its study has
beenwidely addressed in the literature. For example, semidefinite programming (SDP) relax-
ations have been actively used to find good bounds and approximate solutions for general
QPs (see, e.g., [17,36,50]), and for important QP problems such as the max-cut and the
stable set problem (see, e.g., [18,19,24,41]). In [27], more computationally efficient second
order cone programming (SOCP) relaxations have also been proposed to approximately solve
non-convex QPs.

The early work linking convex optimization and polynomial optimization in [39,47]
revealed the possibility to use conic optimization to obtain global or near-global solutions
for non-convex POPs in which polynomials with degree higher than two are used. In the
seminal work of Parrilo [40] and Lasserre [29], SDP is used to obtain the global or near-
global optimum of POPs. Besides SDP approximations, other convex approximations to
address the solution of POPs have been investigated using linear programming (LP) and
SOCP techniques [1,30,31,42,52]. These techniques are at the core of the well-known area
of polynomial optimization (cf., [3]).

Alternatively, it has been shown that several NP-hard optimization problems can be refor-
mulated as a completely positive (CP) program; that is, a linear program over the convex cone
of CP matrices or its dual cone, the cone of copositive matrices, including standard QPs [10],
stable set problems [18,22], graph partitioning problems [44], and quadratic assignment
problems [45]. In [13], Burer derives a more general result; namely, that every linearly
constrained QP with binary variables can be reformulated as a copositive program. CP pro-
gramming relaxations for general quadratically constrained quadratic programs (QCQPs)
have been studied in [4,15]. In [6], CP programming reformulation for QCQPs and QPs with
complementarity constraints (QPCCs) are discussed without any boundedness assumption
on the problems’ feasible regions. Although the CP matrix cone is not tractable in general,
recent advances on obtaining approximation algorithms [2,12,20] for CP programs, provide
an alternative way to globally solve QCQPs. Recently, Bomze shows in [8] that CP program-
ming relaxations provide tighter bounds than Lagrangian dual bounds for quadratically and
linearly constrained QPs.

A natural thought is whether one can extend the copositive programming or completely
positive programming reformulations for QPs to POPs. Arima et al. [5] propose the moment
cone relaxation for a class of POPs to extend the results on CP programming relaxations for
the QCQPs. Recently, Peña et al. [43] show that under certain conditions, general POPs can
be reformulated as a conic program over the cone of CP tensors, which is a natural extension
of the cone of CPmatrices used for the solution of quadratic POPs. This tensor representation
was originally proposed in [21], and is now the focus of active research (see, e.g., [25,26,35,
48]). In [43], it is also shown that the conditions for the equivalence between POPs and its
associated CP programming relaxation, when applied to QCQPs, lead to conditions that are
weaker than the ones introduced in [13].

In this article, we study CP and completely positive semidefinite (CPSD) tensor relaxations
for POPs (cf., Sect. 2.1). Our main contributions are: (1) We extend the results for QPs in
[8] to general POPs by using CP and CPSD tensor cones. In particular, we show that CP
tensor relaxations provide tighter bounds than Lagrangian relaxations for general POPs. (2)
We provide tractable approximations for CP and CPSD tensor cones that can be used to
globally approximate general POPs. (3) We prove that CP tensor relaxations yield tighter
bounds than CP matrix relaxations for quadratic reformulations of some classes of POPs.
(4) We provide numerical results to show that, in more generality, approximations to the CP
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tensor relaxations of a POP can be used to obtain a tighter bound for the problem than the
one obtained based on approximations to the CP matrix relaxation of the POP’s associated
quadratic reformulation.

The remainder of the article is organized as follows.Webriefly introduce the basic concepts
of tensor cones and tensor representations of polynomials in Sect. 2. Lagrangian relaxation,
CP and CPSD tensor relaxations for POPs are discussed in Sect. 3. In Sect. 4, we discuss the
quadratic reformulation of a general POP; that is, auxiliary decision variables are introduced
to the problem to reformulate it as a QCQP. Then, for a class of POPs, the bounds on the
POP obtained from a CP matrix relaxations of the quadratic reformulation of the POP are
compared with the ones obtained from a CP tensor relaxation of the POP. In Sect. 5, linear
matrix inequality (LMI) approximation strategies for the CP and CPSD tensor cones are
proposed, and a comparison of bounds obtained by tensor relaxation and matrix relaxation is
presented for general small scale POPs. Lastly, Sect. 6 summarizes the article’s results and
provides future working directions.

2 Preliminaries

2.1 Basic concepts and notation

Wefirst introduce basic concepts and the notation used throughout the article. Following [43],
we start by defining tensors.

Definition 1 Let T n,d denote the set of tensors of dimension n and order d in R
n , that is

Tn,d = R
n ⊗ · · · ⊗ R

n
︸ ︷︷ ︸

d

,

where ⊗ is the tensor product.

A tensor T ∈ Tn,d is symmetric if the entries are invariant with respect to permutations of its
indices. We denote by Sn,d ⊆ Tn,d the set of symmetric tensors of dimension n and order d .
For any T 1, T 2 ∈ Tn,d , let 〈·, ·〉n,d denote the tensor inner product defined by

〈T 1, T 2〉n,d =
∑

{i1,...,id }∈{1,...,n}d
T 1

(i1,...,id )T
2
(i1,...,id ).

Definition 2 For any x ∈ R
n , let the mapping R

n → Sn,d be defined by

Md(x) = x ⊗ · · · ⊗ x
︸ ︷︷ ︸

d

.

Definitions 1 and 2 are natural extensions of matrix notation to tensors. For example, Tn,2 is
the set of n × n matrices, while Sn,2 is the set of n × n symmetric matrices. Also, 〈·, ·〉n,2

is the Frobenius inner product and M2(x) = xxᵀ for any x ∈ R
n . In general, Md(x) is the

symmetric tensor whose (i1, . . . , id) entry is xi1 · · · xid .
Proposition 1 Let En,d be all-ones tensor with dimension n and order d and e ∈ R

n be the
all-ones vector, then

〈En,d , Md(x)〉n,d = (eᵀx)d ,∀x ∈ R
n .
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Proof By the definition of Md(·) and 〈·, ·〉n,d ,

〈En,d , Md(x)〉n,d =
∑

k1+k2+···+kn=d

(

d

k1, k2, . . . , kn

)

xk11 xk22 · · · xknn = (eᵀx)d ,

where
( d
k1,k2,...,kn

)

is the multinomial coefficient. 	

Proposition 2 For x ∈ R

n, y ∈ R
n,

〈Md(x), Md(y)〉n,d = (xᵀy)d .

Proof Let x, y ∈ R
n be given and z ∈ R

n be defined as zi = xi yi , i = 1, . . . , n, and let
e ∈ R

n be the all-ones vector. From the definition of Md(·) and 〈·, ·〉n,d we have

〈Md(x), Md(y)〉n,d =
∑

{i1,...,id }∈{1,...,n}d
Md(x)(i1,...,id )Md(y)(i1,...,id )

=
∑

{i1,...,id }∈{1,...,n}d
xi1xi2 · · · xid · yi1 yi2 · · · yid

=
∑

{i1,...,id }∈{1,...,n}d
(xi1 yi1)(xi2 yi2) · · · (xid yid )

= 〈En,d , Md(z)〉n,d

= (eᵀz)d (from Proposition 1)

= (xᵀy)d .

	

Analogous to PSD and copositive matrices, PSD and copositive tensors can be defined as

follows.

Definition 3 Define theK-semidefinite (or set-semidefinite) symmetric tensor coneof dimen-
sion n and order d as:

Cn,d(K) = {

T ∈ Sn,d : 〈T, Md(x)〉n,d ≥ 0,∀x ∈ K
}

.

For K = R
n , Cn,d(R

n) denotes the positive semidefinite (PSD) tensor cone. For K = R
n+,

Cn,d(R
n+) denotes the copositive tensor cone.

Similar to the one-to-one correspondence of n×n PSDmatrices to nonnegative homogeneous
quadratic polynomials ofn variables, there is also a one-to-one correspondenceofPSD tensors
with dimension n and order d to nonnegative homogeneous polynomials with n variables
and degree d (cf., [35]). Note that the set of non-negative homogeneous polynomials of odd
degree is empty; that is, Cn,d(R

n) = ∅ when d is odd. Next we discuss the dual cones of
Cn,d(R

n+) and Cn,d(R
n), following the discussion in [35] and [43].

Definition 4 Given any cone C ⊆ Sn,d , the dual cone of C is

C∗ = {

Y ∈ Sn,d : 〈X, Y 〉n,d ≥ 0,∀X ∈ C
}

.

If C∗ = C, then cone C is self-dual.

The dual cones of the PSD tensor cone and copositive tensor cone have been studied in
[35,43]. Formally,
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Proposition 3

(a) C∗
n,d(R

n+) = conv{Md(x) : x ∈ R
n+}.

(b) C∗
n,2d(R

n) = conv{M2d(x) : x ∈ R
n}.

Similar to the cone of CP and PSD matrices, we denote by C∗
n,d(R

n+) the completely positive
(CP) tensor cone, and by C∗

n,2d(R
n) the completely positive semidefinite (CPSD) tensor cone.

Also, let the homogeneous sum of square (SOS) tensor cone of dimension n and order 2d be
defined by

Cn,2d (SOS) =
{

Tn,2d : 〈Tn,2d , M2d (x)〉n,2d =
∑

i∈N
λi

(

〈T i
n,d , Md (x)〉n,d

)2
, λi ≥ 0, ∀i ∈ N

}

.

It is well known that the cone of PSD matrices is self-dual; however, in general, the PSD
tensor cone is not self-dual (cf., [35]) as discussed next.

Proposition 4 ([35, Prop. 5.8 (i)])

C∗
n,2d(R

n) ⊆ Cn,2d(SOS) ⊆ Cn,2d(R
n).

Proof Let T ∈ C∗
n,2d(R

n), by Proposition 3, T = ∑

i∈N λi M2d(yi ), where yi ∈ R
n, λi ≥ 0,

for all i ∈ N and
∑

i∈N λi = 1. Then ∀x ∈ R
n ,

〈T, M2d(x)〉n,2d =
〈

∑

i

λi M2d(y
i ), M2d(x)

〉

n,2d

=
∑

i∈N
λi

〈

M2d(y
i ), M2d(x)

〉

n,2d

=
∑

i∈N
λi (x

ᵀyi )2d (from Proposition 2)

=
∑

i∈N

[
√

λi (x
ᵀyi )d

]2
.

Take zik = xk yik , then xᵀyi = eᵀzi where e ∈ R
n is the all-ones vector for all i ∈ N.

Therefore,

〈T, M2d(x)〉n,2d =
∑

i∈N

[
√

λi (e
ᵀzi )d

]2

=
∑

i∈N

[
√

λi 〈En,d , Md(z
i )〉n,d

]2
(from Proposition 1).

Therefore, C∗
n,2d(R

n) ⊆ Cn,2d(SOS). By the definition of the homogeneous SOS tensor
cone, it is clear that Cn,2d(SOS) ⊆ Cn,2d(R

n). 	

The proof of Proposition 4 can be seen as an alternative proof for Proposition 5.8 (i) in [35]
that uses the tensor notation introduced in this article. As mentioned before, it is well known
that C∗

n,2(R
n) = Cn,2(SOS) = Cn,2(R

n). This statement coincides with the self-duality
of the cone of PSD matrices. Luo et al. showed in [35] that C∗

n,2d(R
n) � Cn,2d(SOS) for

d ≥ 2. On the other hand, the Motzkin polynomial together with the isomorphism between
homogeneous polynomials and tensors shows that Cn,2d(SOS) � Cn,2d(R

n) when d ≥ 2
and n ≥ 2.
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2.2 Tensor representation of general polynomials

In Sect. 2.1, we mentioned the isomorphism between symmetric tensors and homogenous
polynomials. Next, we introduce a tensor representation for general polynomials that are
not necessarily homogeneous. Define R[x] as the ring of polynomials with real coefficients
in R

n , and let Rd [x] := {p ∈ R[x] : deg(p) ≤ d} denote the set of polynomials with
dimension n and degree at most d . For simplicity, we use Md(1, x), x ∈ R

n to represent
Md((1, xᵀ)ᵀ), x ∈ R

n and use Td(p) to represent Td(p(x)) for p(x) ∈ Rd [x] throughout
the article. Then, for any p(x) ∈ Rd [x], we have

p(x) = 〈Td(p), Md(1, x)〉n+1,d , (1)

where Td(·) is the mapping of coefficients of p(x) in terms of Md(1, x) in Sn+1,d . Following
[43], define Td : Rd [x] → Sn+1,d as

Td

⎛

⎝

∑

β∈Zn+:|β|≤d

pβ x
β

⎞

⎠

i1,...,id

:= α1! · · · αn !
|α|! pα,

where α is the (unique) exponent such that xα := xα1
1 · · · xαn

n = xi1 · · · xid (i.e., αk is
the number of times k appears in the multi-set {i1, . . . , id}) and |α| = ∑n

i=1 αi . For any
polynomial p(x) ∈ Rd [x], let p̃(x) denote the homogenous component of p(x) with the
highest degree, then it follows

p̃(x) = 〈Td(p), Md(0, x)〉n+1,d . (2)

Equations (1) and (2) can be used to characterize the boundedness of general polynomials
using their associated tensor representation.

Theorem 1 Let μ ∈ R and

(a) p(x) ∈ Rd [x]. Then p(x) ≥ μ for all x ∈ R
n+ if and only if Td(p−μ) ∈ Cn+1,d(R

n+1+ ).
(b) p(x) ∈ R2d [x]. Then p(x) ≥ μ for all x ∈ R

n if andonly if T2d(p−μ) ∈ Cn+1,2d(R
n+1).

Proof For (a), assume Td(p − μ) ∈ Cn+1,d(R
n+1+ ). By Definition 3, 〈Td(p − μ),

Md(1, x)〉n+1,d ≥ 0,∀x ∈ R
n+, then

p(x) − μ = 〈Td(p − μ), Md(1, x)〉n+1,d ≥ 0, ∀x ∈ R
n+. (3)

For the other direction, assume p(x) ≥ μ,∀x ∈ R
n+, then by (3), 〈Td(p−μ), Md (1, x)〉n+1,d

≥ 0,∀x ∈ R
n+. Thus, for any (x0, x) ∈ R++ × R

n+,

〈Td(p − μ), Md(x0, x)〉n+1,d = xd0

〈

Td(p − μ), Md

(

1,
x

x0

)〉

n+1,d
≥ 0. (4)

Furthermore, from the continuity of polynomials, we have that for k > 0,

〈Td(p − μ), Md(0, x)〉 = lim
k→+∞〈Td(p − μ), Md(1/k, x)〉 ≥ 0, (5)

where the last inequality follows from (4). From (4), (5), and Definition 3, it follows that
Td(p − μ) ∈ Cn+1,d(R

n+1+ ).
The proof of (b) is similar to the proof of (a). 	


Corollary 1 Let μ ∈ R and

(a) p(x) ∈ Rd [x]. Then inf{p(x) : x ∈ R
n+} = sup{μ ∈ R : Td(p − μ) ∈ Cn+1,d(R

n+1+ )}.
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(b) p(x) ∈ R2d [x]. Then inf{p(x) : x ∈ R
n} = sup{μ ∈ R : T2d(p−μ) ∈ Cn+1,2d(R

n+1)}.
Theorem 1 and Corollary 1 generalize the key Lemma 2.1 and Corollary 2.1 in [8] for

polynomialswith degree higher than 2 by using a tensor representation.Moreover, Corollary 1
can be seen as a convexification of an unconstrained (possibly non-linear non-convex) POP
to a linear conic program over the CP and CSDP tensor cones. In the next section, we will
discuss CP and CPSD tensor relaxations for general constrained POPs.

3 Lagrangian and conic relaxations of POPs

Let pi (x) ∈ Rd [x], i = 0, . . . ,m. Consider two general POPs with polynomial constraints:

z+ = inf p0(x)

s.t. pi (x) ≤ 0, i = 1, . . . ,m,

x ∈ R
n+,

(6)

and

z = inf p0(x)

s.t. pi (x) ≤ 0, i = 1, . . . ,m,
(7)

where d = max{deg(pi (x)) : i ∈ {0, 1, . . . ,m}} is the degree of the POP. Problems (6)
and (7) represent general POPs, which encompass a large class of non-linear non-convex
problems, including non-convex QPs with binary variables (i.e., binary constraints can be
written in the polynomial form xi (1− xi ) ≤ 0, −xi (1− xi ) ≤ 0). Naturally, we have z ≤ z+
since the feasible set of problem (6) is a subset of problem (7). Next we show that the results
of Bomze for QPs in [8] can be extended to POPs of form (6) and (7).

3.1 Lagrangian relaxations

Letui ≥ 0be theLagrangianmultiplier of the inequality constraints pi (x) ≤ 0 for i = 1, ..,m
and vi ≥ 0 for constraints xi ∈ R+ for i = 1, . . . , n. The Lagrangian function for problem (6)
is

L+(x; u, v) := p0(x) +
m
∑

i=1

ui pi (x) − vᵀx,

and the Lagrangian dual function of problem (6) is

Θ+(u, v) := inf{L+(x; u, v) : x ∈ R
n},

with its optimal value

zLD,+ = sup{Θ+(u, v) : (u, v) ∈ R
m+ × R

n+},
We also use a semi-Lagrangian dual function to represent the nonnegative variable con-

straints of problem (6),
Θsemi(u) := inf{L(x; u) : x ∈ R

n+},
where L(x; u) := p0(x) +∑m

i=1 ui pi (x), with its optimal value

zsemi = sup{Θsemi(u) : u ∈ R
m+}.
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Similarly, let ui ≥ 0 be the Lagrangian multiplier of the inequality constraints pi (x) ≤ 0
for i = 1, . . . ,m. The Lagrangian function for problem (7) is

L(x; u) := p0(x) +
m
∑

i=1

ui pi (x),

and the Lagrangian dual function of problem (7) is

Θ(u) := inf{L(x; u) : x ∈ R
n},

with its optimal value
zLD = sup{Θ(u) : u ∈ R

m+}.
Thus we have the following relationship:

Θ+(u, v) = inf{L+(x; u, v) : x ∈ R
n}

≤ inf{L+(x; u, v) : x ∈ R
n+}

= inf{L(x; u) − vᵀx : x ∈ R
n+}

≤ inf{L(x; u) : x ∈ R
n+} = Θsemi(u),

where the second inequality holds because x, v ∈ R
n+ always implies vᵀx ≥ 0. Therefore,

we have:
zLD,+ ≤ zsemi ≤ z+,

where the latter inequality holds by weak duality. Similarly, from weak duality theory, we
have zLD ≤ z.

3.2 CPSD tensor relaxation for POP with free variables

Consider the following conic program:

zSP = inf 〈Td(p0), X〉
s.t. 〈Td(pi ), X〉 ≤ 0, i = 1, . . . ,m,

〈Td(1), X〉 = 1,

X ∈ C∗
n+1,d(R

n+1),

(8)

and its conic dual problem

zSD = sup

{

μ : Td(p0) − μTd(1) +
m
∑

i=1

ui Td(pi ) ∈ Cn+1,d(R
n+1), u ∈ R

m+

}

. (9)

Recall that Cn+1,d(R
n+1) is empty if d is odd. Thus, for simplicity, in what follows we

assume without loss of generality that d is even in (8) (if this is not the case, one can change
d → 2�d/2� by adding explicit zeros to higher order monomials in pi , i = 0, 1, . . . ,m).
Also we use 〈·, ·〉 represent the tensor inner product of appropriate dimension and order.

Proposition 5 Problem (8) is a relaxation of problem (7) with zSP ≤ z.

Proof Let x ∈ R
n be a feasible solution of problem (7). It follows that X = Md(1, x) is

a feasible solution of problem (8) directly by applying (1). Also p(x) = 〈Td(p0), X〉 is a
direct result of (1) with the same objective value. 	
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Theorem 2 For problem (7), its Lagrangian dual function optimal value satisfies,

zLD = sup
{

μ : (μ, u) ∈ R × R
m+, Td(L(x; u) − μ) ∈ Cn+1,d(R

n+1)
}

and zLD = zSD ≤ zSP ≤ z.

Proof By Corollary 1 (b),

Θ(u) = inf{L(x; u) : x ∈ R
n}

= sup{μ : Td(L(x; u) − μ) ∈ Cn+1,d(R
n+1)},

then
zLD = sup{Θ(u) : u ∈ R

m+}
= sup

{

μ : (μ, u) ∈ R × R
m+, Td(L(x; u) − μ) ∈ Cn+1,d(R

n+1)
}

.

From (9), we have

zSD = sup

{

μ : Td(p0) − μTd(1) +
m
∑

i=1

ui Td(pi ) ∈ Cn+1,d(R
n+1), u ∈ R

m+

}

= sup

{

μ : Td
(

p0 +
m
∑

i=1

ui pi − μ

)

∈ Cn+1,d(R
n+1), u ∈ R

m+

}

= sup{Θ(u) : u ∈ R
m+}

= zLD.

Furthermore, zSD ≤ zSP ≤ z holds directly from weak conic duality and Proposition 5. 	


From Theorem 2, the Lagrangian dual optimal value has no duality gap if and only if conic
program itself has no duality gap and CPSD tensor relaxation is tight.

3.3 CP and CPSD tensor relaxations for POP with nonnegative variables

Consider following conic programs:

zCP = inf 〈Td(p0), X〉
s.t. 〈Td(pi ), X〉 ≤ 0, i = 1, . . . ,m,

〈Td(1), X〉 = 1,

X ∈ C∗
n+1,d(R

n+1+ ),

(10)

and
zSP,+ = inf 〈Td(p0), X〉

s.t. 〈Td(pi ), X〉 ≤ 0, i = 1, . . . ,m,

〈Td(−xi ), X〉 ≤ 0, i = 1, . . . , n,

〈Td(1), X〉 = 1,

X ∈ C∗
n+1,d(R

n+1),

(11)
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and their conic dual problems

zCD = sup

{

μ : Td(p0) − μTd(1) +
m
∑

i=1

ui Td(pi ) ∈ Cn+1,d(R
n+1+ ), u ∈ R

m+

}

.

zSD,+ = sup

{

μ : Td(p0 − μ) +
m
∑

i=1

ui Td(pi )

+
n
∑

i=1

vi Td(−xi ) ∈ Cn+1,d(R
n+1), u ∈ R

m+, v ∈ R
n+

}

. (12)

Proposition 6 Problem (10) and problem (11) are relaxations for problem (6)with zCP ≤ z+
and zSP,+ ≤ z+.

Theorem 3 For problem (6), its Semi-Lagrangian dual function optimal value and its
Lagrangian dual function optimal value satisfy

zsemi = sup
{

μ : (μ, u) ∈ R × R
m+, Td(L(x; u) − μ) ∈ Cn+1,d(R

n+1+ )
}

,

zLD,+ = sup
{

μ : (μ, u, v) ∈ R × R
m+ × R

n+, Td(L+(x; u, v) − μ) ∈ Cn+1,d(R
n+1)

}

,

and

(a) zLD,+ ≤ zsemi = zCD ≤ zCP ≤ z+.
(b) zLD,+ = zSD,+ ≤ zSP,+ ≤ z+.

Proof By Corollary 1,

Θsemi(u) = inf{L(x; u) : x ∈ R
n}

= sup
{

μ : Td(L+(x; u) − μ) ∈ Cn+1,d(R
n+1)

}

,

Θ+(u, v) = inf{L+(x; u, v) : x ∈ R
n}

= sup
{

μ : Td(L+(x; u, v) − μ) ∈ Cn+1,d(R
n+1)

}

,

then

zsemi = sup{Θsemi(u) : u ∈ R
m+}

= sup
{

μ : (μ, u) ∈ R × R
m+, Td(L(x; u) − μ) ∈ Cn+1,d(R

n+1+ )
}

.

zLD,+ = sup{Θ+(u, v) : u ∈ R
m+, v ∈ R

n+}
= sup

{

μ : (μ, u, v) ∈ R × R
m+ × R

n+, Td(L+(x; u, v) − μ) ∈ Cn+1,d(R
n+1)

}

.

For (a), from (12), we have,

zCD = sup

{

μ : Td(p0) − μTd(1) +
m
∑

i=1

ui Td(pi ) ∈ Cn+1,d(R
n+1+ ), u ∈ R

m+

}

= sup

{

μ : Td(p0) +
m
∑

i=1

ui pi − μ ∈ Cn+1,d(R
n+1+ ), u ∈ R

m+

}

= sup
{

μ : (μ, u) ∈ R × R
m+, Td(L(x; u) − μ) ∈ Cn+1,d(R

n+1+ )
}

= sup{Θsemi (u) : u ∈ R
m+}

= zsemi.
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And zCD ≤ zCP ≤ z+ is an immediate result of weak conic duality and Proposition 6. For
(b), from (12), we have

zSD,+ = sup

{

μ : Td(p0 − μ) +
m
∑

i=1

ui Td(pi )

+
n
∑

i=1

vi Td(−xi ) ∈ Cn+1,d(R
n+1), u ∈ R

m+, v ∈ R
n+

}

= sup

{

μ : Td
(

p0(x) +
m
∑

i=1

ui pi (x)

−
n
∑

i=1

vᵀx − μ

)

∈ Cn+1,d(R
n+1), u ∈ R

m+, v ∈ R
n+

}

= sup
{

μ : (μ, u, v) ∈ R × R
m+ × R

n+, Td(L+(x; u, v) − μ) ∈ Cn+1,d(R
n+1)

}

= sup{Θ+(u, v) : u ∈ R
m+, v ∈ R

n+}
=zLD,+.

And zSD,+ ≤ zSP,+ ≤ z+ holds directly from weak conic duality and Proposition 6. 	


4 Quadratic reformulation for POPs and its relaxations

In Sect. 3, we show that CP andCPSD tensor relaxations are as tight as Lagrangian relaxations
for general POPs. In this section, we will compare CP and CPSD tensor relaxations of a POP
with CP and PSDmatrix relaxations of the quadratic reformulation of the POP. By quadratic
reformulation, we refer to the reformulation of the POP obtained by introducing additional
variables and constraints so that all the polynomials involved in the POP can be rewritten as
quadratic polynomials on the original and additional variables. Given a QCQP reformulation
of a POP, an approximate solution to the POP can be obtained using well-studied SDP or
CP relaxations. On the other hand, as discussed in Sect. 3, relaxations for general POPs can
be obtained directly by using the CP or the CPSD tensor cones. In general, it is difficult to
compare these two relaxation approaches. However, we show in this section that for a fairly
wide class of POPs, the tensor relaxation approach provides bounds for the POP that are
as tight as the bounds for the POP obtained by using the quadratic reformulation approach
described above.

Note that the results stated thus far in the article hold in similar fashion for maximization
problems (beyond minimization problems). In what follows in this section, we purposely
choose to consider maximization POPs for ease of presentation of Theorem 4, the main
result in this section.

4.1 QCQP reformulation of a POP

A general POP can be reformulated as a QCQP in different ways by adding appropriate
additional variables and constraints (see, e.g., [43], Sect. 4.5) In this section, the main focus
is on some classes of 4th degree POPs. Thus, we use a specific reformulation approach for
such problems; that is, we will introduce additional variables to represent the quadratic terms
(i.e. the square of single variable and the multiplication of two variables) of the variables in
the original problem. Specifically, consider the following POP:
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sup p0(x)

s.t. pi (x) ≤ di , i = 1, . . . ,m0,

q j (x) ≤ 0, j = 1, . . . ,m1,

x ∈ R
n+,

(13)

where p0(x) ∈ R4[x], q j (x) ∈ R2[x] (recall that Rd [x] := {p ∈ R[x] : deg(p) ≤ d})
and pi (x) are homogeneous polynomials of degree 4. Problem (13) encompasses a large
class of 4th degree optimization problems, including QCQPs. Some problems that belong
to this class are biquadratic assignment problems [38,46], alternating current optimal power
flow (ACOPF) problems [11,23,28,32], independent component analysis problems [16],
blind channel equalization problems in digital communication [37] and sensor localization
problems [7] .

Define an index set

S =
{

(a, b, c) ∈ N
3 : a = 1, . . . , n, b = a, . . . , n, c =

(

n − a

2

)

(a − 1) + b
}

, (14)

as the index for the additional variables to be added, where the index c goes from 1 to |S| =
(n+1

2

)

, which is themaximumnumber of additional variables needed to reformulate 4th degree
polynomials using 2nd degree polynomials. Specifically, introducing additional variables
yc = xaxb,∀(a, b, c) ∈ S, the QCQP reformulation of problem (13) can be reformulated as

sup q0(x, y)

s.t. hi (y) ≤ di , i = 1, . . . ,m0,

q j (x) ≤ 0, j = 1, . . . ,m1,

yc − xaxb = 0,∀(a, b, c) ∈ S,

x ∈ R
n+, y ∈ R

|S|
+ ,

(15)

where q0(x, y) and hi (y), i = 1, . . . ,m0, are the reformulated quadratic polynomials after
replacing xaxb with yc, ∀(a, b, c) ∈ S in q0(x), pi (x), i = 1, . . . ,m0. Clearly, problem (13)
and (15) are equivalent. Furthermore, as pi (x) and hi (y) are homogeneous polynomials, then
it follows that

p̃i (x) = pi (x) = hi (y) = h̃i (y), i = 1, . . . ,m0. (16)

This fact will be used in Theorem 4 later in this section.
For ease of notation, let z = (x, y) ∈ R

n+|S|
+ , then (15) is equivalent to

sup q0(z)

s.t. hi (z) ≤ di , i = 1, . . . ,m0,

q j (z) ≤ 0, j = 1, . . . ,m1,

zn+c − zazb = 0,∀(a, b, c) ∈ S,

z ∈ R
n+|S|
+ .

(17)

As an illustration of the quadratic reformulation discussed above, consider the next exam-
ple.
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Example 1 (QCQP reformulation) Consider the following univariate program,

sup x4 + x3 + x2 + x + 1

s.t. x4 ≤ 1,

x2 − x − 2 ≤ 0,

− x + 1 ≤ 0,

x ∈ R+.

(18)

Let y = x2 and z = (x, y) ∈ R
2+, then problem (18) is equivalent to

sup y2 + xy + y + x + 1 sup z22 + z1z2 + z2 + z1 + 1

s.t. y2 ≤ 1, s.t. z2 ≤ 1,

y − x − 2 ≤ 0, ≡ z2 − z1 − 2 ≤ 0,

− x + 1 ≤ 0, − z1 + 1 ≤ 0,

y − x2 = 0, z2 − z21 = 0,

x ∈ R+, y ∈ R+. z ∈ R
2+.

4.2 CP matrix relaxations for a QCQP

Consider the following CP matrix relaxations for problem (17),

sup 〈T2(q0(z)), Z〉
s.t. 〈T2(hi (z)), Z〉 ≤ di , i = 1, . . . ,m0,

〈T2(q j (z)), Z〉 ≤ 0, j = 1, . . . ,m1,

〈T2(1), Z〉 = 1,

Z1,n+c+1 − Za+1,b+1 = 0,∀(a, b, c) ∈ S,

Z ∈ C∗
n+|S|+1,2

(

R
n+|S|+1
+

)

.

(19)

After relaxing the equality constraints Z1,c+n+1−Za+1,b+1 = 0,∀(a, b, c) ∈ S into inequal-
ity constraints, we have the following CP tensor relaxation of problem (19)

sup 〈T2(q0(z)), Z〉
s.t. 〈T2(hi (z)), Z〉 ≤ di , i = 1, . . . ,m0,

〈T2(q j (z)), Z〉 ≤ 0, j = 1, . . . ,m1,

〈T2(1), Z〉 = 1,

Z1,c+n+1 − Za+1,b+1 ≤ 0,∀(a, b, c) ∈ S,

Z ∈ C∗
n+|S|+1,2

(

R
n+|S|+1
+

)

,

(20)

Proposition 7 If problem (19) is feasible and the coefficients of q0(z) in problem (19) are
nonnegative, then problems (19) and (20) are equivalent.

Proof This follows from the fact that problem (20) is a relaxation of problem (19), and
the fact that if the coefficients of q0(z) are nonnegative, then any optimal solution Z ∈
C∗
n+|S|+1,2(R

n+|S|+1
+ ) of problem (20) would satisfy Z1,c+n+1 = Za+1,b+1,∀(a, b, c) ∈ S.	
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Recall that the CP tensor relaxation (10) for general POPs. Below, we apply it directly to
problem (17) to obtain the following conic program,

sup 〈T4(p0(x)), X〉
s.t. 〈T4(pi (x)), X〉 ≤ di , i = 1, . . . ,m0,

〈T4(q j (x)), X〉 ≤ 0, j = 1, . . . ,m1,

〈T4(1), X〉 = 1,

X ∈ C∗
n+1,4

(

R
n+1+

)

,

(21)

Problem (19) and (21) can be seen as two different relaxations for the POP (13). In prob-
lem (19) the polynomialswith degree higher than2 are reformulated as quadratic polynomials.
SDP and CP matrix relaxations for the reformulated QCQP are well studied in the literature
[3,8–10,13,15,27,49, among others]. However, the introduction of the additional variables
and constraints in problem (19) may result in the problem not satisfying the conditions
required for QCQPs to be equivalent to their associated CP relaxation, even when the origi-
nal POP satisfies the conditions required for its CP tensor relaxation being equivalent to the
POP. Also, the additional variables and constraints can become substantially burdensome in
terms of the problem’s size. In contrast, in problem (21) the polynomials with degree higher
than 2 are represented by higher order tensors which avoids introducing additional variables
and constraints. Next we will show that under some conditions, the latter relaxation will
provide bounds that are at lease as tight as the ones obtained with the former approach for
problem (13).

Lemma 1 ([43, Lemma 2]) For any d > 0 and n > 0, C∗
n+1,d(R

n+1+ ) = conic(Md({0, 1} ×
R
n+)).

Theorem 4 Consider a feasible problem (13) where the coefficients of p0(x) are nonnega-
tive, then problem (19) is a relaxation of problem (21).

Proof By Proposition 7, problems (19) and (20) are equivalent. Using Lemma 1, for any
feasible solution X ∈ C∗

n+1,4(R
n+1+ ) to problem (21) we have

X =
n1
∑

s=1

λsM4(1, us) +
n0
∑

t=1

γt M4(0, vt ),

for some n0, n1 ≥ 0, λs, γt > 0 and us, vt ∈ R
n+. Then by using (1),

1 = 〈T4(1), X〉 =
n1
∑

s=1

λs,

di ≥ 〈T4(pi ), X〉 =
n1
∑

s=1

λs pi (us) +
n0
∑

t=1

γt p̃i (vt ), i = 1, . . . ,m0,

0 ≥ 〈T4(q j ), X〉 =
n1
∑

s=1

λsq j (us) +
n0
∑

t=1

γt q̃ j (vt ), j = 1, . . . ,m1,

(22)

with an objective function value of
∑n1

s=1 λs p0(us) +∑n0
t=1 γt p̃0(vt ). Recall the index set S

in (14), and construct a vector of ws , w′
t for s = 1, . . . , n1, t = 1, . . . , n0 as follows:

(ws)c = (us)a(us)b, (a, b, c) ∈ S,

(w′
t )c = (vt )a(vt )b, (a, b, c) ∈ S. (23)
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Next we show that

Z =
n1
∑

s=1

λsM2(1, (us, ws)) +
n0
∑

t=1

γt M2(0, (vt , w
′
t )), (24)

is a feasible solution to problem (19). Clearly, Z ∈ C∗
n+|S|+1,2(R

n+|S|+1
+ ), and from equa-

tion (23) and (24), we have

Z1,c+n+1 =
n1
∑

s=1

λs(ws)c =
n1
∑

s=1

λs(us)a(us)b,∀(a, b, c) ∈ S,

Za+1,b+1 =
n1
∑

s=1

λs(us)a(us)b +
n0
∑

t=1

γt (vt )a(vt )b,∀(a, b, c) ∈ S,

which indicates that Z1,c+n+1 ≤ Za+1,b+1, ∀(a, b, c) ∈ S. From (22), it follows that

〈T2(1), Z〉 =
n1
∑

s=1

λs = 1,

〈T2(q j ), Z〉 =
n1
∑

s=1

λsq j (us) +
n0
∑

t=1

γt q̃ j (vt ) ≤ 0, j = 1, . . . ,m1.

Also, given that pi (x), i = 1, . . . ,m0 are homogeneous polynomials of degree 4, it follows
from equations (16) and (22) that

〈T2(hi ), Z〉 =
n1
∑

s=1

λshi (ws) +
n0
∑

t=1

γt h̃i (w
′
t )

=
n1
∑

s=1

λs pi (us) +
n0
∑

t=1

γt p̃i (vt ) ≤ di , i = 1, . . . ,m0. (25)

Furthermore, the feasible solution Z has an objective value equal to

n1
∑

s=1

λsq0(us, ws) +
n0
∑

t=1

γt q̃0(vt , w
′
t ) =

n1
∑

s=1

λs p0(us) +
n0
∑

t=1

γt q̃0(vt , w
′
t ).

Under the condition that p0(x) has nonnegative coefficients and x ∈ R
n+, we have

n0
∑

t=1

γt q̃0(vt , w
′
t ) ≥

n0
∑

t=1

γt p̃0(vt ).

Therefore, from any feasible solution to problem (21), we can construct a feasible solution
to problem (20) with a larger objective function value, which indicates that problem (19) is
a relaxation for problem (21). 	


To illustrate the use of the condition that pi (x), i = 1, . . . ,m0 are homogeneous poly-
nomials of degree 4 in Theorem 4, consider a constraint with two variables, p1(x1, x2) =
x41 + x21 x2 ≤ 1, x1, x2 ≥ 0. For the QCQP reformulation of the constraint, the additional
variable y = x21 is introduced. Then h1(x1, x2, y) = y2 + yx2. Thus

h̃1(x1, x2, y) = y2 + yx2 ≥ y2 = x41 = p̃1(x1, x2),
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and it indicates (16)might not hold, which is needed for the proof of Theorem4.Also note that
for minimization POPs, Theorem 4 applies after changing the condition on the polynomial
p0(x) to have nonpositive coefficients.

Theorem 4 proves that the CP tensor relaxation can provide bounds that are at lease as
tight as the ones obtained from CP matrix relaxations of a quadratic reformulation of a class
of POPs. In next section, we will provide the results of numerical experiments that show that
indeed, bounds for a POP based on CP tensor relaxations are tighter than the ones obtained
via CP matrix relaxations.

5 Numerical comparison of two relaxations for PO

Unlike the tractability of the PSD matrix cone, the CPSD tensor cone is not tractable in
general. Also similar to the intractability of CP matrices, the CP tensor cone is also not
tractable in general. In this section, we will discuss and develop tractable approximations for
the CP and the CPSD tensor cones. Then, we use these approximations to show that these CP
and CPSD tensor relaxation of a POP provide tighter bounds than CP and PSD relaxations
of the QCQP obtained from a quadratic reformulation of the POP.

5.1 Approximation of the CP and CPSD tensor cones

Let us first introduce some additional notation. For T = Md(x), x ∈ R
n , denote T(i1,...,id )

as the element in (i1, . . . , id) position of tensor T , where (i1, . . . , id) ∈ {1, . . . , n}d . To be
more specific, i j with j = 1, . . . , d means the choice of {x1, . . . , xn} in the jth position in
the tensor product, i.e. i1 = 2 means choosing x2 as the first position in the tensor product.
To illustrate, let x ∈ R

3 and let

T 1 = M2(x) =
⎛

⎝

x21 x1x2 x1x3
x1x2 x22 x2x3
x1x3 x2x3 x23

⎞

⎠ ,

then T 1
(1,2) = x1x2 and it is in the (1,2) position in T 1. Also for T = Md(x), x ∈ R

n , when
d > 2, let T(i1,...,id−2,·,·) denote the matrix whose elements are given by

(

T(i1,...,id−2,·,·)
)

jk = T(i1,...,id−2, j,k), j, k = 1, . . . , n.

For example, let T 2 = M3(x), x ∈ R
3, then

T 2
(1,·,·) =

⎛

⎝

x31 x21 x2 x21 x3
x21 x2 x1x22 x1x2x3
x21 x3 x1x2x3 x1x23

⎞

⎠ , T 2
(2,·,·) =

⎛

⎝

x21 x2 x1x22 x1x2x3
x1x22 x32 x22 x3
x1x2x3 x22 x3 x2x23

⎞

⎠ .

Definition 5 Let T = Md(x), x ∈ R
n . For any (i1, . . . , id−2) ∈ {1, . . . , n}d−2,

T(i1,...,id−2,·,·) is a principal matrix if Ik ⊆ {0, . . . , d − 2} is even for all k = 1, . . . , n,
where Ik is an ordered set of the number of appearance i j = k,∀ j = 1, . . . , d − 2 where
k = 1, . . . , n.

For example, let T 3 = M8(x), x ∈ R
3, then

T 3
(1,1,2,2,3,3,·,·), T

3
(1,2,2,2,1,2,·,·), T

3
(2,3,2,1,3,1,·,·) are principal matrices;

T 3
(1,1,1,2,3,3,·,·), T

3
(1,2,2,2,2,2,·,·), T

3
(2,3,2,2,3,1,·,·) are not principal matrices.
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Next we will discuss the approximation strategies for the CP and the CPSD tensor cones
based on PSD and DNN matrices.

Definition 6 A symmetric matrix X is called doubly nonnegative (DNN) if and only if X � 0
and X ≥ 0, where X ≥ 0 indicates that every element of X is nonnegative.

Proposition 8 Let T ∈ Sn,d be a given symmetric tensor.

(a) If T ∈ C∗
n,d(R

n+), then T(i1,...,id ) ≥ 0, T(i1,...,id−2,·,·) � 0,∀(i1, . . . , id) ∈ {1, . . . , n}d .
(b) If T ∈ C∗

n,d(R
n), for all principalmatrices T(i1,...,id−2,·,·), T(i1,...,id−2,·,·) � 0,∀(i1, . . . , id)

∈ {1, . . . , n}d .
Proof For part (a), by Proposition 3 (a), T = ∑

i∈N λi Md(xi ), where xi ∈ R
n+, λi ≥ 0, for

all i ∈ N, and
∑

i∈N λi = 1. Then it is clear that T(i1,...,id ) ≥ 0, and

T(i1,...,id−2,·,·) =
∑

i∈N
λi

n
∏

k=1

(xik)
Ik (xi (xi )ᵀ), (26)

as xi (xi )ᵀ � 0,∀i ∈ N and
∏n

k=1(x
i
k)

Ik ≥ 0, then T(i1,...,id−2,·,·) � 0, and T(i1,...,id−2,·,·) ≥ 0
for all (i1, . . . , id) ∈ {1, . . . , n}d . For part (b), notice that the number of appearance Ik, k =
1, . . . , n is even if T(i1,...,id−2,·,·) is a principal matrix, then the proof follows as in part (a)
from the fact that

∏n
k=1(x

i
k)

Ik ≥ 0 in (26). 	

Example 2 To illustrate Proposition 8, take T ∈ C∗

2,4(R
2+) as an example. By Proposition 3

(a), T = ∑

i∈N λi M4(xi ), where λi ≥ 0,
∑

i λi = 1 and xi ∈ R
2+. Then for any y ∈ R

2,

yᵀT(1,2,·,·)y = yᵀ∑

i∈N
λi M4(x

i )(1,2,·,·)y = xi1x
i
2

∑

i∈N
(yᵀxi )2 ≥ 0,

which indicates that T(1,2,·,·) is a 2 × 2 positive semidefinite matrix.

Next we discuss linear matrix inequality (LMI) approximation of the CPSD and the CP
tensor cones. Based on Proposition 8, define the following tensor cones

KSDP
n,d =

{

T ∈ Sn,d : T(i1,...,id−2,·,·) � 0, ∀(i1, . . . , id−2) ∈ {1, . . . , n}d−2
}

,

KL
n,d =

{

T ∈ Sn,d : T(i1,...,id ) ≥ 0, ∀(i1, . . . , id) ∈ {1, . . . , n}d
}

,

KDNN
n,d = {

T ∈ Sn,d : T(i1,...,id−2,·,·) � 0, T(i1,...,id−2,·,·)

≥ 0, ∀(i1, . . . , id−2) ∈ {1, . . . , n}d−2
}

. (27)

It is easy to see these cones are convex closed cones satisfying

C∗
n,d(R

n) ⊆ KSDP
n,d ,

C∗
n,d(R

n+) ⊆ KDNN
n,d ⊆ KL

n,d .
(28)

Consider the following conic program,

[TP − K] inf 〈Td(p0), X〉
s.t. 〈Td(pi ), X〉 ≤ 0, i = 1, . . . ,m,

〈Td(1), X〉 = 1,
X ∈ Kn+1,d .
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Table 1 Size comparison of different relaxations for 4th-degree POPs

PSD matrix size PSD matrix number Total number of variables

[QPSDP ] (1 + n + |S|) × (1 + n + |S|) 1 O(n4)

[TP − KSDP ] (1 + |S|) × (1 + n) n O(n3)

[QPDNN ] (1 + n + |S|) × (1 + n + |S|) 1 O(n4)

[TP − KDNN ] (1 + n) × (1 + n) O(n2) O(n4)

From (28), problem [TP-K] is a LMI relaxation for problem (8) when K is one of the cones
defined in (27). These relaxations allow to approximately solve general POPs. In particular,
it follows that

z[TP−KSDP ] ≤ zSP ≤ z,

z[TP−KL ] ≤ z[TP−KDNN ] ≤ zCP ≤ z+.

5.2 Numerical results

In Sect. 5.1, several LMI approximations for the CP and the CPSD tensor cones have been
proposed to provide tractable relaxations for CP and CPSD tensor programs. In this section,
we will provide numerical results on more general POP cases (compared to Sect. 4.2) in
order to compare the bounds of two relaxation approaches discussed in Sect. 4.2. Similar to
[TP−KL ] and [TP−KDNN ], denote [QPL ] and [QPDNN ]as the linear relaxation andDNN
relaxation for problem (19). Also, denote by [QPSDP ] the SDP relaxation for the quadratic
reformulation of problem (7). In Table 1, we compare the two approaches in terms of number
and size of PSD matrices for 4th-degree POPs, to show that both approaches result in the
solution of similar sized SDPs.

Next we present some preliminary results on small scale POPs to illustrate the perfor-
mance of CP and CPSD tensor relaxations. Note that only bounds are compared as the time
differences are negligible for the small scale examples considered below. All the numerical
experiments are conducted on a 2.4 GHz CPU laptop with 8 GB memory. We implement all
the models with YALMIP [34] in Matlab. We use SeDuMi as the SDP solver and CPLEX
as the LP solver. For examples in Sects. 5.2.4 and 5.2.5, we use Couenne as the global
solver.

5.2.1 Simple POP

Consider the following problem,

min

(

n
∑

i=1

xi

)4

s.t. x41 = 1,

xi ≥ 0, i = 1, . . . , n.

(29)

By observation, the optimal value is 1, with an optimal solution x∗
1 = 1, x∗

k = 0,
k = 2, . . . , n. The QCQP reformulation of (29) with the least number of additional variables
is
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min y21

s.t. y1 =
(

n
∑

i=1

xi

)2

,

y2 = x21 ,

y22 = 1,

xi ≥ 0, i = 1, . . . , n,

y1, y2 ≥ 0.

(30)

Relaxation [QPL ] for (30) gives an optimal value of 0. Relaxation [TP − KL ] can be
directly applied to (29) and gives an optimal value of 1, which means the approximation by
using tensor relaxation is tight.

5.2.2 Bi-quadratic POPs

Bi-quadratic problem and its difficulty have been studied in [33]. Consider the following
specific bi-quadratic POP,

min
x∈Rn ,y∈Rm

p0 :=
∑

1≤i< j≤n
1≤a<b≤m

xi x j ya yb

s.t. ‖x‖2 = 1, ‖y‖2 = 1,

(31)

where ‖ · ‖ is the standard Euclidean norm. It is clear that problem (31) is equivalent to

min
x∈Rn ,y∈Rm

1

4
[xᵀ(ene

ᵀ
n − In)x][yᵀ(eme

ᵀ
m − Im)y]

s.t. ‖x‖2 = 1, ‖y‖2 = 1,

where en, em are the all-ones vectors of dimension n and m respectively, and In, Im are
the identity matrices of dimension n × n and m × m. It is clear that the optimal value is
− 1

4 (max{n,m} − 1). By defining an index set

S(n) = {

(i, j, k) ∈ N
3 : i = 1, . . . , n − 1, j = i + 1, . . . , n, k

=
(

n − i

2

)

(i − 1) + j − i

}

,

we can reformulate problem (31) as a QCQP by introducing appropriate additional variables
and constraints as

min
∑

1≤k≤|S(n)|
1≤c≤|S(m)|

wk zc

s.t. wk = xi x j ,∀(i, j, k) ∈ S(n),

zc = ya yb,∀(a, b, c) ∈ S(m),

‖x‖2 = 1, ‖y‖2 = 1,

(32)

where w, z ∈ R
m with |S(n)| = n(n − 1)/2, |S(m)| = m(m − 1)/2. Let u = (x, y, w, z),

then a naive SPD relaxation of problem (32) is given by
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min
∑

n+m+1≤p≤n+m+|S(n)|
n+m+|S(n)|+1≤q≤n+m+|S(n)|+|S(m)|

Qpq

s.t. un+m+k = Qij,∀(i, j, k) ∈ S(n),

un+m+|S(n)|+c = Qn+a,n+b,∀(a, b, c) ∈ S(m),

n
∑

i=1

Qii = 1,

n+m
∑

i=n+1

Qii = 1,

(

1 uᵀ

u Q

)

∈ C∗
n+m+|S(n)|+|S(m)|+1,2

(

R
n+m+|S(n)|+|S(m)|+1

)

.

(33)

Although we use (33) in the analysis that follows, it is worth to mention that more elaborated
SDP relaxations of (31), that provide bounds with guaranteed performance, are discussed
in [33].

Proposition 9 Problem (33) is unbounded.

Proof Let ū be a (n + m + |S(n)| + |S(m)|) × 1 all-zero vector and let Q̄ be a (n + m +
|S(n)| + |S(m)|) × (n + m + |S(n)| + |S(m)|) matrix such that

Q̄11 = Q̄n+1,n+1 = 1, Q̄n+m+1,n+m+1 = Q̄n+m+|S(n)|+1,n+m+|S(n)|+1 = M2,

Q̄n+m+1,n+m+|S(n)|+1 = Q̄n+m+|S(n)|+1,n+m+1 = −M,

where M is a positive number and let all other entries for Q̄ be 0. It is clear that (ū, Q̄) is a
feasible solution to problem (33). However, as M → ∞, the objective function values goes
to −∞, thus the problem is unbounded. 	


Proposition 9 shows that the relaxation [QPSDP ] for problem (31) fails to provide a bound.
However, a CPSD tensor cone can be directly applied to problem (31),

min 〈T4(p0), X〉
s.t. 〈T4(‖x‖2), X〉 = 1,

〈T4(‖y‖2), X〉 = 1,

〈T4(1), X〉 = 1,

X ∈ C∗
n+m+1,4

(

R
n+m+1) ,

(34)

where p0(x) is the objective function of problem (31).
In Table 2, we can see that the relaxation [TP−KSDP ] can provide the optimal value for

problem (33) while relaxation [QPSDP ] for the QCQP reformulation of problem (33) fails
to give a bound.
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Table 2 Relaxation Comparisons for Example 5.2.2

(n,m) Optimal [TP − KSDP ] (n,m) Optimal [TP − KSDP ]
(2,2) −0.25 −0.25 (2, 10) −2.25 −2.25

(3,3) −0.50 −0.50 (3, 9) −2.00 −2.00

(4,4) −0.75 −0.75 (4, 8) −1.75 −1.75

(5,5) −1.00 −1.00 (5, 7) −1.50 −1.50

(6,6) −1.25 −1.25

(7,7) −1.50 −1.50

(8,8) −1.75 −1.75

(9,9) −2.00 −2.00

(10,10) −2.25 −2.25

5.2.3 Non-convex QCQP

Consider the following nonconvex QCQP,

min f0(x) = −8x21 − x1x2 − 13x22 − 6x1 − x2

s.t. f1(x) = x21 + x1x2 + 2x22 − 3x1 − 3x2 − 7 ≤ 0,

f2(x) = 2x1x2 + 33x1 + 15x2 − 10 ≤ 0,

f3(x) = x1 + 2x2 − 6 ≤ 0,

x1, x2 ≥ 0.

(35)

The optimal solution of problem (35) is x∗ = (0, 0.6667)ᵀ with f0(x∗) = −6.4444
(see [51]). A PSD relaxation and a CP relaxation of (35) have been studied in [51],
that give bounds of −103.43 and −26.67 respectively for problem (35) (refer to Table
2 in [51], where (SDP+RLT) is actually a DNN relaxation for the CP relaxation
of (35)).

Now consider the equivalent formulation of (35), obtained after adding the valid inequal-
ities x2 f2(x) ≤ 0, x21 f1(x) ≤ 0:

min f0(x) = −8x21 − x1x2 − 13x22 − 6x1 − x2

s.t. f1(x) = x21 + x1x2 + 2x22 − 3x1 − 3x2 − 7 ≤ 0,

f2(x) = 2x1x2 + 33x1 + 15x2 − 10 ≤ 0,

f3(x) = x1 + 2x2 − 6 ≤ 0,

x2 f2(x) ≤ 0,

x21 f1(x) ≤ 0,

x1, x2 ≥ 0.

(36)

The QCQP reformulation of (36) obtained by adding appropriate additional variables and
constraints is given by
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Table 3 Relaxation comparisons for problem (35)

Without Valid Inequalities With Valid Inequalities With PSD–RLT

[QPSDP ] [QPDNN ] [QPDNN ] [TP − KDNN ] [TP − KDNN ]
Bound −103.43 −26.67 −26.67 −12.83 −6.44a

a Optimal value is obtained

min f0(x) = −8x21 − x1x2 − 13x22 − 6x1 − x2

s.t. − y1 = x21 + x1x2 + 2x22 − 3x1 − 3x2 − 7 ≤ 0,

− y2 = 2x1x2 + 33x1 + 15x2 − 10 ≤ 0,

f3(x) = x1 + 2x2 − 6 ≤ 0,

y3 = x21 ,

− x2y2 ≤ 0,

− y1y3 ≤ 0,

x1, x2, y1, y2, y3 ≥ 0.

After using the [QPDNN ] relaxation on problem (36) with valid inequalities, the original
bound of -26.67 obtained from the [QPDNN ] relaxation on problem (35) is not improved.
In contrast, the [TP − KDNN ] tensor relaxation on problem (36) provides a tighter bound,
−12.83, for the optimal value of (35).

In addition to adding valid inequalities discussed above, adding valid PSD constraints
based on the reformulation linearization technique (RLT) can further strengthen the relax-
ations. Similar to the second order RLT-based valid constraints introduced in [14], using the
constraint 〈T4(1), X〉 = 1, the conic constraint X ∈ C∗

3,4(R
3), and a quadratic constraint

c0+c10x1+c01x2+c11x21 +c12x1x2+c22x22 ≥ 0, the following valid PSD–RLT constraints
for the CP tensor relaxation of problem (36) can be constructed

(

c0 + c10x1 + c01x2 + c11x
2
1 + c12x1x2 + c22x

2
2

)

X(0,0,·,·)
= c0X(0,0,·,·) + c10X(1,0,·,·) + c01X(2,0,·,·) + c11X(1,1,·,·)

+ c12X(1,2,·,·) + c22X(2,2,·,·) � 0,

(37)

where X(0,0,·,·) � 0 as discussed in Sect. 5.1. Note that the CP tensor relaxations allow for
the straightforward use of the valid PSD–RLT constraints. More importantly, with the valid
PSD–RLT constraints, the [TP − KDNN ] tensor relaxation gives the optimal value -6.4444
of problem (35).

A summary of the numerical results on problem (35) is given in Table 3.

5.2.4 Random objective function with ellipsoidal feasible region

Here,wepresent numerical results on randomly generated 4th degreePOPswith an ellipsoidal
feasible region. The test problem is

min p0(x1, x2, x3)

s.t. (x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2 ≥ 0.22,

(x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2 ≤ 0.62,

0 ≤ x1, x2, x3 ≤ 1,

(38)
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Table 4 Bound comparisons for problem (38)

Test No. [QPDNN ] [TP − KDNN ] ratio [TP − KDNN ]+ Couenne

1 −4.6732 −3.2860 36.82% −0.9055a −0.9055a

2 −8.8748 −5.2725 78.15% −4.2654a −4.2654a

3 −5.6429 −4.1135 76.76% −3.6477a −3.6477a

4 −3.5507 −2.1173 53.59% −0.8761a −0.8761a

5 −11.0434 −9.5248 37.81% −7.0268a −7.0268a

6 −12.6822 −10.5600 24.46% −4.0055a −4.0055a

7 −3.0709 −2.4427 45.84% −1.7005a −1.7005a

8 0 0.0122 100% 0.0122a 0.0122a

9 −1 0.0091 100% 0.0091a 0.0091a

10 −5.2621 −1.9963 83.15% −1.3345a −1.3345a

11 −0.8450 −0.8438 0.30% −0.4922a −0.4922a

12 −3.5894 −2.9945 100% −1.4597a −1.4597a

13 −0.8554 −0.7762 11.70% −0.1787a −0.1787a

14 −6.1631 −2.6502 81.87% −1.8723a −1.8723a

15 −0.2666 −0.2666 0 −0.1487a −0.1487a

16 −6.0238 −5.6216 10.16% −2.0645a −2.0645a

17 −4.9579 −4.9579 0 −4.0253a −4.0253a

18 0 0.0080 100% 0.0080a 0.0080a

19 −12.1584 −10.7368 16.94% −3.7659a −3.7659a

20 −0.6545 0.0112 100% 0.0112a 0.0112a

a Optimal value is obtained.
[TP − KDNN ]+:= [TP − KDNN ]with PSD–RLT constraints

where p0(x1, x2, x3) is a 4th degree polynomial whose coefficients are randomly selected
from integers in the range [−5, 5]. The first constraint make the feasible region non-convex.
Also, it is easy to see that the problem is feasible and bounded. We use the [TP − KDNN ]
relaxation to approximate problem (38) and the [QPDNN ]relaxation to approximate the
QCQP reformulation of problem (38). To compare these relaxation, and following [51], we
use the following improvement ratio

ratio = [TP − KDNN ] − [QPDNN ]
fopt − [QPDNN ] ,

where fopt denotes the optimal objective value of problem (38).
We also add PSD–RLT constraints to problem (38) using the constraints (x1 − 0.5)2 +

(x2−0.5)2+(x3−0.5)2 ≥ 0.22 and (x1−0.5)2+(x2−0.5)2+(x3−0.5)2 ≤ 0.62. In Table 4,
the relaxation [TP − KDNN ] with PSD–RLT constraints provides the tightest bounds, and
in fact, the optimal value of the problems. The relaxation [TP − KDNN ] provides tighter
bounds than [QPDNN ] for most test instances. For instances 8, 9, 18 and 20, the relaxation
[TP−KDNN ] gives the optimal objective value, while [QPDNN ] is not tight. For instances 15
and 17, [TP−KDNN ] and [QPDNN ] give the same bound. An average of 50% improve ratio
implies that [TP−KDNN ] has better performance [QPDNN ] in approximating problem (38).
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Table 5 Relaxation
Comparisons for Randomly
Generated POPs

Test No. Couenne [TP − KDNN ] [QPDNN ]
1 −0.1790 −0.1852 Unbounded

2 10.9275 7.8888 0

3 −158.751 −245.7888 Unbounded

4 1.3041 1.1044 0

5 2.5418 1.9276 0

6 0.7107 −2.0031 Unbounded

7 1.0663 −6.6609 Unbounded

8 −8.0284 −56.0924 Unbounded

9 0.0275 0.0272 0

10 8.0032 2.4765 Unbounded

5.2.5 Numerical results on randomly generated POPs

Next, we present numerical results on randomly generated POPs. The objective function is a
4th degree homogenous polynomial on 3 variables,with two 4th degree polynomial inequality
constraints, a linear inequality constraint and nonnegative variables. The coefficients in the
objective function are integers in the range [−5, 5] and the coefficients of the two polynomial
constraints are integers in the range [−10, 10] and the coefficients of linear constraint are
integers in the range [0, 5], with a right hand side coefficient in the range [5, 15]. We generate
the problems and solve them with Couenne. For those problems which are feasible in
Couenne, we use [TP − KDNN ] to directly approximate these problems and [QPDNN ] to
approximate the QCQP reformulation of these problems. Note that the convexity of these
problems is not tested. Results are shown in Table 5, where we can clearly see that relaxation
[QPDNN ] fails to give a valid bound for instances 1, 3, 6, 7, 8 and 10, while the tensor
relaxation [TP − KDNN ] can provide a valid lower bound for all tested instances.

6 Conclusion

This article presents convex relaxations for general POPs over CP and CPSD tensor cones.
Bomze, in [8] shows that CP matrix relaxations are as tight as Lagrangian relaxations for
QPs with both linear and quadratic constraints. A natural question is whether similar results
hold for general POPs that are not necessarily quadratic. Introducing CP and CPSD tensors
to reformulate or relax general POPs, we generalize Bomze’s results to general POPs; that is,
the CP tensor relaxations are as tight as Lagrangian relaxations for general POPs with degree
higher than 2. These results provide another way of using symmetric tensor cones to globally
approximate non-convex POPs. Burer in [13] shows that every QPwith linear constraints and
binary variables can be reformulated as a CP program and that QCQPs can be reformulated
by CP programs under appropriate conditions. Note that one can reformulate general POPs
as QPs by introducing additional variables and constraints and then apply Burer’s results to
obtain global bounds on general POPs. Peña et al. generalize Burer’s results in [43] to show
that under certain conditions a general POP can be reformulated as a conic program over the
CP tensor cone. A natural question is which reformulations or relaxations will provide tighter
bounds for general POPs. In this paper, we show that the bound of CP tensor relaxations is
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tighter than the bound ofCPmatrix relaxations for the quadratic reformulation of some classes
of general POPs. This validates the advantages of using tensor cones for convexification of
non-convex POPs. We also provide some tractable approximations of the CP tensor cone as
well as the CPSD tensor cone, which allows the possibility to compute the bounds based on
these tensor relaxations. Some preliminary numerical results on small scale POPs show that
these tensor cone approximations can provide good bounds for the global optimum of the
original POPs. More importantly, in the numerical results performed, the bounds obtained by
CPorCPSD tensor cone programs yield tighter bounds than the ones obtainedwithCPor SDP
matrix relaxations for quadratic reformulation of general POPs using a similar computational
effort. In the future, it will be interesting to further characterize the classes of POPs for which
the CP and CPSD tensor cone relaxations provide tighter bounds than the CP and PSDmatrix
relaxations of its associated quadratic reformulations. Also, more POP instances with larger
sizes can be tested and numerical comparisons on these more complicated POP cases can be
made by developing appropriate code to address these problems.
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