
J Glob Optim (2017) 68:827–849
DOI 10.1007/s10898-017-0516-y

Kriging surrogate model with coordinate transformation
based on likelihood and gradient

Nobuo Namura1 · Koji Shimoyama1 ·
Shigeru Obayashi1

Received: 9 December 2015 / Accepted: 28 March 2017 / Published online: 4 April 2017
© Springer Science+Business Media New York 2017

Abstract The Kriging surrogate model, which is frequently employed to apply evolutionary
computation to real-world problems, with a coordinate transformation of the design space
is proposed to improve the approximation accuracy of objective functions with correlated
design variables. The coordinate transformation is conducted to extract significant trends
in the objective function and identify the suitable coordinate system based on either one
of two criteria: likelihood function or estimated gradients of the objective function to each
design variable. Compared with the ordinary Kriging model, the proposed methods show
higher accuracy in the approximation of various test functions. The proposed method based
on likelihood shows higher accuracy than that based on gradients when the number of design
variables is less than six. The lattermethod achieves higher accuracy than the ordinaryKriging
model even for high-dimensional functions and is applied to an airfoil design problem with
spline curves as an example with correlated design variables. This method achieves better
performances not only in the approximation accuracy but also in the capability to explore the
optimal solution.
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1 Introduction

Optimization in real-world problems is usually time consuming and computationally expen-
sive in the evaluation of objective functions [1,2]. Surrogate models are often useful
to solve this difficulty. Surrogate models are constructed to promptly estimate the val-
ues of the objective functions at any point from sample points where real values of
the objective functions are obtained by expensive computations. Therefore, it is impor-
tant that accurate models can be constructed even with a small number of sample
points.

The most common surrogate model is polynomial regression (PR) [3]. In construction of
the PR model, users give the polynomial order arbitrarily and then compute the coefficients
of each term in the polynomial fitting the sample points using the least-squares method.
The accuracy of the PR model significantly depends on the polynomial order, which cor-
responds to the number of local maxima and/or minima in an objective function. However,
it is not always possible to achieve sufficient accuracy by adjusting the order because the
real shape of the objective function is usually not known. Generally, quadratic functions are
employed to approximate the function locally in the real-world problems [4]. In this case,
adequate optimization cannot be performed if the objective function has some local optima
and too many sample points are required to obtain the global optimum. Furthermore, a
Pareto dominance-based evolutionary multi-objective optimization algorithm explores large
design space where diverse Pareto-optimal solutions exist. The surrogate models are also
required to approximate large design space as accurately as possible. From this point of
view, the local PR model with quadratic functions is not suitable for multi-objective prob-
lems.

To approximate complex functions, radial basis function (RBF) networks [5] and the
Kriging model [6] are often used. Both of them can adapt well to complex functions because
they approximate a function as a weighted superposition of basis functions such as Gaussian
function. Thus, the model complexity can be controlled by changing the weight coefficients
and variance of each basis function. Gaussian basis functions in the Kriging model have
independently different variance values along each design variable direction to fit the com-
plexity and scale while those of the RBF have the same values (Fig. 1). This anisotropy
enhances the accuracy of the Kriging model. In addition, the Kriging model gives not only
estimated function values but also approximation errors, which help users determine the
locations of the additional sample points to improve the accuracy of the surrogate model.
Jones et al. [7] have proposed the efficient global optimization (EGO) in which additional
sample points are selected by maximizing the expected improvement (EI) value derived from
the estimated function value and the approximation error. The EI value enables the Kriging
model to efficiently explore the optimum as well as to improve the model accuracy.

It is desirable that one of these models approximates the function accurately. However,
sometimes more complex models are needed. Hybrid methods that combine two surrogate
models may be effective if the function consists of complex macro- and micro-trends [8,9].
The universal Kriging model (PR+Kriging) [10] and the extended RBF (PR+RBF) [11] are
typical hybrid methods. In contrast, Xiong et al. [12] proposed the non-stationary covariance
based Kriging model whose variance values of each basis function vary depending on the
location of the basis functions in the design space. This model showed good performance if
the complexity of the objective function changes according to the location.

Some design variables can be correlated with each other in real-world problems, e.g.,
control points of spline curves and free-form deformation (FFD) [13]. Optimization with
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Fig. 1 Gaussian basis functions. a Radial basis function, b Kriging model

Fig. 2 Extraction of suitable coordinates. a Objective function, b basis function

such design variables can express various configurations while the problem tends to become
difficult to solve. However, only the PR model takes account of the correlation as the cross-
terms among different variables though the PR model does not approximate the complex
function accurately due to the reason described above.

In this study,weproposemodifiedKrigingmodels suitable for the problemswith correlated
design variables by focusing on the anisotropy of Gaussian basis functions. It means finding
out suitable coordinates in the design variable space, which represent significant trends in
the objective function (Fig. 2a) and then defining the variance of basis functions along each
coordinate in the transformed system (Fig. 2b). Suitable coordinates are identified using two
criteria: one is based on likelihood derived by the Kriging model and the other uses estimated
gradients of the objective function. TheKrigingmodels with coordinate transformation based
on likelihood (KCTL) and gradients (KCTG) and the ordinary Kriging (OK) model are
applied to test functions and airfoil design problems to investigate the feature of the proposed
models.
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Fig. 3 Flowchart of EGO with KCTL, KCTG, and OK

2 Construction of Kriging models

The flowchart explaining EGO with KCTL, KCTG, and OK is summarized in Fig. 3. Ini-
tial sample points are generated uniformly in the design space using the Latin-hypercube
sampling (LHS) method [14]. The Kriging models are constructed by interpolating these
sample points. Construction of KCTG consists of three parts: construction of the Kriging
model (OK) in the original coordinate system, coordinate transformation, and reconstruc-
tion of the Kriging model (KCTG) in the transformed coordinate system while OK and
KCTL are constructed in a single part. An optimal solution is explored by the EGO
framework, which explores the solution where the EI value becomes maximum by an
optimizer such as evolutionary algorithm (the non-dominated sorting genetic algorithm
II (NSGA-II) [15] is employed in our EGO system toward the application to multi-
objective optimization in real-world problems) and adds it as an additional sample point.
EGO is completed by iterating the procedure illustrated in Fig. 3 until a termination
condition is satisfied. Generally, execution time and cost consumed for surrogate-based
optimization are dominated by the function evaluation at sample points while those for
surrogate model construction and optimal solution exploration on the model are ignor-
able. Hence, it can be said that better surrogate models should approximate functions
more accurately with less sample points. The following present details of the Kriging mod-
els.
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2.1 Ordinary Kriging model

The Kriging model expresses the unknown function f (x) as

f (x) = μ(x) + ε(x), (1)

where x is an m-dimensional vector (m design variables), μ (x) is a global model, and ε

(x) represents a local deviation from the global model, which is defined as the Gaussian
process following N (0, σ 2). The correlation between ε(xi ) and ε(x j ) is strongly related
to the distance between the two corresponding points, xi and x j . In the Kriging model,
a specially weighted distance is used instead of the Euclidean distance because the latter
weighs all design variables equally. The distance function between the points at xi and x j is
expressed as

d(xi , x j ) =
m∑

k=1

θk

(
xik − x j

k

)2
, (2)

where θk (0 ≤ θk < ∞) is the weight coefficient and the k-th element of an m-dimensional
weight vector θ. These weights give the Kriging model anisotropy and enhance its accuracy.
The correlation between the points xi and x j is defined as

Corr
(
ε(xi ), ε(x j )

)
= exp

(
−d(xi , x j )

)
. (3)

The Kriging predictor is

f̂ (x) = μ̂(x) + rTR−1(f − μ̂), (4)

where μ̂(x) is the estimated value of μ(x),R denotes the n × n matrix whose (i, j) entry
is Corr(ε(xi ), ε(x j )), r is an n-dimensional vector whose i-th element is Corr(ε(x), ε(xi )),
and f and μ̂ denote as follows (n sample points):

f = (
f (x1) · · · f (xn)

)T
, (5)

μ̂ = (
μ̂(x1) · · · μ̂(xn)

)T
. (6)

Thus, the unknown parameters in the Kriging model are σ̂ 2 (estimated σ 2), μ̂(x), and θ,
which are obtained by maximizing the following log-likelihood function:

Ln(μ̂, σ̂ 2, θ) = −n

2
ln(2π) − n

2
ln(σ̂ 2) − 1

2
ln(|R|)

− 1

2σ̂ 2 (y − μ̂)TR−1(y − μ̂). (7)

σ̂ 2 is analytically determined through partial differentiation as

σ̂ 2 = (f − μ̂)TR−1(f − μ̂)

n
. (8)

The definition of μ̂(x) has some variations. The OK model, which is the most widely used
Kriging model, assumes the global model to be a constant value as μ̂(x) = μ̂. In this case,
μ̂ is also analytically determined as

μ̂(x) = μ̂ = 1TR−1f
1TR−11

, (9)
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where 1 denotes an n-dimensional unit vector. Plugging in Eq. (8) for Eq. (7), the log-
likelihood function becomes

Ln(μ̂, σ̂ 2, θ) = −n

2
(ln(2π) + 1) − n

2
ln(σ̂ 2) − 1

2
ln(|R|). (10)

The first term can be ignored in the maximization because it has a constant value. Therefore,
the log-likelihood maximization becomes an m-dimensional unconstrained non-linear opti-
mization problem. In this study, a simple genetic algorithm is adopted to solve this problem.

2.2 Expected improvement

The accuracy of the function value predicted by the Kriging model depends largely on the
distance from sample points. The closer point x is to the sample points, the more accurate
the prediction, f̂ (x), becomes. This is expressed as:

s2(x) = σ̂ 2
(
1 − rTR−1r + (1 − 1TR−1r)2

1TR−11

)
, (11)

where s2(x) is themean square error at pointx,which indicates the uncertainty of the estimated
value. Thus, estimated values in the Kriging model do not have deterministic values but
follows the Gaussian distribution denoted by N ( f̂ (x), s2(x)), from which the probability
that the solution at point x may achieve a new global optimum can be calculated. The EI
value, which corresponds to the expected value of the objective function improvement from
the current optimal solution among the sample points, is also derived by using this probability.
In f (x) minimization problem, the improvement value I (x) and the EI value, E (I (x)) of
f (x) are expressed, respectively, as

I (x) = max( fre f − f, 0), (12)

E(I (x)) =
∫ fre f

−∞
( fre f − f )ϕ( f )d f, (13)

where fre f is the reference value of f and corresponds to the minimum value of f among the
sample points in this study. ϕ is the probability density function denoted by N ( f̂ (x), s2(x))
and represents uncertainty about f .

Special modification for EI has been proposed to enhance the constrained optimization
[16]. Amodified EI value is expressed bymultiplying the probability satisfying the constraint
to the conventional EI value. If the constraint function which should be approximated by the
Kriging model is expressed as g(x) > c, the modified EI (EcI) value is calculated as follows:

Ec (I (x)) = E (I (x))
∫ ∞

c
ϕ(g)dg. (14)

2.3 Coordinate transformation based on likelihood function

An affine coordinate transformation is used in KCTL. Generally, such transformations are
capable of rotation, scaling, translation, and shear mapping. However, scaling has the same
effect as tuning the weight coefficient, θk for each design variable in the Kriging model, and
translation has no effect in the approximation of objective functions because design variables
are normalized before constructing surrogate models. Only rotation is considered in KCTL
because shear mapping violates the orthonormality of the design variables.

A rotation in multi-dimensional space is defined on each plane consisting of two arbitrary
dimensions (design variables). Inm-dimensional space, a rotation on all mC2 = m(m − 1)/2

123



J Glob Optim (2017) 68:827–849 833

planes needs to be defined. For example, rotations in three-dimensional space are expressed
as the product of three rotation matrices as follows.

⎡

⎣
y1
y2
y3

⎤

⎦ =
⎡

⎣
1 0 0
0 cosφ3 − sin φ3

0 sin φ3 cosφ3

⎤

⎦

⎡

⎣
cosφ2 0 − sin φ2

0 1 0
sin φ2 0 cosφ2

⎤

⎦

⎡

⎣
cosφ1 − sin φ1 0
sin φ1 cosφ1 0
0 0 1

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ . (15)

Note that the order of the rotational planesmust be defineduniquely before the fact because the
final coordinate transformation matrix changes with order even if the same rotation angles
are applied to each rotational plane. KCTL is generated in the rotated coordinate system,
y = [y1, . . . , ym]T instead of the original coordinate system, x = [x1, . . . , xm]T.

Rotation angles in each plane are determined to maximize log-likelihood function in
Eq. (10) which becomes a m(m + 1)/2-dimensional optimization problem with rotation
angles, φκ (0◦ ≤ φκ < 90◦|κ = 1, . . . ,m(m − 1)/2) as variables besides θk in the KCTL
construction. φκ from 0◦ to 90◦ is sufficient to arbitrarily define the rotated coordinate system
because axes consisting of the plane where the rotation is conducted are orthogonal to each
other. This optimization problem has a tendency to become extremely high-dimensional
one (15-dimension when m = 5, 55-dimension when m = 10, and 120-dimension when
m = 15). Thus, we adopt an artificial bee colony (ABC) algorithm [17], whose robustness
to high-dimensional problems has already been confirmed [18], to solve this problem.

2.4 Coordinate transformation based on estimated gradients

To identify suitable coordinates and improve the approximation accuracy, gradients of the
objective function to each design variable are employed in KCTG as is the case in the active
subspace method [19]. First, the m × m covariance matrix C, whose (k, l) entry is

Ckl = ∂ f̂

∂xk

∂ f̂

∂xl
, (16)

is defined. The objective function estimated by the Kriging model, f̂ is used in this study
whereas gradients of the real objective function are used in [19]. After the construction of
OK in Fig. 3, the estimated gradients are calculated by differentiating Eq. (4) analytically as
follows:

∂ f̂ (x)
∂xk

=
(

∂r
∂xk

)T

R−1(f − μ̂), (17)

where i-th element of ∂r/∂xk is

∂r
∂xk

∣∣∣∣
i
= −2θk

(
xk − xik

)
exp

(
−

m∑

l=1

θl

(
x−
l x il

)2
)

. (18)

Using estimated gradients, neither the finite difference of the real objective function nor the
adjoint computation [20] is needed; also the function evaluation costs are reduced immensely.
Note thatwe can dealwith the objective function as a black box function. This study calculates
C at 100,000 points in the design space, which are randomly sampled using the Monte Carlo
method, and averages them as C̄. Second, an eigenvalue decomposition is performed on C̄
as

123



834 J Glob Optim (2017) 68:827–849

C̄ = W
WT, (19)

whereW = (
w1 · · · wm

)
are the eigenvectors, which represent the suitable coordinates and


 = diag
(
λ1 · · · λm

)
is the eigenvalue matrix. Third, the design variable vector in the new

coordinate system y is calculated from the original vector x as

y = WTx. (20)

KCTG is constructed in the new coordinate system y in the same way as OK except its
coordinate system.

3 Application to test functions

3.1 Test problem definition

KCTL, KCTG, and OK are applied to the following seven types (five of them are widely
employed [7,21–23]) of rotated and un-rotated (original) test functions with various dimen-
sions:

Ellipsoid function:

f (x) =
m∑

i=1

(i · yi )2; (21)

Rosenbrock function:

f (x) =
m−1∑

i=1

(
(1 − yi )

2 + 100
(
yi+1 − y2i

)2); (22)

Branin function:

f (x1, x2) =
(
y2 − 5.1

4π2 y
2
1 + 5

π
y1 − 6

)2

+ 10

(
1 − 1

8π

)
cos y1 + 10; (23)

Translated Hartmann function (m = 3):

f (x1, x2, x3) = −
4∑

i=1

αi exp

⎡

⎣−
3∑

j=1

Ai j
(
y j − (

Pi j − 0.5
))2

⎤

⎦, (24)

where α = (1.0, 1.2, 3.0, 3.2)T

A =

⎡

⎢⎢⎣

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎤

⎥⎥⎦ , P =

⎡

⎢⎢⎣

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.0381 0.5743 0.8828

⎤

⎥⎥⎦ ;

Translated Hartmann function (m = 6):

f (x1, x2, x3, x4, x5, x6) = −
4∑

i=1

αi exp

⎡

⎣−
6∑

j=1

Ai j
(
y j − (

Pi j − 0.5
))2

⎤

⎦, (25)
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where α = (1.0, 1.2, 3.0, 3.2)T

A =

⎡

⎢⎢⎣

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎤

⎥⎥⎦

P =

⎡

⎢⎢⎣

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

⎤

⎥⎥⎦ .

Sine function:

f (x1, x2) = sin (2πy1) sin (2πMy2) ; (26)

where M = 1, 2, 4
Parabolic function:

f (x) = y21 ; (27)

The Hartmann functions are translated from the original domain [0, 1] to [−0.5, 0.5] because
the functions are rotated around the origin of the coordinate system. All of them are mini-
mization problems and functions of m design variables x (m = 2 for the Branin function,
the six-hump camel function, and the sine function and m = 3, 6 for the Hartmann functions)
through intermediate variables y in the rotated coordinate system, as shown in Eq. (15) when
m = 3. All rotation angles are set to φi = 30◦ (i = 1, . . . ,m) when rotated functions are
employed. Experimental conditions are summarized in Table 1, and the shapes of the orig-
inal and rotated functions with m = 2 are shown in Fig. 4. Before comparing three models
according to the EGO framework, they are compared at fixed numbers of sample points in the
ranges described in Table 1. Sample points are generated by LHS and the number of samples
depends on the non-linearity (dimension and order of polynomial) of test functions.

Subsequently, EGO with three models is conducted in multidimensional ellipsoid and
Rosenbrock functions. Initial sample points are generated by LHS and additional sample
points are employed one after another at the location where the EI value calculated by
Eq. (13) becomes a maximum. The number of initial and additional samples is shown in
Table 2. The numbers of population and generation in NSGA-II to maximize the EI value
are 500 and 100, respectively. The EI value computed as a double-precision floating point
number has the potential to become zero when test functions with low non-linearity are
approximated with excessive numbers of sample points. If NSGA-II fails to find a candidate
of an additional sample point due to this situation, NSGA-II maximizes mean square error
defined by Eq. (11) and employs it as an additional sample points.

To compare the accuracy of the threemodels, the following rootmean square error (RMSE)
between the surrogate model and the real function is calculated at uniformly-distributed
N ≈ 10000 validation points.

RMSE =
√√√√ 1

N

N∑

i=1

(
f (xi ) − f̂ (xi )

)2
. (28)

One hundred independent trials starting with different initial sample points are performed
and the averaged RMSE is evaluated for comparison. The optimal solutions obtained by each
model are also compared by averaged values in 100 trials when EGO is conducted.
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Table 1 Experimental conditions

Test functions m Rotation Abbreviation Domain Minimum
samples

Maximum
samples

Ellipsoid 2 No E2 [−1, 2]2 10 30

2 Yes E2R [−1, 2]2 10 30

3 Yes E3R [−1, 2]3 10 50

4 Yes E4R [−1, 2]4 20 60

5 Yes E5R [−1, 2]5 20 100

10 Yes E10R [−1, 2]10 30 150

Rosenbrock 2 No R2 [−1, 1]2 10 30

2 Yes R2R [−1, 1]2 10 30

3 Yes R3R [−1, 1]3 30 90

4 Yes R4R [−1, 1]4 50 150

5 Yes R5R [−1, 1]5 80 200

Branin 2 No B2 [−5, 10] × [0, 15] 10 50

2 Yes B2R [0, 15] × [−5, 10] 10 50

Translated Hartmann 3 No H3 [−0.5, 0.5]3 20 60

3 Yes H3R [−0.5, 0.5]3 20 60

6 No H6 [−0.5, 0.5]6 20 100

6 Yes H6R [−0.5, 0.5]6 20 100

Sine (M = 1) 2 Yes S2R1 [−0.5, 0.5]2 10 50

Sine (M = 2) 2 Yes S2R2 [−0.5, 0.5]2 15 75

Sine (M = 4) 2 Yes S2R4 [−0.5, 0.5]2 20 100

Parabolic 10 Yes P10R [−1, 2]10 20 100

3.2 Results and discussion for test functions

3.2.1 Comparison between original and rotated test functions

E2, R2, B2, H3, H6, and their rotated versions are approximated by KCTL, KCTG, and OK
to compare their model accuracy for rotated and un-rotated functions. Figure 5 show the
averaged histories of RMSE. Table 3 summarizes statistics (mean, standard deviation, best,
and worst) of RMSE in 100 trials when numbers of sample points are intermediate values
between minimum and maximum presented in Table 1.

To begin, we focus on E2 and E2R which are the simplest functions in the test functions.
KCTL achieves the lowest RMSE at any number of sample points in both functions because
it can immediately identify the suitable coordinate system corresponding to the exact rota-
tion angle. KCTG can also identify the suitable coordinate although KCTG and OK show
comparable RMSEs in E2 and E2R. Both KCTL and KCTG can identify the suitable coor-
dinate but only KCTL shows extremely high accuracy at 10 sample points in both functions
even though OK is constructed with the exact coordinate system in E2. This is because only
KCTL can tune the rotation angle to increase the likelihood function. The Kriging model
approximates a function as a superposition of Gaussian functions whose centers correspond
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Fig. 4 Shapes of the two-dimensional test functions. a E2, b E2R, c R2, d R2R, e B2 and f B2R

to the locations of sample points. Thus, slightly changing the rotation angle from the exact
angle sometimes improves the model accuracy if a few sample points can be used.

In R2 and R2R, RMSE of KCTL decreases rapidly at around 15 sample points whereas
KCTL cannot identify the suitable coordinate system with a few sample points. Note that
KCTL should be employed with a sufficient number of initial sample points to guarantee
its model accuracy. The rotation angles in KCTL correspond to the exact angles (0◦ for R2
and 30◦ for R2R) when a sufficient number of sample points are employed. Additionally,
transformed coordinate system of KCTG has converged toward 0◦ in R2 because R2 roughly
symmetric about x1 = 0,which leads the off-diagonal elements in C̄ to zero. In approximation
of R2R, it converges toward 40◦ which is slightly different from the exact rotation angle
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Table 2 Experimental conditions for EGO

Test functions m Rotation Abbreviation Domain Initial samples Additional samples

Ellipsoid 2 Yes E2R [−1, 2]2 10 20

3 Yes E3R [−1, 2]3 15 30

4 Yes E4R [−1, 2]4 20 40

5 Yes E5R [−1, 2]5 25 50

10 Yes E10R [−1, 2]10 30 120

Rosenbrock 2 Yes R2R [−1, 1]2 10 20

3 Yes R3R [−1, 1]3 30 60

4 Yes R4R [−1, 1]4 50 100

5 Yes R5R [−1, 1]5 70 130

due to the asymmetric property of R2R and its large gradient around (x1, x2) = (1,−1).
Nevertheless,KCTGhas better coordinate system thanOKand shows lowerRMSE inFig. 5d.

KCTL and KCTG can approximate B2Rwith the same accuracy as their approximation of
B2: the histories of RMSE and the objective function value for B2 and B2R are virtually iden-
tical when more than 20 sample points are employed. It is applied to E2–E2R, R2–R2R, and
H3–H3R as well. The coordinate transformation enables the Kriging models to approximate
functions independent of the arbitrarily defined coordinate system (design variables). Thus,
KCTL andKCTG are applicable to the optimization problemswith design variables which do
not correlate directly with the objective functions and have strong correlation among them-
selves (spline curves and FFD). High RMSEs of KCTG in B2 and B2R are derived from the
misled coordinate system. B2 has three minimal points and two of them (left two in Fig. 4e)
constitute a large valley along which KCTG makes the coordinate system rotate although
the suitable coordinate system found by KCTL is the original one (x1 and x2). Additionally,
KCTG and OK have the same RMSE in approximation of B2R because B2R also has this
valley roughly along x2 axis.

The suitable coordinate systems of H3 and H3R correspond to their exact rotation angles
because they consist of a superposition of four Gaussian functions. Therefore, RMSEs of
KCTL and KCTG are lower than those of OK if sufficient sample points are employed.

H6 and H6R should have the same trend as H3 and H6R. However KCTL has extremely
high RMSE in these functions because of their high dimensionality which makes it dif-
ficult to find the suitable coordinate system; maximizing likelihood function becomes a
21-dimensional optimization problem in KCTL when m = 6. This optimization itself is
solved appropriately, but the likelihood function fails to lead KCTL to a suitable coordinate
system in these cases. Instead of KCTL, KCTG should be employed to approximate the func-
tions with more than five correlated design variables. KCTG shows the same trend as OK for
not only H6 but also H6R, although KCTG is expected to show higher accuracy than OK in
H6R. H3 and H3R have large gradients along the first design variable in all four Gaussian
functions constructing them, as the first column has lowest values in each row of matrix A
in Eq. (24). In contrast, the steepest directions of the four Gaussian functions constructing
H6 and H6R are not the same [matrix A in Eq. (25)], which makes KCTG fail in finding a
suitable coordinate system.

The statistics of RMSE are strongly correlated with mean values shown in Fig 5. KCTL
mostly achieves the lowest statistics in the functionswhereKCTL has the lowestmeanRMSE
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Fig. 5 Averaged histories of RMSE between original and rotated test functions. a E2, b E2R, c R2, d R2R,
e B2, f B2R, g H3, h H3R, i H6 and j H6R
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Table 3 Statistics of RMSE for original and rotated test functions

Test function Samples Statistics OK KCTL KCTG

E2 20 Mean 9.840E−04 2.095E−04 7.196E−04

Std. dev. 1.773E−03 3.049E−04 8.811E−04

Best 1.759E−05 7.350E−06 1.876E−05

Worst 7.903E−03 1.833E−03 4.685E−03

E2R 20 Mean 9.346E−04 1.665E−04 1.904E−03

Std. dev. 1.730E−03 2.611E−04 5.858E−03

Best 1.620E−05 1.131E−05 1.210E−05

Worst 1.074E−02 1.890E−03 5.296E−02

R2 20 Mean 7.708E−01 5.743E−02 8.748E−01

Std. dev. 8.917E−01 7.672E−02 8.954E−01

Best 1.629E−02 3.970E−03 6.869E−02

Worst 4.409E+00 5.301E−01 4.503E+00

R2R 20 Mean 9.707E+00 1.968E−01 4.510E+00

Std. dev. 3.690E+00 5.503E−01 3.711E+00

Best 2.958E+00 7.379E−03 1.163E−01

Worst 1.958E+01 3.786E+00 1.734E+01

B2 30 Mean 9.069E−01 8.045E−01 8.239E+00

Std. dev. 6.132E−01 5.913E−01 4.054E+00

Best 1.511E−01 1.552E−01 2.951E+00

Worst 3.944E+00 3.826E+00 2.165E+01

B2R 30 Mean 8.392E+00 1.907E+00 7.441E+00

Std. dev. 2.882E+00 2.399E+00 3.631E+00

Best 3.643E+00 2.214E−01 6.462E−01

Worst 1.731E+01 1.925E+01 2.022E+01

H3 40 Mean 1.814E−01 2.355E−01 2.503E−01

Std. dev. 5.889E−02 9.703E−02 7.398E−02

Best 9.753E−02 1.190E−01 1.289E−01

Worst 4.226E−01 5.024E−01 5.050E−01

H3R 40 Mean 3.890E−01 2.907E−01 3.249E−01

Std. dev. 7.134E−02 1.232E−01 8.890E−02

Best 2.456E−01 1.403E−01 1.654E−01

Worst 6.533E−01 6.729E−01 6.011E−01

H6 60 Mean 3.144E−01 4.234E−01 3.410E−01

Std. dev. 5.325E−02 5.324E−02 4.805E−02

Best 2.249E−01 3.238E−01 2.444E−01

Worst 4.391E−01 6.284E−01 4.568E−01

H6R 60 Mean 3.052E−01 3.940E−01 3.239E−01

Std. dev. 4.137E−02 5.028E−02 4.652E−02

Best 2.341E−01 2.971E−01 2.404E−01

Worst 4.538E−01 5.168E−01 4.550E−01

Bold face: lowest value, italic face: highest value
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Fig. 6 Averaged histories of RMSE among the sine functions. a S2R1, b S2R2 and c S2R4

Fig. 7 Rotation angle histograms for S2R1 with 50 sample points. a KCTL and b KCTG

among three models (E2, E2R, R2, R2R, B2, and B2R). By contrast, KCTL has the highest
values in most statistics in H6 and H6R where approximation accuracy of KCTL is poor.

3.2.2 Comparison among the sine functions with different wavelengths

Threemethods are applied to the sine functions to investigate effects of wavelength difference
between two directions because shorter wavelength with higher gradient means stronger
contribution to an objective function. The averaged histories of RMSE for each function are
shown in Fig. 6. Compared to OK, both KCTL and KCTG cannot improve approximation
accuracy in S2R1where wavelengths in two directions are the same. Obviously, KCTG is not
suitable for this function because gradients along any directions are the same. On the other
hand, KCTL frequently find out the suitable coordinates although its approximation accuracy
is not improved. Figure 7 shows rotation angle histograms for S2R1 with 50 sample points.
The histogram of KCTL has a peak around 30◦ while that of KCTG is uniformly distributed.
Hence, KCTL can identify the suitable coordinates even though gradients have no trend along
any directions. In S2R2 and S2R4, both KCTL and KCTG find out the suitable coordinates
and accomplish better approximation accuracy than OK. Their accuracy improvement are
emphasized as the wavelength difference becomes large.

3.2.3 Comparison among multi-dimensional functions

A multi-dimensional rotated ellipsoid and parabolic functions are employed to investigate
the capability of KCTL and KCTG for relatively high-dimensional optimization problems.
Figure 8 shows the averaged histories of RMSE. KCTL shows the best accuracy except for
E10R. Note that KCTL successfully approximates objective functions with the number of
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Fig. 8 Averaged histories of RMSE for multi-dimensional functions. a E3R, b E4R, c E5R, d E10R and e
P10R

effective correlated design variables no greater than five. Both E10R and P10R includes
10 design variables though KCTL behaves in different manners. E10R is a function of all
translated design variables (10 effective variables) though P10R is a function of only y1 in
the translated coordinate system.

KCTG is applicable to high-dimensional functions with many effective variables such as
E10R. Comparing E5R and E10R, the difference in RMSE between KCTG and OK is clearer
in E10R. KCTG is more suitable for real-world optimization problems with correlated design
variables than KCTL. This is because spline curves and FFD usually include 10–300 control
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points as design variables [24,25], and more than five variables may be effective even in the
translated coordinate system.

3.2.4 Comparison in efficient global optimization

Multi-dimensional rotated ellipsoid and Rosenbrock functions are minimized by EGO with
KCTL, KCTG, andOK to compare their exploration capability for rotated functions. Figure 9
shows the averaged histories of the objective function value of optimal solution in the sample
points. KCTL shows the best performance in each optimization except for E10R. Thus,
KCTL not only approximates objective functions more accurately but also optimizes them
more efficiently when the number of correlated design variables is no greater than five.

KCTG also finds optimal solutions with less sample points than OK in most functions
including E10R although the optimal solution obtained by OK sometimes exceeds that
obtained by KCTG when all additional sample points are employed. KCTG finds the quasi-
optimal solution around the exact optimal solution in the early stages of the EGO process. It
prohibits KCTG from exploring the exact optimal solution to exploit another domain of the
design space because EGO is based on two principles: exploration and exploitation.

3.3 Application to an airfoil design problem

The results in Sect. 3 show that KCTG approximates the function accurately regardless of the
coordinate system and the dimension and has an advantage in the optimizationwith correlated
design variables. However, the test functions in Sect. 3 include simple ones and roughly
symmetric ones.Wemust evaluate the practicality ofKCTGthrough a real-world shapedesign
optimization problem, which includes correlated design variables for shape representation
such as the control points of spline curves. In Sect. 4, an airfoil design optimization is
considered with KCTG and OK to investigate the effects of the coordinate transformation in
a real-world problem.

3.4 Design problem definition

The objective function and the constraints in the airfoil design problem are defined as follows:

Maximize L/D, (29)

subject to Cm ≥ −0.1535, (30)

tmax/c ≥ 0.11, (31)

at the angle of attack α = 4◦ and the Reynolds number Re = 5 × 105. L/D and Cm denote
the lift-drag ratio and the pitching moment coefficient, respectively. tmax is the maximum
thickness of the airfoil and c is the chord length. L/D and Cm at the sample points are
evaluated by a subsonic flow solver “XFOIL” [26] which calculates incompressible viscous
flow in this study. Hence, KCTG andOK are used to estimate these two valueswhereas tmax/c
is calculated directly by representing the airfoil. Generally, computational times for XFOIL
are less than one second for one flow condition. This study employs XFOIL to achieve many
independent trials of airfoil design optimization and evaluate statistics of the results properly.
The constraint values in Eqs. (30) and (31) correspond to those of DAE31 airfoil whose L/D
is 138.6.

The nine design variables correspond to the locations of nine control points for two non-
uniform rational basis spline curves defining the airfoil thickness distribution and camber
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Fig. 9 Averaged histories of the objective function value. a E2R, b E3R, c E4R, d E5R, e E10R, f R2R, g
R3R, h R4R and i R5R
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Fig. 10 Design variables and their ranges

line in Fig. 10. The five red dots and four blue dots are the control points for thickness and
camber, respectively; the red and blue bars show the ranges of each design variable. Only x3
has a relatively small range to help the maximum thickness meet the constraint in Eq. (31).
Each range is shown as follows:

0.02 ≤ x1 ≤ 0.04, 0.05 ≤ x2 ≤ 0.09, 0.12 ≤ x3 ≤ 0.13,

0.09 ≤ x4 ≤ 0.13, 0.00 ≤ x5 ≤ 0.04, 0.02 ≤ x6 ≤ 0.06,

0.02 ≤ x7 ≤ 0.06, 0.02 ≤ x8 ≤ 0.06, 0.00 ≤ x9 ≤ 0.04. (32)

Fifty initial sample points are generated by LHS and 150 additional sample points are
employed one after another at the locationwhere the EcI value calculated byEq. (14) becomes
a maximum. KCTG and OK are compared by optimal solutions obtained by EGO with each
model andRMSE in Eq. (28)where validation points are generated by LHS and N = 10, 000.
Seventy independent trials are performed and their averaged L/D,Cm , and RMSE are eval-
uated. The numbers of population and generation in NSGA-II are 500 and 100, respectively,
as for the case in Sect. 3.

Depending on the airfoil shape, the flow computation with XFOIL sometimes does not
converge. An alternative initial sample point and validation point are randomly selected from
the entire design space if convergence is not achieved. The same treatment is applied if an
initial sample point and a validation point do not meet at least one of the constraints.

3.5 Results and discussion for airfoil design problem

Figure 11 shows the averaged histories of RMSE for L/D and Cm . KCTG reduces RMSE
of L/D compared with that for OK at any number of sample points in EGO process.
Therefore, it is shown that KCTG can approximate the function for a real-world prob-
lem using spline curves as design variables more accurately than OK. Regarding Cm ,
OK has lower RMSE than KCTG although both models converge along similar trends
with increasing sample points. From aerodynamic theory, Cm is regarded as a function
that depends on the camber line and is not affected by the thickness, i.e., the effective
number of design variables for Cm is almost 4. OK does not consider the correlation
between camber and thickness, which enables OK to easily ignore the variables related
with the thickness by decreasing the weight coefficients in Eq. (2). KCTG can also ignore
these variables although the coordinate transformation may disturb it in an early stage of
EGO.
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Fig. 11 Averaged histories of RMSE for airfoil design problem. a L/D and b Cm

Fig. 12 Eigenvalue proportion for each mode in KCTG. a L/D and b Cm

Approximation accuracy is strongly related to the transformed coordinate system. Fig-
ure 12 shows eigenvalue proportions for each mode (eigenvector), which correspond to
the squared gradients of the objective and constraint functions estimated by KCTG along
each transformed coordinate. The estimated gradient of L/D is mostly occupied by the
first and second modes whose eigenvalue proportions are about 95% in total whereas
95% is accomplished with the first three modes in Cm . L/D has a suitable coordinate
system representing the significant trend of the function and KCTG successfully identi-
fies this coordinate system. In contrast, KCTG fails to find a suitable coordinate system
in the approximation of Cm , or Cm originally does not have such a suitable coordinate
system. As a result, eigenvalue proportions are more widely dispersed in Cm than L/D,
and KCTG and OK have comparable RMSEs. Additionally, Fig. 13 shows eigenvectors of
the first three modes, which indicate design variables related to the airfoil’s camber line
(x6–x9) are dominant in both L/D and Cm . Cm is also sensitive to the airfoil’s thickness
at the trailing edge (x5) because the elements of the eigenvectors for x5 have large val-
ues in the second and third modes. This makes KCTG even more difficult to approximate
Cm .

Averaged histories of L/D and Cm at the optimal solution among feasible sample points
are shown in Fig. 14. KCTG obtains better solutions than OK on average when the number
of sample points is over 67. Cm values are comparable between two models. Therefore, it
is suggested that KCTG has an advantage over OK not only in approximation accuracy but
also in the ability to explore the optimal solution if design variables are correlated with each
other.
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Fig. 13 Eigenvectors for each mode in KCTG. a L/D and b Cm

Fig. 14 Averaged histories of the objective function and constraint values at the optimal solution for airfoil
design problem. a L/D and b Cm

4 Conclusions

The Kriging models with coordinate transformation based on likelihood and gradients were
proposed and validated in various test functions and an airfoil design problemwith correlated
design variables. A suitable coordinate systemwas identified bymaximizing likelihood func-
tion or by finding the eigenvalues of the covariance matrix of the estimated objective function
gradients along each design variables. Averaged RMSEs between surrogate models and the
real objective function and the optimal solutions obtained by efficient global optimization
were used to evaluate the practicality of the proposed methods.

In the application to test functions, the proposedmethods approximated the entire function
shape more accurately than the conventional method if design variables were correlated
with each other and a sufficient number of sample points were employed. The proposed
methods also showed greater comparative accuracy to the conventional method even if the
correlation between design variables was not strong. The capability to explore the optimal
solutionwas also better than the conventional method if the proposedmethod achieved higher
approximation accuracy. Additionally, maximizing the likelihood function in the Kriging
model was preferable in finding a suitable coordinate system for functions with correlated
design variables although this method did not function well when the number of design
variables was greater than five. The coordinate transformation based on estimated gradients
was available for functions with more than five design variables. This method was more
suited to real-world optimization problems with correlated design variables than the former
because real-world problems usually include 10–1000 design variables.
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Control points of the non-uniform rational basis spline curves defining an airfoil’s thick-
ness distribution and camber line were employed as the correlated design variables in the
airfoil design optimization. The latter proposed method approximated the objective function
(lift–drag ratio) more accurately and found better solutions than the conventional method
although the constraint function (pitching moment coefficient) was difficult to approximate
by the proposed method. Therefore, the proposed method revealed usefulness in real-world
optimization problem with correlated design variables.

In this study, optimization problems with up to ten design variables were adopted. The
number is relatively smaller than the usual number of design variables in real-word opti-
mization problems which use spline curves and free form deformation for shape definition.
Moreover, these real-world problems tend to have more than two objective functions. There-
fore, in the future, it is desirable that the proposed method is validated in the multi-objective
optimization problems with more design variables.
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