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Abstract Deterministic branch-and-bound algorithms for continuous global optimization
often visit a large number of boxes in the neighborhood of a global minimizer, resulting in
the so-called cluster problem (Du and Kearfott in J Glob Optim 5(3):253–265, 1994). This
article extends previous analyses of the cluster problem in unconstrained global optimiza-
tion (Du and Kearfott 1994; Wechsung et al. in J Glob Optim 58(3):429–438, 2014) to the
constrained setting based on a recently-developed notion of convergence order for convex
relaxation-based lower bounding schemes. It is shown that clustering can occur both on
nearly-optimal and nearly-feasible regions in the vicinity of a global minimizer. In contrast
to the case of unconstrained optimization, where at least second-order convergent schemes
of relaxations are required to mitigate the cluster problem when the minimizer sits at a point
of differentiability of the objective function, it is shown that first-order convergent lower
bounding schemes for constrained problems may mitigate the cluster problem under certain
conditions. Additionally, conditions under which second-order convergent lower bounding
schemes are sufficient to mitigate the cluster problem around a global minimizer are devel-
oped. Conditions on the convergence order prefactor that are sufficient to altogether eliminate
the cluster problem are also provided. This analysis reduces to previous analyses of the cluster
problem for unconstrained optimization under suitable assumptions.
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1 Introduction

One of the key issues faced by deterministic branch-and-bound algorithms for continuous
global optimization [11] is the so-called cluster problem, where a large number of boxes may
be visited by the algorithm in the vicinity of a global minimizer [7,21,29]. Du andKearfott [7,
13] were the first to analyze this phenomenon in the context of interval branch-and-bound
algorithms for unconstrained global optimization. They established that the accuracy with
which the bounding scheme estimates the range of the objective function, as determined by
the notion of convergence order (see Definition 7), dictates the extent of the cluster problem.
Furthermore, they determined that, in the worst case, at least second-order convergence of
the bounding scheme is required to mitigate ‘clustering’ [7]. Next, Neumaier [21] provided a
similar analysis and concluded that even second-order convergence of the bounding scheme
might, in the worst case, result in an exponential number of boxes in the vicinity of an
unconstrained global minimizer. In addition, Neumaier claimed that a similar situation holds
in a reduced manifold for the constrained case [21].

Recently, Wechsung et al. [29] provided a refined analysis of Neumaier’s argument for
unconstrained global optimization which corroborated the previous analyses. In addition,
they showed that the number of boxes visited in the vicinity of a global minimizer may
scale differently depending on the convergence order prefactor. As a result, second-order
convergent bounding schemes with small-enough prefactors may altogether eliminate the
cluster problem, while second-order convergent bounding schemes with large-enough pref-
actors may result in an exponential number of boxes being visited. Also note the analysis
by Wechsung [28, Section 2.3] that shows first-order convergence of the bounding scheme
may be sufficient to mitigate the cluster problem in unconstrained optimization when the
optimizer sits at a point of nondifferentiability of the objective function.

As highlighted above, the convergence order of the bounding scheme plays a key role in the
analysis of the cluster problem. This concept, which is based on the rate at which the notion of
excess width from interval extensions [18] shrinks to zero, compares the rate of convergence
of an estimated range of a function to its true range. Bompadre and Mitsos [3] developed the
notions of Hausdorff and pointwise convergence rates of bounding schemes, and established
sharp rules for the propagation of convergence orders of bounding schemes constructed using
McCormick’s composition rules [17]. In addition, Bompadre and Mitsos [3] demonstrated
second-order pointwise convergence of schemes of convex and concave envelopes of twice
continuously differentiable functions, second-order pointwise convergence of schemes of
αBB relaxations [1], and provided a conservative estimate of the prefactor of αBB relaxation
schemes for the case of constant α. Scholz [25] demonstrated second-order convergence of
centered forms (also see, for instance, the article by Krawczyk and Nickel [15]). Bompadre
and coworkers [4] established sharp rules for the propagation of convergence orders of Taylor
and McCormick-Taylor models. Najman and Mitsos [20] established sharp rules for the
propagation of convergence orders of the multivariate McCormick relaxations developed
in [19,26]. Finally, Khan and coworkers [14] developed a continuously differentiable variant
of McCormick relaxations [17,19,26], and established second-order pointwise convergence
of schemes of the differentiableMcCormick relaxations for twice continuously differentiable
functions. The above literature not only helps develop bounding schemes for unconstrained
optimization with the requisite convergence order, but also provides conservative estimates
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for the convergence order prefactor (see Definition 7). Also note the related definition for the
rate of convergence of (lower) bounding schemes for geometric branch-and-bound methods
provided by Schöbel and Scholz [23].

This work provides an analysis of the cluster problem for constrained global optimization.
It is shown that clustering can occur both on feasible and infeasible regions in the neigh-
borhood of a global minimizer. Akin to the case of unconstrained optimization, both the
convergence order of a lower bounding scheme and its corresponding prefactor (see Defi-
nition 8) may be crucial towards tackling the cluster problem; however, in contrast to the
case of unconstrained optimization, it is shown that first-order convergent lower bounding
schemeswith small-enough prefactorsmay eliminate the cluster problemunder certain condi-
tions. Additionally, conditions under which second-order convergence of the lower bounding
scheme may be sufficient to mitigate clustering are developed.

Thiswork assumes that boxes can be placed such that globalminimizers are always in their
relative interior, otherwise an exponential number of boxes can contain global minimizers.
Techniques such as epsilon-inflation [16] or back-boxing [21,27] can potentially be used to
place boxes with global minimizers in their relative interior.

This article is organized as follows. Section 2 provides the problem formulation, describes
the notions of convergence used in this work, and sets up the framework for analyzing the
cluster problem in Sect. 3. Section 3.1 analyzes the cluster problem on the set of nearly-
optimal feasible points in a neighborhood of a global minimizer and determines conditions
under which first-order and second-order convergent bounding schemes may be sufficient to
mitigate clustering in such neighborhoods. Section 3.2 analyzes the cluster problem on the set
of nearly-feasible points in a neighborhood of a global minimizer that have a ‘good-enough’
objective function value, and develops conditions under which first-order and second-order
convergent bounding schemesmay be sufficient tomitigate clustering in such neighborhoods.
Finally, Sect. 4 lists the conclusions of this work.

2 Problem formulation and background

Consider the problem

min
x

f (x) (P)

s.t. g(x) ≤ 0,

h(x) = 0,

x ∈ X,

where X ⊂ R
nx is a nonempty open bounded convex set, the functions f : X → R,

g : X → R
mI , and h : X → R

mE are continuous on X , and 0 denotes a vector of zeros of
appropriate dimension. The following assumptions are enforced throughout this work.

Assumption 1 The constraints define a nonempty compact set

{x ∈ X : g(x) ≤ 0, h(x) = 0} ⊂ X.

Assumption 2 Let x∗ ∈ X be a global minimum for Problem (P), and assume that the
branch-and-bound algorithm has found the upper bound UBD = f (x∗) sufficiently early
on. Let ε be the termination tolerance for the branch-and-bound algorithm, and suppose the
algorithm fathoms node k when UBD− LBDk ≤ ε, where LBDk is the lower bound on node
k.
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When Assumption 1 is enforced, Problem (P) attains its optimal solution on X by virtue
of the assumption that f is continuous on X . Note that the assumption that X is an open
set is made purely for ease of exposition, particularly when differentiability assumptions on
the functions in Problem (P) are made, and is not practically implementable in general. As a
result, we implicitly assume throughout this work that finite bounds on the variables (which
define an interval in the interior of X ) are available for use in a branch-and-bound setting.

Assumption 2 essentially assumes that the convergence of the overall lower bound is
the limiting factor for the convergence of the branch-and-bound algorithm. This is usually a
reasonable assumption in the context of branch-and-bound algorithms for global optimization
where most of the effort is typically spent in proving ε-optimality of feasible solutions
found using (heuristic) local optimization-based techniques. The cluster problem analysis
in this work is asymptotic in ε in general; we provide conservative estimates of the worst-
case number of boxes visited by the branch-and-bound algorithm in nearly-optimal and
nearly-feasible neighborhoods of global minimizers for some sufficiently small ε > 0. The
conservatism of the above estimates decreases as ε → 0. The asymptotic nature of our
analysis with respect to ε is not only a result of considering the local behavior of the objective
function in the vicinity of a global minimizer (which is also a limitation of the analyses of
the cluster problem in unconstrained optimization [7,21,28,29]), but is also a consequence
of considering the local behavior of the constraints (and, therefore, the feasible region) in the
vicinity of a global minimizer. In practice, values of ε for which the analysis of the cluster
problem provides a reasonable overestimate of the number of boxes visited can be much
larger than the machine precision (on the order of 10−1). This is evidenced by the examples
in Sect. 3. Also note that the fathoming criterion for the branch-and-bound algorithm in this
work is different from the one considered by Wechsung et al. [29], who assume that node k
is fathomed only when LBDk > UBD; however, the worst-case estimates of the number of
boxes visited by the branch-and-bound algorithm are not affected by this difference in our
assumptions.
Throughout this work, we will use x∗ to denote a global minimizer of Problem (P), IZ to
denote the set of nonempty, closed and bounded interval subsets of Z ⊂ R

n , ZC to denote the
relative complement of a set Z ⊂ R

n with respect to X , cl(Z) to denote the closure of a set
Z ⊂ R

n , ‖z‖ to denote the Euclidean norm of z ∈ R
n , R− to denote the nonpositive orthant,

z j to denote the j th component of a vector z, (z1, z2, . . . , zn) to denote a vector z ∈ R
n with

entries z1, z2, . . . , zn ∈ R (note that (z1, z2) will be used to denote both an open interval
in R and a vector in R

2; the intended use will be clear from the context), �·	 to denote the

ceiling function,

[
g
h

]
to denote a vector-valued function with domain Y and codomain R

m+n

corresponding to vector-valued functions g : Y → R
m and h : Y → R

n , f(Z) to denote the
image of Z ⊂ Y under the function f : Y → R

m , f ′(z;d) to denote the directional derivative
of a function f : Z ⊂ R

n → R at a point z ∈ Z (with Z open) in a direction d ∈ R
n , and

‘differentiability’ to refer to differentiability in the Fréchet sense. The following definitions
are in order.

Definition 1 (Width of an interval) Let Z = [zL1 , zU1 ] × · · · × [zLn , zUn ] be an element of IR
n .

The width of Z , denoted by w(Z), is given by

w(Z):= max
i=1,...,n(z

U
i − zLi ).
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Definition 2 (Distance between two sets) Let Y, Z ⊂ R
n . The distance between Y and Z ,

denoted by d(Y, Z), is defined as

d(Y, Z):= inf
y∈Y,

z∈Z
‖y− z‖.

Note that the above definition of distance does not define a metric; however, it will prove
useful in defining a measure of infeasibility for points in X for Problem (P).

Definition 3 (Lipschitz continuous function) Let Z ⊂ R
n . A function f : Z → R is

Lipschitz continuous with Lipschitz constant M ≥ 0 if | f (z1) − f (z2)| ≤ M‖z1 − z2‖,
∀z1, z2 ∈ Z .

Since the cluster problem analysis is asymptotic in ε, we will need the following asymptotic
notations.

Definition 4 (Big O and little o notations) Let Y ⊂ R, f : Y → R, and g : Y → R. We
say that f (y) = O(g(y)) as y → ȳ ∈ Y if and only if there exist δ, M > 0 such that

| f (y)| ≤ M |g(y)|, ∀y ∈ Y with |y − ȳ| < δ.

Similarly, we say that f (y) = o(g(y)) as y → ȳ ∈ Y if and only if for all M ′ > 0 there
exists δ′ > 0 such that

| f (y)| ≤ M ′|g(y)|, ∀y ∈ Y with |y − ȳ| < δ′.

Note that unless otherwise specified, we consider ȳ = 0 in this work.

Definition 5 (Convex and concave relaxations) Given a convex set Z ⊂ R
n and a function

f : Z → R, a convex function f cvZ : Z → R is called a convex relaxation of f on Z if
f cvZ (z) ≤ f (z), ∀z ∈ Z . Similarly, a concave function f ccZ : Z → R is called a concave
relaxation of f on Z if f ccZ (z) ≥ f (z), ∀z ∈ Z .

The following definition introduces the notion of schemes of relaxations [3].

Definition 6 (Schemes of convex and concave relaxations) Let Y ⊂ R
n be a nonempty

convex set, and let f : Y → R. Assume that for every Z ∈ IY , we can construct functions
f cvZ : Z → R and f ccZ : Z → R that are convex and concave relaxations, respectively, of f
on Z . The sets of functions ( f cvZ )Z∈IY and ( f ccZ )Z∈IY define schemes of convex and concave
relaxations, respectively, of f in Y , and the set of pairs of functions ( f cvZ , f ccZ )Z∈IY defines
a scheme of relaxations of f in Y . The schemes of relaxations are called continuous when
f cvZ and f ccZ are continuous on Z for each Z ∈ IY .

The next definition presents a notion of convergence order of schemes of convex and con-
cave relaxations [29] based on the notion of Hausdorff convergence order of a scheme of
relaxations [3].

Definition 7 (Convergence orders of schemes of convex and concave relaxations) Let Y ⊂
R
n be a nonempty bounded convex set, and f : Y → R be a continuous function. Let

( f cvZ )Z∈IY and ( f ccZ )Z∈IY respectively denote continuous schemes of convex and concave
relaxations of f in Y .

The scheme of convex relaxations ( f cvZ )Z∈IY is said to have convergence of order β > 0
at y ∈ Y if there exists τ cv ≥ 0 such that

min
z∈Z f (z)−min

z∈Z f cvZ (z) ≤ τ cvw(Z)β, ∀Z ∈ IY with y ∈ Z .
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Similarly, the scheme of concave relaxations ( f ccZ )Z∈IY is said to have convergence of order
β > 0 at y ∈ Y if there exists τ cc ≥ 0 such that

max
z∈Z f ccZ (z)−max

z∈Z f (z) ≤ τ ccw(Z)β, ∀Z ∈ IY with y ∈ Z .

The schemes ( f cvZ )Z∈IY and ( f ccZ )Z∈IY are said to have convergence of order β > 0 on Y
if they have convergence of order (at least) β at each y ∈ Y , with the constants τ cv and τ cc

independent of y.

The following definition seeks to extend the notion of convergence order of a bounding
scheme [3,4,29] to constrained problems. Conditions under which specific lower bounding
schemes are guaranteed to exhibit a certain convergence order will be presented in a future
article.

Definition 8 (Convergence order of a lower bounding scheme) Consider Problem (P). For
any Z ∈ IX , letF (Z) = {x ∈ Z : g(x) ≤ 0,h(x) = 0} denote the feasible set of Problem (P)
with x restricted to Z .

Let ( f cvZ )Z∈IX and (gcvZ )Z∈IX denote continuous schemes of convex relaxations of f
and g, respectively, in X , and let (hcvZ ,hccZ )Z∈IX denote a continuous scheme of relaxations
of h in X . For any Z ∈ IX , let F cv(Z) = {

x ∈ Z : gcvZ (x) ≤ 0,hcvZ (x) ≤ 0,hccZ (x) ≥ 0
}

denote the feasible set of the convex relaxation-based lower bounding scheme. The convex
relaxation-based lower bounding scheme is said to have convergence of order β > 0 at

1. a feasible point x ∈ X if there exists τ ≥ 0 such that for every Z ∈ IX with x ∈ Z ,

min
z∈F (Z)

f (z)− min
z∈F cv(Z)

f cvZ (z) ≤ τw(Z)β .

2. an infeasible point x ∈ X if there exists τ̄ ≥ 0 such that for every Z ∈ IX with x ∈ Z ,

d

([
g
h

]
(Z), R

mI− × {0}
)
− d

(
IC (Z), R

mI− × {0}) ≤ τ̄w(Z)β,

where

[
g
h

]
(Z) denotes the image of Z under the vector-valued function

[
g
h

]
, and IC (Z) is

defined by

(IC (Z))Z∈IX :=
({

(v,w) ∈ R
mI × R

mE : v = gcvZ (z), hcvZ (z) ≤ w ≤ hccZ (z) for some z ∈ Z
})

Z∈IX .

The scheme of lower bounding problems is said to have convergence of order β > 0 on X if
it has convergence of order (at least) β at each x ∈ X , with the constants τ and τ̄ independent
of x.

Definition 8 is motivated by the requirements of a lower bounding scheme to fathom
feasible and infeasible regions in a branch-and-bound procedure [11]. On nested sequences
of intervals converging to a feasible point of Problem (P), we require that the corresponding
sequences of lower bounds converge rapidly to the corresponding sequences of minimum
objective values. On the other hand, on nested sequences of intervals converging to an infea-
sible point of Problem (P), we require that the corresponding sequences of lower bounding
problems rapidly detect the (eventual) infeasibility of the corresponding sequences of inter-
vals for Problem (P). The latter requirement is enforced by requiring that the measures of
infeasibility of the corresponding lower bounding problems, as determined by the distance
function d , converge rapidly to the measures of infeasibility of the corresponding restricted
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Problems (P). Note that some intervals that only contain infeasible points may also poten-
tially be fathomed by value dominance if the lower bounds on those intervals obtained by
solving the corresponding relaxation-based lower bounding problems is greater than or equal
to UBD− ε. This possibility in considered later in this section (see, for instance, Lemma 3)
and in Sect. 3.2.

The following lemma detail worst-case conditions under which nodes containing a global
minimum and infeasible points are fathomed.

Lemma 1 (Fathoming nodes containing global minimizers) Let X∗ ∈ IX, with x∗ ∈ X∗,
correspond to the domain of node k∗ in the branch-and-bound tree. Suppose the convex
relaxation-based lower bounding scheme has convergence of order β∗ > 0 at x∗ with a
prefactor τ ∗ > 0 (see Definition 8). For node k∗ to be fathomed, we require, in that worst
case, that

w(X∗) ≤
( ε

τ ∗
) 1

β∗
.

Proof The condition for node k∗ to be fathomed by value dominance is UBD − LBDk∗ =
f (x∗)−LBDk∗ ≤ ε. Since we are concerned about convergence at the feasible point x∗ ∈ X ,
we have from Definition 8 that

min
z∈F (X∗)

f (z)− min
z∈F cv(X∗)

f cvX∗(z) ≤ τ ∗w(X∗)β
∗


⇒ LBDk∗ = min
z∈F cv(X∗)

f cvX∗(z) ≥ f (x∗)− τ ∗w(X∗)β
∗
.

Therefore, in the worst case, node k∗ is fathomed only when

LBDk∗ ≥ f (x∗)− τ ∗w(X∗)β
∗ ≥ f (x∗)− ε ⇐⇒ w(X∗) ≤

( ε

τ ∗
) 1

β∗
.

��
Lemma 2 (Fathoming infeasible nodes by infeasibility) Let X I ∈ IX, with

X I ⊂
{
x ∈ X : d

([
g
h

]
(x), R

mI− × {0}
)

> ε f
}

for some ε f > 0, correspond to the domain of node k I in the branch-and-bound tree. Suppose
the convex relaxation-based lower bounding scheme has convergence of order β I > 0 at
each x ∈ X I with a prefactor τ I > 0 that is independent of x (see Definition 8). For node
k I to be fathomed by infeasibility, we require, in the worst case, that

w(X I ) ≤
(

ε f

τ I

) 1
β I

.

Proof For node k I to be fathomed by infeasibility, we require that the convex relaxation-
based lower bounding problem is infeasible on X I , i.e., d

(
IC (X I ), R

mI− × {0}) > 0. Since
we are concerned about convergence at infeasible points, we have from Definition 8 that

d

([
g
h

]
(X I ), R

mI− × {0}
)
− d

(
IC (X I ), R

mI− × {0}
)
≤ τ Iw(X I )

β I


⇒ d
(
IC (X I ), R

mI− × {0}
)
≥ d

([
g
h

]
(X I ), R

mI− × {0}
)
− τ Iw(X I )

β I

.
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Therefore, node k I is fathomed, in the worst case, only when

d
(
IC (X I ), R

mI− × {0}
)
≥ d

([
g
h

]
(X I ), R

mI− × {0}
)
− τ Iw(X I )

β I

> 0

⇐⇒ ε f − τ Iw(X I )
β I ≥ 0

⇐⇒ w(X I ) ≤
(

ε f

τ I

) 1
β I

.

��

Lemma 3 (Fathoming infeasible nodes by value dominance) Let X I ∈ IX, with

X I ⊂
{
x ∈ X : d

([
g
h

]
(x), R

mI− × {0}
)

> 0

}
,

correspond to the domain of node k I in the branch-and-bound tree. Suppose ∀x ∈ X I ,
f (x) ≥ f (x∗). Furthermore, suppose the scheme ( f cvZ )Z∈IX has convergence of order β f >

0 at each x ∈ X I with a prefactor τ f > 0 that is independent of x (see Definition 7). If

w(X I ) ≤
( ε

τ f

) 1
β f

,

then node k I will be fathomed.

Proof A sufficient condition for node k I to be fathomed is

min
z∈F cv(X I )

f cvX I (z) ≥ f (x∗)− ε.

Since ( f cvZ )Z∈IX has convergence of order β f , we have from Definition 7 that

min
z∈X I

f cvX I (z) ≥ min
z∈X I

f (z)− τ f w(X I )β
f

≥ min
z∈X I

f (z)− ε

≥ f (x∗)− ε,

where Step 2 uses w(X I ) ≤
( ε

τ f

) 1
β f

, and Step 3 uses f (x) ≥ f (x∗), ∀x ∈ X I . Therefore,

min
z∈F cv(X I )

f cvX I (z) ≥ min
z∈X I

f cvX I (z) ≥ f (x∗)− ε.

The desired result follows. ��

In what follows, we shall partition the set X into distinct regions with the aim of constructing
regions that are either relatively easy to fathom (based on Lemma 1–3), or are relatively hard
to fathom. Suppose the convex relaxation-based lower bounding scheme has convergence of
order β∗ > 0 onF (X)with prefactor τ ∗ > 0, and convergence of order β I > 0 on (F (X))C

with prefactor τ I > 0 (note that it is sufficient for the lower bounding scheme to have the
requisite convergence orders on some neighborhood of the global minimizers of Problem (P)
for our analysis to hold, as will become clear in Sect. 3). Furthermore, suppose the scheme
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( f cvZ )Z∈IX has convergence of order β f > 0 on X with prefactor τ f > 0. Pick a feasibility
tolerance ε f and an optimality tolerance εo such that

(
ε f

τ I

) 1
β I =

(
εo

τ f

) 1
β f =

( ε

τ ∗
) 1

β∗
, (TOL)

and consider the following partition of X :

X1 :=
{
x ∈ X : d

([
g
h

]
(x), R

mI− × {0}
)

> ε f
}

,

X2 :=
{
x ∈ X : d

([
g
h

]
(x), R

mI− × {0}
)
∈ (0, ε f ] and f (x)− f (x∗) > εo

}
,

X3 :=
{
x ∈ X : d

([
g
h

]
(x), R

mI− × {0}
)
∈ (0, ε f ] and f (x)− f (x∗) ≤ εo

}
,

X4 :=
{
x ∈ X : d

([
g
h

]
(x), R

mI− × {0}
)
= 0 and f (x)− f (x∗) > ε

}
, and

X5 :=
{
x ∈ X : d

([
g
h

]
(x), R

mI− × {0}
)
= 0 and f (x)− f (x∗) ≤ ε

}
.

The set X1 corresponds to the set of infeasible points for Problem (P) with the measure
of infeasibility greater than ε f . The set X2 corresponds to the set of infeasible points for
Problem (P) with the measure of infeasibility less than or equal to ε f and with the objective
function value greater than f (x∗)+ εo, while the set X3 corresponds to the set of infeasible
points for Problem (P) with the measure of infeasibility less than or equal to ε f and the
objective function value less than or equal to f (x∗)+ εo. The set X4 corresponds to the set
of feasible points for Problem (P) with objective value greater than f (x∗) + ε, while the
set X5 corresponds to the set of feasible points for Problem (P) with objective value less
than or equal to f (x∗) + ε. The sets X1 through X5 are illustrated in Fig. 1 for the three
two-dimensional problems presented in Examples 1–3.

Intuitively, we expect that nodes with domains contained in the sets X1 and X2 can be
fathomed relatively easily (by infeasibility and value dominance, respectively) compared to
nodes with domains contained in the set X3. Similarly, we expect that nodes with domains
contained in the set X4 can be fathomed relatively easily (by value dominance) compared
to nodes with domains contained in the set X5. This intuition is formalized in Corollary 1.
Consequently, the extent of clustering is dictated primarily by the number of boxes required
to cover the regions X3 and X5. Section 3 provides conservative estimates of the number of
boxes of certain widths that are required to cover X3 and X5 under suitable assumptions. As
an aside, note that the condition specified by Equation (TOL) is used to roughly enforce that
nodes with domains contained in the sets X1, X2, and X4 can, in the worst case, be fathomed
using a similar level of effort.

Example 1 Let X = (0, 1) × (0, 1), mI = mE = 0, and f (x) = x41 + x42 − x21 − x22 with

x∗ =
(

1√
2
, 1√

2

)
. We have:

X1 = X2 = X3 = ∅,
X4 =

{
x ∈ X : x41 + x42 − x21 − x22 > f (x∗)+ ε

}
, and

X5 =
{
x ∈ X : x41 + x42 − x21 − x22 ≤ f (x∗)+ ε

}
.

The sets X1 through X5 are depicted in Fig. 1a for ε = 0.1.
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Fig. 1 Plots of the sets X1 through X5 for an unconstrained, an inequality-constrained, and an equality-
constrained problem. The dashed lines define the sets X , and the filled-in triangles denote the unique global
minimizers of the problems on X . All plots use ε = εo = ε f = 0.1 for illustration a Example 1 (uncon-
strained), b Example 2 (inequality-constrained), c Example 3 (equality-constrained)

Example 2 Let X = (2.2, 2.5) × (2.9, 3.3), mI = 3, mE = 0, f (x) = −x1 − x2, g1(x) =
x2−2x41+8x31−8x21 −2, g2(x) = x2−4x41+32x31−88x21 +96x1−36, and g3(x) = 3− x2
with x∗ ≈ (2.33, 3.18) (based on Example 4.10 in [8]). We have:

X1 =
⎧⎨
⎩x ∈ X :

√√√√ 3∑
j=1

(
max{0, g j (x)}

)2
> ε f

⎫⎬
⎭ ,

X2 =
⎧⎨
⎩x ∈ X :

√√√√ 3∑
j=1

(
max{0, g j (x)}

)2 ∈ (0, ε f ], −x1 − x2 > f (x∗)+ εo

⎫⎬
⎭ ,

X3 =
⎧⎨
⎩x ∈ X :

√√√√ 3∑
j=1

(
max{0, g j (x)}

)2 ∈ (0, ε f ], −x1 − x2 ≤ f (x∗)+ εo

⎫⎬
⎭ ,

X4 =
{
x ∈ X : g(x) ≤ 0, −x1 − x2 > f (x∗)+ ε

}
, and

X5 =
{
x ∈ X : g(x) ≤ 0, −x1 − x2 ≤ f (x∗)+ ε

}
.

The sets X1 through X5 are depicted in Fig. 1b for ε = εo = ε f = 0.1.

123



J Glob Optim (2017) 69:629–676 639

Example 3 Let X = (0.4, 1.0)× (0.5, 2.0), mI = 2, mE = 1, f (x) = −12x1 − 7x2 + x22 ,
g1(x) = x1−0.9, g2(x) = 0.5− x1, and h(x) = x2+2x41 −2 with x∗ ≈ (0.72, 1.47) (based
on Example 4.9 in [8]). We have:

X1 =

⎧⎪⎨
⎪⎩x ∈ X :

√√√√√
2∑
j=1

(
max{0, g j (x)}

)2 + |h(x)|2 > ε f

⎫⎪⎬
⎪⎭ ,

X2 =

⎧⎪⎨
⎪⎩x ∈ X :

√√√√√
2∑
j=1

(
max{0, g j (x)}

)2 + |h(x)|2 ∈ (0, ε f ], −12x1 − 7x2 + x22 > f (x∗)+ εo

⎫⎪⎬
⎪⎭ ,

X3 =

⎧⎪⎨
⎪⎩x ∈ X :

√√√√√
2∑
j=1

(
max{0, g j (x)}

)2 + |h(x)|2 ∈ (0, ε f ], −12x1 − 7x2 + x22 ≤ f (x∗)+ εo

⎫⎪⎬
⎪⎭ ,

X4 =
{
x ∈ X : g(x) ≤ 0, h(x) = 0, −12x1 − 7x2 + x22 > f (x∗)+ ε

}
, and

X5 =
{
x ∈ X : g(x) ≤ 0, h(x) = 0, −12x1 − 7x2 + x22 ≤ f (x∗)+ ε

}
.

The sets X1 through X5 are depicted in Fig. 1c for ε = εo = ε f = 0.1.

The following corollary of Lemma 1, 2, and 3, similar to Lemma 2 in [29], provides sufficient
conditions under which nodes with domains contained in X1, X2, and X4 can be fathomed.

Corollary 1 (Fathoming nodes contained in X1, X2, and X4) Let δ =
( ε

τ ∗
) 1

β∗ .

1. Suppose the convex relaxation-based lower bounding scheme has convergence of order
β I > 0 at each x ∈ X1 with a prefactor τ I > 0 that is independent of x. Consider
X̄1 ∈ IX1 corresponding to the domain of node k1 in the branch-and-bound tree. If
w(X̄1) ≤ δ, then node k1 will be fathomed by infeasibility.

2. Suppose the scheme of convex relaxations ( f cvZ )Z∈IX has convergence of order β f > 0
at each x ∈ X2 with a prefactor τ f > 0 that is independent of x. Consider X̄2 ∈ IX2

corresponding to the domain of node k2 in the branch-and-bound tree. If w(X̄2) ≤ δ,
then node k2 will be fathomed by value dominance.

3. Suppose the convex relaxation-based lower bounding scheme has convergence of order
β∗ > 0 at each x ∈ X4 with a prefactor τ ∗ > 0 that is independent of x. Consider
X̄4 ∈ IX4 corresponding to the domain of node k4 in the branch-and-bound tree. If
w(X̄4) ≤ δ, then node k4 will be fathomed by value dominance.

Corollary 1 implies that nodes with domains X̄1, X̄2, and X̄4 such that X̄1 ∈ IX1, X̄2 ∈ IX2,
and X̄4 ∈ IX4 can be fathomed when or before their widths are δ (in fact, nodes with

domains in IX2 and IX4 can be fathomed when or before their widths are
(

εo+ε
τ f

) 1
β f

and
( 2ε

τ∗
) 1

β∗ , respectively). However, nodes X̄5 ∈ IX5 may, in the worst case, need to be covered
by boxes of width δ before they are fathomed. Furthermore, nodes X̄3 ∈ IX3 may need
to be covered by a large number of boxes depending on the convergence properties of the
lower bounding scheme on X3. The following example presents a case in which clustering
may occur on X3 because the lower bounding scheme does not have a sufficiently-large
convergence order at infeasible points.
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Example 4 Let X = (−2, 2), mI = 3, and mE = 0 with f (x) = x , g1(x) = x2, g2(x) =
x − 1, and g3(x) = −1 − x . We have x∗ = 0 (which is the only feasible point). For any
[xL, xU]=:Z ∈ IX , let

f cvZ (x) = x,

gcv1,Z (x) =
{−(xU − xL), if 0 ∈ [xL, xU]
min

((
xL
)2

,
(
xU
)2)− (xU − xL), otherwise

,

gcv2,Z (x) = x − 1,

gcv3,Z (x) = −1− x .

We have β∗ = β I = 1 and β f arbitarily-large with prefactors τ ∗, τ I , and τ f , respectively,
greater than zero.

Suppose ε, ε f � 1. Pick γ > 0 and α ∈ (0, γ ) such that (γ + α)2 = ε f . Let xL :=
−γ − α = −√ε f and xU := −γ + α < 0. The width of Z is w(Z) = 2α. Note that g2 and
g3 are feasible on Z ; therefore, we need only be concerned with the feasibility of g1.

We have g1(Z) = [(γ − α)2, (γ + α)2] and d(g(Z), R
mI− ) = (γ − α)2. This implies g1

is infeasible at each x ∈ Z . Note that X3 = [xL, 0)∪
(
0,min{εo,√ε f }

]
(which follows, in

part, from each x ∈ [xL, 0) being infeasible with f (x) ≤ f (x∗) and d({g(x)}, R
mI− ) ≤ ε f ).

We have gcv1,Z (Z) = [(γ −α)2−2α, (γ −α)2−2α] and d(gcvZ (Z), R
mI− ) = max{0, (γ −

α)2 − 2α}. The optimal objective value of the lower bounding problem on Z is −γ − α

when d(gcvZ (Z), R
mI− ) = 0, and is +∞ otherwise. Note that the lower bounding problem

is infeasible on Z when (γ − α)2 − 2α > 0, which can be achieved by choosing α to be
sufficiently-small (and increasing γ accordingly).

The maximum width of the interval Z for which it can be fathomed by infeasibility can
be shown to bew(Z) = 2α∗ := 2(1+γ )−2

√
1+ 2γ = O(γ 2) = O(ε f ) (note that γ � 1

because ε f � 1). For α > α∗, the interval Z cannot be fathomed by infeasibility and the
optimal objective value of the lower bounding problem on Z is−γ −α = −√ε f = O(

√
ε).

Such an interval Z cannot be fathomed by value dominance either since ε � 1.
Therefore, in the worst case, the interval Z can be fathomed only whenw(Z) = O(γ 2) =

O(ε f ). This causes clustering in the worst case since w([xL, 0)) = O(
√

ε f ) and [xL, 0) ⊂
X3.

3 Analysis of the cluster problem

In this section, conservative estimates for the number of boxes required to cover X3 and
X5 are provided based on assumptions on Problem (P) (in particular, on its set of global
minimizers), and characteristics of the branch-and-bound algorithm. First, some requisite
definitions are provided [2].

Definition 9 (Neighborhood of a point) Let x ∈ X ⊂ R
nx . For any α > 0, p ∈ N, the set

N p
α (x) := {

z ∈ X : ‖z− x‖p < α
}

is called the α-neighborhood of x relative to X with respect to the p-norm.

Note that all norms on R
nx are equivalent.
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Definition 10 (Strict local minimum) Let F (X) denote the feasible set of Problem (P). A
point x̄ ∈ F (X) is called a strict local minimum if x̄ is a local minimum, and ∃α > 0 such
that f (x) > f (x̄), ∀x ∈ N 2

α (x̄) ∩F (X) such that x �= x̄.

Definition 11 (Nonisolated feasible point) A feasible point x ∈ F (X) is said to be noniso-
lated if ∀α > 0, ∃z ∈ N 2

α (x) ∩F (X) such that z �= x.

Definition 12 (Set of active inequality constraints) Let x ∈ F (X) be a feasible point for
Problem (P). The set of active inequality constraints at x, denoted by A (x), is given by

A (x) := {
j ∈ {1, . . . ,mI } : g j (x) = 0

}
.

Definition 13 (Tangent and cone of tangents) Let x ∈ F (X) ⊂ R
nx be a feasible point for

Problem (P). A vector d ∈ R
nx is said to be a tangent ofF (X) at x if there exists a sequence

{λk} → 0 with λk > 0, and a sequence {xk} → x with xk ∈ F (X) such that

d = lim
k→∞

xk − x
λk

.

The set of all tangents ofF (X) at x, denoted by T (x), is called the tangent cone ofF (X) at
x.

3.1 Estimates for the number of boxes required to cover X5

This section assumes that Problem (P) has afinite number of globalminimizers (which implies
each global minimum is a strict local minimum), and ε is small enough that X5 is guaranteed
to be contained in neighborhoods of global minimizers under additional assumptions. An
estimate for the number of boxes of width δ required to cover some neighborhood of a
minimum x∗ that contains the subset of X5 around x∗ is provided under suitable assumptions.
An estimate for the number of boxes required to cover X5 can be obtained by summing the
above estimates over the set of global minimizers. Throughout this section, we assume that
x∗ is a nonisolated feasible point; otherwise, ∃α > 0 such thatN 2

α (x∗) ∩ X5 = {x∗}, which
can be covered using a single box.
We begin with a necessary condition for x∗ to be a local minimum.

Theorem 1 (First-order necessary optimality condition)Consider Problem (P), and suppose
f is differentiable at x∗. Then{

d : ∇ f (x∗)Td < 0
}
∩ T (x∗) = ∅.

Proof See Theorem 5.1.2 in [2]. ��
Lemma 4 Consider Problem (P). Suppose x∗ is nonisolated and f is differentiable at x∗.
Then ∀θ > 0, ∃α > 0 such that

inf{d:‖d‖1=1, ∃t>0 : (x∗+td)∈N 1
α (x∗)∩F (X)}∇ f (x∗)Td > min{d:‖d‖1=1,d∈T (x∗)}∇ f (x∗)Td− θ.

Proof See “Proof of Lemma 4 in Appendix”. ��
The following result, inspired by Lemma 2.4 in [28], provides a conservative estimate of

the subset of X5 around a nonisolated x∗ under the assumption that the objective function
grows linearly on the feasible region in some neighborhood of x∗. The reader can compare
the assumptions of Lemma 5 with what follows from Lemma 4 and the necessary optimality
conditions in Theorem 1 (see Remark 1 for details).
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Lemma 5 Consider Problem (P). Suppose x∗ is nonisolated, f is differentiable at x∗, and
∃α > 0 such that

L := inf{d:‖d‖1=1, ∃t>0 : (x∗+td)∈N 1
α (x∗)∩F (X)}∇ f (x∗)Td > 0.

Then, ∃α̂ ∈ (0, α] such that the region N 1
α̂

(x∗) ∩ X5 can be conservatively approximated
by

X̂5 =
{
x ∈ N 1

α̂
(x∗) : L‖x − x∗‖1 ≤ 2ε

}
.

Proof Let x = x∗ + td ∈ N 1
α (x∗)∩F (X) with ‖d‖1 = 1 and t = ‖x− x∗‖1 > 0. We have

f (x) = f (x∗ + td)

= f (x∗)+ ∇ f (x∗)T(x − x∗)+ o(‖x − x∗‖1)
= f (x∗)+ t∇ f (x∗)Td+ o(t)

≥ f (x∗)+ Lt + o(t),

where Step 2 follows from the differentiability of f at x∗. Consequently, there exists α̂ ∈
(0, α] such that for all x = x∗ + td ∈ F (X) with ‖d‖1 = 1 and t ∈ [0, α̂):

f (x) ≥ f (x∗)+ Lt + o(t) ≥ f (x∗)+ L

2
t.

Therefore, ∀x ∈ N 1
α̂

(x∗) ∩ X5 we have x = x∗ + td ∈ F (X) with ‖d‖1 = 1 and t =
‖x − x∗‖1 < α̂, and

ε ≥ f (x)− f (x∗) ≥ L

2
t 
⇒ Lt = L‖x − x∗‖1 ≤ 2ε.

��
A conservative estimate of the number of boxes of width δ required to coverN 1

α̂
(x∗)∩ X5

can be obtained by estimating the number of boxes of width δ required to cover X̂5 (see
Theorem 2). The following remark is in order.

Remark 1 1. Lemma 5 is not applicable when L = 0. This can occur, for instance, when
x∗ is an unconstrained minimum, in which case other techniques have to be employed to
analyze the cluster problem [7,21,28,29] under alternative assumptions. This is because
when f is differentiable at an unconstrained minimizer x∗, it grows slower than linearly
around x∗ as a result of the first-order necessary optimality condition ∇ f (x∗) = 0 (note
that if f is twice-differentiable at x∗ and ∇2 f (x∗) is positive definite, then f grows
quadratically around x∗). The assumptions of Lemma 5may be satisfied for a constrained
problem, however, because they only require that the objective function grow linearly in
the set of directions that lead to feasible points in some neighborhood of x∗. An example
of L = 0 when x∗ is not an unconstrained minimum is: X = (−2, 2), mI = 2, mE = 0,
f (x) = x3, g1(x) = x − 1, and g2(x) = −x with x∗ = 0. In this example, the objective
function only grows cubically around x∗ in the direction from x∗ that leads to feasible
points. From Lemma 4, we have that a sufficient condition for the key assumption of
Lemma 5 to be satisfied is min{d:‖d‖1=1,d∈T (x∗)} ∇ f (x∗)Td > 0. It is not hard to show that

this condition is also necessary when f is differentiable at x∗. Proposition 2 shows that
the assumptions of Lemma 5 will not be satisfied when Problem (P) does not contain
any active inequality constraints and the minimizer corresponds to a KKT point for
Problem (P).
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2. α̂ depends on the local behavior of f around x∗, but is independent of ε since it is deter-
mined by the subset ofN 1

α (x∗)∩F (X) onwhich the affine function f (x∗)+ L
2 t underes-

timates f (x). Consequently, for sufficiently small ε, X̂5 =
{
x ∈ X : L‖x − x∗‖1 ≤ 2ε

}
since

{
x ∈ X : L‖x − x∗‖1 ≤ 2ε

}
will then be a subset of N 1

α̂
(x∗). Note that the factor

‘2’ in the denominator of ‘ L2 t’ is arbitrarily chosen; any factor> 1 can instead be chosen
with a corresponding α̂. Furthermore, x∗ is necessarily the unique global minimizer of
Problem (P) on N 1

α̂
(x∗) since L > 0.

3. If, in addition to the assumptions of Lemma 5, f is assumed to be convex onN 1
α (x∗), then

we can choose α̂ = α. Additionally, N 1
α̂

(x∗) ∩ X5 can be conservatively approximated
by

{
x ∈ X : L‖x − x∗‖1 ≤ ε

}
when ε is small enough.

4. The estimate X̂5 becomes less conservative as ε is decreased since the higher order term
o(t) → 0 as ε → 0. Simply put, this is because the affine approximation f (x∗) + Lt
provides a better description of f as ε → 0.

In fact, under the assumptions of Lemma 5, a less conservative estimate of X5 can be
obtained by accounting for the fact that not all points x ∈ {x ∈ N 1

α̂
(x∗) : L‖x − x∗‖1 ≤ 2ε

}
satisfy ∇ f (x∗)T(x − x∗) ≥ L‖x − x∗‖1.
Proposition 1 Consider Problem (P), and suppose the assumptions of Lemma 5 are satisfied.
Then, ∃α̂ ∈ (0, α] such that the region N 1

α̂
(x∗) ∩ X5 can be conservatively approximated

by

X̂5 =
{
x ∈ N 1

α̂
(x∗) : L‖x − x∗‖1 ≤ 2ε, L‖x − x∗‖1 ≤ ∇ f (x∗)T(x − x∗)

}
.

Proof The desired result follows from Lemma 5 and the fact that

∇ f (x∗)T(x − x∗) ≥ L‖x − x∗‖1, ∀x ∈ N 1
α (x∗) ∩F (X),

from the assumptions of Lemma 5. ��
As an illustration of the application of Lemma 5, let us reconsider Example 2. Recall that

X = (2.2, 2.5)× (2.9, 3.3),mI = 3,mE = 0, f (x) = −x1− x2, g1(x) = x2−2x41 +8x31 −
8x21 − 2, g2(x) = x2 − 4x41 + 32x31 − 88x21 + 96x1 − 36, and g3(x) = 3 − x2 with x∗ ≈
(2.33, 3.18). Let ε ≤ 0.07. We have F (X) = {x ∈ X : g(x) ≤ 0}, ∇ f (x∗) = (−1,−1),
α = +∞, L ≈ 0.649, and X5 = {x ∈ X : g(x) ≤ 0,−x1 − x2 ≤ f (x∗)+ ε}. Choose α̂ =
+∞ in Lemma 5. From Lemma 5 and Remark 1, we have X̂5 =

{
x : 0.649‖x − x∗‖1 ≤ ε

}
(since f is convex).

Figure 2a plots X5 and X̂5 for ε = 0.07, and Fig. 2b shows the improvement in the
estimate when Proposition 1 is used, in which case we obtain X̂5 = {x : 0.649‖x − x∗‖1 ≤
ε, 0.649‖x − x∗‖1 ≤ −(x1 − x∗1 ) − (x2 − x∗2 )}. Note that an even better estimate of X5
may be obtained by using knowledge of the local feasible set N 1

α (x∗) ∩ F (X). However,
other than in some special cases (see Lemma 6), we shall stick with the estimate X̂5 from
Lemma 5 since we are mainly concerned with the dependence of the extent of clustering on
the convergence rate of the lower bounding scheme.

Before we provide an estimate of the number of boxes of width δ required to cover
N 1

α̂
(x∗) ∩ X5, we provide a few more examples that satisfy the assumptions of Lemma 5

and present an approach that could help determine if its assumptions are satisfied. Example 5
illustrates another inequality-constrained case which satisfies the assumptions of Lemma 5.
Note that the minimizer x∗ does not satisfy the KKT conditions in this case.
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Fig. 2 Plots of X5 (solid regions) and X̂5 (the areas between the dotted lines) for Example 2 for ε = 0.07
(note that we do not use ε = 0.1 as in Fig. 1b because the corresponding X̂5 are not contained in X ). The
dashed lines define the set X , the filled-in triangles correspond to the minimizer x∗, and the dash-dotted
lines represent the axes translated to x∗, a X5 and estimate X̂5 from Lemma 5, b X5 and estimate X̂5 from
Proposition 1

Example 5 Let ε ≤ 1, X = (−2, 2), mI = 3, and mE = 0 with f (x) = −x , g1(x) = x3,
g2(x) = x − 1, g3(x) = −1 − x , and x∗ = 0. We have F (X) = [−1, 0], ∇ f (x∗) = −1,
α = +∞, L = 1, and X5 = [−ε, 0]. Choose α̂ = +∞ in Lemma 5. From Lemma 5 and
Remark 1, we have X̂5 = [−ε,+ε] (since f is convex).

The readermay conjecture, based on Example 5 and other examples of low dimension, that
every nonisolatedminimizer x∗ which does not satisfy theKKT conditions will automatically
satisfy the main assumption of Lemma 5. Example 6, inspired by [10, Section 4.1], however
illustrates a case when the assumptions of Lemma 5 are not satisfied even though x∗ does
not satisfy the KKT conditions.

Example 6 Let X = (−2, 2)3, mI = 5, and mE = 0 with f (x) = x1 + x23 , g1(x) = x1 − 1,
g2(x) = x2 − x1, g3(x) = x22 , g4(x) = −x3, g5(x) = x3 − 1, and x∗ = (0, 0, 0). We have
F (X) = {

x ∈ [0, 1]3 : x2 = 0
}
, ∇ f (x∗) = (1, 0, 0), and L = 0 for every α > 0 since

(0, 0, 1) ∈ T (x∗) and ∇ f (x∗)T(0, 0, 1) = 0.

The next result provides conditions under which the assumptions of Lemma 5 will not
be satisfied. In particular, it is shown that the assumptions of Lemma 5 will not be satis-
fied if Problem (P) is purely equality-constrained and all the functions in Problem (P) are
differentiable at a nonisolated x∗.

Proposition 2 Consider Problem (P) with mE ≥ 1. Suppose x∗ is nonisolated, f is dif-
ferentiable at x∗, functions hk, k = 1, . . . ,mE, are differentiable at x∗, and A (x∗) = ∅.
Furthermore, suppose there exist multipliers λ∗ ∈ R

mE corresponding to the equality con-
straints such that (x∗, 0,λ∗) is a KKT point. Then

min{d:‖d‖1=1,d∈T (x∗)}∇ f (x∗)Td = 0.

Proof See “Proof of Proposition 2 in Appendix”. ��
Note that the above result can naturally be extended to accommodate weakly active

inequality constraints (see [2, Section 4.4]). The ensuing examples illustrate that the assump-
tions of Lemma 5 may be satisfied when individual assumptions of Proposition 2 do not
hold.
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Fig. 3 Plots of X5 (solid curves) and X̂5 (left figure: area between the dotted lines, right figure: curve depicted
by the circles) for Example 8 for ε = 0.5. The filled-in triangles correspond to the minimizer x∗, and the
dash-dotted lines represent the axes translated to x∗, a X5 and estimate X̂5 from Lemma 5, b X5 and estimate
X̂5 from Lemma 6

Example 7 Let ε ≤ 0.5, X = (−2, 2) × (−2, 2), mI = 1, and mE = 1 with
f (x) = x1 + 10x22 , g(x) = x1 − 1, h(x) = x1 − |x2|, and x∗ = (0, 0). We have
F (X) = {x ∈ X : x1 = |x2|, x1 ≤ 1}, ∇ f (x∗) = (1, 0), α = +∞, L = 0.5, and
X5 =

{
x ∈ [0, ε] × [−ε, ε] : x1 = |x2|, x1 + 10x22 ≤ ε

}
. Choose α̂ = +∞ in Lemma 5.

From Lemma 5 and Remark 1, we have X̂5 =
{
x ∈ X : ‖x‖1 ≤ 2ε

}
(since f is convex).

Example 8 Let ε ≤ 0.5, X = (−2, 2)× (−2, 2),mI = 4, andmE = 1 with f (x) = x1+ x2,
g1(x) = −x1, g2(x) = −x2, g3(x) = x1 − 1, g4(x) = x2 − 1, h(x) = x2 − x31 , and
x∗ = (0, 0). We haveF (X) = {

x ∈ [0, 1]2 : x2 = x31
}
, ∇ f (x∗) = (1, 1), α = +∞, L = 1,

and X5 =
{
x ∈ [0, ε] × [0, ε] : x2 = x31 , x1 + x2 ≤ ε

}
. Choose α̂ = +∞ in Lemma 5. From

Lemma 5 and Remark 1, we have X̂5 =
{
x ∈ X : ‖x‖1 ≤ ε

}
(since f is convex).

Figure 3a plots X5 and X̂5 for Example 8 for ε = 0.5. It is seen that the estimate X̂5
does not capture the ‘one-dimensional nature’ of X5 (which is a consequence of the equality
constraint in Example 8). This issue is addressed in Lemma 6. Note that X5 for Example 7
also resides in a reduced-dimensional manifold, but Lemma 6 does not apply in this case
since h is not differentiable at x∗ (the discussion after Lemma 6 proposes a modification of
the assumptions of Lemma 6 that addresses this issue).

While Lemma 5 provides a conservative estimate ofN 1
α̂

(x∗)∩ X5 under suitable assump-
tions, verifying the satisfaction of its assumptions is not straightforward. The following
proposition provides a conservative approach for determining whether the assumptions of
Lemma 5 are satisfied.

Proposition 3 Let L(α) denote the constant L in Lemma 5 for a givenα > 0.When the active
constraints are differentiable at x∗, a lower bound on L0 := lim

α→0+
L(α) can be obtained by

solving

min
d
∇ f (x∗)Td

s.t. ‖d‖1 = 1,

d ∈ L (x∗),
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where L (x∗) := {
d ∈ R

nx : ∇g j (x∗)Td ≤ 0,∀ j ∈ A (x∗),∇hk(x∗)Td = 0,∀k ∈
{1, . . . ,mE }

}
denotes the linearized cone at x∗. If x∗ corresponds to a KKT point, the above

formulation provides the exact value of L0.

So far in this section, we have established conditions under which a conservative estimate
of the subset of X5 around a minimizer x∗ can be obtained, presented examples for which the
above conditions hold, and isolated a class of problems for which the above conditions are
not satisfied. The following theorem follows from Corollary 2.1 in [28], the proof of which is
rederived in “Appendix” for completeness. It provides a conservative estimate of the number
of boxes of width δ required to cover X̂5 from Lemma 5. Therefore, from Lemma 1 and
the result below, we can get an upper bound on the worst-case number of boxes required to
coverN 1

α̂
(x∗)∩ X5 and estimate the extent of the cluster problem on that region (recall from

Remark 1 that the subset of X5 around x∗ will be contained inN 1
α̂

(x∗) for sufficiently small
ε).

Theorem 2 Suppose the assumptions of Lemma 5 hold. Let δ =
( ε

τ ∗
) 1

β∗ , r = 2ε

L
.

1. If δ ≥ 2r , let N = 1.

2. If
2r

m − 1
> δ ≥ 2r

m
for some m ∈ N with m ≤ nx and 2 ≤ m ≤ 5, then let

N =
m−1∑
i=0

2i
(
nx
i

)
+ 2nx

⌈
m − 3

3

⌉
.

3. Otherwise, let

N =
⌈
2
(
τ ∗
) 1

β∗ ε

(
1− 1

β∗
)
L−1

⌉nx−1 (⌈
2
(
τ ∗
) 1

β∗ ε

(
1− 1

β∗
)
L−1

⌉

+ 2nx

⌈(
τ ∗
) 1

β∗ ε

(
1− 1

β∗
)
L−1

⌉)
.

Then, N is an upper bound on the number of boxes of width δ required to cover X̂5.

Proof See “Proof of Theorem 2 in Appendix”. ��

Remark 2 Under the assumptions of Lemma 5, the dependence of N on ε disappears when
the lower bounding scheme has first-order convergence on N 1

α̂
(x∗) ∩F (X), i.e., β∗ = 1.

Therefore, the cluster problem on X5 may be eliminated even using first-order convergent
lower bounding schemeswith sufficiently small prefactors. This is in contrast to unconstrained
global optimization where at least second-order convergent lower bounding schemes are
required to eliminate the cluster problem (see Remark 1 for an intuitive explanation for this
qualitative difference in behavior). Note that the dependence of N on the prefactor τ ∗ can be
detailed in a manner similar to Table 1 in [29].

The above scaling has also been empirically observed by Goldsztejn et al. [9], who reason
“. . . removes the tangency between the feasible set and the objective level set, and therefore
should prevent the cluster effect.”

The next result refines the analysis of Lemma 5 when Problem (P) contains equality
constraints that can locally be eliminated using the implicit function theorem [22].
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Lemma 6 Consider Problem (P) with 1 ≤ mE < nx . Suppose x∗ is nonisolated, f is
differentiable at x∗, and ∃α > 0 such that h is continuously differentiable on N 1

α (x∗) and

L := inf{d:‖d‖1=1, ∃t>0 : (x∗+td)∈N 1
α (x∗)∩F (X)}∇ f (x∗)Td > 0.

Furthermore, suppose the variables x can be reordered and partitioned into dependent vari-
ables z ∈ R

mE and independent variablesp ∈ R
nx−mE ,withx ≡ (z,p), such that∇zh((z,p))

is nonsingular on N 1
α ((z∗,p∗)), where x∗ ≡ (z∗,p∗). Then, ∃αp, αz ∈ (0, α], a continu-

ously differentiable function φ : N 1
αp

(p∗) → N 1
αz

(z∗), and α̂ ∈ (0, αp) such that the region(
N 1

αz
(z∗)×N 1

α̂
(p∗)

) ∩ X5 can be conservatively approximated by

X̂5 =
{
(z,p) ∈ N 1

αz
(z∗)×N 1

α̂
(p∗) : z = φ(p), L‖p− p∗‖1 ≤ 2ε

}
.

Proof The result follows from the proof of Lemma 5 and the implicit function theorem [22,
Chapter 9]. ��

Lemma 6 effectively states that, under suitable conditions, the subset of X5 around x∗
resides in a reduced-dimensional manifold. Figure 3b compares the estimate X̂5 obtained
from Lemma 6 (when we assume precise knowledge of the implicit function) with the one
obtained from Lemma 5 for Example 8. The reason for distinguishing between αp and α̂

is so that we can have φ to be continuously differentiable on cl
(
N 1

α̂
(p∗)

)
; this fact will be

used shortly. Note that the assumptions that h is continuously differentiable onN 1
α (x∗) and

∇zh((z,p)) is nonsingular onN 1
α ((z∗,p∗)) can be relaxed based on a nonsmooth variant of

the implicit function theorem [6, Chapter 7] (which can be used to derive a less conservative
estimate of X5 for Example 7, for instance).

The following corollary of Theorem 2 refines the estimate of the number of boxes of width
δ required to cover X̂5 under the assumptions of Lemma 6. It provides an upper bound on

the number of boxes of width δ required to cover X5 that scales as O

(
ε
(nx−mE )

(
1− 1

β∗
))

in

contrast to the scaling O

(
ε
nx
(
1− 1

β∗
))

from Theorem 2.

Corollary 2 Suppose the assumptions of Lemma 6 hold. Let δ =
( ε

τ ∗
) 1

β∗ , r = 2ε

L
. Define

Mk :=
(

max
p∈cl(N 1

α̂
(p∗)

)‖∇φk(p)‖
)
√
nx − mE , ∀k ∈ {1, . . . ,mE },

K := {k ∈ {1, . . . ,mE } : Mk > 1} .

1. If δ ≥ 2r , let N =
∏
k∈K

Mk.

2. If
2r

m − 1
> δ ≥ 2r

m
for some m ∈ N with m ≤ nx − mE and 2 ≤ m ≤ 5, then let

N =
(
m−1∑
i=0

2i
(
nx − mE

i

)
+ 2 (nx − mE )

⌈
m − 3

3

⌉) ∏
k∈K

Mk .
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3. Otherwise, let

N =
⌈
2
(
τ ∗
) 1

β∗ ε

(
1− 1

β∗
)
L−1

⌉nx−mE−1(⌈
2
(
τ ∗
) 1

β∗ ε

(
1− 1

β∗
)
L−1

⌉
+

2 (nx−mE )

⌈(
τ ∗
) 1

β∗ ε

(
1− 1

β∗
)
L−1

⌉) ∏
k∈K

Mk .

Then, N is an upper bound on the number of boxes of width δ required to cover X̂5.

Proof Theorem 2 can be used to obtain an overestimate of the number of boxes of
width δ required to cover the projection of X̂5, as defined by Lemma 6, on p, i.e.,{
p ∈ N 1

α̂
(p∗) : L‖p− p∗‖1 ≤ 2ε

}
, by replacing nx with nx − mE in the expressions for

N . This estimate can be extended to obtain a conservative estimate of the number of boxes
of width δ required to cover X̂5 as follows.

Note that φk is Lipschitz continuous on cl
(
N 1

α̂
(p∗)

)
with Lipschitz constant Mk√

nx−mE
,

∀k ∈ {1, . . . ,mE }. Consider any box B of width δ that is used to cover the projection of X̂5
on p. We have

w
(
φk
(
B ∩ cl

(
N 1

α̂
(p∗)

))) ≤ Mkδ, ∀k ∈ {1, . . . ,mE },
from the Lipschitz continuity of φk . Therefore, we can replace the box B using

∏
k∈K

Mk such

boxes and translate them appropriately to cover the region{
(z,p) ∈ N 1

αz
(z∗)× (

B ∩N 1
α̂

(p∗)
) : L‖p− p∗‖1 ≤ 2ε, z = φ(p)

}
.

Since
⋃

B

{
B ∩N 1

α̂
(p∗)

}
covers the projection of X̂5 on p, the desired result follows by

multiplying the estimate obtained fromTheorem 2 (with nx replaced by nx−mE ) by
∏
k∈K

Mk .

��
The next result provides a natural extension of Lemma 5 to the case when the objective

function is not differentiable at the minimizer x∗ [28]. Note that a similar result was derived
for the case of unconstrained optimization in [28, Section 2.3] under alternative assumptions.

Lemma 7 Consider Problem (P). Suppose x∗ is nonisolated, f is locally Lipschitz contin-
uous on X and directionally differentiable at x∗, and ∃α > 0 such that

L := inf{d:‖d‖1=1, ∃t>0 : (x∗+td)∈N 1
α (x∗)∩F (X)} f

′(x∗;d) > 0.

Then, ∃α̂ ∈ (0, α] such that the region N 1
α̂

(x∗) ∩ X5 can be conservatively approximated
by

X̂5 =
{
x ∈ N 1

α̂
(x∗) : L‖x − x∗‖1 ≤ 2ε

}
.

Proof The proof is relegated to “Proof of Lemma 7 in Appendix” since it is similar to the
proof of Lemma 5. ��
Remark 3 Theorem 2 can be extended to the case when the assumption that the function f
is differentiable at x∗ is relaxed by using Lemma 1 and 7 and Corollary 2.1 in [28] (also see
Theorem 2). Similar to the differentiable case, the dependence of N on ε disappears when
the lower bounding scheme has first-order convergence on N 1

α̂
(x∗) ∩F (X), i.e., β∗ = 1.

Additionally, Lemma 6 and Corollary 2 can also be extended to the case when f is not
differentiable at x∗ under suitable assumptions.

123



J Glob Optim (2017) 69:629–676 649

Thus far, we have established conditions under which first-order convergence of the lower
bounding scheme at feasible points is sufficient to mitigate the cluster problem on X5. In the
remainder of this section, we will present conditions under which second-order convergence
of the lower bounding scheme is sufficient to mitigate clustering on X5. The first result in this
regard provides a conservative estimate of the subset of X5 around a nonisolated x∗ under the
assumption that the objective function grows quadratically (or faster) on the feasible region
in some neighborhood of x∗.

Lemma 8 Consider Problem (P), and suppose f is twice-differentiable at x∗. Suppose ∃α >

0, γ > 0 such that

∇ f (x∗)Td+ 1

2
dT∇2 f (x∗)d ≥ γdTd, ∀d ∈ {d : (x∗ + d) ∈ N 2

α (x∗) ∩F (X)
}
.

Then ∃α̂ ∈ (0, α] such that the regionN 2
α̂

(x∗)∩ X5 can be conservatively approximated by

X̂5 =
{
x ∈ N 2

α̂
(x∗) : γ ‖x − x∗‖2 ≤ 2ε

}
.

Furthermore, x∗ is the unique global minimizer for Problem (P) on N 2
α̂

(x∗).

Proof Let x = x∗ + d ∈ N 2
α (x∗) ∩F (X). We have

f (x) = f (x∗ + d)

= f (x∗)+ ∇ f (x∗)Td+ 1

2
dT∇2 f (x∗)d+ o(‖d‖2)

≥ f (x∗)+ γdTd+ o(‖d‖2).
Consequently, there exists α̂ ∈ (0, α] such that for all x = x∗+d ∈ F (X)with ‖d‖ ∈ [0, α̂):

f (x) ≥ f (x∗)+ γdTd+ o(‖d‖2) ≥ f (x∗)+ γ

2
dTd. (1)

Therefore, ∀x ∈ N 2
α̂

(x∗) ∩ X5 we have x = x∗ + d ∈ F (X) with ‖d‖ < α̂, and

ε ≥ f (x)− f (x∗) ≥ γ

2
dTd 
⇒ γ ‖d‖2 = γ ‖x − x∗‖2 ≤ 2ε.

The conclusion that x∗ is the unique global minimizer for Problem (P) on N 2
α̂

(x∗) follows
from Eq. (1). ��
Remark 4 1. Lemma 8 is not applicable when �α > 0 and γ > 0, for example X =

(−2, 2)× (−2, 2), mI = 2, mE = 0, f (x) = x2, g1(x) = x41 − x2, g2(x) = x2 − 1, and
x∗ = (0, 0). In this case, for any α > 0, there exist directions from x∗ to feasible points
in which f grows slower than quadratically near x∗.

2. For the case of unconstrained global optimization, the assumption of Lemma 8 reduces
to the assumption that ∇2 f (x∗) is positive definite, and γ can be taken to be equal to
half the smallest eigenvalue of ∇2 f (x∗) (see Theorem 1 in [29]). When the minimum
is constrained, γ may potentially be estimated as follows. The first possibility is to
directly estimate γ using a quadratic underestimator of f on N 2

α (x∗) ∩F (X). If such
an underestimator cannot be constructed easily, γ may still be estimated relatively easily
when additional assumptions are satisfied.
Suppose (x∗,μ∗,λ∗) is aKKTpoint,whereμ∗ andλ∗ correspond toLagrangemultipliers
for g and h, respectively, at x∗. Consider the restricted Lagrangian L(x;μ∗,λ∗), and
suppose it is positive definite for all x ∈ cl(N 2

α (x∗)∩F (X)) (cf. [2, Section 4.4]). Then
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γ may be estimated from the eigenvalues of ∇2L(x;μ∗,λ∗) on cl(N 2
α (x∗) ∩ F (X)).

This is a consequence of the fact that f (x) ≥ L(x;μ∗,λ∗), ∀x ∈ F (X), by weak duality,
f (x∗) = L(x∗;μ∗,λ∗), and the stationarity condition∇xL(x;μ∗,λ∗) = 0. Otherwise, if
(x∗,μ∗,λ∗) is a KKT point and some convex combination of f and L(·;μ∗,λ∗) grows
quadratically or faster on N 2

α (x∗) ∩ F (X), then γ can be estimated using one of its
quadratic underestimators on N 2

α (x∗) ∩F (X).
3. The key assumption of Lemma 8, which assumes that f grows quadratically or faster on

the feasible region in some neighborhood of x∗, is a relaxation of the key assumption of
Lemma 5, which assumes that f grows linearly on the feasible region in some neighbor-
hood of x∗. While it was shown in Theorem 2 that first-order convergence of the lower
bounding scheme at feasible points may be sufficient to mitigate clustering on X5 under
the assumptions of Lemma 5, Theorem 3, which will be presented shortly, shows that
second-order convergence of the lower bounding scheme at feasible points may be suffi-
cient to mitigate clustering on X5 under the assumptions of Lemma 8. Consequently, the
assumptions of Lemma 5 and 8 can be viewed as belonging to a hierarchy of conditions
for certain convergence orders of the lower bounding scheme at feasible points being
sufficient to mitigate clustering on X5, with the condition for third-order convergence of
the lower bounding scheme at feasible points to be sufficient to mitigate clustering on
X5 amounting to the third-order Taylor expansion of f growing faster than cubically on
the feasible region in some neighborhood of x∗, and so on.

4. Along the line of discussion in Remark 1, α̂ depends on the local behavior of f
around x∗, but is independent of ε. Consequently, for sufficiently small ε we can
conservatively approximate the setN 2

α̂
(x∗)∩ X5 by

{
x ∈ X : γ ‖x − x∗‖2 ≤ 2ε

}
. Addi-

tionally, if the objective function f is either an affine or a quadratic function of x,
then its second-order Taylor expansion around x∗ equals f itself and we can choose
α̂ = α. Furthermore, N 2

α̂
(x∗) ∩ X5 can be conservatively approximated by the set

X̂5 =
{
x ∈ X : γ ‖x − x∗‖2 ≤ ε

}
.

5. Similar to Proposition 1, a less conservative estimate of N 2
α̂

(x∗) ∩ X5 can be obtained
as

X̂5 =
{
x ∈ N 2

α̂
(x∗) : γ ‖x − x∗‖2 ≤ 2ε, ∇ f (x∗)T

(
x − x∗

)

+1

2

(
x − x∗

)T∇2 f (x∗)
(
x − x∗

) ≥ γ ‖x − x∗‖2
}

.

As an illustration of the application of Lemma 8, let us reconsider Example 3. Recall that
X = (0.4, 1.0)× (0.5, 2.0),mI = 2,mE = 1, f (x) = −12x1−7x2+ x22 , g1(x) = x1−0.9,
g2(x) = 0.5− x1, and h(x) = x2 + 2x41 − 2 with x∗ ≈ (0.72, 1.47). Let ε ≤ 0.1. We have
F (X) = {x ∈ X : g(x) ≤ 0, h(x) = 0}. Choose α = 0.1, γ = 2, and α̂ = 0.1 in Lemma 8.
We have X5 =

{
x : x2 = 2− 2x41 , −12x1 − 7x2 + x22 ≤ f (x∗)+ ε

}
. From Lemma 8 and

Remark 4, we have X̂5 =
{
x ∈ N 2

0.1(x
∗) : ‖x − x∗‖2 ≤ 0.5ε

}
(since f is quadratic). Note

that an even better estimate of X5 may be obtained using Lemma 9 by accounting for the fact
that X5 resides in a reduced-dimensional manifold.

The following examples illustrate two additional cases for which the assumptions of
Lemma 8 hold.

Example 9 Let ε ≤ 0.5, X = (−2, 2) × (−2, 2), mI = 2, and mE = 0 with
f (x) = x2, g1(x) = x21 − x2, g2(x) = x2 − 1, and x∗ = (0, 0). We have F (X) ={
x : x2 ≥ x21 , x2 ≤ 1

}
. Choose α = 1, γ = 0.5, and α̂ = 1. From Remark 4, we have

X5 =
{
x ∈ [−√ε,+√ε] × [0, ε] : x2 ≥ x21

} ⊂ {
x : ‖x‖2 ≤ 2ε

} = X̂5.
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Example 10 Let ε ≤ 0.5, X = (−2, 2) × (−2, 2), mI = 3, and mE = 0 with f (x) =
2x21 + x2, g1(x) = −x21 − x2, g2(x) = −x1, g3(x) = x21 + x22 − 1, and x∗ = (0, 0). We
have F (X) = {

x : x2 ≥ −x21 , x1 ≥ 0, x21 + x22 ≤ 1
}
with α = 1, γ = 0.5, α̂ = 1, and

X5 =
{
x : x2 + 2x21 ≤ ε, x2 ≥ −x21 , x1 ≥ 0

} ⊂ {
x : ‖x‖2 ≤ 2ε

} = X̂5 (see Remark 4).

The overconservatism of the estimate X̂5 in the above two examples (with regards to its
dependence on ε) is primarily due to the fact that the linear growth of the objective function
in the direction of its gradient is not taken into account. This observation is formalized and
taken advantage of in Lemma 10 to obtain a less conservative estimate. Figure 4 plots X5 and
X̂5, obtained using different estimation techniques, for ε = 0.5 and ε = 0.1 in Example 10.
The benefit of using the estimate in Remark 4 over that of Lemma 8 is seen from Fig. 4a,
b, and the benefit of using the estimate from Lemma 10 (using ρ1 = 3, ρ2 = 1.5) over
that of Lemma 8 is seen from Fig. 4a, c. It can be observed from Fig. 4c that the constraint
−ρ1ε ≤ ∇ f (x∗)T (x − x∗) in Lemma 10 is not active on the region

{
x : γ ‖x − x∗‖2 ≤ ε

}
for ε = 0.5. To illustrate the benefit of this constraint in Lemma 10, we consider ε = 0.1.
Fig. 4d, e demonstrate the advantages of using the estimates in Remark 4 and Lemma 10,
respectively, over the estimate in Lemma 8, and Fig. 4f combines the benefits of the estimates
from Lemma 10 and Remark 4 by using the estimate

X̂5 =
{
x ∈ N 2

α̂
(x∗) : γ ‖x − x∗‖2 ≤ 2ε, −ρ1ε ≤ ∇ f (x∗)T

(
x − x∗

) ≤ ρ2ε,

∇ f (x∗)T
(
x − x∗

)+ 1

2

(
x − x∗

)T∇2 f (x∗)
(
x − x∗

) ≥ γ ‖x − x∗‖2
}
.

The following theorem follows from Lemma 3 in [29], and provides a conservative esti-
mate of the number of boxes of width δ required to cover the estimate X̂5 from Lemma 8.
Consequently, from Lemma 1 and the theorem below, we can get a conservative estimate of
the number of boxes required to cover N 2

α̂
(x∗) ∩ X5 and estimate the extent of the cluster

problem on that region.

Theorem 3 Consider Problem (P), and suppose the assumptions of Lemma 8 hold. Let

δ =
( ε

τ ∗
) 1

β∗ and r =
√
2ε

γ
.

1. If δ ≥ 2r , let N = 1.

2. If
2r√
m − 1

> δ ≥ 2r√
m

for some m ∈ N with m ≤ nx and 2 ≤ m ≤ 18, then let

N =
m−1∑
i=0

2i
(
nx
i

)
+ 2nx

⌈
m − 9

9

⌉
.

3. Otherwise, let

N =
⌈
2
(
τ ∗
) 1

β∗ ε

(
1
2− 1

β∗
)
γ−

1
2

⌉nx−1 (⌈
2
(
τ ∗
) 1

β∗ ε

(
1
2− 1

β∗
)
γ−

1
2

⌉
+2nx

⌈
(
√
2− 1)

(
τ ∗
) 1

β∗ ε

(
1
2− 1

β∗
)
γ−

1
2

⌉)
.

Then, N is an upper bound on the number of boxes of width δ required to coverN 2
α̂

(x∗)∩X5.
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Fig. 4 Plots of X5 (solid regions) and X̂5 (area between the dotted lines) for Example 10. The filled-in
triangles correspond to the minimizer x∗, and the dash-dotted lines represent the axes translated to x∗, a X5
and estimate X̂5 from Lemma 8 for ε = 0.5, b X5 and estimate X̂5 from Remark 4 for ε = 0.5, c X5 and
estimate X̂5 from Lemma 10 for ε = 0.5, d X5 and estimate X̂5 from Remark 4 for ε = 0.1, e X5 and estimate
X̂5 from Lemma 10 for ε = 0.1 (f) X5 and estimate X̂5 from Lemma 10 and Remark 4 for ε = 0.1

Proof From Lemma 8, we have that the set X̂5 =
{
x ∈ N 2

α̂
(x∗) : γ ‖x − x∗‖2 ≤ 2ε

}
pro-

vides a conservative estimate of N 2
α̂

(x∗) ∩ X5. The desired result follows from Lemma 3
in [29]. ��

For the case of unconstrained global optimization, Theorem 3 effectively reduces to The-
orem 1 in [29] with γ equal to half the smallest eigenvalue of ∇2 f (x∗) (note that there is
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a ‘factor of two difference’ from the analysis in [29] because we consider an appropriate
α̂ ∈ (0, α]).
Remark 5 Under the assumptions of Theorem 3, the dependence of N on ε disappears when
the lower bounding scheme has second-order convergence onN 2

α̂
(x∗)∩F (X). This is similar

to the case of unconstrained global optimizationwhere at least second-order convergent lower
bounding schemes are required to eliminate the cluster problem.

Finally, we present two sets of additional assumptions over those of Lemma 8 under which
less conservative estimates of the cluster problem on X5 can be obtained. The first result in
this regard, similar to Lemma 6, refines the analysis of Lemma 8 when Problem (P) contains
equality constraints that can locally be eliminated using the implicit function theorem [22].

Lemma 9 Consider Problem (P) with 1 ≤ mE < nx . Suppose f is twice-differentiable at
x∗, and ∃α > 0, γ > 0 such that h is continuously differentiable on N 2

α (x∗) and

∇ f (x∗)Td+ 1

2
dT∇2 f (x∗)d ≥ γdTd, ∀d ∈ {d : (x∗ + d) ∈ N 2

α (x∗) ∩F (X)
}
.

Furthermore, suppose the variables x can be reordered and partitioned into dependent vari-
ables z ∈ R

mE and independent variablesp ∈ R
nx−mE ,withx ≡ (z,p), such that∇zh((z,p))

is nonsingular on N 2
α ((z∗,p∗)), where x∗ ≡ (z∗,p∗). Then, ∃αp, αz ∈ (0, α], a continu-

ously differentiable function φ : N 2
αp

(p∗) → N 2
αz

(z∗), and α̂ ∈ (0, αp) such that the region(
N 2

αz
(z∗)×N 2

α̂
(p∗)

) ∩ X5 can be conservatively approximated by

X̂5 =
{
(z,p) ∈ N 2

αz
(z∗)×N 2

α̂
(p∗) : z = φ(p), γ ‖p− p∗‖2 ≤ 2ε

}
.

Proof The result follows from the proof of Lemma 8 and the implicit function theorem [22,
Chapter 9]. ��

Lemma 9 can be used to obtain a less conservative estimate of the number of boxes of
width δ required to cover X̂5 as shown in the following corollary of Theorem 3. It provides
an upper bound on the number of boxes of width δ required to cover X5 that scales as

O

(
ε
(nx−mE )

(
1
2− 1

β∗
))

in contrast to the scaling O

(
ε
nx
(
1
2− 1

β∗
))

from Theorem 3.

Corollary 3 Suppose the assumptions of Lemma 9 hold. Let δ =
( ε

τ ∗
) 1

β∗ and r =
√
2ε

γ
.

Define

Mk :=
(

max
p∈cl(N 2

α̂
(p∗)

)‖∇φk(p)‖
)
√
nx − mE , ∀k ∈ {1, . . . ,mE },

K := {k ∈ {1, . . . ,mE } : Mk > 1} .
1. If δ ≥ 2r , let N =

∏
k∈K

Mk.

2. If
2r√
m − 1

> δ ≥ 2r√
m

for some m ∈ N with m ≤ nx − mE and 2 ≤ m ≤ 18, then let

N =
(
m−1∑
i=0

2i
(
nx − mE

i

)
+ 2 (nx − mE )

⌈
m − 9

9

⌉) ∏
k∈K

Mk .
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3. Otherwise, let

N =
⌈
2
(
τ ∗
) 1

β∗ ε

(
1
2− 1

β∗
)
γ−

1
2

⌉nx−mE−1(⌈
2
(
τ ∗
) 1

β∗ ε

(
1
2− 1

β∗
)
γ−

1
2

⌉
+

2 (nx − mE )

⌈
(
√
2− 1)

(
τ ∗
) 1

β∗ ε

(
1
2− 1

β∗
)
γ−

1
2

⌉) ∏
k∈K

Mk .

Then, N is an upper bound on the number of boxes of width δ required to cover X̂5.

Proof The proof is similar to the proof of Corollary 2, and is therefore omitted. ��

The next result refines the analysis of Lemma 8 further, in part by accounting for the fact
that f grows linearly around x∗ in the direction of its gradient.

Lemma 10 Consider Problem (P), and suppose the assumptions of Lemma 8 hold. Then
∃α̂ ∈ (0, α] and constantsρ1, ρ2 ≥ 0 such that the regionN 2

α̂
(x∗)∩X5 can be conservatively

approximated by

X̂5 =
{
x ∈ N 2

α̂
(x∗) : γ ‖x − x∗‖2 ≤ 2ε, −ρ1ε ≤ ∇ f (x∗)T

(
x − x∗

) ≤ ρ2ε
}

.

Proof See “Proof of Lemma 10 in Appendix”. ��

The previous lemma can be used to obtain a less conservative estimate of the number
of boxes of width δ required to cover X̂5 when ε is sufficiently-small and the convergence
order β∗ > 1. This is presented in the following corollary of Theorem 3, which provides
an upper bound on the number of boxes of width δ required to cover X5 that scales as

O

(
ε
(nx−1)

(
1
2− 1

β∗
))

in contrast to the scaling O

(
ε
nx
(
1
2− 1

β∗
))

from Theorem 3.

Corollary 4 Suppose the assumptions of Lemma 10 hold. Let δ =
( ε

τ ∗
) 1

β∗ and r =
√
2ε

γ
.

Suppose β∗ > 1, ε is sufficiently-small that (ρ1 + ρ2)ε � δ, and ∇ f (x∗) �= 0.

1. If δ ≥ 2r , let N = 1.

2. If
2r√
m − 1

> δ ≥ 2r√
m

for some m ∈ N with m ≤ nx − 1 and 2 ≤ m ≤ 18, then let

N =
m−1∑
i=0

2i
(
nx − 1

i

)
+ 2 (nx − 1)

⌈
m − 9

9

⌉
.

3. Otherwise, let

N =
⌈
2
(
τ ∗
) 1

β∗ ε

(
1
2− 1

β∗
)
γ−

1
2

⌉nx−2(⌈
2
(
τ ∗
) 1

β∗ ε

(
1
2− 1

β∗
)
γ−

1
2

⌉

+ 2 (nx−1)

⌈
(
√
2−1)

(
τ ∗
) 1

β∗ ε

(
1
2− 1

β∗
)
γ−

1
2

⌉)
.

Then, N is an upper bound on the number of boxes of width δ required to cover X̂5.
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Proof We have from Lemma 10 that X̂5 is conservatively estimated by a sphere with radius
= O(

√
ε) truncated by the hyperplanes ∇ f (x∗)T (x − x∗) ≤ ρ2ε and ∇ f (x∗)T (x − x∗) ≥

−ρ1ε. Therefore, when ε is chosen to be small enough that (ρ1 + ρ2)ε � δ, the desired
result follows from Theorem 3 and the fact that any covering of the projection of X̂5 on to the
subspace perpendicular to ∇ f (x∗) with boxes of width δ can be directly extended to cover
X̂5 without using additional boxes. ��

Note that Corollary 4 can also be extended to the case when 0 < β∗ ≤ 1, in which case
the estimate N may additionally depend on the values of ρ1 and ρ2.

3.2 Estimates for the number of boxes required to cover X3\Bδ

This section assumes that Problem (P) has a finite number of global minimizers, and ε is
small enough that X3 is guaranteed to be contained in neighborhoods of constrained global
minimizers under additional assumptions. An estimate for the number of boxes of certain
widths required to cover some neighborhood of a constrained minimum x∗ that contains the
subset of X3 around x∗ is provided under suitable assumptions. An estimate for the number
of boxes required to cover X3 can be obtained by summing the above estimates over the set of
constrained global minimizers. Throughout this section, we assume that x∗ is a constrained
global minimizer; otherwise ∃α > 0 such that N 2

α (x∗) ∩ X3 = ∅. Furthermore, we assume

that x∗ is at the center of a single box Bδ of width δ =
( ε

τ ∗
) 1

β∗ placed while covering X̂5

(see Remark 6 for the reason for this assumption).
The first result in this section provides a conservative estimate of the subset of X3 around

a constrained minimizer x∗ under the following assumption: the infeasible region in some
neighborhood of x∗ can be split into two subregions such that the objective function grows
linearly in the first subregion and the measure of infeasibility grows linearly in the second
subregion.

Lemma 11 Consider Problem (P). Suppose x∗ is a constrained minimizer, and the functions
f , g j , ∀ j ∈ A (x∗), and hk, ∀k ∈ {1, . . . ,mE }, are locally Lipschitz continuous on X and
directionally differentiable at x∗. Furthermore, suppose ∃α > 0 and a set D0 such that

L f = inf
d∈D0∩D I

f ′(x∗;d) > 0,

L I = inf
d∈D I \D0

max

{
max

j∈A (x∗)
g′j (x∗;d), max

k∈{1,...,mE }
∣∣h′k(x∗;d)

∣∣} > 0,

where DI is defined as

DI =
{
d : ‖d‖1 = 1, ∃t > 0 : (x∗ + td) ∈ N 1

α (x∗) ∩ (F (X))C
}
.

Then, ∃α̂ ∈ (0, α] such that the region

X1
3 := N 1

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + td) ∈ N 1

α̂
(x∗) ∩ (F (X))C : d ∈ D0 ∩ DI , t > 0

}
can be conservatively approximated as

X̂1
3 =

{
x ∈ N 1

α̂
(x∗) : L f ‖x − x∗‖1 ≤ 2εo

}
,

and the region

X2
3 := N 1

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + td) ∈ N 1

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0, t > 0

}

123



656 J Glob Optim (2017) 69:629–676

can be conservatively approximated as

X̂2
3 =

{
x ∈ N 1

α̂
(x∗) : L I ‖x − x∗‖1 ≤ 2ε f

}
.

Furthermore, suppose x∗ is at the center of a box, Bδ , of width δ =
( ε

τ ∗
) 1

β∗ placed while

covering X̂5. Then, the region

X2
3\Bδ = N 1

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + td) ∈ N 1

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0, t > 0

} \Bδ

is conservatively characterized by{
x ∈ N 1

α̂
(x∗) : d

([
g
h

]
(x), R

mI− × {0}
)
∈
(
L I

4
δ, ε f

]}

whenever L I δ < 4ε f .

Proof Letx = x∗+td ∈ N 1
α (x∗)∩(F (X))C with‖d‖1 = 1,d ∈ D0, and t = ‖x−x∗‖1 > 0.

We have (see Theorem 3.1.2 in [24])

f (x) = f (x∗ + td)

= f (x∗)+ f ′(x∗; (x − x∗))+ o(‖x − x∗‖1)
= f (x∗)+ t f ′(x∗;d)+ o(t)

≥ f (x∗)+ L f t + o(t).

Consequently, there exists α̂0 ∈ (0, α] such that for all x = x∗ + td ∈ (F (X))C with
‖d‖1 = 1, d ∈ D0 and t ∈ [0, α̂0):

f (x) ≥ f (x∗)+ L f t + o(t) ≥ f (x∗)+ L f

2
t.

Next, consider x = x∗ + td ∈ N 1
α (x∗) ∩ (F (X))C with ‖d‖1 = 1, d /∈ D0, and

t = ‖x − x∗‖1 > 0. We have

max

{
max

j∈A (x∗)

{
g j (x)

}
, max
k∈{1,...,mE }

{|hk(x)|}
}

=max

{
max

j∈A (x∗)

{
g j (x∗ + td)

}
, max
k∈{1,...,mE }

{∣∣hk(x∗ + td)
∣∣}}

=max

{
max

j∈A (x∗)

{
tg′j (x∗;d)+ o(t)

}
, max
k∈{1,...,mE }

{∣∣th′k(x∗;d)+ o(t)
∣∣}} .

Consequently, there exists α̂1 ∈ (0, α] such that for all x = x∗ + td ∈ (F (X))C with
‖d‖1 = 1, d /∈ D0 and t ∈ [0, α̂1):

d

([
g
h

]
(x), R

mI− × {0}
)
≥max

{
max

j∈A (x∗)
{
g j (x)

}
, max
k∈{1,...,mE }

{|hk (x)|}
}

=max

{
max

j∈A (x∗)

{
tg′j (x∗; d)+ o(t)

}
, max
k∈{1,...,mE }

{∣∣th′k (x∗; d)+ o(t)
∣∣}}

≥ L I

2
t,

where Step 1 follows from the fact that ‖z‖ ≥ ‖z‖∞, ∀z ∈ R
mI × R

mE .
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Set α̂ = min
{
α̂0, α̂1

}
. Then

∀x ∈ X1
3 := N 1

α̂
(x∗) ∩ X3 ∩

{
x = (x∗+td) ∈ N 1

α̂
(x∗) ∩ (F (X))C : d ∈ D0 ∩ DI , t > 0

}
,

we have x = x∗ + td ∈ (F (X))C with ‖d‖1 = 1, d ∈ D0 and t = ‖x − x∗‖1 < α̂, and

εo ≥ f (x)− f (x∗) ≥ L f

2
t 
⇒ L f t = L f ‖x − x∗‖1 ≤ 2εo.

Furthermore,

∀x ∈ X2
3 := N 1

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + td) ∈ N 1

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0, t > 0

}
,

we have x = x∗ + td ∈ (F (X))C with ‖d‖1 = 1, d /∈ D0 and t = ‖x − x∗‖1 < α̂, and

ε f ≥ d

([
g
h

]
(x), R

mI− × {0}
)
≥ L I

2
t 
⇒ L I t = L I ‖x − x∗‖1 ≤ 2ε f .

Finally, for every x ∈ N 1
α̂

(x∗) ∩ X3 ∩ {x = (x∗ + td) ∈ N 1
α̂

(x∗) ∩ (F (X))C : d ∈
DI \D0, t > 0} with t ≤ δ

2
, we have x ∈ Bδ . Consequently, for each

x ∈ N 1
α̂

(x∗) ∩ X3 ∩
{
x = (x∗ + td) ∈ N 1

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0, t > 0

} \Bδ,

we have t >
δ

2
and therefore,

d

([
g
h

]
(x), R

mI− × {0}
)
≥ L I

2
t >

L I

4
δ.

The desired result follows when L I δ < 4ε f ; otherwise, if L I δ ≥ 4ε f , then

N 1
α̂

(x∗) ∩ X3 ∩
{
x = (x∗ + td) ∈ N 1

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0, t > 0

} ⊂ Bδ.

��
A conservative estimate of the number of boxes of certain widths required to cover(

N 1
α̂

(x∗) ∩ X3
) \Bδ can be obtained by estimating the number of boxes of certain widths

required to cover X̂1
3 and X̂2

3\Bδ (see Theorem 4). The following remark is in order.

Remark 6 1. Lemma 11 does not hold when �α > 0, D0 such that both L f and L I are
positive. Example 4 illustrates a case when no valid partition of DI exists (since [xL, 0),
which is a subset of X3, corresponds to d = −1 which has an empty intersection with
every valid choice of D0, and ∇g1(x∗) = 0). Note that D0 may be chosen to be ∅, but
it cannot be chosen to be DI when the objective function is differentiable at x∗. This is
because when ∇ f (x∗) �= 0, the direction−∇ f (x∗) leads to infeasible points around x∗.
One potential choice of D0 is

D0 =
{
d : ‖d‖1 = 1, ∃t > 0 : (x∗ + td) ∈ N 1

α (x∗) ∩ (F (X))C ,

max

{
max

j∈A (x∗)

{
g′j (x∗;d)

}
, max
k∈{1,...,mE }

{∣∣h′k(x∗;d)
∣∣}} ≤ θ

}

for some choice of θ > 0, so long as inf
d∈D0

f ′(x∗;d) > 0. Proposition 4 shows that

the assumptions of Lemma 11 will not be satisfied when Problem (P) does not contain
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any active inequality constraints and the minimizer corresponds to a KKT point for
Problem (P).

2. The inequality L I δ < 4ε f is equivalent to

L I δ = L I

(
ε f

τ I

) 1
β I

< 4ε f .

Since ε f can be taken to be sufficiently-small, the above inequality holds only when

(ε f )
1

β I ≤ ε f ⇐⇒ β I ≤ 1,

i.e., if β I > 1, we can choose ε f to be small-enough so that L I δ ≥ 4ε f . Note that if
L I δ ≥ 4ε f , the region

N 1
α̂

(x∗) ∩ X3 ∩
{
x = (x∗ + td) ∈ N 1

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0, t > 0

}

has already been covered while covering X̂5 since

L I δ

4
≥ ε f ≥ L I

2
t 
⇒ t ≤ δ

2
,

which implies x = x∗ + td ∈ Bδ . The motivation for excluding the region Bδ from X3

is as follows. Lemma 2 shows that if the measure of infeasibility, as determined by the
distance function d , is strictly greater than ε f at each point in the domain of a node, the
node can be fathomed by a box of width δ. However, if x∗ is a constrained minimizer, we
will have points in X3 which are arbitrarily close to x∗ and have a measure of infeasibility
that is arbitrarily close to 0. Such points will then have to be fathomed by boxes of width
much smaller than δ (and arbitrarily close to 0). To avoid this issue, such points are
assumed to be eliminated when X5 is covered by boxes of width δ.

3. α̂ depends on the local behavior of f , g j , ∀ j ∈ A (x∗), and hk , ∀k ∈ {1, . . . ,mE },
around x∗, but is independent of ε. Consequently, for sufficiently small ε we have X̂1

3 ={
x ∈ X : L f ‖x − x∗‖1 ≤ 2εo

}
and X̂2

3 =
{
x ∈ X : L I ‖x − x∗‖1 ≤ 2ε f

}
. Additionally,

if f and g j , ∀ j ∈ A (x∗), are convex on N 1
α (x∗) and hk , ∀k ∈ {1, . . . ,mE }, are affine

on N 1
α (x∗), we can choose α̂ = α. Furthermore,

X1
3 := N 1

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + td) ∈ N 1

α̂
(x∗) ∩ (F (X))C : d ∈ D0 ∩ DI , t > 0

}

can be conservatively approximated as X̂1
3 =

{
x ∈ X : L f ‖x − x∗‖1 ≤ εo

}
,

X2
3 := N 1

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + td) ∈ N 1

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0, t > 0

}

can be conservatively approximated as X̂2
3 =

{
x ∈ X : L I ‖x − x∗‖1 ≤ ε f

}
, and the

region

N 1
α̂

(x∗) ∩ X3 ∩
{
x = (x∗ + td) ∈ N 1

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0, t > 0

} \Bδ

is conservatively characterized by
{
x ∈ N 1

α̂
(x∗) : d

([
g
h

]
(x), R

mI− × {0}
)
∈
(
L I

2
δ, ε f

]}

whenever L I δ < 2ε f .
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4. Similar to Proposition 1, the following less conservative estimates of X1
3 and X2

3 can be
obtained:

X̂1
3 =

{
x ∈ N 1

α̂
(x∗) : L f ‖x − x∗‖1 ≤ 2εo, f ′(x∗; x − x∗) ≥ L f ‖x − x∗‖1

}
,

X̂2
3 =

{
x ∈ N 1

α̂
(x∗) : L I ‖x − x∗‖1 ≤ 2ε f ,

max

{
max

j∈A (x∗)
g′j (x∗; x − x∗), max

k∈{1,...,mE }
∣∣h′k(x∗; x − x∗)

∣∣} ≥ L I ‖x − x∗‖1
}
.

As an illustration of the application of Lemma 11, let us reconsider Example 2. Recall
that X = (2.2, 2.5) × (2.9, 3.3), mI = 3, mE = 0, f (x) = −x1 − x2, g1(x) =
x2 − 2x41 + 8x31 − 8x21 − 2, g2(x) = x2 − 4x41 + 32x31 − 88x21 + 96x1 − 36, and
g3(x) = 3 − x2 with x∗ ≈ (2.33, 3.18). Let εo ≤ 0.03 and ε f ≤ 0.05. We have F (X) =
{x ∈ X : g(x) ≤ 0}, ∇ f (x∗) = (−1,−1), ∇g1(x∗) ≈ (−8.164, 1), and ∇g2(x∗) ≈
(4.700, 1). Choose α = +∞. DI =

{
d : ‖d‖1 = 1, ∃t > 0 : (x∗ + td) ∈ (F (X))C

}
.

Choose D0 =
{
d : ‖d‖1 = 1, ∇ f (x∗)Td ≥ 0.298

}
and α̂ = +∞ in Lemma 11. From

Lemma 11 and Remark 6, we have L f = 0.298 and L I = 1 with the estimates
X̂1
3 =

{
x : 0.298‖x − x∗‖1 ≤ εo

}
(since f is convex), and X̂2

3 =
{
x : ‖x − x∗‖1 ≤ 2ε f

}
.

Figure 5 illustrates the set D0, and plots the sets X1
3 and X2

3 along with their estimates X̂1
3

and X̂2
3 for εo = 0.03 and ε f = 0.05.

The next result provides conditions under which the assumptions of Lemma 11 will not
be satisfied. In particular, it is shown that the assumptions of Lemma 11 will not be satis-
fied if Problem (P) is purely equality-constrained and all the functions in Problem (P) are
differentiable at a nonisolated constrained minimizer x∗.

Proposition 4 Consider Problem (P) with mE ≥ 1. Suppose x∗ is a nonisolated constrained
minimizer, f is differentiable at x∗, functions hk , k = 1, . . . ,mE, are differentiable at x∗,
and A (x∗) = ∅. Furthermore, suppose there exist multipliers λ∗ ∈ R

mE corresponding to
the equality constraints such that (x∗, 0,λ∗) is a KKT point. Then �α > 0, D0 such that the
assumptions of Lemma 11 are satisfied.

Proof See “Proof of Proposition 4 in Appendix”. ��
The above result can be extended to the case when there exist active inequality constraints

if all such constraints are strongly active at x∗ (see [2, Section 4.4]) and there exists d ∈ T (x∗)
such that ∇ f (x∗)Td = 0.

Next, we revisit two equality-constrained examples from Sect. 3.1 for which the assump-
tions of Lemma 11 hold, and which do not satisfy individual assumptions of Proposition 4.
Consider Example 7, and recall that X = (−2, 2) × (−2, 2), mI = 1, and mE = 1 with
f (x) = x1 + 10x22 , g1(x) = x1 − 1, h(x) = x1 − |x2|, and x∗ = (0, 0). Let εo, ε f ≤ 0.25.
We haveF (X) = {x ∈ X : x1 = |x2|, x1 ≤ 1},∇ f (x∗) = (1, 0), and h′(x∗;d) = d1−|d2|.
Choose α = +∞. We have DI = {

d : ‖d‖1 = 1, ∃t > 0 : (x∗ + td) ∈ (F (X))C
}
.

Choose D0 =
{
d : ‖d‖1 = 1, ∇ f (x∗)Td ≥ 0.25

}
and α̂ = +∞ in Lemma 11. From

Lemma 11 and Remark 6, we have L f = 0.25 and L I = 0.5 with the estimates
X̂1
3 =

{
x : 0.25‖x − x∗‖1 ≤ εo

}
(since f is convex), and X̂2

3 =
{
x : 0.5‖x − x∗‖1 ≤ 2ε f

}
.

Consider Example 8, and recall that X = (−2, 2) × (−2, 2), mI = 4, and mE = 1
with f (x) = x1 + x2, g1(x) = −x1, g2(x) = −x2, g3(x) = x1 − 1, g4(x) = x2 − 1,
h(x) = x2 − x31 , and x∗ = (0, 0). Let εo, ε f ≤ 1

3 . F (X) = {
x ∈ [0, 1]2 : x2 = x31

}
,
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Fig. 5 Illustration of the setsD0 andDI \D0, the sets X
1
3 and X

2
3, and their estimates X̂1

3 and X̂
2
3 forExample 2.

The dashed lines represent the set X , and the filled-in triangles represent the minimum x∗. (Top Plot) The
solid region represents the feasible region and the solid vectors represent the gradients of the objective and the
constraints. The set of directions between the dot-dashed lines (the part in which the feasible region resides)
defines the setD0, and the remaining directions define the setDI \D0. The dotted line represents the direction
inDI \D0 in which both constraints grow equally quickly in a first-order sense. (Other Plots) The solid regions
represent the set X1

3 or X2
3, the area between the dotted lines represent the estimate X̂1

3 or X̂2
3, and the dash-

dotted lines represent the axes translated to x∗. All plots use εo = 0.03 and ε f = 0.05. a Illustration of the
sets D0 and DI \D0, b X1

3 and estimate X̂1
3 from Lemma 11, c X2

3 and estimate X̂2
3 from Lemma 11, d X1

3
and estimate X̂1

3 from Remark 6, e X2
3 and estimate X̂2

3 from Remark 6
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∇ f (x∗) = (1, 1), ∇g1(x∗) = (−1, 0), ∇g2(x∗) = (0,−1), and ∇h(x∗) = (0, 1).
Choose α = +∞. DI =

{
d : ‖d‖1 = 1, ∃t > 0 : (x∗ + td) ∈ (F (X))C

}
. Choose D0 ={

d : ‖d‖1 = 1, ∇ f (x∗)Td ≥ 1
3

}
and α̂ = +∞ in Lemma 11. From Lemma 11 and

Remark 6, we have L f = 1
3 and L I = 1

3 with the estimates X̂1
3 =

{
x : ‖x − x∗‖1 ≤ 3εo

}
(since f is convex), and X̂2

3 =
{
x : ‖x − x∗‖1 ≤ 3ε f

}
(since g1 and g2 are convex).

Thenext example illustrates a simple one-dimensional casewhich satisfies the assumptions
of Lemma 11 with D0 = ∅.

Example 11 Let ε f ≤ 0.5, X = (−2, 2), mI = 2, and mE = 0 with f (x) = x3, g1(x) =
x−1, g2(x) = −x , and x∗ = 0. We haveF (X) = [0, 1],∇ f (x∗) = 0,∇g2(x∗) = −1, and
X3 = [−ε f , 0). Choose α = +∞. We have DI = {−1}. Choose D0 = ∅ and α̂ = +∞ in
Lemma 11. From Lemma 11 and Remark 6, we have L I = 1 and X̂2

3 = [−ε f ,+ε f ] (since
g2 is convex).

The following result follows from Corollary 2.1 in [28] (also see the proof of Theorem 2). It
provides a conservative estimate of the number of boxes of certain widths required to cover
X̂1
3 and X̂2

3\Bδ from Lemma 11. Therefore, from Lemma 2 and 3 and the result below, we
can get an upper bound on the worst-case number of boxes required to cover N 1

α̂
(x∗) ∩ X3

and estimate the extent of the cluster problem on that region.

Theorem 4 Suppose the assumptions of Lemma 11 hold. Let δ = δ f =
( ε

τ ∗
) 1

β∗ =
(

εo

τ f

) 1
β f =

(
ε f

τ I

) 1
β I

, δI =
(
L I δ

4τ I

) 1
β I =

(
L I

4τ I

) 1
β I
(

ε f

τ I

) 1
(β I )2

, rI = 2ε f

L I
, r f = 2εo

L f
.

1. If δI ≥ 2rI , let NI = 1.

2. If
2rI

m̄ I − 1
> δI ≥ 2rI

m̄ I
for some m̄ I ∈ N with m̄ I ≤ nx and 2 ≤ m̄ I ≤ 5, then let

NI =
m̄ I−1∑
i=0

2i
(
nx
i

)
+ 2nx

⌈
m̄ I − 3

3

⌉
.

3. Otherwise, let

NI =
⌈
2BI (ε

f ;β I , L I , τI )
⌉nx−1(⌈

2BI (ε
f ;β I , L I , τI )

⌉
+2nx

⌈
BI (ε

f ;β I , L I , τI )
⌉)

,

where

BI (ε
f ;β I , L I , τI ) := 4

1
β I
(
τ I
)
(

1
β I
+ 1

(β I )
2

)
(
ε f
)
(
1− 1

(β I )
2

)

L
−
(
1+ 1

β I

)
I .

4. If δ f ≥ 2r f , let N f = 1.

5. If
2r f

m f − 1
> δ f ≥ 2r f

m f
for some m f ∈ N with m f ≤ nx and 2 ≤ m f ≤ 5, then let

N f =
m f−1∑
i=0

2i
(
nx
i

)
+ 2nx

⌈
m f − 3

3

⌉
.
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6. Otherwise, let

N f =
⎡
⎢⎢⎢2

(
τ f
) 1

β f (
εo
)(1− 1

β f

)
L−1f

⎤
⎥⎥⎥
nx−1⎛

⎝
⎡
⎢⎢⎢2

(
τ f
) 1

β f (
εo
)(1− 1

β f

)
L−1f

⎤
⎥⎥⎥+2nx

⎡
⎢⎢⎢
(
τ f
) 1

β f (
εo
)(1− 1

β f

)
L−1f

⎤
⎥⎥⎥
⎞
⎠ .

Then, NI is an upper bound on the number of boxes of width δI required to cover X̂2
3\Bδ ,

and N f is an upper bound on the number of boxes of width δ f required to cover X̂1
3 .

Proof The result on N f follows from Lemma 3 and 11 and Corollary 2.1 in [28] (also see
the proof of Theorem 2). To deduce the result on NI , note that we cover X̂2

3\Bδ with boxes

of width δI =
(
L I δ

4τ I

) 1
β I

since, from Lemma 11, we have

X̂2
3\Bδ ⊂

{
x ∈ N 1

α̂
(x∗) : d

([
g
h

]
(x), R

mI− × {0}
)
∈
(
L I

4
δ, ε f

]}

and, from Lemma 2, we have that a box BδI of width δI with each x ∈ BδI satisfying

d

([
g
h

]
(x), R

mI− × {0}
)

>
L I

4
δ can be fathomed by infeasibility. The desired result then

follows from Corollary 2.1 in [28]. ��

Remark 7 Under the assumptions of Lemma 11, the dependence of NI on ε f disappears
when the lower bounding scheme has first-order convergence on N 1

α̂
(x∗) ∩ (F (X))C, i.e.,

β I = 1, and the dependence of N f on εo disappears when the scheme ( f cvZ )Z∈IX has first-
order convergence on X , i.e., β f = 1. Therefore, the cluster problem on X3 can be eliminated
even using first-order convergent schemes with sufficiently small prefactors. Note that the
dependence of N f and NI on the prefactors τ f and τ I , respectively, can be detailed in a
manner similar to Table 1 in [29].

The following results illustrate one set of assumptions under which second-order con-
vergence of the lower bounding scheme at infeasible points is sufficient to eliminate the
cluster problem on X3\Bδ . First, we provide a conservative estimate of the subset of X3

around a constrained minimizer x∗ under the following assumption: the infeasible region in
some neighborhood of x∗ can be split into two subregions such that the objective function
grows quadratically (or faster) in the first subregion and the measure of infeasibility grows
quadratically (or faster) in the second subregion. Note that better estimates of X3 may be
derived either under the (stronger) assumption that the objective function grows linearly in
the directions D0 ∩ DI , or under the (stronger) assumption that the measure of infeasibility
grows linearly in the directions DI \D0.

Lemma 12 Consider Problem (P). Suppose x∗ is a constrained minimizer, functions f , g j ,
∀ j ∈ A (x∗), and hk, ∀k ∈ {1, . . . ,mE }, are twice-differentiable at x∗, and ∃α > 0, γ1 >

0, γ2 > 0 and a set D0 such that
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∇ f (x∗)Td+ 1

2
dT∇2 f (x∗)d ≥ γ1dTd, ∀d ∈ D0 ∩ DI ,

max

{
max

j∈A (x∗)

{
∇g j (x∗)Td+ 1

2
dT∇2g j (x∗)d

}
,

max
k∈{1,...,mE }

{∣∣∣∣∇hk(x∗)Td+ 1

2
dT∇2hk(x∗)d

∣∣∣∣
}}
≥ γ2dTd, ∀d ∈ DI \D0,

where DI is defined as

DI =
{
d : (x∗ + d) ∈ N 2

α (x∗) ∩ (F (X))C
}
.

Then, ∃α̂ ∈ (0, α] such that the region

X1
3 := N 2

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ D0 ∩ DI

}
can be conservatively approximated as

X̂1
3 =

{
x ∈ N 2

α̂
(x∗) : γ1‖x − x∗‖2 ≤ 2εo

}
,

and the region

X2
3 := N 2

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0

}
can be conservatively approximated as

X̂2
3 =

{
x ∈ N 2

α̂
(x∗) : γ2‖x − x∗‖2 ≤ 2ε f

}
.

Furthermore, suppose x∗ is at the center of a box, Bδ , of width δ =
( ε

τ ∗
) 1

β∗ placed while

covering X̂5. Then, the region

X2
3\Bδ = N 2

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0

} \Bδ

is conservatively characterized by{
x ∈ N 2

α̂
(x∗) : d

([
g
h

]
(x), R

mI− × {0}
)
∈
(γ2

8
δ2, ε f

]}
,

whenever γ2δ
2 < 8ε f .

Proof From Lemma 8, we have the existence of α̂0 > 0 such that

N 2
α̂0

(x∗) ∩ X3 ∩
{
x = (x∗ + d) ∈ N 2

α̂0
(x∗) ∩ (F (X))C : d ∈ D0 ∩ DI

}

can be conservatively approximated as
{
x ∈ N 2

α̂0
(x∗) : γ1‖x − x∗‖2 ≤ 2εo

}
.

Consider x = x∗ + d ∈ N 2
α (x∗) ∩ (F (X))C with d ∈ DI \D0. We have

max

{
max

j∈A (x∗)

{
g j (x)

}
, max
k∈{1,...,mE }

{|hk(x)|}
}

=max

{
max

j∈A (x∗)

{
g j (x∗ + d)

}
, max
k∈{1,...,mE }

{∣∣hk(x∗ + d)
∣∣}}

=max

{
max

j∈A (x∗)

{
∇g j (x∗)Td+ 1

2
dT∇2g j (x∗)d+ o(‖d‖2)

}
,

max
k∈{1,...,mE }

{∣∣∣∣∇hk(x∗)Td+ 1

2
dT∇2hk(x∗)d+ o(‖d‖2)

∣∣∣∣
}}

.
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Consequently, there exists α̂1 ∈ (0, α] such that for all x = x∗ + d ∈ (F (X))C with
‖d‖ ∈ [0, α̂1), d /∈ D0:

d

([
g
h

]
(x), R

mI− × {0}
)
≥max

{
max

j∈A (x∗)

{
g j (x)

}
, max
k∈{1,...,mE }

{|hk(x)|}
}

=max

{
max

j∈A (x∗)

{
∇g j (x∗)Td+ 1

2
dT∇2g j (x∗)d+ o(‖d‖2)

}
,

max
k∈{1,...,mE }

{∣∣∣∣∇hk(x∗)Td+ 1

2
dT∇2hk(x∗)d+ o(‖d‖2)

∣∣∣∣
}}

≥γ2

2
‖d‖2,

where Step 1 follows from the fact that ‖z‖ ≥ ‖z‖∞, ∀z ∈ R
mI × R

mE .

Choose α̂ = min
{
α̂0, α̂1

}
. The region

X1
3 := N 2

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ D0 ∩ DI

}
can be conservatively approximated as

X̂1
3 =

{
x ∈ N 2

α̂
(x∗) : γ1‖x − x∗‖2 ≤ 2εo

}
,

and

∀x ∈ X2
3 := N 2

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0

}
,

we have x = x∗ + d ∈ (F (X))C with d /∈ D0, ‖d‖ < α̂, and

ε f ≥ d

([
g
h

]
(x), R

mI− × {0}
)
≥ γ2

2
‖x − x∗‖2 
⇒ γ2‖x − x∗‖2 ≤ 2ε f .

Finally, for every x ∈ N 2
α̂

(x∗)∩ X3 ∩
{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0

}
with ‖d‖ ≤ δ

2
, we have x ∈ Bδ . Consequently, for each

x ∈ N 2
α̂

(x∗) ∩ X3 ∩
{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0

} \Bδ,

we have ‖d‖ >
δ

2
and therefore,

d

([
g
h

]
(x), R

mI− × {0}
)

>
γ2

8
δ2.

The desired result follows when γ2δ
2 < 8ε f ; otherwise, if γ2δ

2 ≥ 8ε f , then

N 2
α̂

(x∗) ∩ X3 ∩
{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0

} ⊂ Bδ.

��
A conservative estimate of the number of boxes of certain widths required to cover(

N 2
α̂

(x∗) ∩ X3
) \Bδ can be obtained by estimating the number of boxes of certain widths

required to cover X̂1
3 and X̂2

3\Bδ (see Theorem 5). The following remark is in order.

Remark 8 1. Lemma 12 does not hold when �α, γ1, γ2 > 0, and D0, for example X =
(0, 2) × (0, 2), mI = 0, mE = 2, f (x) = −x1, h1(x) = x2 − (1 − x1)3, h2(x) =
−x2 − (1− x1)3, and x∗ = (1, 0) (see [2, Example 4.3.5]). Note that D0 may be chosen
to be ∅, but it cannot be chosen to be DI (see Remark 6 for an explanation).
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2. The inequality γ2δ
2 < 8ε f is equivalent to

γ2δ
2 = γ2

(
ε f

τ I

) 2
β I

< 8ε f .

Since ε f can be taken to be sufficiently-small, the above inequality holds only when

(ε f )
2

β I ≤ ε f ⇐⇒ β I ≤ 2,

i.e., if β I > 2, we can choose ε f to be small-enough so that γ2δ
2 ≥ 8ε f . Note that if

γ2δ
2 ≥ 8ε f , the region

N 2
α̂

(x∗) ∩ X3 ∩
{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0

}

has already been covered while covering X̂5 since

γ2δ
2

8
≥ ε f ≥ γ2‖d‖2

2

⇒ ‖d‖ ≤ δ

2
,

which implies x = x∗ + d ∈ Bδ .

4. α̂ depends on the local behavior of f , g j , ∀ j ∈ A (x∗), and hk , ∀k ∈ {1, . . . ,mE },
around x∗, but is independent of ε. Consequently, for sufficiently small ε we have
X̂1
3 =

{
x ∈ X : γ1‖x − x∗‖2 ≤ 2εo

}
and X̂2

3 =
{
x ∈ X : γ2‖x − x∗‖2 ≤ 2ε f

}
. Addi-

tionally, if the objective function and the active constraints are all either affine or quadratic
functions of x, then their second-order Taylor expansions around x∗ equal themselves
and we can choose α̂ = α. Furthermore,

X1
3 := N 2

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ D0 ∩ DI

}

can be conservatively approximated as X̂1
3 =

{
x ∈ X : γ1‖x − x∗‖2 ≤ εo

}
, the region

X2
3 := N 2

α̂
(x∗) ∩ X3 ∩

{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0

}

can be conservatively approximated as X̂2
3 =

{
x ∈ X : γ2‖x − x∗‖2 ≤ ε f

}
, and the

region

N 2
α̂

(x∗) ∩ X3 ∩
{
x = (x∗ + d) ∈ N 2

α̂
(x∗) ∩ (F (X))C : d ∈ DI \D0

} \Bδ

is conservatively characterized by

{
x ∈ N 2

α̂
(x∗) : d

([
g
h

]
(x), R

mI− × {0}
)
∈
(γ2

4
δ2, ε f

]}

whenever γ2δ
2 ≥ 4ε f .
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5. Similar to Proposition 1, the following less conservative estimates of X1
3 and X2

3 can be
obtained:

X̂1
3 =

{
x ∈ N 2

α̂
(x∗) : γ1‖x − x∗‖2 ≤ 2εo,

∇ f (x∗)T(x − x∗)+ 1

2
(x − x∗)T∇2 f (x∗)(x − x∗) ≥ γ1‖x − x∗‖2

}
,

X̂2
3 =

{
x ∈ N 2

α̂
(x∗) : γ2‖x − x∗‖2 ≤ 2ε f ,

max

{
max

j∈A (x∗)

{
∇g j (x∗)T(x − x∗)+ 1

2
(x − x∗)T∇2g j (x∗)(x − x∗)

}
,

max
k∈{1,...,mE }

{∣∣∣∣∇hk(x∗)T(x − x∗)+ 1

2
(x − x∗)T∇2hk(x∗)(x − x∗)

∣∣∣∣
} }

≥ γ2‖x − x∗‖2
}
.

To illustrate the application of Lemma 12, let us reconsider Example 4 with εo, ε f ≤ 1.
Recall that X = (−2, 2), mI = 3, mE = 0, f (x) = x , g1(x) = x2, g2(x) =
x − 1, and g3(x) = −1 − x with x∗ = 0. We have F (X) = {0} and X3 =
[−√ε f , 0) ∪

(
0,min{εo,√ε f }

]
. Choose α = 1. We have DI = (−1, 1)\{0}. Choose

D0 = {d ∈ DI : d > 0}, γ1 = 1, γ2 = 1, and α̂ = 1 in Lemma 12. From Lemma 12 and
Remark 8, we have X̂1

3 =
{
x : x2 ≤ εo

}
and X̂2

3 =
{
x : x2 ≤ ε f

}
(since f is linear and g1 is

quadratic). In fact, for this example, we can get a better estimate of X1
3 by taking into account

the fact that f grows linearly on D0 ∩ DI .
Next, we revisit two examples fromSect. 3.1 forwhich the assumptions of Lemma12 hold.

First, consider Example 9 with εo ≤ 0.6, ε f ≤ 0.5, and recall that X = (−2, 2)× (−2, 2),
mI = 2, andmE = 0 with f (x) = x2, g1(x) = x21−x2, g2(x) = x2−1, and x∗ = (0, 0). We
haveF (X) = {

x : x2 ≥ x21 , x2 ≤ 1
}
and X3 =

{
x : x21 − ε f ≤ x2 < x21 , x2 ≤ εo

}
. Choose

α = 1. We have DI =
{
d ∈ N 2

1 (0) : d2 < d21
}
. Choose D0 =

{
d ∈ DI : d2 ≥ 0.5d21

}
,

γ1 = 0.3, γ2 = 0.25 and α̂ = 1 in Lemma 12. From Lemma 12 and Remark 8, we have
X̂1
3 =

{
x ∈ N 2

1 (x∗) : 0.3‖x‖2 ≤ εo
}
and X̂2

3 =
{
x ∈ N 2

1 (x∗) : ‖x‖2 ≤ 4ε f
}
(since f is

linear and g1 is quadratic).
Finally, consider Example 10 with εo, ε f ≤ 0.1, and recall that X = (−2, 2)× (−2, 2),

mI = 3, and mE = 0 with f (x) = 2x21 + x2, g1(x) = −x21 − x2, g2(x) = −x1, g3(x) =
x21 + x22 −1, and x∗ = (0, 0). We haveF (X) = {

x : x2 ≥ −x21 , x1 ≥ 0, x21 + x22 ≤ 1
}
and

X3 =
{
x ∈ X :

√(
max{0,−x21 − x2}

)2 + (max{0,−x1})2 +
(
max{0, x21 + x22 − 1})2

∈ (0, ε f ], 2x21 + x2 ≤ εo
}

.

Choose α = 2
3 . We have DI =

{
d ∈ N 2

2
3
(0) : (x∗ + d) ∈ (F (X))C

}
. Choose D0 ={

d ∈ DI : d2 ≥ −1.5d21
}
, γ1 = 0.25, γ2 = 0.25 and α̂ = 2

3 in Lemma 12. From Lemma 12

and Remark 8, we have X̂1
3 =

{
x : ‖x‖2 ≤ 4εo

}
and X̂2

3 =
{
x : ‖x‖2 ≤ 4ε f

}
(since f and g2

are quadratic, and g1 is linear). Figure 6 plots the sets X1
3 and X2

3 along with their estimates
X̂1
3 and X̂2

3 for εo = ε f = 0.1. The benefit of using the estimates in Remark 8 over that of
Lemma 12 is seen from Fig. 6.
The following result follows from Lemma 3 in [29]. It provides a conservative estimate of
the number of boxes of certain widths required to cover X̂1

3 and X̂2
3\Bδ from Lemma 12.
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Fig. 6 Plots of X1
3 and X2

3 (solid regions) and their estimates X̂1
3 and X̂2

3 (area between the dotted lines) for
Example 10. The filled-in triangles correspond to the minimizer x∗, and the dash-dotted lines represent the
axes translated to x∗. All plots use εo, ε f = 0.1. a X1

3 and estimate X̂1
3 from Lemma 12, b X1

3 and estimate

X̂1
3 from Remark 8, c X2

3 and estimate X̂2
3 from Lemma 12, d X2

3 and estimate X̂2
3 from Remark 8

Therefore, from Lemma 2 and 3 and the result below, we can get an upper bound on the
worst-case number of boxes required to cover N 2

α̂
(x∗) ∩ X3 and estimate the extent of the

cluster problem on that region.

Theorem 5 Suppose the assumptions of Lemma 12 hold. Let δ =
( ε

τ ∗
) 1

β∗ =

δ f =
(

εo

τ f

) 1
β f =

(
ε f

τ I

) 1
β I

, δI =
(

γ2δ
2

8τ I

) 1
β I =

( γ2

8τ I

) 1
β I
(

ε f

τ I

) 2
(β I )2

, rI =
√
2ε f

γ2
,

r f =
√
2εo

γ1
.

1. If δI ≥ 2rI , let NI = 1.

2. If
2rI√
m̄ I − 1

> δI ≥ 2rI√
m̄ I

for some m̄ I ∈ N with m̄ I ≤ nx and 2 ≤ m̄ I ≤ 18, then let

NI =
m̄ I−1∑
i=0

2i
(
nx
i

)
+ 2nx

⌈
m̄ I − 9

9

⌉
.
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3. Otherwise, let

NI =
⌈
2BI (ε

f ;β I , γ2, τI )
⌉nx−1 (⌈

2BI (ε
f ;β I , γ2, τI )

⌉
+ 2nx

⌈
(
√
2− 1)BI (ε

f ;β I , γ2, τI )
⌉)

,

where

BI (ε
f ;β I , γ2, τI ) := 8

1
β I
(
τ I
)
(

1
β I
+ 2

(β I )
2

)
(
ε f
)
(

1
2− 2

(β I )
2

)

γ
−
(
1
2+ 1

β I

)
2 .

4. If δ f ≥ 2r f , let N f = 1.

5. If
2r f√
m f − 1

> δ f ≥ 2r f√
m f

for some m f ∈ N with m f ≤ nx and 2 ≤ m f ≤ 18, then

let

N f =
m f−1∑
i=0

2i
(
nx
i

)
+ 2nx

⌈
m f − 9

9

⌉
.

6. Otherwise, let

N f =
⎡
⎢⎢⎢2

(
τ f
) 1

β f (
εo
)( 1

2− 1
β f

)
γ
− 1

2
1

⎤
⎥⎥⎥
nx−1⎛

⎝
⎡
⎢⎢⎢2

(
τ f
) 1

β f (
εo
)( 1

2− 1
β f

)
γ
− 1

2
1

⎤
⎥⎥⎥+

2nx

⎡
⎢⎢⎢(
√
2− 1)

(
τ f
) 1

β f (
εo
)( 1

2− 1
β f

)
γ
− 1

2
1

⎤
⎥⎥⎥
⎞
⎠ .

Then, NI is an upper bound on the number of boxes of width δI required to cover X̂2
3\Bδ ,

and N f is an upper bound on the number of boxes of width δ f required to cover X̂1
3 .

Proof The result on N f follows from Lemma 3 and 12, and Lemma 3 in [29]. To deduce the

result on NI , note that we cover X̂2
3\Bδ with boxes of width δI =

(
γ2δ

2

8τ I

) 1
β I

since, from

Lemma 12, we have

X̂2
3\Bδ ⊂

{
x ∈ N 2

α̂
(x∗) : d

([
g
h

]
(x), R

mI− × {0}
)
∈
(γ2

8
δ2, ε f

]}

and, from Lemma 2, we have that a box BδI of width δI with each x ∈ BδI satisfying

d

([
g
h

]
(x), R

mI− × {0}
)

>
γ2

8
δ2 can be fathomed by infeasibility. The desired result then

follows from Lemma 3 in [29]. ��
Remark 9 1. Under the assumptions of Lemma 12, the dependence of NI on ε f disappears

when the lower bounding scheme has second-order convergence onN 2
α̂

(x∗)∩(F (X))C,
i.e., β I = 2, and the dependence of N f on εo disappears when the scheme ( f cvZ )Z∈IX has
second-order convergence on X , i.e., β f = 2. Therefore, the cluster problem on X3 can
be eliminated using second-order convergent schemes with sufficiently small prefactors.

2. The dependence of NI on ε f for β I = 1, i.e., NI ∝
(
ε f
)−1.5nx , scales worse than the

corresponding dependence of N on ε for β∗ = 1 when second-order convergence on X5
is required to mitigate clustering, i.e., N ∝ ε−0.5nx (see Theorem 3). Note, however, that
this worse scalingmay be an artifact of the conservative requirement that all of X̂2

3\Bδ has
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to be covered using boxes of size δI instead of simply requiring that the subset of X̂2
3 that

is not fathomed by value dominance (the rest of X̂2
3, including Bδ , would have already

been accounted for while covering X̂5 and X̂1
3) be covered using boxes of appropriate

size.
3. Similar to Lemma 10, less conservative estimates (with respect to the dependence on εo

and ε f ) may be obtained for X1
3 and X2

3 by taking into account the fact that the objective
function and the measure of infeasibility grow linearly in certain directions.

Remark 10 The main assumptions of Lemma 5 and 11, which assume that the objective
function and the measure of infeasibility grow linearly on certain regions in some neighbor-
hood of x∗, are similar to the linear growth condition in [12], and the main assumptions of
Lemma 8 and 12, which assume that the objective function and the measure of infeasibility
grow quadratically on certain regions in some neighborhood of x∗, are similar to the quadratic
growth condition in [5,12]. Furthermore, the assumptions of Lemma 5, 8, 11, and 12 may be
weakened based on the linear and quadratic growth conditions in [5,12] to account for cases
in which x∗ is not a strict local minimum.

4 Conclusion

This work provides an analysis of the cluster problem for constrained problems. The analysis
indicates different scaling of the number of boxes required to cover regions close to a global
minimizer based on the convergence order and corresponding prefactor of the lower bounding
scheme on nearly-optimal and nearly-feasible regions in the vicinity of the global minimizer.

It is shown that lower bounding schemes with first-order convergence may eliminate the
cluster problem at a constrained minimizer if: i. the objective function grows linearly in
directions leading to feasible points in some neighborhood of the minimizer, ii. either the
objective function, or a measure of constraint violation grows linearly in directions lead-
ing to infeasible points in some neighborhood of the minimizer, and iii. the corresponding
convergence order prefactors are sufficiently-small. This is shown to be possible because
nodes containing nearly-optimal and nearly-feasible points may be fathomed relatively eas-
ily, by value dominance or by infeasibility, even using first-order convergent lower bounding
schemes when the objective function or the measure of constraint violation grows linearly in
directions around the minimizer. The above result is in contrast to the case of unconstrained
minimization where at least second-order convergence is required to eliminate the cluster
problem at a point of differentiability of the objective function. When the objective function
is twice-differentiable at an unconstrained minimizer, this is a consequence of the fact that
the objective function grows quadratically or slower around the minimizer.

It is also shown that at least second-order convergence is required to mitigate the cluster
problem at a nonisolated constrained minimizer that satisfies certain regularity conditions
when the problem is purely equality-constrained. Conditions under which second-order con-
vergence of the lower bounding scheme is sufficient to mitigate clustering are also presented.
This analysis reduces to previous analyses for unconstrained problems under suitable assump-
tions.
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Appendix: Proofs

Proof of Lemma 4

Lemma 4 Consider Problem (P). Suppose x∗ is nonisolated and f is differentiable at x∗.
Then ∀θ > 0, ∃α > 0 such that

inf{d:‖d‖1=1, ∃t>0 : (x∗+td)∈N 1
α (x∗)∩F (X)}∇ f (x∗)Td > min{d:‖d‖1=1,d∈T (x∗)}∇ f (x∗)Td− θ.

Proof We proceed by contradiction. Define

L(α) := inf{d:‖d‖1=1, ∃t>0 : (x∗+td)∈N 1
α (x∗)∩F (X)}∇ f (x∗)Td,

L∗ := min{d:‖d‖1=1,d∈T (x∗)}∇ f (x∗)Td,

and note that L(α) is monotonically nonincreasing on (0,+∞). Suppose ∃θ > 0 such that
∀α > 0, we have L(α) ≤ L∗ − θ . Consider a sequence {αk} → 0 with αk > 0, and a
corresponding sequence {dk} such that

dk ∈
{
d : ‖d‖1 = 1, ∃tk > 0 : (x∗ + tkd) ∈ N 1

αk
(x∗) ∩F (X),∇ f (x∗)Td ≤ L∗ − θ

2

}
.

The existence of dk follows from the assumption that L(α) ≤ L∗ − θ , ∀α > 0. Since
‖dk‖1 = 1, ∀k, we have the existence of d∗ ∈ R

nx with d∗ = lim
kq→∞

dkq and ‖d∗‖1 = 1 for

some convergent subsequence {dkq }. Furthermore, d∗ ∈ T (x∗) and ∇ f (x∗)Td∗ ≤ L∗ − θ

2
,

since ∀kq we have ∇ f (x∗)Tdkq ≤ L∗ − θ

2
, which contradicts the definition of L∗. ��

Proof of Proposition 2

Proposition 2 Consider Problem (P) with mE ≥ 1. Suppose x∗ is nonisolated, f is dif-
ferentiable at x∗, functions hk , k = 1, . . . ,mE , are differentiable at x∗, and A (x∗) = ∅.
Furthermore, suppose there exist multipliers λ∗ ∈ R

mE corresponding to the equality con-
straints such that (x∗, 0,λ∗) is a KKT point. Then

min{d:‖d‖1=1,d∈T (x∗)}∇ f (x∗)Td = 0.

Proof Since (x∗, 0,λ∗) is a KKT point, we have

∇ f (x∗)+
mE∑
k=1

λ∗k∇hk(x∗) = 0.

From the assumption that x∗ is a nonisolated feasible point, we have that the set{
d : ‖d‖1 = 1,d ∈ T (x∗)

}
is nonempty. Additionally, we have

T (x∗) ⊂ L (x∗) :=
{
d ∈ R

nx : ∇hk(x∗)Td = 0,∀k ∈ {1, . . . ,mE }
}

,

where L (x∗) denotes the linearized cone at x∗ (see, for instance, [2]). Consequently, for
each d ∈ T (x∗) with ‖d‖1 = 1, we have ∇ f (x∗)Td = 0. ��
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Proof of Theorem 2

Theorem 2 Suppose the assumptions of Lemma 5 hold. Let δ =
( ε

τ ∗
) 1

β∗ , r = 2ε

L
.

1. If δ ≥ 2r , let N = 1.

2. If
2r

m − 1
> δ ≥ 2r

m
for some m ∈ N with m ≤ nx and 2 ≤ m ≤ 5, then let

N =
m−1∑
i=0

2i
(
nx
i

)
+ 2nx

⌈
m − 3

3

⌉
.

3. Otherwise, let

N =
⌈
2
(
τ ∗
) 1

β∗ ε

(
1− 1

β∗
)
L−1

⌉nx−1 (⌈
2
(
τ ∗
) 1

β∗ ε

(
1− 1

β∗
)
L−1

⌉
+ 2nx

⌈(
τ ∗
) 1

β∗ ε

(
1− 1

β∗
)
L−1

⌉)
.

Then, N is an upper bound on the number of boxes of width δ required to cover X̂5.

Proof This proof is rederived based on Corollary 2.1 in [28] and the proof of Lemma 3
in [29]. Note that the condition in the second case is corrected to ‘2 ≤ m ≤ 5’ as opposed to
‘2 ≤ m ≤ 6’ in [28].

From Lemma 5, we have X̂5 =
{
x ∈ N 1

α̂
(x∗) : L‖x − x∗‖1 ≤ 2ε

} ⊂ {
x : ‖x − x∗‖1 ≤

2ε

L

}
=:B̃. Therefore, an upper bound on the number of boxes of width δ required to cover

X̂5 can be obtained by conservatively estimating the number of boxes of width δ required to
cover B̃. In what follows, we will assume without loss of generality that x∗ = 0.

1. Suppose δ ≥ 2r . Consider the box Bδ of width δ centered at x∗ = 0. We have

x ∈ B̃ 
⇒ ‖x‖1 ≤
2ε

L

⇒ ‖x‖∞ ≤

2ε

L
= r ≤ δ

2

⇒ x ∈ Bδ,

where we have used the fact that ‖x‖∞ ≤ ‖x‖1, ∀x ∈ R
nx . Therefore, Bδ is sufficient to

cover B̃.
2. Suppose m ≤ nx with m ∈ {2, . . . , 5} and δ ≥ 2r

m . Place a box Bδ of width δ centered at

x∗ = 0 (the condition on δ ensures that Bδ intersects the boundary of B̃). Let

Ei :=
⎧⎨
⎩e ∈ R

nx : e j ∈
{
− δ

2
, 0,

δ

2

}
, ∀ j ∈ {1, . . . , nx },

nx∑
j=1

I0(e j ) = i

⎫⎬
⎭ ,

where I0 : R → {0, 1} is defined as I0(x) :=
{
0, if x = 0

1, otherwise
, denote the set ofmidpoints

of the (nx − i)-dimensional faces of Bδ (each element of Ei has exactly i nonzero
components, each of which is ± δ

2 ). Note that |Ei | = 2i
(nx
i

)
, ∀i ∈ {1, . . . , nx }. Under

the assumption δ ≥ 2r
m , we will show that, in addition to Bδ , it is sufficient to place one

box beside Bδ along the directions in E1, . . . , Em−1 when m = 2 or m = 3, and two
boxes beside Bδ along the directions in E1 and one box beside Bδ along the directions
in E2, . . . , Em−1 when m = 4 or m = 5 in order to cover B̃. First, we show that we
need not place any boxes beside Bδ along the directions in Em, . . . , Enx . Let e ∈ Ei

with i ∈ {m, . . . , nx }. We have ‖e‖1 = δ
2 i ≥ i

m r ≥ r , which implies e ∈ ∂ B̃ ∪ B̃C
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(where ∂ B̃ denotes the boundary of B̃). Consequently, boxes placed beside Bδ along the
directions in Em, . . . , Enx do not intersect the interior of B̃ and are not required to cover
B̃. Suppose δ ≥ 2r

m , and let e ∈ Ei for some i ∈ {1, . . . ,m − 1}. The distance from e,
which is the midpoint of an (n − i)-dimensional face of Bδ , to 2r

δi e, which is a point on

the boundary of B̃ in the direction e, in the∞-norm is r
i − δ

2 ≤ r
i − r

m . If this distance
is less than δ for each i ∈ {1, . . . ,m− 1}, then one box beside Bδ along the directions in
E1, . . . , Em−1 is sufficient to cover B̃. This amounts to requiring

r

i
− r

m
≤ 2r

m
, ∀i ∈ {1, . . . ,m − 1} ⇐⇒ m ≤ 3i, ∀i ∈ {1, . . . ,m − 1}

⇐⇒ m = 2 or m = 3.

Note that if m = 4 or m = 5, we still have m ≤ 3i , ∀i ∈ {2, . . . ,m − 1}. Additionally,
r
1 − r

m ≤ 4r
m ≤ 2δ in such cases. Therefore, when m = 4 or m = 5, two boxes along

the directions in E1 and one box along the directions in E2, . . . , Em−1 are sufficient to
cover B̃.

3. If the previous assumptions on δ are not satisfied, a box of width δ centered at x∗ may
not intersect ∂ B̃. To estimate the number of boxes of width δ required to cover B̃, we
first estimate the number of boxes, Nr , of width r = 2ε

L required to cover B̃ using the
previous analysis, and then estimate the number of boxes of width δ required to cover
the intersection of these Nr boxes with B̃.
The number of boxes of width r required to cover B̃ is Nr := 1 + 2nx , where ‘1’
corresponds to the box centered at x∗ = 0, and ‘2nx ’ corresponds to the boxes along the
directions in E1. Note that E1 is now defined as

E1 :=
⎧⎨
⎩e ∈ R

nx : e j ∈
{
− r

2
, 0,

r

2

}
, ∀ j ∈ {1, . . . , nx },

nx∑
j=1

I0(e j ) = 1

⎫⎬
⎭

since B̃ is first covered using boxes of width r . The box of width r centered at x∗ can
be covered using

⌈ r
δ

⌉nx boxes of width δ. Note that the entire volume of the 2nx boxes
along the directions in E1 need not be covered using boxes of width δ since parts of
those boxes have no intersection with B̃. To estimate the extent to which each of the 2nx
boxes need to be covered with boxes of width δ, we compute the distance between any
e ∈ E1 (which is a midpoint of a one-dimensional face of the box of width r centered
at x∗) and 2r

r×1e = 2e (which is a point on the boundary of B̃ in the direction e) in the
∞-norm. This distance turns out to be equal to r

2 . This implies at most half the volumes
of the 2nx boxes need to be covered using boxes of width δ, which yields the estimate
of 2nx

⌈ r
δ

⌉nx−1⌈ r
2δ

⌉
boxes of width δ that are required to cover the 2nx boxes of width

r along the directions in E1. ��
Proof of Lemma 7

Lemma 7 Consider Problem (P). Suppose x∗ is nonisolated, f is locally Lipschitz continuous
on X and directionally differentiable at x∗, and ∃α > 0 such that

L := inf{d:‖d‖1=1, ∃t>0 : (x∗+td)∈N 1
α (x∗)∩F (X)} f

′(x∗;d) > 0.

Then, ∃α̂ ∈ (0, α] such that the region N 1
α̂

(x∗) ∩ X5 can be conservatively approximated
by

X̂5 =
{
x ∈ N 1

α̂
(x∗) : L‖x − x∗‖1 ≤ 2ε

}
.
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Proof Let x = x∗ + td ∈ N 1
α (x∗)∩F (X) with ‖d‖1 = 1 and t = ‖x− x∗‖1 > 0. We have

(see Theorem 3.1.2 in [24])

f (x) = f (x∗ + td)

= f (x∗)+ f ′(x∗; (x − x∗))+ o(‖x − x∗‖1)
= f (x∗)+ t f ′(x∗;d)+ o(t)

≥ f (x∗)+ Lt + o(t),

where Step 2 follows from the directional differentiability of f at x∗. Consequently, there
exists α̂ ∈ (0, α] such that for all x = x∗ + td ∈ F (X) with ‖d‖1 = 1 and t ∈ [0, α̂):

f (x) ≥ f (x∗)+ Lt + o(t) ≥ f (x∗)+ L

2
t.

Therefore, ∀x ∈ N 1
α̂

(x∗) ∩ X5 we have x = x∗ + td ∈ F (X) with ‖d‖1 = 1 and
t = ‖x − x∗‖1 < α̂, and

ε ≥ f (x)− f (x∗) ≥ L

2
t 
⇒ Lt = L‖x − x∗‖1 ≤ 2ε.

��
Proof of Lemma 10

Lemma 10 Consider Problem (P), and suppose the assumptions of Lemma 8 hold. Then
∃α̂ ∈ (0, α] and constants ρ1, ρ2 ≥ 0 such that the regionN 2

α̂
(x∗)∩X5 can be conservatively

approximated by

X̂5 =
{
x ∈ N 2

α̂
(x∗) : γ ‖x − x∗‖2 ≤ 2ε, −ρ1ε ≤ ∇ f (x∗)T

(
x − x∗

) ≤ ρ2ε
}

.

Proof The result trivially follows from Lemma 8 when ∇ f (x∗) = 0.
Suppose ∇ f (x∗) �= 0. From Lemma 8, we have

N 2
α̂

(x∗) ∩ X5 ⊂
{
x ∈ N 2

α̂
(x∗) : γ ‖x − x∗‖2 ≤ 2ε

}
. (2)

Suppose we represent each x ∈ N 2
α̂

(x∗) ∩ F (X) by x := x∗ + β1∇ f (x∗) + β2d, where
β1, β2 ∈ R and d ⊥ ∇ f (x∗) with ‖d‖ = 1. Consider the case when β1 ≥ 0. We have

f (x)− f (x∗) = ∇ f (x∗)T(x − x∗)+ 1

2
(x − x∗)T∇2 f (x∗)(x − x∗)+ o

(‖x − x∗‖2)
= ∇ f (x∗)T

(
β1∇ f (x∗)+ β2d

)
+1

2

(
β1∇ f (x∗)+ β2d

)T∇2 f (x∗)
(
β1∇ f (x∗)+ β2d

)+ o
(
β2
1 + β2

2

)
= β1‖∇ f (x∗)‖2

+1

2

(
β1∇ f (x∗)+ β2d

)T∇2 f (x∗)
(
β1∇ f (x∗)+ β2d

)+ o
(
β2
1 + β2

2

)
.
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Therefore, ∀x ∈ N 2
α̂

(x∗) ∩ X5 with x = x∗ + β1∇ f (x∗) + β2d, β1 ≥ 0, β2 ∈ R and
d ⊥ ∇ f (x∗) with ‖d‖ = 1, we have

β1‖∇ f (x∗)‖2 + 1

2
(β1∇ f (x∗)+ β2d)

T∇2 f (x∗)(β1∇ f (x∗)+ β2d)+o(β2
1 + β2

2 ) ≤ ε


⇒ β1‖∇ f (x∗)‖2 ≤ ε − 1

2

(
β1∇ f (x∗)+ β2d

)T∇2 f (x∗)
(
β1∇ f (x∗)+ β2d

)
− o

(
β2
1 + β2

2

)

⇒ β1‖∇ f (x∗)‖2 ≤ ε − 1

2

(
β1∇ f (x∗)+ β2d

)T∇2 f (x∗)
(
β1∇ f (x∗)+ β2d

)

+ γ

2

(
β2
1‖∇ f (x∗)‖2 + β2

2

)
, (3)

where the last step uses the fact that α̂ is chosen such thato
(
β2
1 + β2

2

) ≥ −γ

2
(β2

1‖∇ f (x∗)‖2+

β2
2 ) (see Eq. 1). Note that β1 ≤

√
2ε

γ ‖∇ f (x∗)‖2 and |β2| ≤
√
2ε

γ
follow from Eq. 2. The

right hand side of Eq. 3 is O(ε) since β1 = β2 = O(
√

ε), thereby establishing the existence
of ρ2 ≥ 0.
Next, supposeβ1 ≤ 0. From the assumptions of Lemma 8,we have for each x ∈ N 2

α̂
(x∗)∩X5

with x = x∗ + β1∇ f (x∗)+ β2d, β1 ≤ 0, β2 ∈ R and d ⊥ ∇ f (x∗) with ‖d‖ = 1:

∇ f (x∗)T(x − x∗)+ 1

2
(x − x∗)T∇2 f (x∗)(x − x∗) ≥ γ ‖x − x∗‖2


⇒ ∇ f (x∗)T
(
β1∇ f (x∗)+ β2d

)+ 1

2

(
β1∇ f (x∗)+ β2d

)T∇2 f (x∗)
(
β1∇ f (x∗)+ β2d

)
≥ γ

(
β2
1‖∇ f (x∗)‖2 + β2

2

)

⇒ β1‖∇ f (x∗)‖2 + 1

2

(
β1∇ f (x∗)+ β2d

)T∇2 f (x∗)
(
β1∇ f (x∗)+ β2d

)
≥ γ

(
β2
1‖∇ f (x∗)‖2 + β2

2

)

⇒ 1

2

(
β1∇ f (x∗)+ β2d

)T∇2 f (x∗)
(
β1∇ f (x∗)+ β2d

)− γ
(
β2
1‖∇ f (x∗)‖2 + β2

2

)
≥ −β1‖∇ f (x∗)‖2, (4)

and β1 ≥ −
√

2ε

γ ‖∇ f (x∗)‖2 , |β2| ≤
√
2ε

γ
from Eq. 2. The left hand side of Eq. 4 is O(ε)

since β1 = β2 = O(
√

ε), thereby establishing the existence of ρ1 ≥ 0. ��
Proof of Proposition 4

Proposition 4 Consider Problem (P) with mE ≥ 1. Suppose x∗ is a nonisolated constrained
minimizer, f is differentiable at x∗, functions hk , k = 1, . . . ,mE , are differentiable at x∗,
and A (x∗) = ∅. Furthermore, suppose there exist multipliers λ∗ ∈ R

mE corresponding to
the equality constraints such that (x∗, 0,λ∗) is a KKT point. Then �α > 0, D0 such that the
assumptions of Lemma 11 are satisfied.
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Proof Since (x∗, 0,λ∗) is a KKT point, we have

∇ f (x∗)+
mE∑
k=1

λ∗k∇hk(x∗) = 0.

From the assumption that x∗ is a nonisolated feasible point, we have that the set{
d : ‖d‖1 = 1,d ∈ T (x∗)

}
is nonempty. Additionally, we have from the proof of Propo-

sition 2 that for each d ∈ T (x∗) with ‖d‖1 = 1, ∇ f (x∗)Td = 0 and ∇hk(x∗)Td = 0,∀k ∈
{1, . . . ,mE }.

Assume, by way of contradiction that ∃α > 0 and a set D0 satisfying the assumptions of
Lemma 11. Consequently, ∃L f , L I > 0 such that

L f = inf
d∈D0∩D I

∇ f (x∗)Td

and

L I = inf
d∈D I \D0

max
k∈{1,...,mE }

∣∣∣∇hk(x∗)Td
∣∣∣ .

Since ∃d ∈ T (x∗) with ‖d‖1 = 1 such that ∇ f (x∗)Td = 0 and ∇hk(x∗)Td = 0,∀k ∈
{1, . . . ,mE }, we have that the set
S :=

{
d ∈ R

nx : ‖d‖1 = 1,
∣∣∣∇ f (x∗)Td

∣∣∣ < L f ,

∣∣∣∇hk(x∗)Td
∣∣∣ < L I ,∀k ∈ {1, . . . ,mE }

}

is nonempty. All that remains to reach a contradiction is to show that ∃d̄ ∈ S ∩ DI .
From the above arguments, we have the existence of d̄ ∈ S, k̄ ∈ {1, . . . ,mE } such that∣∣∣∇hk̄(x∗)Td̄

∣∣∣ ∈ (0, L I ), since the assumption L I > 0 implies all of the equality constraint

gradients ∇hk(x∗), k ∈ {1, . . . ,mE }, cannot simultaneously be 0. Since ∇hk̄(x∗)Td̄ �= 0,
we have d̄ /∈ T (x∗) (this follows from the arguments made in the proof of Proposition 2).
Consequently, ∃t ∈ (0, α) such that (x∗ + t d̄) ∈ N 1

α (x∗) ∩ (F (X))C 
⇒ d̄ ∈ DI . This
implies that either d̄ ∈ D0, or d̄ ∈ DI \D0, which contradicts the definition of L f or L I since

∇ f (x∗)Td̄ < L f and
∣∣∣∇hk(x∗)Td̄

∣∣∣ < L I ,∀k ∈ {1, . . . ,mE }. ��
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