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Abstract This paper investigates a single machine serial-batching scheduling problem con-
sidering release times, setup time, and group scheduling, with the combined effects of
deterioration and truncated job-dependent learning. The objective of the studied problem
is to minimize the makespan. Firstly, we analyze the special case where all groups have
the same arrival time, and propose the optimal structural properties on jobs sequencing,
jobs batching, batches sequencing, and groups sequencing. Next, the corresponding batching
rule and algorithm are developed. Based on these properties and the scheduling algorithm,
we develop a hybrid VNS–ASHLO algorithm incorporating variable neighborhood search
(VNS) and adaptive simplified human learning optimization (ASHLO) algorithms to solve
the general case of the studied problem. Computational experiments on randomly generated
instances are conducted to compare the proposed VNS–ASHLOwith the algorithms of VNS,
ASHLO, Simulated Annealing (SA), and Particle Swarm Optimization (PSO). The results
based on instances of different scales show the effectiveness and efficiency of the proposed
algorithm.
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1 Introduction

In many production scenarios, the effects of learning and deterioration are common and thus
have received increasing attention from academy in recent years. Readers can find these
works in Wang et al. [1,2,5], Cheng et al. [3], Kuo [4], Yang [6] and Yang et al. [7], etc.
Specifically, there is also a growing interest in studying the truncated job-dependent learning
effect.Wu et al. [8] investigated a two-machine flowshop scheduling problemwith a truncated
sum of processing-times-based learning function, and they proposed a branch-and-bound and
a genetic heuristic-based algorithm to solve this problem. He et al. [9] studied the resource
constrained scheduling problem with general truncated job-dependent learning effect, and
provided the optimal resource allocation for each case. Wu and Wang [10] studied a single-
machine scheduling problem with truncated sum-of-processing-times-based learning effect
including proportional delivery times, and proposed several scheduling rules to solve this
problem. More references can be found in Niu et al. [11], Wang et al. [12], Wu et al. [13],
etc. In this paper, we follow the learning model in Niu et al. [11] and extend it into the group
scheduling problem considering the batch processing way.

In our previous research, some scheduling problems with the effects of deterioration and
learningwere investigated [14–17]. Different from our previous research, wemainly focus on
the combined effects of deterioration and truncated job-dependent learning in this paper, with
group scheduling and group release times further investigated. Thus, the main contributions
of this paper can be summarized as follows:

(1) We propose a novel integrated scheduling model which combines the features of serial
batching, the combined effects of deterioration and truncated job-dependent learning,
group scheduling, and setup time simultaneously.

(2) Specific to the situation of group scheduling, different release times are further investi-
gated on the basis of the batching processing way.

(3) For the special case, we propose the optimal job batching policies, batches sequencing,
and groups sequencing and develop an optimization algorithm to solve it. Based on this,
an effective hybrid VNS–ASHLO algorithm is developed to solve the general case.

The reminder of this paper is organized as follows. We give notations and the problem
statement in Sect. 2. In Sect. 3, the special case that all groups have the same arrival time
is analyzed and an optimization algorithm is proposed to solve it. In Sect. 4, the general
case where all groups have different arrival times is analyzed, and a hybrid meta-heuristic is
proposed to solve it. Finally, the conclusion is given in Sect. 5.

2 Notations and problems statement

We first give the notations used throughout in this paper, which is shown in Table 1.

Table 1 Notations

Notation Definition

n The number of groups

Gi The job set of group i , i = 1, 2, · · · , n

Ni The number of jobs in Gi , i = 1, 2, · · · , n

N The total number of jobs, i.e., N = ∑n
i=1Ni

Ji j Job j in Gi , i = 1, 2, · · · , n, j = 1, 2, · · · , Ni

123



J Glob Optim (2018) 71:147–163 149

Table 1 continued

Notation Definition

αi The learning rate of all jobs in Gi , i = 1, 2, · · · , n

β A truncation parameter

b The deteriorating rate of processing jobs

pi j The normal processing time of Ji j , j = 1, 2, · · · , Ni , i = 1, 2, · · · , n

pAi j The actual processing time of Ji j , j = 1, 2, · · · , Ni , i = 1, 2, · · · , n

ri Release time of all jobs in Gi , i = 1, 2, · · · , n

mi The number of batches in Gi , i = 1, 2, · · · , n

bik Batch k in Gi , k = 1, 2, · · · ,mi , i = 1, 2, · · · , n

nik The number of jobs in bik , k = 1, 2, · · · ,mi , i = 1, 2, · · · , n

θ ib The deteriorating rate of batches’ setup time in Gi , i = 1, 2, · · · , n

θg The deteriorating rate of groups’ setup time

sikb The setup time of bik , k = 1, 2, · · · ,mi , i = 1, 2, · · · , n

sig The setup time of Gi , i = 1, 2, · · · , n

c The capacity of the batching machine

S (bik ) The starting time of bik , k = 1, 2, · · · ,mi , i = 1, 2, · · · , n

C (bik ) The completion time of bik , k = 1, 2, · · · ,mi , i = 1, 2, · · · , n

P (bik ) The actual processing time of bik , k = 1, 2, · · · ,mi , i = 1, 2, · · · , n

P (Gi ) The total actual processing time of Gi , i = 1, 2, · · · , n

Cmax The makespan

We start by proposing a combined deterioration and truncated position-based learning
model for group scheduling in a serial-batching setting. Here the deterioration effect indi-
cates that the raw materials to be processed deteriorate over time, and the jobs require more
processing time if processed later. The learning effect indicates that the workers or machines
can improve the production efficiency with more processing experiences, and the coefficient
of learning effect is determined by the job’s position and a truncation parameter in the trun-
cated position-based learningmodel. Then, we investigate the following scheduling problem.
There is a set of N non-preemptive jobs to be processed on a serial-batching machine, and
these jobs are classified into n groups. Each group contains a certain number of jobs, that is,
Gi = {

Ji1, Ji2, · · · , JNi

}
, i = 1, 2, · · · , n. All jobs in each group are processed in the way

of serial batches, which requires that all the jobs within the same batch are processed one
after another in a serial way, and the completion time of any job is equal to that of its belonged
batch, which is defined as the completion time of the last job in the batch [18]. The number
of the jobs in each batch cannot exceed the machine capacity c. We further investigate the
combined effects of deterioration and truncated job-dependent learning in this paper [11].
Due to the switch operations and different processingways for different groups, the combined
effects of deterioration and learning restart once a new group begins to be processed. If Ji j is
scheduled in position r of certain group Gi , then its actual processing time is defined as [11]

pA
i j = pi jmax

{
rαi , β

} + bt, r, j = 1, 2, · · · , Ni , i = 1, 2, · · · , n

where pi j is a normal processing time of Ji j , αi is the learning rate of all jobs in
Gi (i = 1, 2, · · · , n) with αi < 0, β is a truncation parameter with 0 < β < 1, b is the
deteriorating rate of processing jobs, t is the staring time for processing Ji j .
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Both group and batch setup times are required before processing any group or batch, and
the setup times of Gi and bik are defined as follows:

sig = θgt

si jb = θ ibt
′

where θg is the deteriorating rate of groups’ setup time, θ ib is the deteriorating rate of batches’
setup time in Gi (i = 1, 2, · · · , n), and t and t ′ are the starting time of processing Gi and
bik , respectively.

In this paper, we assume that different groups have distinct release times. We first inves-
tigate the special case that all groups have the identical release times and propose some
important properties and algorithms, and then study the general case that all groups have dif-
ferent release times based on the investigation to the special case. The objective of the studied
problems is tominimize themakespan. In the remaining sections of the paper, all the problems
are denoted by the three-field notation schema α |β| γ introduced by Graham et al. [19].

3 Problem 1
∣
∣
∣s − batch, pAi j = pi jmax {rαi , β} + bt, ri = t0

∣
∣
∣Cmax

In this section, the special case that all groups have the same release times is studied. We first
give some structural properties of this studied problem for the optimal schedules, and then a
batching rule and an optimization algorithm are developed to solve this problem.

We first give the completion time of a certain group in the following property.

Lemma 1 For the problem 1
∣
∣
∣s − batch, pA

i j = pi jmax {rαi , β} + bt, ri = t0
∣
∣
∣Cmax , given

any schedule π = (G1,G2, · · · ,Gn) with all groups arriving at time t0 > 0, if the starting
time of G f ( f = 1, 2, · · · , n) is T , then the completion time of G f is

C
(
b f m f

) = (
1 + θg

) (
1 + θ

f
b

)m f
(1 + b)N f T

+
m f∑

k=1

(1 + b)
∑m f

d=k+1n f d
(
1 + θ

f
b

)m f −k

∑k
h=1n f h∑

j=∑k−1
h=1n f h+1

(1 + b)
∑k

h=1n f h− j p f jmax
{
jα f , β

}
(1)

Proof For the batch index v = 1 in G f , there is

C
(
b f 1

) = (
1 + θg

) (
1 + θ

f
b

)
(1 + b)n f 1 T +

n f 1∑

j=1

(1 + b)n f 1− j p f jmax
{
jα f , β

}

Thus, Eq. (1) holds for v = 1. For all 2 ≤ v < f , if Eq. (1) holds, then

C
(
b f v

) = (
1 + θg

) (
1 + θ

f
b

)v

(1 + b)
∑v

d=k+1n f d T

+
v∑

k=1

(1 + b)
∑v

d=k+1n f d
(
1 + θ

f
b

)v−k

∑k
h=1n f h∑

j=∑k−1
h=1n f h+1

(1 + b)
∑k

h=1n f h− j p f jmax
{
jα f , β

}
.
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Furthermore, for the (v + 1)th batch b f (v+1), there is

C
(
b f (v+1)

) = C
(
b f v

) (
1 + θ

f
b

)
(1 + b)n f (v+1)

+
∑k

h=1n f (v+1)∑

j=∑k−1
h=1n f v+1

(1 + b)
∑k

h=1n f (v+1)− j p f jmax
{
jα f , β

}

= (
1 + θg

) (
1 + θ

f
b

)v+1
(1 + b)

∑v+1
d=k+1n f d T +

v+1∑

k=1

(1 + b)
∑v+1

d=k+1n f d

×
(
1 + θ

f
b

)v−k

∑k
h=1n f h∑

j=∑k−1
h=1n f h+1

(1 + b)
∑k

h=1n f h− j p f jmax
{
jα f , β

}
.

Thus, Eq. (1) holds for the (v + 1)th batch b f (v+1), and it can be also derived that Eq. (1)
holds for b f m f . The proof is completed. ��

Based on the result of the batches’ completion times, we develop some properties of jobs
sequencing and jobs batching in the same batch from a certain batch by the job interchange
operations as follows.

Lemma 2 For the problem 1
∣
∣
∣s − batch, pA

i j = pi jmax {rαi , β} + bt, ri = t0
∣
∣
∣Cmax , all

jobs in the same batch of a certain group should be sequenced in non-decreasing order
of pi j in the optimal schedule.

Proof Herewe assume thatπ∗ andπ are an optimal schedule and a job schedule, respectively.
The difference of these two schedules is the pairwise interchange of these two jobs J f d and
J f (d+1)

(
d = 1, 2, · · · , N f − 1

)
in the same batch, that is, π∗ = (

W1, J f d , J f (d+1),W2
)
,

π = (
W1, J f d , J f (d+1),W2

)
, where J f d , J f (d+1) ∈ b f v , and b f v ⊂ G f , n f v ≥ 2,

f = 1, 2, · · · , n, v = 1, 2, · · · ,m f . J f d and J f (d+1) are in the dth and (d + 1)th positions
ofG f .W1 andW2 represent two partial sequences, andW1 orW2 may be empty. It is assumed
that p f d ≥ p f (d+1).

If the starting time of G f ( f = 1, 2, · · · , n) is T , then we first give the completion time
of b f v in π∗,

C
(
b f v

(
π∗)) = (

1 + θg
) (

1 + θ
f
b

)v

(1 + b)
∑v

d=k+1n f d T

+
v∑

k=1

(1 + b)
∑v

d=k+1n f d
(
1 + θ

f
b

)v−k

∑k
h=1n f h∑

j=∑k−1
h=1n f h+1

(1 + b)
∑k

h=1n f h− j p f jmax
{
jα f , β

}

Then, the completion time of b f v in π is

C
(
b f v (π)

) = (
1 + θg

) (
1 + θ

f
b

)v
(1 + b)

∑v
d=k+1n f d T

+
v∑

k=1

(1 + b)
∑v

d=k+1n f d
(
1 + θ

f
b

)v−k

∑k
h=1n f h∑

j=∑k−1
h=1n f h+1

(1
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+ b)
∑k

h=1n f h− j p f jmax
{
jα f , β

}

−
[
(1 + b)n f v−d p f dmax

{
dα f , β

} + (1 + b)n f v−d−1 p f (d+1)max
{
(d + 1)α f , β

}]

+
[
(1 + b)n f v−d p f (d+1)max

{
dα f , β

} + (1 + b)n f v−d−1 p f dmax
{
(d + 1)α f , β

}]
.

Consequently,

C
(
b f v

(
π∗)) − C

(
b f v (π)

)

=
[
(1 + b)n f v−d p f dmax

{
dα f , β

} + (1 + b)n f v−d−1 p f (d+1)max
{
(d + 1)α f , β

}]

−
[
(1 + b)n f v−d p f (d+1)max

{
dα f , β

} + (1 + b)n f v−d−1 p f dmax
{
(d + 1)α f , β

}]

=
[
(1 + b)n f v−d max

{
dα f , β

} − (1 + b)n f v−d−1 max
{
(d + 1)α f , β

}] [
p f d − p f (d+1)

]
.

Sincemax {dα f , β} ≥ max {(d + 1)α f , β},we canobtain that (1 + b)n f v−d max {dα f , β}
> (1 + b)n f v−d−1 max {(d + 1)α f , β}. Also, it is assumed p f d ≥ p f (d+1), we can derive
that

C
(
b f v

(
π∗)) ≥ C

(
b f v (π)

)
,

which conflicts with the optimal schedule. Hence, it should be p f d ≤ p f (d+1).
The proof is completed. ��
Similar to the proof of Lemma 2, we have the following property.

Lemma 3 For the optimal schedule of the problem 1
∣
∣
∣s − batch, pA

i j = pi jmax

{rαi , β} + bt, ri = t0|Cmax , the normal processing time of Ji j in a batch b f v should be
no more than that of any jobs in b f (v+1), f = 1, 2, · · · , n, v = 1, 2, · · · ,m f − 1.

Based on the jobs sequencing characteristic of Lemmas 2 and 3, we obtain the following
corollary.

Corollary 1 For the problem 1
∣
∣
∣s − batch, pA

i j = pi jmax {rαi , β} + bt, ri = t0
∣
∣
∣Cmax , all

jobs in a certain group should be sequenced in the non-decreasing order of pi j .

As in Lemma 2, we can also use the similar jobs transferring operations to obtain the
following property.

Lemma 4 For the problem 1
∣
∣
∣s − batch, pA

i j = pi jmax {rαi , β} + bt, ri = t0
∣
∣
∣Cmax , there

should be n f v ≤ n f (v+1) for a certain group in the optimal schedule, where f = 1, 2, · · · , n,
v = 1, 2, · · · ,m f − 1.

The following property for jobs number argument can be further obtained by using the
similar jobs transferring operations.

Lemma 5 For the optimal schedule of the problem 1
∣
∣
∣s − batch, pA

i j = pi jmax {rαi , β}
+bt, ri = t0|Cmax , there should be

⌈
Ni
c

⌉
batches in any group Gi , and all batches are full

of jobs except possibly the first batch.
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For the problem 1
∣
∣
∣s − batch, pA

i j = pi jmax {rαi , β} + bt, ri = t0
∣
∣
∣Cmax , we develop

Batching-Rule 1 for the optimal jobs batching of each group based on the Lemmas 1–5
and Corollary 1. Based on the optimal jobs batching of each group, we have the following

Batching-Rule 1

Step 1. Set i = 1
Step 2. All jobs in Gi are indexed in the non-decreasing order of pi j , j = 1, 2, · · · ,mi , then
a job list of Gi is generated that pi1 ≤ pi2 ≤ · · · ≤ pimi .

Step 4. Place the first Ni −
(⌈

Ni
c

⌉
− 1

)
c jobs in the first batch

Step 5. If there are more than c jobs in the job list of Gi , then place c jobs in a batch and iterate.
Then, all batches are generated in Gi .
Step 6. If i < n, then set i = i + 1, go to step 2. Otherwise, end.

property for the optimal sequencing of each group.

Lemma 6 For the problem 1
∣
∣
∣s − batch, pA

i j = pi jmax {rαi , β} + bt, ri = t0
∣
∣
∣Cmax , con-

sidering two consecutive groups Gr and Gr+1, if ρ (Gr ) ≤ ρ (Gr+1), where ρ (Gr ) =
∑mr

k=1(1+b)
∑mr

d=k+1nrd (1+θrb)
mr−k∑

∑k
h=1nrh

j=∑k−1
h=1nrh+1

(1+b)
∑k

h=1nrh− j pr jmax{ jαr ,β}
(1+θg)(1+θrb)

mr (1+b)Nr −1
, r = 1, 2, · · · , n − 1,

then it is optimal to process Gr before Gr+1.

Proof Let .π∗. and π be an optimal schedule and a job schedule, and their difference is
the pairwise interchange of these two job sets Gr and Gr+1 (r = 1, 2, · · · , n − 1), that
is, π∗ = (W1,Gr ,Gr+1,W2), π = (W1,Gr+1,Gr ,W2), where both Gr and Gr+1 may
include one or multiple batches, W1 and W2 represent two partial sequences, and W1 or W2

may be empty. Here it is assumed that ρ (Gr ) > ρ (Gr+1), i.e.,

∑mr
k=1 (1 + b)

∑mr
d=k+1nrd

(
1 + θrb

)mr−k ∑∑k
h=1nrh

j=∑k−1
h=1nrh+1

(1 + b)
∑k

h=1nrh− j pr jmax { jαr , β}
(
1 + θg

) (
1 + θrb

)mr
(1 + b)Nr − 1

>

∑mr+1
k=1 (1 + b)

∑mr+1
d=k+1n(r+1)d

(
1 + θr+1

b

)mr+1−k ∑∑k
h=1n(r+1)h

j=∑k−1
h=1n(r+1)h+1

(1 + b)
∑k

h=1n(r+1)h− j p(r+1) j max { jαr+1 , β}
(
1 + θg

) (
1 + θr+1

b

)mr+1
(1 + b)Nr+1 − 1

,

and the starting time of processing Gr is T .
For π∗, the completion time of Gr+1 is

C
(
Gr+1

(
π∗)) = (

1 + θg
) (

1 + θr+1
b

)mr+1
(1 + b)Nr+1

[
(
1 + θg

) (
1 + θrb

)mr
(1 + b)Nr T +

mr∑

k=1

(1 + b)
∑mr

d=k+1nrd

× (
1 + θrb

)mr−k

∑k
h=1nrh∑

j=∑k−1
h=1nrh+1

(1 + b)
∑k

h=1nrh− j pr jmax
{
jαr , β

}

⎤

⎥
⎦

+
mr+1∑

k=1

(1 + b)
∑mr+1

d=k+1n(r+1)d
(
1 + θr+1

b

)mr+1−k

∑k
h=1n(r+1)h∑

j=∑k−1
h=1n(r+1)h+1
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× (1 + b)
∑k

h=1n(r+1)h− j p(r+1) jmax
{
jαr+1 , β

}
.

For π , the completion time of Gr is

C (Gr (π)) = (
1 + θg

) (
1 + θrb

)mr (1 + b)Nr
⎡

⎣
(
1 + θg

) (
1 + θr+1

b

)mr+1
(1 + b)Nr+1 T +

mr+1∑

k=1

(1 + b)
∑mr+1

d=k+1n(r+1)d

×
(
1 + θr+1

b

)mr+1−k

∑k
h=1n(r+1)h∑

j=∑k−1
h=1n(r+1)h+1

(1 + b)
∑k

h=1n(r+1)h− j p(r+1) j max
{
jαr+1 , β

}

⎤

⎥
⎦

+
mr∑

k=1

(1 + b)
∑mr

d=k+1nrd
(
1 + θrb

)mr−k

∑k
h=1nrh∑

j=∑k−1
h=1nrh+1

(1 + b)
∑k

h=1nrh− j pr jmax
{
jαr , β

}
.

It can be derived that

C
(
Gr+1

(
π∗)) − C (Gr (π))

=
[(
1 + θg

) (
1 + θrb

)mr
(1 + b)Nr − 1

] [(
1 + θg

) (
1 + θr+1

b

)mr+1
(1 + b)Nr+1 − 1

]

⎡

⎢
⎣

∑mr
k=1 (1 + b)

∑mr
d=k+1nrd

(
1 + θrb

)mr−k ∑∑k
h=1nrh

j=∑k−1
h=1nrh+1

(1 + b)
∑k

h=1nrh− j pr jmax { jαr , β}
(
1 + θg

) (
1 + θrb

)mr
(1 + b)Nr − 1

−
∑mr+1

k=1 (1 + b)
∑mr+1

d=k+1n(r+1)d
(
1 + θr+1

b

)mr+1−k ∑∑k
h=1n(r+1)h

j=∑k−1
h=1n(r+1)h+1

(1 + b)
∑k

h=1n(r+1)h− j p(r+1) j max { jαr+1 , β}
(
1 + θg

) (
1 + θr+1

b

)mr+1
(1 + b)Nr+1 − 1

⎤

⎥
⎥
⎦

> 0.

It conflicts with the optimal schedule. Consequently, the proof is completed. ��
Based on the above lemmas and the optimal jobs batching rule, we develop the following

Algorithm 1 to solve the problem 1
∣
∣
∣s − batch, pA

i j = pi jmax {rαi , β} + bt, ri = t0
∣
∣
∣Cmax .

Algorithm 1

Step 1. Execute Batching-Rule 1

Step 2. Calculateρ (Gr ) =
∑mr

k=1(1+b)
∑mr

d=k+1nrd
(
1+θrb

)mr−k∑
∑k

h=1nrh

j=∑k−1
h=1nrh+1

(1+b)
∑k

h=1nrh− j
pr j max{ jαr ,β}

(
1+θg

)(
1+θrb

)mr
(1+b)Nr −1

,

r = 1, 2, · · · , n − 1.
Step 3. Sequence all groups in the non-increasing order of ρ (Gl ), i.e., ρ (G1) ≤ ρ (G2) ≤
· · · ≤ ρ (Gn).

Theorem 1 For the problem 1
∣
∣
∣s − batch, pA

i j = pi jmax {rαi , β} + bt, ri = t0
∣
∣
∣Cmax , an

optimal schedule can be obtained by Algorithm 1 in O (N log N ) time. The optimal makespan
is
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C∗
max = t0

(
1 + θg

)n
n∏

r=1

(
1 + θrb

)mr
(1 + b)Nr

+
n∑

r=1

(
1 + θg

)n−r
mr∑

k=1

(1 + b)
∑mr

d=k+1nrd
(
1 + θrb

)mr−k

∑k
h=1nrh∑

j=∑k−1
h=1nrh+1

(1 + b)
∑k

h=1nrh− j pr jmax
{
jαr , β

} n∏

l=r+1

(
1 + θ lb

)ml
(1 + b)Nl .

(2)

Proof An optimal solution can be generated by Algorithm 1 based on Lemmas 1–6 and
Corollary 1. Similar to the proof of Lemma 1, the result of the optimal solution can be also
obtained as Eq. (2). The time complexity of step 1 is at most O (N log N ), and the total time
complexity of step 2 is O (1). Then, for step 3, the time complexity of obtaining the optimal
group sequence is O (n log n). Since we have n ≤ N , the time complexity of Algorithm 1 is
at most O (N log N ). ��

4 Problem 1
∣
∣
∣s − batch, pAi j = pi jmax {rαi , β} + bt, ri

∣
∣
∣Cmax

In this section, we first give the key steps of VNS–ASHLO algorithm in Sect. 4.1, and then
computational experiments are conducted to test the performance of the proposed algorithm
compared with another four algorithms in Sect. 4.2.

4.1 Key steps of VNS–ASHLO algorithm

In this section, a hybrid VNS–ASHLO algorithm combing variable neighborhood search
(VNS) and adaptive simplified human learning optimization (ASHLO) algorithm is proposed
to solve the studied problem.VNShas beenwidely used in various combinatorial optimization
problems since it was developed by Hansen and Mladenović [20]. There are lots of variants
of VNS and the detailed overview can be found in Hansen et al. [21]. In order to enhance
the effectiveness of the local search procedure in VNS, we adopt the the adaptive simplified
human learning optimization (ASHLO) algorithm to replace the local search procedure in
traditional VNS. ASHLO algorithm was proposed by Wang et al. [22], which is inspired
by the behavior of human learning. The human learning process can be divided into three
methods: (i) random learning, (ii) individual learning, and (iii) social learning. Random
learning is common at the beginning of learning, because of the lack of prior knowledge, and
individual usually acquires knowledge randomly [22]. In the following studying process, to
avoidmistakes and improve learning efficiency, individuals refer to their own experiences and
knowledge during the process of study [22]. This phenomenon can be abstracted as individual
learning. However, the experiences or knowledge of an individual is limited, individual needs
to gain more knowledge from other people through social learning to further improve their
learning performance [22]. In each iteration, individual i randomly selects a method to learn
and then updates current individual knowledge data (IKD) for itself and social knowledge
data (SKD), where IKD is used to save a certain number of historical optimal solutions for
each individual, and SKD is uesd to store a certain number of historical optimal solutions for
the whole population. The algorithm framework of VNS–ASHLO is described in Table 2,
and the part of ASHLO is demonstrated in the 5th line to the 23th line in the pseudocode.
The flow chart of VNS–ASHLO is also given in Fig. 1.
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Table 2 The pseudocode of VNS–ASHLO

Pseudocode of VNS-ASHLO 

1. Generate initial solution  randomly, set , , , , 

, and 

2. Set  and , randomly generate for each individual and  from 

3. While ( )  

4. Generate solutions  from  randomly, 

and each solution includes elements, 

5. While ( ) 

6. For each ,  to 

7. For each ,  to 

8.   Generate a random number in [0,1] 

9.   If  then 

10.   Perform random learning operator for 

11.   else 

12.   If then 

13.   Perform individual learning operator for 

esle.41

15.   Perform social learning operator for 

fidnE.61

17.   End if 

18. End for 

19. Update for individual 

20. End for 

21. Update ,  and 

22. 

23. End while  

24. Obtain best solution in 

25. If  is better than , then  

26. Replace  with 

27. 

28. else 

29. 

30. End if 

31. End while 

32. Output 

123



J Glob Optim (2018) 71:147–163 157

4.1.1 Coding and encoding

In this paper, a solution of the studied problem is resprented by an array of group num-
ber, and the processing sequence of groups is determined by the array. For any solution
X = {

x1, · · · , xg, · · · , xn
}
, the fitness of X is calculated as follows.

Calculation of the fitness

Step 1. Set g = 1, Cg−1 = Cg = 0.
Step 2. Apply Scheduling Rule 1 to calculate the completion time of group xg as Cg , if g = n,
then output Cn and stop.
Step 3. If Cg < max{ri |i = 1, 2 · · · , n}, then set g = g + 1 and go to step 2. Otherwise, go
to step 4.
Step 4. Apply algorithm 1 to solve the completion time of the remain groups and output Cn .

4.1.2 Neighborhood structure

A simple neighborhood structure based on swap operator is applied in this paper, Nh (X)

denotes the hth neighborhood of solution X , and Nh (X) is defined as follows.

Neighborhood structure

Step 1. Set u = 1.
Step 2. Randomly select two elements of solution X and swap them.
Step 3. If u ≤ h, then go to step 2. Otherwise, output solution X .

4.1.3 Random learning operator

A simple random swap process is developed as random learning operator. When an element
of solution X is selected to perform random learning operator, randomly swap this element
with another element of solution X .

4.1.4 Individual learning operator

We assume that the gth position of current solution X for individual l is taken into consid-
eration, and the individual learning operator can be described as follows.

Individual learning operator

Step 1. Randomly select a solution from the I K D of individual l as the selected solution
X_select .
Step 2. The element of X which is equal to the one in the gth position of X_select is replaced
by the gth position of X .
Step 3. Replace gth position of current solution X with the one in the gth position of X_select .

4.1.5 Social learning operator

Similar to individual learning operator, we also define the social learning operator, which
can be described as follows.
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Start

Set h=hmin

Randomly generate IKD for each individual l and SKD from Nh(X)

Generate initial solution X randomly, set hmin,hmax and hstep

Generate N_pop solutions from  Nh(X) neighborhood 

Preform ASHLO algorithm and obtain a new solution Xnew

If Xnew is better than X Y

h=h+hstep

N

Y If h<=hmax

Output X

N

End

Fig. 1 The flowchart of VNS–ASHLO

Social learning operator

Step 1. Randomly select a solution from the SK D as selected solution X_select .
Step 2. The element of X which is equal to the one in the gth position of X_select is replaced
by the gth position of X .
Step 3. Replace gth position of current solution X with the one in the gth position of X_select .

4.2 Computational experiments and comparison

In this sub-section, a serial of computational experiments are conducted to test the perfor-
mance of our proposed algorithm VNS–ASHLO, compared with ASHLO [22], VNS [23],
and Simulated Annealing (SA) [24], Particle Swarm Optimization (PSO) [25]. The param-
eters of the test problems were randomly generated as Table 3 according to the practical
situations in an aluminum factory.
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Table 3 Parameters setting

Notation Definition Value

n The number of groups 10,20,30,40,50

Ni The number of jobs in Gi , i = 1, 2, · · · , n U[5,15]

αi The learning rate of all jobs in Gi , i = 1, 2, · · · , n U[-1,-3]

β A truncation parameter U[0,0.5]

b The deteriorating rate of processing jobs U[0,0.1]

ri Release time of all jobs in Gi , i = 1, 2, · · · , n U[0,4000]

pi j The normal processing time of Ji j , j = 1, 2, · · · , Ni , i = 1, 2, · · · , n U[0,20]

nik The number of jobs in bik , k = 1, 2, · · · ,mi , i = 1, 2, · · · , n U[0,10]

θ ib The deteriorating rate of batches’ setup time in Gi , i = 1, 2, · · · , n U[0,0.1]

θg The deteriorating rate of groups’ setup time U[0,0.1]

c The capacity of the batching machine U[3,5]

In order to evaluate the performance of proposed VNS–ASHLO, it is compared with
another four algorithms in the studied problem. In Table 4, the results of the average objective
value (Avg.Obj) and the maximum objective value (Max.Obj) for the problem are listed. The
convergence curves of all algorithms are shown in Fig. 2.

All cases run 10 times to avoid the contingency of the experiment. In order to ensure the
fairness of the comparison experiment, the population sizes of ASHLO, PSO, and VNS–
ASHLO are equal to the local search times of VNS and SA, both set to 5. All algorithms
were implemented in Eclipse and run on a Lenovo computer running Window10 with a
dual-core CPU Intel i3-3240@3.40 GHz and 4 GB RAM. All the algorithms are tested
by 200 iterations in a reasonable time, and the program code runs in 9.5 sec for 10 times
when n = 45. Thus, it is shown that the average running time of VNS–ASHLO does not
exceed 1 second. From Table 4, we conclude that each algorithm can find the optimal solu-
tion of the problem within 200 iterations in most cases. It is easy to find that our proposed
algorithm has better performance than other algorithms, since the average objective value
obtained by VNS–ASHLO is better than those of other algorithms among all cases. In this
experiment, the average result of the current optimal solutions for 1 to 200 iterations is
used to plot the above convergence curves. From Fig. 2, it can be obtained that the VNS–
ASHLO has better convergence rate and optimization capability than other algorithms. All
algorithms can find reasonable solutions within 200 iterations in most cases, but VNS–
ASHLO has better convergence rate than other algorithms. With the increasing number
of groups, the results show that the optimal solution could not be found within 200 iter-
ations by SA and VNS. Although ASHLO and PSO can obtain better solutions than SA
and VNS within 200 iterations, the drawback of them is that they are not stable for all the
cases. From Fig. 2, it is also obvious that VNS–ASHLO has better robustness than ASHLO
and PSO.
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Fig. 2 Convergence curves for each algorithm when n = 10, 15, 20, 25, 30, 35, 40, 45. a Convergence
curves for n = 10. b Convergence curves for n = 15. c Convergence curves for n = 20. d Convergence curves
for n = 25. e Convergence curves for n = 30. f Convergence curves for n = 35. g Convergence curves for
n = 40. h Convergence curves for n = 45
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5 Conclusions

In this paper we study a single serial-batching machine scheduling problem to minimize the
makespan, where the features of release times, group scheduling, the combined effects of
deterioration and truncated job-dependent learning, and setup time are investigated simul-
taneously. For the special case that all groups have the same release times, the structural
properties on jobs sequencing, jobs batching, and batches sequencing are studied, and an
optimal batching rule and an algorithm are proposed for the special case. Based on the
structural properties, the general case can be transformed into the resource allocation prob-
lem. Then, a hybrid VNS–ASHLO algorithm incorporating VNS and ASHLO algorithms
is developed to solve the general case. The results of computational experiments on ran-
domly generated instances show the effectiveness and efficiency of the proposed algorithm,
compared with the algorithms of VNS, ASHLO, SA, and PSO.

Several promising directions can be further studied for future research. A possible research
is to explore the different deterioration and learning effects according to different production
situations. Moreover, other objective functions can be considered in the model, such as mini-
mizing maximum lateness and minimizing the sum of the completion times, to accommodate
more practical applications.
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