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Abstract We consider a class of bilevel linear mixed-integer programs (BMIPs), where the
follower’s optimization problem is a linear program. A typical assumption in the literature for
BMIPs is that the follower responds to the leader optimally, i.e., the lower-level problem is
solved to optimality for a given leader’s decision.However, this assumptionmaybe violated in
adversarial settings, where the follower may be willing to give up a portion of his/her optimal
objective function value, and thus select a suboptimal solution, in order to inflictmore damage
to the leader. To handle such adversarial settings we consider a modeling approach referred to
as α-pessimistic BMIPs. The proposed method naturally encompasses as its special classes
pessimistic BMIPs and max–min (or min–max) problems. Furthermore, we extend this new
modeling approach by considering strong-weak bilevel programs, where the leader is not
certain if the follower is collaborative or adversarial, and thus attempts to make a decision
by taking into account both cases via a convex combination of the corresponding objective
function values. We study basic properties of the proposed models and provide numerical
examples with a class of the defender–attacker problems to illustrate the derived results. We
also consider some related computational complexity issues, in particular, with respect to
optimistic and pessimistic bilevel linear programs.
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1 Introduction

Bilevel programs form a class of optimization problems that are suitable for modeling hier-
archical settings with two independent decision-makers, namely, the leader and the follower,
who are also often referred to as the upper- and lower-level decision-makers, respec-
tively [5,15]. The involved decision-makers may be collaborative or conflicting. The latter
situation often arises in military and law-enforcement applications, e.g., defender–attacker,
attacker–defender and interdiction models [8,24,36].

In bilevel programs the leader decides first. In response to the leader’s decision, the
follower solves the lower-level optimization problem that is parameterized by the leader’s
decisions, e.g., the right-hand sides of the follower’s constraints are functions of the leader’s
decision variables. On the other hand, the leader’s objective function is affected by the
follower’s response; most typically it includes a term that is a function of the follower’s
decision variables.

There are two approaches for modeling the follower’s response in bilevel programs [13]:
the optimistic formulation assumes that if there are multiple optimal solutions to the fol-
lower’s problem for a given decision by the leader, then the follower selects the solution
that is the most favorable for the leader. On the contrary, the pessimistic formulation
assumes that the follower selects the least favorable solution for the leader. One should
note that in the case of max–min (or min–max) problems, optimistic and pessimistic cases
coincide.

Bilevel programming is closely related to static Stackelberg leader-follower game [10,31].
Furthermore, it provides a flexible modeling approach for decentralized decision-making in
several important application domains including hazardous material transportation [20,37],
network design [12] and interdiction [24,30,36], revenue management [14], traffic plan-
ning [26,28], energy [6,32,33], computational biology [9,29] and defense [8]. For more
details on bilevel optimization and its applications we refer the reader to a survey in [13] and
the references therein.

In this paper we focus on a broad class of bilevel linear mixed-integer programs (BMIPs):

[BMIP] : “max
x

” c�x + d�
1 y

subject to x ∈ X,

y ∈ argmax
y

d�
2 y

subject to Ax + By ≤ h,

y ∈ R
n2+ ,

where X ⊆ Z
n1−k
+ × R

k+, A ∈ R
m2×n1 , B ∈ R

m2×n2 , h ∈ R
m2 , c ∈ R

n1 , d1 ∈ R
n2

and d2 ∈ R
n2 . The leader’s and the follower’s decision variables are denoted by x and y,

respectively. The leader’s problem is a linear mixed-integer program (MIP).
In the remainder of the paper we make the following assumptions that are relatively

standard in the bilevel optimization literature:

A1: X �= ∅ and X = ̂X ∩ (

Z
n1−k
+ × R

k+
)

, where ̂X is a polytope.
A2: For every feasible leader’s decision x ∈ X the corresponding follower’s feasible set is

non-empty, i.e., {y ∈ R
n2+ : By ≤ h − Ax} �= ∅ for any x ∈ X, and bounded.

Following the notation used in some of the bilevel optimization literature [16], we use
“max” (with quotes) in the leader’s objective function of BMIP to emphasize that there are
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two possible cases of the bilevel program. Indeed, the pessimistic formulation of BMIP is
given by:

[BMIPpes] max
x∈X

{

c�x + min
y∈H(x)

d�
1 y

}

, (1)

whereH(x) = argmax{d�
2 y : Ax + By ≤ h, y ∈ R

n2+ }, (2)

and H(x) denotes the lower-level (follower’s) rational reaction set for a given x . Note that
(1) involves a minimization problem over optimal solutions of the follower’s problem for a
given leader’s decision.

On the other hand, the optimistic BMIP is formulated by simply eliminating the min
operator from the objective function (1) that is:

[BMIPopt] max
x∈X, y∈H(x)

c�x + d�
1 y (3)

Given the leader’s decision x , we denote by f (x) and f p(x) the optimistic and pessimistic
objective function values of the leader, respectively. Similarly, we denote by f ∗ and f ∗

p ,
the optimal objective function values of the leader in the optimistic and pessimistic cases,
respectively.

Note that if k = n1, thenBMIP reduces to a bilevel linear program (BLP).Bilevel program-
ming, in particular, BMIPs and BLPs, where for a given leader’s decision the corresponding
follower’s problem reduces to a linear program (LP) as in (2), is a well-studied area of opti-
mization with a host of algorithmic and theoretical developments; see, e.g., [2,4,5,13,15]. In
particular, it is known that, in contrast to polynomially solvable single-level LPs, BLPs are
NP-hard optimization problems [18]. Furthermore, due to the fact that the follower’s problem
in (2) is anLP,BMIPs can be reformulated as single-level linearMIPs [3],which consequently
can be solved either via standard MIP solvers or by using some specialized approaches [4,
13,15]. Bilevel problems that involve integrality restrictions for the follower’s variables, see,
e.g., some recent results in [11,17,34], are outside the scope of the current paper.

In view of our brief discussion above, the contributions of this paper are as follows:
• First, we consider computational complexity of BLPs in the context of optimistic and

pessimistic solutions (see Sect. 2). In particular, we establish that even if an optimal optimistic
(or pessimistic) solution to BLP is known, then the problem of finding an optimal pessimistic
(or optimistic) solution to the same BLP remains an NP-hard problem. Moreover, we show
that even if one of the optimal solutions (either pessimistic or optimistic) to BLP is known,
then it is still an NP-hard problem to identify a leader’s solution that is, first, optimal for both
optimistic and pessimistic BLPs, and, second, provides the same objective function value in
both cases (if such solution exists).

• Second, we propose a generalization of pessimistic BMIPs, where the follower might
willingly give up a portion of his1 optimal objective function value, and thus select a sub-
optimal solution in order to inflict more damage to the leader (see Sect. 3). We refer to our
proposed models as α-pessimistic BMIPs, where parameter α controls the sub-optimality
level of the follower and mimics constant-factor approximation ideas that are often used in
the literature, see, e.g., [19,35]. Clearly, such situations may arise in adversarial and interdic-
tion settings, e.g., military and law-enforcement applications, which is the main motivation
behind this study. (We illustrate our results with an example of the defender–attacker prob-
lem in Sect. 5.2.) Thus, the leader should be more conservative or guarded when she faces
a follower that is α-suboptimal. Our model naturally encompasses as its special classes

1 In the remainder of the paper we use “her” and “his” whenever we refer to the leader and the follower,
respectively.
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both pessimistic BMIPs and max–min (or min–max) problems. In particular, for α = 1 the
proposed approach corresponds to pessimistic BMIPs, while the case of α = 0 reduces α-
pessimistic BMIPs to max–min problems. The latter corresponds to the worst-case scenario
for the leader, where the follower completely disregards his objective function and is focused
on disrupting the leader’s performance. Therefore, the proposed model can be viewed as an
approach for the leader to balance her level of conservatism through the value of parameter α
in adversarial settings where the leader is not completely confident regarding the follower’s
commitment to his objective function. We refer the reader for more detailed discussion on
these issues in Sect. 3.We study the structural properties ofα-pessimisticBMIPs and illustrate
its relationships with optimistic and pessimistic BMIPs.

• Third, we incorporate the proposed model of a sub-optimal adversarial follower into the
context of strong-weak BMIP models [1,10,39], which is an extension of the ideas behind
optimistic and pessimistic BMIPs (see Sect. 4). Specifically, in a strong-weak approach we
model a partially collaborative follower by assuming that the leader’s objective function is
a convex combination of the leader’s objective functions in the optimistic and pessimistic
cases. Furthermore, the coefficients in this summation can be interpreted as the probabilities
of cooperation or non-cooperation of the follower, respectively. That is, the leader is not
certain if the follower is either collaborative or adversarial, and thus attempts to make a
“robust” decision by taking into account both situations. Our approach, referred to as the
strong-α-weak model, can be viewed as a natural generalization of the strong-weak model
from [10,39] as it assumes that the followermay beα-pessimistic, which allows us to consider
more general types of adversarial followers including those that completely disregard their
objective functions. Thus, our approach naturally links optimistic, pessimistic and max–min
models within a unified framework. Another related question when comparing the strong-α-
weak model against either purely optimistic or pessimistic cases of BMIP is that how much
the decision-maker (i.e., the leader) “loses” in terms of the obtained objective function value
if the follower is, in fact, either optimistic or α-pessimistic, respectively. In Sect. 4 we derive
some bounds for such “losses.”

Finally, in Sect. 5 we consider an application of BMIPs, namely, a class of defender–
attacker models. We illustrate our theoretical results from Sects. 3 and 4 with numerical
examples and provide some insights into the links between optimistic, pessimistic and strong-
weak modeling approaches.

2 Computational complexity: optimistic versus pessimistic cases

It is well-known that any linear mixed 0–1 programming problem can be reduced to a BLP
instance [3]. Therefore, BLPs are strongly NP-hard [21]. We refer the reader to [18], which
provides a brief survey on computational complexity of BLPs, in particular, with respect to
issues related to polynomially solvable classes of the problem and inapproximability results.

BLPs are among the simplest classes of bilevel programs, which implies that the computa-
tional complexity results established in this section hold formore general bilevel optimization
problems. Specifically, our main focus is on the following research questions:

• If the decision-maker knows an optimistic (pessimistic) solution to aBLP, does it simplify
the problem of finding a pessimistic (optimistic) solution to the same BLP?

• How difficult is it to identify a leader’s solution that is optimal to both optimistic and
pessimistic cases (assuming that such solution exists) when one of the optimal solutions
(either pessimistic or optimistic) is known?
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In our derivations below we exploit the SUBSET SUM problem that is known to be
NP-complete [19].
SUBSET SUM: Given a set of positive integers S = {s1, s2, . . . , sn}, and a positive integer
K , does there exist a subset S′ ⊆ S such that

∑

i : si ∈S′ si = K ?

Next, consider the following BLP instance:

“min
x

”
n

∑

i=1

si xi + K xn+1 +
n

∑

i=1

vi + Mu (4a)

s.t.
n

∑

i=1

si xi + K xn+1 ≥ K , (4b)

0 ≤ xi ≤ 1, i = 1, . . . , n + 1, (4c)

(v, u) ∈ argmax
v,u

n
∑

i=1

vi + (u − vn+1) (4d)

s.t. vi ≤ 1 − xi , i = 1, . . . , n, (4e)

vi ≤ xi , i = 1, . . . , n, (4f)

0 ≤ u ≤ xn+1, (4g)

u − vn+1 ≤ 1 − xn+1, (4h)

u − vn+1 ≤ xn+1, (4i)

vi ≥ 0, i = 1, . . . , n + 1. (4j)

where M is a sufficiently large positive constant parameter.

Lemma 1 The following statements hold for model (4):

(i) x∗ = (0, . . . , 0, 1)�, u∗ = v∗
1 = · · · = v∗

n+1 = 0 is an optimal optimistic solution, and
f ∗ = K .

(ii) f ∗
p = K iff the answer to the considered instance of the SUBSET SUM problem is

“yes.”
(iii) there exists a leader’s decision x∗ such that f ∗ = f (x∗) = f p(x∗) = f ∗

p = K , i.e.,
x∗ is optimal for both optimistic and pessimistic cases, iff the answer to the considered
instance of the SUBSET SUM problem is “yes.”

Proof (i) Observe that f ∗ ≥ K due to (4b). Then it is easy to check that x∗
1 = · · · = x∗

n =
0, x∗

n+1 = 1, and u∗ = v∗
1 = · · · = v∗

n+1 = 0 is an optimal optimistic solution with
f ∗ = K .

(ii) ⇐
 Suppose the answer to the SUBSET SUM problem is “yes.” Consider the leader’s
solution, where x̄n+1 = 0, and x̄i = 1 if si ∈ S′ or x̄i = 0, otherwise, for i = 1, . . . , n.
From (4e), (4f) and (4g), ū = v̄1 = · · · = v̄n = v̄n+1 = 0 is the respective solution of
the follower, and so f ∗

p = K .

⇒ Let f ∗

p = K and x̄ be an optimal pessimistic solution of the leader. Then, from (4a)
and (4b), ū = v̄1 = · · · = v̄n = 0. Therefore, x̄1 . . . , x̄n ∈ {0, 1}. Note that if x̄n+1 > 0
then the follower implements the solution that maximizes the leader’s objective, that is
ū = x̄n+1 > 0 and v̄n+1 = ū−min{1−x̄n+1, x̄n+1}, which is a contradiction. Therefore,
x̄n+1 = 0. The required result follows if we let si ∈ S′ iff x̄i = 1, i = 1, . . . , n.

(iii) From (ii), f ∗ = f ∗
p = K iff the answer to the SUBSET SUM problem is “yes.” Note

that the same solution of the leader, i.e., x̄n+1 = 0, and x̄i = 1 if si ∈ S′ or x̄i = 0,
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otherwise, for i = 1, . . . , n, is constructed in both directions of (ii), and this solution is
also optimal in the optimistic case. ��

Note that constraints of the form (4e)–(4f) are often used for linking lower- and upper-level
variables while proving theoretical results in bilevel programming [3,21]. For example, in
[21] such constraints are exploited for showing that linear max–min programs are strongly
NP-hard. The main novelty of our reduction is in using constraints of the form (4g)–(4i) and
the corresponding additional terms in the objective functions (4a) and (4d), which allows us
to obtain the following results based on Lemma 1:

Proposition 1 The problem of finding an optimal pessimistic solution of BLP remains NP-
hard even if an optimal optimistic solution of the same BLP is known.

Proposition 2 Checking whether there exists a leader’s decision x∗, that

(a) is optimal for both optimistic and pessimistic cases of BLP, and
(b) simultaneously provides the same objective function values for both cases, is NP-

complete even if an optimal optimistic solution is known.

Proposition 3 Checking whether the BLP has multiple optimal optimistic solutions is NP-
hard.

Another interesting observation from Lemma 1(i) is given in the following remark.

Remark 1 Consider an instance of BLP given by (4) and let the follower be adversarial,
while the leader makes a decision x∗

1 = · · · = x∗
n = 0, x∗

n+1 = 1 by assuming a cooperative
follower, i.e., an optimistic case. In response, the adversarial follower would implement
u = vn+1 = 1. Thus, f p(x∗) = K + M , while f ∗

p = K by Lemma 1 if the answer to the
instance of the SUBSET SUM problem is “yes”. Consequently, f p(x∗) − f ∗

p = M , which
is a positive constant parameter. Therefore, if the leader assumes an optimistic case of BLP,
while the follower is adversarial, i.e., the considered BLP is pessimistic, then the difference
in the objective function values of the obtained solutions can be arbitrarily large.

In order to extend Proposition 1 we also analyze complexity of BLP when an optimal
pessimistic solution is known. Consider another instance of BLP given by:

“min
x

”
n

∑

i=1

si xi + (K + M)xn+1 + 2M

n

n
∑

i=1

(vi + ui ) (5a)

s.t.
n

∑

i=1

si xi + K xn+1 ≥ K , (5b)

0 ≤ xi ≤ 1, i = 1, . . . , n + 1, (5c)

(v, u) ∈ argmax
v,u

n
∑

i=1

(ui − vi ) (5d)

s.t. ui − vi ≤ 1 − xi , i = 1, . . . , n, (5e)

ui − vi ≤ xi , i = 1, . . . , n, (5f)

0 ≤ vi ≤ 1 − xn+1, i = 1, . . . , n, (5g)

ui ≥ 0, i = 1, . . . , n, (5h)

where M is a sufficiently large positive constant parameter.
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Lemma 2 The following statements hold for model (5):

(i) x̄ = (0, . . . , 0, 1)�, v̄1 = · · · = v̄n = ū1 = · · · = ūn = 0 is an optimal pessimistic
solution with f ∗

p = K + M.
(ii) f ∗ = K iff the answer to the considered instance of the SUBSET SUM problem is

“yes.”

Proof (i) Let x̄ be a feasible solution of the leader with x̄n+1 = 1. Then, it is optimal for
the leader to set x̄1 = · · · = x̄n = 0. Thus, f p(x̄) = K + M . Similarly, let x̃ be a
feasible solution of the leader with 0 ≤ x̃n+1 < 1. Then, in the pessimistic case, the
follower can set vi = 1 − x̃n+1 for all i = 1, . . . , n, while having (5e)–(5f) satisfied.
Therefore, f p (̃x) ≥ K + Mx̃n+1 + 2M(1 − x̃n+1) = K + 2M − Mx̃n+1 > K + M ,
which implies the necessary result.

(ii) ⇐
Suppose the answer to the instance of theSUBSET SUM problem is “yes.”Consider
the leader’s solution, where x∗

n+1 = 0, and x∗
i = 1 if si ∈ S′ and x∗

i = 0, otherwise, for
i = 1, . . . , n. In the optimistic case, the follower sets u∗

i = v∗
i = 0 for all i = 1, . . . , n.

Thus, f ∗ = f (x∗) = K .

⇒ Let f ∗ = K and x∗ be the corresponding optimal optimistic solution of the leader.
Then, from (5a) and (5b), we conclude that x∗

n+1 = 0 and the follower’s optimistic
solution is u∗

1 = · · · = u∗
n = v∗

1 = · · · = v∗
n = 0. Therefore, x∗

1 , . . . , x∗
n ∈ {0, 1}.

Finally, the required statement follows by setting si ∈ S′ iff x∗
i = 1, i = 1, . . . , n. ��

Based on Lemma 2 we immediately obtain the following result:

Proposition 4 The problem of finding an optimal optimistic solution of BLP remains NP-
hard even if an optimal pessimistic solution of the same BLP is known.

Another observation from Lemma 2 is similar in spirit to the earlier remark.
Specifically:

Remark 2 Suppose that the follower is collaborative, i.e., BLP is optimistic, but the leader
makes a decision x̄1 = · · · = x̄n = 0, x̄n+1 = 1 by assuming an adversary follower, i.e.,
pessimistic BLP. In response to the leader’s decision, the collaborative follower implements
u∗

i = v∗
i = 0 for all i = 1, . . . , n. Thus, f (x̄) = K + M . Assume that the answer to the

considered instance of the SUBSET SUM problem is “yes.” Consequently, f ∗ = K and
f (x̄) − f ∗ = M , which implies that if the leader assumes a pessimistic BLP while the
follower is collaborative, then the difference in the objective function values of the obtained
solutions can be arbitrarily large.

3 Suboptimal response to the leader’s decision: adversarial follower

Constraint (2) requires that the follower always implements one of his optimal solutions in
response to each leader’s decision. In this section,we consider amore general non-cooperative
(adversarial) setting, where the follower, in order to inflict more “damage” to the leader, can
give up a portion of his optimal objective function value by selecting a suboptimal solution.
Specifically, we proposemodeling such settings by defining a suboptimal lower-level reaction
set for a given leader’s decision x of the following form:

Hα(x) = {y′ ∈ R
n2+ : d�

2 y′ ≥ αd�
2 y + (1 − α)L , y ∈ H(x), Ax + By′ ≤ h}, (6)
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where parameter α ∈ [0, 1] controls the suboptimality level of the follower. In (6) we assume
that the follower’s objective function is bounded from below by a fixed constant L for any
decision of the leader.

Then, the pessimistic BMIP generalizes to:

[α-BMIPpes] max
x∈X

{

cT x + min
y∈Hα(x)

d�
1 y

}

, (7)

which is referred to as α-pessimistic BMIP. By comparing (1) and (7), observe that the α-
pessimistic BMIP is obtained from the pessimistic BMIP by enlarging the follower’s reaction
set. Specifically, if y ∈ H(x), then y ∈ Hα(x) for any α ∈ [0, 1] due to the assumption on
L . Therefore, H(x) ⊆ Hα(x) for any leader’s decision x ∈ X. In general, Hα1(x) ⊆ Hα2(x)

for any α1 ≥ α2 and α1, α2 ∈ [0, 1]. Simply speaking, by introducing set Hα(·), which is a
generalization of the lower-reaction set H(·), we allow the follower to have more flexibility
than in standard pessimistic BMIPs to select a solution that is more damaging to the leader’s
objective function value.

One of the main motivations behind the proposed definition of Hα(·) is to mimic constant-
factor approximation ideas that are often used in the literature, see, e.g., [19,35]. For example,
the reaction set of the form (6) naturally arises when L = 0 (e.g., the follower’s objective
function is non-negative) and the follower applies an α-approximation algorithm instead of
an exact method. (In Sect. 4 we exploit such ideas to provide some approximation guarantees
in the context of the strong-weak model.)

Our modeling framework allows for two possible interpretations. In the first one, the
follower sets the value of α, which is also known to the leader, and optimizes against the
leader’s objective while also ensuring that his decision achieves α-optimality with respect to
his own objective function. In the other interpretation, the follower does not set α, but when
making the upper-level decisions, the leader takes into account the case where the follower
may select an α-suboptimal solution. Thus, α is set by the leader to make conservative or
guarded upper-level decisions in anticipation of the follower’s suboptimal response.

Observe that if α = 1, then H1(x) = H(x) and α-pessimistic BMIP reduces to standard
pessimistic BMIP,where the follower responds to the leader’s decision optimally. Conversely,
if α = 0, then the follower completely disregards his own objective function, and merely
focuses on minimizing the leader’s benefit. In this case, α-pessimistic BMIP reduces to a
standard max–min problem, where both decision-makers have the same objective function,
but their goals are in opposite directions, i.e.,

max
x∈X

{

c�x + min
y∈Rn2+

{d�
1 y : Ax + By ≤ h}

}

(8)

Max–min problems of the form (8) arise in a variety of application domains [13,27]. For
example, the classical shortest path network interdiction problem, see, e.g., [24], is a special
class of (8), where the leader (interdictor) selects a decision (e.g., removes a set of nodes
and/or edges) in order to maximally increase the length of the shortest path for the follower
(evader), who travels on a given network between two fixed nodes, i.e., an origin and a
destination node.

The discussion above implies that the α-pessimistic BMIP contains both the pessimistic
BMIP and the max–min problem as its special cases, and thus can be viewed as their natural
generalization. More importantly, we believe that the proposed modeling approach can be
leveraged to address the following issues:

• In adversarial settings, the standard max–min approach given by (8) is used to provide
theworst-case analysis for the decision-maker. This approach is commonly used in the related
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literature including the defender–attacker, attacker–defender and interdiction models. Such
analysis assumes that the follower’s sole objective is to disrupt the leader’s performance to the
maximum possible extent. On the other hand, the proposed α-pessimistic approach allows to
capture settings where, in addition to disrupting the leader’s objective function, the follower
has an alternative goal. For example, in the defender–attacker models the follower may want
to maximize his probability of survival after the attack. Clearly, he may sacrifice some of this
objective in order to inflict more damage to the leader and the parameter α allows the leader
to control this trade-off.

• The max–min model given by (8) often arises in the symmetric data/information scenar-
ios. For example, in interdiction applications such assumption implies that both the leader
and the follower have the same cost parameters. On the other hand, the pessimistic BMIP is
capable of modeling more general asymmetric scenarios, see, e.g., [7], which, in turn, can
be exploited by the leader to improve her objective function value in comparison to the con-
servative max–min approach that captures the worst-case scenario for the leader. However,
in practice the leader may not be completely confident about the objective function of the
follower. Thus, the parameter α allows the decision-maker, i.e., the leader, to control her level
of conservatism.

• In practice it is also conceivable that the followermay not be a rational decision-maker or
have bounded rationality and thus, he may implement a suboptimal solution. The parameter
α allows the leader to control her level of conservatism in such cases. Admittedly, the actual
value of α may be unknown to the leader. However, by performing the sensitivity analysis
with respect to α, the leader can obtain deeper insights into her possible solution strategies.
Furthermore, we also explore potential leader’s “losses” when α is misspecified, see our
further discussion at the end of this section.

Next, we provide some theoretical results in the context of the proposed modeling
approach. Let x∗ and x̄α be the leader’s optimal solutions in the optimistic (3) and α-
pessimistic (7) BMIP formulations, respectively. Given the leader’s decision x ∈ X, letw(x),
y p(x) and yα(x) be the corresponding follower’s decisions in the optimistic, pessimistic and
α-pessimistic cases, respectively. Thus, w(x) ∈ H(x), y p(x) ∈ H(x) and yα(x) ∈ Hα(x).
Also, denote by f p

α (x) the objective function value of the leader in the α-pessimistic case and
let f ∗

α = f p
α (x̄α). Note that f p

1 (x) = f p(x) and f ∗
1 = f ∗

p ; furthermore, f ∗
0 is the optimal

objective function value of (8).

Proposition 5 f ∗ ≥ f ∗
p ≥ f p(x̄α) ≥ f ∗

α for any α ∈ [0, 1].

Proposition 6 f ∗
α and f p

α (x) are non-decreasing in α ∈ [0, 1].

The proofs of the above two propositions are omitted as they hold by the definitions (2)
and (6), which imply that H(x) ⊆ Hα(x).

Proposition 7 f p
α (x) is convex in α ∈ [0, 1] for any x ∈ X.

Proof Consider α = θα1 + (1 − θ)α2 for θ ∈ [0, 1]. Let ỹ = θyα1(x) + (1 − θ)yα2(x) for
x ∈ X. Observe that ỹ ≥ 0 and

Ax + B ỹ = Ax + B
(

θyα1(x) + (1 − θ)yα2(x)
)

= θ
(

Ax + Byα1(x)
) + (1 − θ)

(

Ax + Byα2(x)
) ≤ θh + (1 − θ)h = h.
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Furthermore, let y ∈ H(x). As yα1(x) ∈ Hα1(x) and yα2(x) ∈ Hα2(x), then:

d�
2 ỹ = θd�

2 yα1(x) + (1 − θ)d�
2 yα2(x)

≥ θ
(

α1d�
2 y + (1 − α1)L

)

+ (1 − θ)
(

α2d�
2 y + (1 − α2)L

)

= αd�
2 y + (1 − α)L ,

which implies that ỹ ∈ Hα(x) and d�
1 ỹ ≥ d�

1 yα(x). The latter inequality holds by the
definition of yα(x). Therefore:

f p
α (x) = c�x + d�

1 yα(x) ≤ c�x + d�
1 ỹ = c�x + d�

1

(

θyα1(x) + (1 − θ)yα2(x)
)

= θ
(

c�x + d�
1 yα1(x)

)

+ (1 − θ)
(

c�x + d�
1 yα2(x)

)

= θ f p
α1

(x) + (1 − θ) f p
α2

(x),

which concludes the proof. ��

Corollary 1 f ∗
α is convex in α ∈ [0, 1].

Proof It follows directly from the fact that x̄α ∈ X and f ∗
α = f p

α (x̄α). ��

Corollary 2 For α ∈ [0, 1] and x ∈ X, f p
α (x) ≤ α f p

1 (x) + (1 − α) f p
0 (x) and f ∗

α ≤
α f ∗

p + (1 − α) f ∗
0 .

Next, given x∗ we define �α as

�α(x∗) = f ∗
α − f p

α (x∗), (9)

i.e., the leader’s “loss” when she implements optimal optimistic solution x∗, while the fol-
lower is α-pessimistic. In other words, the leader can be viewed as “over-optimistic” about
the follower’s response to her decisions. The dependence of �α on x∗ can be omitted if x∗
is a unique optimal optimistic solution, and the latter is assumed below. Clearly, by its def-
inition �α ≥ 0. The above properties of α-pessimistic solutions allow us to establish some
additional lower and upper bounds on �α .

Proposition 8 Let 0 ≤ α1 ≤ α2 ≤ 1 and α = θα1 + (1 − θ)α2 for θ ∈ [0, 1]. Then:

max
{

0, θ�α1 + (1 − θ)�α2 − (1 − θ)( f ∗
α2

− f ∗
α1

)
} ≤ �α ≤ �α1 + (1 − θ)( f ∗

α2
− f ∗

α1
).

(10)

Proof Recall that x∗ denotes an optimal optimistic solution for the leader. From Proposi-
tions 6 and 7:

�α = f ∗
α − f p

α (x∗) ≥ f ∗
α1

− θ f p
α1

(x∗) − (1 − θ) f p
α2

(x∗)
=θ�α1 + (1 − θ) f ∗

α1
− (1 − θ) f p

α2
(x∗) = θ�α1 + (1 − θ)�α2 − (1 − θ)( f ∗

α2
− f ∗

α1
).

Recall that �α is nonnegative by its definition. Thus, the left inequality in (10) follows. By
using Propositions 6 and Corollary 1, we have the following:

�α = f ∗
α − f p

α (x∗) ≤ θ f ∗
α1

+ (1 − θ) f ∗
α2

− f p
α1

(x∗)
=�α1 − (1 − θ) f ∗

α1
+ (1 − θ) f ∗

α2
= �α1 + (1 − θ)( f ∗

α2
− f ∗

α1
),

which provides the right inequality in (10). ��
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Corollary 3 �α ≤ �0 + α( f ∗
p − f ∗

0 ) for any α ∈ [0, 1].
In general, �α is not monotone in α. However, from Propositions 7 and Corollary 1,

it follows that �α is equal to the difference of two convex functions, i.e., �α is a d.c.
function [22].

Next, for 0 ≤ α1 ≤ α2 ≤ 1 given x̄α1 we define δα1,α2 as

δα1,α2(x̄α1) = f ∗
α2

− f p
α2

(x̄α1), (11)

i.e., the leader’s “loss,” who implements optimal α1-pessimistic solution x̄α1 , while the
follower is α2-pessimistic. In other words, the leader can be viewed as conservative and
“over-pessimistic” about the follower’s response to her decisions. The dependence of δα1,α2

on x̄α1 can be omitted if x̄α1 is either unique or provides the same value of f p
α2 , and the latter

is assumed below.

Proposition 9 Let 0 ≤ α1 < α2 ≤ 1. Then

0 ≤ δα1,α2 ≤ f ∗
α2

− f ∗
α1

≤ α2 − α1

1 − α1
·
(

f ∗
p − f ∗

α1

)

. (12)

Proof By definition δα1,α2 ≥ 0. Next, from Propositions 5 and 6 along with Corollary 1, we
have the following inequalities:

δα1,α2 = f ∗
α2

− f p
α2

(x̄α1) ≤ f ∗
α2

− f ∗
α1

≤
(

1 − α2

1 − α1

)

f ∗
α1

+
(

α2 − α1

1 − α1

)

f ∗
p − f ∗

α1
≤ α2 − α1

1 − α1
·
(

f ∗
p − f ∗

α1

)

.

��
Corollary 4 δ0,α ≤ f ∗

α − f ∗
0 and δα,1 ≤ f ∗

p − f ∗
α for any α ∈ [0, 1].

In this section, we mostly focus on the “max–max” BMIPs, i.e., both the leader’s and
the follower’s optimization problems involve maximization objectives. For other possible
cases of BMIPs, the structural results obtained in this section should be modified by simple
adjustments, which are rather straightforward in view of the provided derivations.

For example, in the case of “min–max” BMIPs the definition of �α and δα1,α2 should be
changed to�α = f p

α (x∗)− f ∗
α and δα1,α2 = f p

α2(x̄α1)− f ∗
α2
, respectively. The corresponding

bounds inPropositions 8 and9 aswell as their corollaries can bemodified accordingly. Finally,
we note that some additional discussion on this issue is also provided in Sect. 5, where we
describe an application example of BMIP that involve “min–max” problems.

To illustrate some basic properties of α-pessimistic BMIP developed in this section, we
consider the following example:

max
x∈{0,1}2

f (x, y) = 15x1 + 10x2 + 2y1 + y2 (13a)

subject to x1 + x2 ≤ 1, (13b)

y ∈ argmaxy∈R2+{y1 + y2 : 3x1 + 6x2 ≤ y1 + y2 ≤ 10x1 + 12x2, y1 ≥ 3x2} (13c)

Observe that in (13) the leader has only three feasible actions given in Table 1. The
corresponding follower’s feasible regions are illustrated in Fig. 1. Furthermore, Table 1
provides optimal solutions in the optimistic, pessimistic and α-pessimistic cases, where we
assume that L = 0 in the definition of Hα(x) given by (6).
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Table 1 The follower’s decisions and the leader’s objective function values for each leader’s decision. We
assume L = 0 in (6). Note that for α = 0, i.e., the max–min problem, the leader implements x3

Solution Optimistic Pessimistic α–Pessimistic

w(x) f (x) yp(x) f p(x) yα(x) f p
α (x)

x1 = (0, 0)� (0, 0)� 0 (0, 0)� 0 (0, 0)� 0

x2 = (1, 0)� (10, 0)� 35 (0, 10)� 25

{

(0, 3)�,

(0, 10α)�,

18, 0 ≤ α < 0.3
15 + 10α, 0.3 ≤ α ≤ 1

}

x3 = (0, 1)� (12, 0)� 34 (3, 9)� 25

{

(3, 3)�,

(3, 12α − 3)�,

19, 0 ≤ α < 0.5
13 + 12α, 0.5 ≤ α ≤ 1

}

Fig. 1 Follower’s feasible
regions for leader’s decisions x2

and x3. Note that x1 = (0, 0)�
and w(x1) = yp(x1) =
yα(x1) = (0, 0)�

According to Fig. 2a, the leader’s optimalα–pessimistic decision is x3 for 0 ≤ α ≤ 0.4 and
x2 for 0.4 ≤ α ≤ 1. This figure also shows that for α = 1, both decisions result in the same
objective function value, which corresponds to an optimal pessimistic solution. In Fig. 2b the
leader’s optimal objective function value in optimistic, pessimistic and α–pessimistic cases
is depicted; furthermore, we provide the value of α f ∗

p + (1−α) f ∗
0 , which is an upper bound

for f ∗
α according to Corollary 2.

Figure 2c illustrates the value of δ0,α , i.e., the “loss” of a conservative decision-maker, who
implements optimal 0-pessimistic solution x̄0 (i.e., a solution of themax–min problem,where
the follower’s objective function is completely ignored), while the follower is, in fact, α-
pessimistic. It is intuitive that for smaller values ofα this “loss” is reasonably small. However,
it is interesting to observe that for values of α close to 1, the “loss” of the leader’s is also rather
small, which illustrates the fact that the value of δα1,α2 does not necessarily increase if the
difference α2−α1 increases. In Fig. 2c we also depict the value of f ∗

α − f ∗
0 , which is an upper

bound for δ0,α according toCorollary 4. For smaller values ofα the quality of this upper bound
is rather good; however, as α increases its quality deteriorates. Both of these observations are
rather intuitive as f ∗

α is a non-decreasing function (see Proposition 6), while by its definition
δα1,α2 should be relatively small for sufficiently small values of α2−α1 (recall that δα,α = 0).

Figure 2d is similar in spirit to Fig. 2c. Specifically, we first depict the value of δα,1 = f ∗
1 −

f p
1 (x̄α) = f ∗

p − f p(x̄α), i.e., the “loss” of the conservative decision-maker, who implements
optimal α-pessimistic solution x̄α , while the follower is, in fact, simply pessimistic. Figure 2d

123



J Glob Optim (2018) 71:91–113 103

Fig. 2 Illustration of structural results for a BMIP example given by (13)

demonstrates that in the considered example, the decision-maker does not lose anything by
being conservative as δα,1 = 0 for all values of α. Clearly, this is not necessarily the case
in general. In Fig. 2d we also provide the value of f ∗

p − f ∗
α , which is an upper bound for

δα,1 according to Corollary 4. The quality of this upper bound is relatively poor for smaller
values of α, but improves as α gets closer to 1. Such behavior is intuitive if one recalls the
definition of δα,1 in (11) and observes that the value of 1− α decreases as α increases. Some
additional numerical illustrations of the developed theoretical results are provided in Sect. 5,
where we consider an application example of BMIP.

Concluding this section, we note that our approach has connections to ε-regularized ver-
sion of general bilevel problems, see, e.g., [25], where the follower’s response is assumed
to return an objective function value that is within ε from optimal. However, such studies
typically consider more general functional forms of the upper- and lower-level optimization
problems (not linear as in our case) and they primarily derive stability and existence results.
Thus, the motivation behind studying such classes of problems is different from ours.

4 Strong-α-weak response to the leader’s decision

The optimistic and pessimistic (also often referred to as strong and weak, see [10]) formu-
lations of BMIP model two extreme cases of possible relationships between the leader and
the follower. As discussed in detail in Sect. 1, the leader assumes that the follower is fully
cooperative in the optimistic formulation; whereas in the pessimistic formulation, the leader
expects an adversarial response from the follower.

To generalize these two approaches, Aboussoror and Loridan [1] define the term strong-
weak Stackelberg problem to model partial cooperation between the leader and the follower.
They integrate the optimistic and pessimistic formulations through a weighted summation
of the leader’s objective functions in the optimistic and pessimistic cases. The coefficients in
this summation are set by the leader and can be interpreted as the probabilities of cooperation
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or non-cooperation of the follower, respectively. In a similar manner, Cao and Leung [10]
describe a BLP with partial cooperation for the linear version of the strong-weak Stack-
elberg problem. They reformulate the bilevel model as a single-level model using penalty
coefficients, and present a numerical example, where the follower’s optimal approach is to
cooperate partially. In other words, in some cases the follower could achieve the optimization
of his interests when he partially cooperates with the leader [10]. Zheng et al. [39] show that
the leader’s optimal value function is piece-wise linear andmonotone in theweight coefficient
measuring the follower’s level of cooperation (see our related discussion of Propositions 10
and 11 below). They also present an exact penalty method to solve the strong-weak BLP for
every fixed weight.

In this section, we generalize the strong–weak BLP by considering an α-pessimistic fol-
lower considered in Sect. 3. Similar to the strong-weak approach described in the previous
paragraph, we also use a weight coefficient to integrate those two extremes. Specifically,
given α ∈ [0, 1] and cooperation coefficient γ ∈ [0, 1], the leader solves the following
optimization problem:

[(γ, α)-BMIP] max
x∈X

{

c�x + (1 − γ ) min
y∈Hα(x)

d�
1 y + γ max

y∈H(x)
d�
1 y

}

, (14)

where at one extreme the follower might fully cooperate with the leader, see the last term
in (14), but at the other extreme, he might give up 1 − α portion of his optimal objective
function value in order to inflict more damage to the leader, see the second term in (14).

It is important to note that (γ, α)-BMIP contains as its special cases the max–min prob-
lem (8) as well as the pessimistic and optimistic models given by (1) and (3), respectively.
Formally, if α = 1 then (γ, α)-BMIP reduces to the strong-weak formulation from [10,39],
where (0, 1)-BMIP corresponds to the pessimistic BMIP, while (1, α)-BMIP reduces to the
optimistic BMIP for any α ∈ [0, 1]. On the other hand, if α = 0, then the second term in
the objective function of (γ, α)-BMIP, namely, the one that optimizes over y ∈ Hα(x), cor-
responds to the solution of the max–min problem (8). Thus, the proposed approach, further
referred to as the strong-α-weak problem, can be viewed as a natural generalization of the
strong-weak approach, where we consider more general types of adversarial followers by
using α ∈ [0, 1].

Let x̄α
γ be the leader’s optimal solution to (γ, α)-BMIP. Recall from Sect. 3 that x∗

and x̄α are the leader’s optimal solutions in the optimistic and α-pessimistic formulations,
respectively. Thus, x̄α

1 = x∗ and x̄α
0 = x̄α . Furthermore, denote by f ∗

γ,α the optimal objective
function value of (γ, α)-BMIP, that is f ∗

γ,α = f γ,α(x̄α
γ ). Next, we analyze basic properties

of f ∗
γ,α .

Proposition 10 For any α ∈ [0, 1], f ∗
γ,α is non-decreasing in γ ∈ [0, 1].

Remark 3 It is rather straightforward to show that for any γ1 and γ2, such that 1 ≥ γ1 ≥
γ2 ≥ 0, we have

f ∗ ≥ f ∗
γ1,1 ≥ f ∗

γ2,1 ≥ f ∗
p .

Therefore, if there exists a leader’s optimal solution x̃ that is optimal for both optimistic and
pessimistic cases of BMIP and ensures that f ∗ = f (̃x) = f p (̃x) = f ∗

p , then this solution is
obtained by solving (γ, α)-BMIP for any γ ∈ [0, 1] and α = 1. Thus, f ∗ = f ∗

γ,1 = f ∗
p for

any γ ∈ [0, 1]. On the other hand, if the decision-maker solves the optimistic and pessimistic
cases of BMIP separately, then it is not guaranteed that such solution is obtained. In other
words, the equality f ∗ = f ∗

p can be checked by solving the optimistic and pessimistic
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cases of BMIP separately. However, the corresponding leader’s solutions x∗ and x̄1 are not
necessarily optimal for BMIPpesand BMIPopt, respectively. This observation can be viewed
as another advantage of the strong-weak approach, in particular, when the decision-maker is
not aware if the follower is collaborative or adversarial.

Proposition 11 For any α ∈ [0, 1], f ∗
γ,α is convex in γ ∈ [0, 1].

Proof Let 0 ≤ γ1 ≤ γ2 ≤ 1, and γ = θγ1 + (1 − θ)γ2 for θ ∈ [0, 1]. Then:
f ∗
γ,α = c� x̄α

γ + (1 − γ )d�
1 yα(x̄α

γ ) + γ d�
1 w(x̄α

γ )

= θ
(

c� x̄α
γ + (1 − γ1)d

�
1 yα(x̄α

γ ) + γ1d�
1 w(x̄α

γ )
)

+ (1 − θ)
(

c� x̄α
γ + (1 − γ2)d

�
1 yα(x̄α

γ ) + γ2d�
1 w(x̄α

γ )
)

≤ θ
(

c� x̄α
γ1

+ (1 − γ1)d
�
1 yα(x̄α

γ1
) + γ1d�

1 w(x̄α
γ1

)
)

+ (1 − θ)
(

c� x̄α
γ2

+ (1 − γ2)d
�
1 yα(x̄α

γ2
) + γ2d�

1 w(x̄α
γ2

)
)

≤ θ f ∗
γ1,α

+ (1 − θ) f ∗
γ2,α

,

which implies the required result. ��

If α = 1, then, as mentioned earlier, the proposed strong-α-weak model given by (γ, α)-
BMIP reduces to the strong-weak model from the literature, and the structural results derived
in Propositions 10 and 11 are equivalent to those shown in [39]. However, our derivations
demonstrate that these results, namely, the non-decreasing and convexity properties of f ∗

γ,α ,
also hold for the case when the follower is α-pessimistic for any α ∈ [0, 1]. Furthermore:

Proposition 12 For any γ ∈ [0, 1], f ∗
γ,α is convex in α ∈ [0, 1].

Proof Let 0 ≤ α1 ≤ α2 ≤ 1, and α = θα1 + (1 − θ)α2 for θ ∈ [0, 1]. Let ỹ = θyα1(x̄α
γ ) +

(1− θ)yα2(x̄α
γ ). As in the proof of Proposition 7, we can show that ỹ ∈ Hα(x̄α

γ ) and d�
1 ỹ ≥

d�
1 yα(x̄α

γ ). Then,

f ∗
γ,α =c� x̄α

γ + (1 − γ )d�
1 yα(x̄α

γ ) + γ d�
1 w(x̄α

γ ) ≤ c� x̄α
γ + (1 − γ )d�

1 ỹ + γ d�
1 w(x̄α

γ )

= θ
(

c� x̄α
γ + (1 − γ )d�

1 yα1(x̄α
γ ) + γ d�

1 w(x̄α
γ )

)

+ (1 − θ)
(

c� x̄α
γ + (1 − γ )d�

1 yα2(x̄α
γ ) + γ d�

1 w(x̄α
γ )

)

≤θ f ∗
γ,α1

+ (1 − θ) f ∗
γ,α2

,

which concludes the proof. ��

One natural question that arises when comparing the strong-α-weak model against either
optimistic or pessimistic cases of BMIP is that how much the leader “loses” in terms of the
obtained objective function value if the follower is, in fact, either optimistic or α-pessimistic,
respectively. Next, we provide bounds on these differences. First, we derive an upper bound
for the difference between f ∗, i.e., the optimal objective value of the leader in the optimistic
formulation, and f (x̄α

γ ), i.e., the objective value of the leader if she implements x̄α
γ in the

optimistic case.

123



106 J Glob Optim (2018) 71:91–113

Proposition 13 For any γ ∈ [0, 1] and α ∈ [0, 1], f ∗ − f (x̄α
γ ) ≤ (1 − γ )

(

d�
1 w(x∗)−

d�
1 yα(x∗)

)

Proof

f (x̄α
γ ) = c� x̄α

γ + d�
1 w(x̄α

γ )

= c� x̄α
γ + γ d�

1 w(x̄α
γ ) + (1 − γ )d�

1 yα(x̄α
γ ) + (1 − γ )d�

1 w(x̄α
γ ) − (1 − γ )d�

1 yα(x̄α
γ )

≥ c�x∗ + γ d�
1 w(x∗) + (1 − γ )d�

1 yα(x∗) + (1 − γ )d�
1 w(x̄α

γ ) − (1 − γ )d�
1 yα(x̄α

γ )

≥ c�x∗ + γ d�
1 w(x∗) + (1 − γ )d�

1 yα(x∗)

= c�x∗ + d�
1 w(x∗) − (1 − γ )

(

d�
1 w(x∗) − d�

1 yα(x∗)
)

= f ∗ − (1 − γ )
(

d�
1 w(x∗) − d�

1 yα(x∗)
)

,

where the last inequality follows from the fact that d�
1 w(x̄α

γ ) ≥ d�
1 yα(x̄α

γ ). ��
Moreover, our next result shows that if c and d1 are nonnegative, then x̄α

γ provides a γ -
approximate solution to the optimistic BMIP. In other words, the decision-maker has some
guaranteed quality of the obtained solution if the follower turns out to be collaborative.

Corollary 5 If c ∈ R
n1+ and d1 ∈ R

n2+ , then f (x̄α
γ ) ≥ γ f ∗.

Proof

f (x̄α
γ ) ≥ f ∗ − (1 − γ )

(

d�
1 w(x∗) − d�

1 yα(x∗)
)

≥ f ∗ + (1 − γ )
(

−d�
1 w(x∗)

)

≥ f ∗ + (1 − γ )
(

−d�
1 w(x∗) − c�x∗) = f ∗ + (1 − γ )(− f ∗) = γ f ∗.

��
Next, we consider an adversarial follower. In particular, we derive an upper bound for

the difference between f ∗
α , i.e., the optimal objective function value of the leader in the α-

pessimistic formulation, and f p
α (x̄α

γ ), i.e., the objective function value of the leader if she
implements x̄α

γ in the α-pessimistic case.

Proposition 14 For 0 ≤ α ≤ 1 and 0 ≤ γ ≤ 1, we have that f ∗
α − f p

α (x̄α
γ ) ≤

γ
(

d�
1 w(x̄α

γ ) − d�
1 yα(x̄α

γ )
)

.

Proof

f p
α (x̄α

γ ) = c� x̄α
γ + d�

1 yα(x̄α
γ )

= c� x̄α
γ + γ d�

1 w(x̄α
γ ) + (1 − γ )d�

1 yα(x̄α
γ ) + γ d�

1 yα(x̄α
γ ) − γ d�

1 w(x̄α
γ )

≥ c� x̄α + γ d�
1 w(x̄α) + (1 − γ )d�

1 yα(x̄α) + γ d�
1 y(x̄α

γ ) − γ d�
1 w(x̄α

γ )

= c� x̄α + d�
1 y(x̄α) + γ d�

1 w(x̄α) − γ d�
1 yα(x̄α) + γ d�

1 yα(x̄α
γ ) − γ d�

1 w(x̄α
γ )

≥ f ∗
α − γ

(

d�
1 w(x̄α

γ ) − d�
1 yα(x̄α

γ )
)

,

where the last inequality follows from the fact that d�
1 w(x̄α) ≥ d�

1 yα(x̄α). ��
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(a) (b)

Fig. 3 Illustration of Proposition 14 and Corollary 6 for a BMIP example given by (13)

Note that finding x̄α
γ is an NP-hard problem. However, given x̄α

γ the values of d�
1 w(x̄α

γ )

and d�
1 yα(x̄α

γ ) can be computed by solving linear programming problems. Therefore, the

upper bound for f ∗
α − f p

α (x̄α
γ ) given by Proposition 14 can be obtained in polynomial time

after finding x̄α
γ .

Corollary 6 If c ∈ R
n1+ and d1 ∈ R

n2+ , then f p
α (x̄α

γ ) ≥ f ∗
α − γ f (x̄α

γ ) ≥ f ∗
α − γ f ∗.

Proof It follows from Proposition 14 that

f p
α (x̄α

γ ) ≥ f ∗
α − γ

(

d�
1 w(x̄α

γ ) − d�
1 yα(x̄α

γ )
)

≥ f ∗
α + γ

(

−d�
1 w(x̄α

γ )
)

≥ f ∗
α + γ

(

−d�
1 w(x̄α

γ ) − c� x̄α
γ

)

= f ∗
α − γ f (x̄α

γ ) ≥ f ∗
α − γ f ∗,

which concludes the proof. ��
For the example given by (13), Fig. 3 illustrates the bounds obtained in Proposition 14 and
Corollary 6. Clearly, the quality of the former bound is better, which is not surprising given
the provided derivations. On the other hand, it is also worth mentioning that the quality of the
bounds improves as α and γ approach one and zero, respectively. This observation is rather
intuitive as (0, 1)-BMIP corresponds to the pessimistic case of BMIP.

Assume that there exist a positive lower bound L∗
α for f ∗

α and a finite upper bound U∗ for
f ∗, that is,

0 < L∗
α ≤ f ∗

α ≤ f ∗ ≤ U∗ < +∞. (15)

Then we have the following result, which is similar in spirit to Corollary 5:

Corollary 7 If c ∈ R
n1+ , d1 ∈ R

n2+ and f ∗
α > 0, then for a given γ̄ ∈ [0, 1], define γ =

(1 − γ̄ )
L∗

α

U∗ . Then f p
α (x̄α

γ ) ≥ γ̄ f ∗
α and f (x̄α

γ ) ≥ γ f ∗.

Proof By using Corollary 6, we have

f p
α (x̄α

γ ) ≥ f ∗
α − γ f ∗

= f ∗
α − (1 − γ̄ ) · L∗

α

U∗ · f ∗ ≥ f ∗
α − (1 − γ̄ ) · L∗

α ≥ f ∗
α − (1 − γ̄ ) · f ∗

α

= γ̄ f ∗
α ,

where we use (15) in the obtained inequalities. ��
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The above results provide the leader with some estimates of her loses in cases when the
follower is either optimistic or α-pessimistic. In particular, under some assumptions x̄α

γ

provides simultaneously aγ -approximate solution to the optimisticBMIP and γ̄ -approximate
solution to the α-pessimistic BMIP. Note that the relationship between γ and γ̄ through some
lower and upper bounds for f ∗

α and f ∗ is rather intuitive given our earlier observations in
Remarks 1 and 2.

5 Numerical illustrations

In this section, we provide additional illustrations of the proposed modeling approach using
a class of defender–attacker problems. In our numerical experiments we solve single-level
reformulations of our models using CPLEX 12.4 [23].

5.1 Single-level reformulations

We reformulate BMIPopt, BMIPpes, α-BMIPpesand (γ, α)-BMIP as single-level mixed-
integer programs with constraints that enforce primal feasibility, dual feasibility, and
complementary slackness for the follower’s linear program. It is a standard approach in
the bilevel optimization literature, which can be applied as long as the follower’s problem is
an LP, see, e.g., [3] for more detailed discussion in the case of optimistic bilevel programs.
The fact that both α-BMIPpes and (γ, α)-BMIP admit single-level MIP reformulations can
be viewed as another advantage of the proposed modeling approach.

For completeness of the discussion we first present the standard single-level formulation
for BMIPopt, see, e.g., [3]:

[BMIPopt] : max c�x + d�
1 y (16a)

s.t.x ∈ X (16b)

By ≤ h − Ax (λ) (16c)

By ≥ h − Ax − Mλ(e − uλ) (16d)

λ ≤ Mλuλ (16e)

B�λ ≥ d2 (y) (16f)

B�λ ≤ d2 + My(e − uy) (16g)

y ≤ Myuy (16h)

uλ ∈ {0, 1}m2 , uy ∈ {0, 1}n2 , y, λ ≥ 0, (16i)

where e is the vector of all ones of appropriate dimensions, i.e., e = (1, . . . , 1)�,
while Mλ and My are sufficiently large positive constants. Constraints (16c)–(16i) ensure
that y ∈ H(x) by enforcing primal feasibility, dual feasibility, and complementary
slackness conditions for the follower’s LP given the leader’s decision x . In particu-
lar, λ is the set of dual variables corresponding to constraints (16c) in the follower’s
LP, while 0–1 variables uλ and uy are used to linearize the complementary slackness
conditions.

Next, we present the single-level reformulation for (γ, α)-BMIP:

[(γ, α)-BMIP] : max c�x + γ d�
1 y + (1 − γ )d�

1 y′ (17a)

s.t. (16b) − (16i)
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By′ ≤ h − Ax (μ) (17b)

By′ ≥ h − Ax − Mμ(e − uμ) (17c)

μ ≤ Mμuμ (17d)

d�
2 y′ ≥ αd�

2 y + (1 − α)L (ζ ) (17e)

d�
2 y′ ≤ αd�

2 y + (1 − α)L + Mζ (1 − uζ ), (17f)

ζ ≤ Mζ uζ , (17g)

d2ζ − B�μ ≤ d1, (y′) (17h)

d2ζ − B�μ ≥ d1 − My′(e − uy′), (17i)

y′ ≤ My′uy′ , (17j)

uμ ∈ {0, 1}m2 , uy′ ∈ {0, 1}n2 , uζ ∈ {0, 1}, y′, μ, ζ ≥ 0, (17k)

where Mμ, Mζ , My′ are sufficiently large positive constants. Constraints (17b)–(17k) impose
that the follower chooses a solution y′ ∈ Hα(x) that provides the minimum d�

1 y′ for the
leader. The main ideas behind formulation (17) is similar to those used in deriving (16). In
particular, y and y′ are variables representing the optimistic and the α-pessimistic responses
of the follower, respectively. Also, ζ andμ are the dual variables corresponding to constraints
in Hα(x), see (6), given the leader’s decision x .

If γ = 0 and α = 1 in formulation (17), then we obtain a single-level reformulation
for the pessimistic BMIP. Furthermore, if γ > 0 and α = 1, then we obtain a single-
level reformulation for the strong-weak bilevel linear program [10]. Note that Zeng [38]
provides similar reformulations for the strong-weak BMIP. Thus, model (17) generalizes the
formulations presented in Zeng [38] by considering follower’s α-suboptimal response to the
leader, i.e., the strong-α-weak approach considered in Sect. 4.

5.2 Defender–attacker problem (DAP)

There are a number of defender–attacker models proposed in the related literature, see some
examples in [8] and the references therein. In this section we consider a class of such models,
where the defender (leader) runs a set of facilities J . Facility j ∈ J has a certain value
(e.g., capacity) given by c j and can be fully protected by spending k j units of the defender’s
resource. The total defense budget is K units. The attacker (follower) can destroy y j ∈ [0, 1]
portion of the facility j by spending b j y j units. The attacker’s goal is to minimize the leader’s
total value after the attack (i.e., maximize damage) subject to a budget constraint of B units.
If y j portion of the facility value is destroyed, then the defender has to spend r j y j units to
recover its full value. The defender’s objective is to minimize the total recovery cost. We
formulate the considered class of pessimistic DAPs as:

[pes-DAP] min
x∈X max

y∈H(x)

∑

j∈J

r j y j

subject to H(x) = argmax

⎧

⎨

⎩

∑

j∈J

c j y j : y ∈ Y, y j ≤ 1 − x j , j ∈ J

⎫

⎬

⎭

,

where X ⊆ {x ∈ {0, 1}|J | : ∑

j∈J k j x j ≤ K } and Y = {y ∈ [0, 1]|J | : ∑

j∈J b j y j ≤ B}.
The leader’s decision variable, x j , is equal to 1 iff facility j is protected and 0, otherwise.
The follower’s decision variable, y j ∈ [0, 1], represents the destroyed portion of facility j .
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Given α ∈ [0, 1] and γ ∈ [0, 1], (γ, α)–DAP can be formulated as:

[(γ, α)-DAP] min
x∈X

⎧

⎨

⎩

(1 − γ ) max
y∈Hα(x)

∑

j∈J

r j y j + γ min
y∈H(x)

∑

j∈J

r j y j

⎫

⎬

⎭

,

where the suboptimal reaction set of the attacker is defined as:

Hα(x) = {y′ ∈ Y :
∑

j∈J

c j y′
j ≥ α

∑

j∈J

c j y j , y ∈ H(x), y′
j ≤ 1 − x j , j ∈ J }.

Next, we illustrate some of the structural properties derived in Sects. 3 and 4. We consider
a DAP instance with 10 facilities. Parameters of the instance include the recovery cost vector
r = [19 21 25 29 31 35 36 40 43 58]�, the capacity vector c = [10 10 10 9 8 7 6 5 4 3]�,
facility protection cost k j = 1 and destruction cost b j = 1 for all j = 1, . . . , 10, the total
defense budget K = 2 and the attacker’s budget is B = 1. Furthermore, the defender has
two additional logical constraints of the form: x1 + x2 + x3 ≤ 1 and x9 ≤ x1, which are
incorporated into the constraint set defining X.

Recall that our example (13) is a “max–max” BMIP. On the other hand, the considered
class ofDAPs involvesminimization of the leader’s objective function.As briefly discussed in
Sect. 3, some simple adjustments are necessary when we apply the results from Sects. 3 and 4
to the considered class of DAPs. For example, f ∗

α is non-increasing with respect to α instead
of non-decreasing as stated in Proposition 6. Alternatively, one could obtain maximization
version of DAP by simply changing the signs of r j ’s, and thus, directly apply the results of
Sects. 3 and 4.

Figure 4 illustrates various structural properties established in Sect. 3. In particular, it is
interesting to observe in Fig. 4a that the value of �α decreases as α increases. This result

Fig. 4 Illustration of structural results with a DAP instance from Sect. 5.2. Note that the leader’s problem
involves minimization, which requires some minor adjustments in the corresponding statements of Sect. 3, see
related discussion in Sects. 3 and 5.2. The term “LB” in b stands for the lower bound of �α in Proposition 8.
c and d are analogous to Fig. 2c, d respectively
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Fig. 5 Illustration of Propositions 13 and 14 with a DAP instance from Sect. 5.2 for α = 0.7. Note that the
leader’s problem involves minimization

is rather intuitive if one recalls that Hα1(x) ⊆ Hα2(x) for α1 ≥ α2, i.e., the follower has
more flexibility in making the decision less favorable for the leader for smaller values of α.
Figure 4b depicts �α along with its upper and lower bounds derived in Proposition 8 and
Corollary 3. Figure 4c, d are analogous to Fig. 2c, d, respectively.

Figure 5 illustrates Propositions 13 and 14 established in Sect. 4. The obtained graphics
match the intuition behind (γ, α)-BMIPmodel and the derived results. For example, in Fig. 5a
the depicted functions coincide for γ = 1, which, in fact, should be expected as (1, α)-BMIP
corresponds to optimistic BMIP for anyα ∈ [0, 1]. Similarly, in Fig. 5b the depicted functions
also coincide for γ = 0 as (0, α)-BMIP corresponds to α-pessimistic BMIP. Finally, the
quality of the bounds from Propositions 13 and 14 is better for larger and smaller values of γ

in Fig. 5a, b, respectively. These observations are natural if one recalls the motivation behind
(γ, α)-BMIP model, in particular, the fact that the objective function of (γ, α)-BMIP is a
convex combination of the follower’s optimistic and α-pessimistic responses to the leader’s
decision.

6 Concluding remarks

In this paper we study relationships between optimistic and pessimistic BLPs and BMIPs,
where the follower’s optimization problem is a linear program. First, we focus on theoret-
ical computational complexity issues for BLPs. Perhaps, the most interesting complexity
result obtained in this paper is the fact that even if an optimal optimistic (or pessimistic)
solution of BLP is known, then the problem of finding an optimal pessimistic (or opti-
mistic) solution for the same BLP remains an NP-hard problem. Second, we propose a
generalization of pessimistic bilevel linear problems, referred to as α-pessimistic BMIPs,
where the follower might willingly give up a portion of his optimal objective function value,
and thus select a suboptimal solution in order to inflict more damage to the leader. It is
important to note that our techniques allow the decision-maker to consider more general
types of adversarial followers. In particular, α-pessimistic BMIPs naturally encompasses as
their special classes both pessimistic BMIPs and max–min (or min–max) problems. Fur-
thermore, we incorporate the proposed approach into a class of strong-weak models that
capture settings, where the leader is not certain if the follower is either collaborative or
adversarial, and thus attempts to make a robust decision by taking into account the fol-
lower’s responses in both situations. Finally, we study structural properties of the proposed
mathematical models and illustrate the obtained results using insightful numerical exam-
ples.
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There is a number of possible avenues for future research directions. In particular, we
believe that the most interesting ones include issues related to generalizations of the proposed
models for bilevel problems that involve integrality restrictions for the follower’s decision
variables and more general classes of objective functions at both levels.
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