J Glob Optim (2017) 69:547-560 @ CrossMark
DOI 10.1007/510898-017-0508-y

On parallel Branch and Bound frameworks for Global
Optimization

Juan F. R. Herrera! - José M. G. Salmerén?® - Eligius M. T. Hendrix>*
Rafael Asenjo’® - Leocadio G. Casado?

Received: 11 January 2016 / Accepted: 1 March 2017 / Published online: 10 March 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Branch and Bound (B&B) algorithms are known to exhibit an irregularity of the
search tree. Therefore, developing a parallel approach for this kind of algorithms is a chal-
lenge. The efficiency of a B&B algorithm depends on the chosen Branching, Bounding,
Selection, Rejection, and Termination rules. The question we investigate is how the chosen
platform consisting of programming language, used libraries, or skeletons influences pro-
gramming effort and algorithm performance. Selection rule and data management structures
are usually hidden to programmers for frameworks with a high level of abstraction, as well as
the load balancing strategy, when the algorithm is run in parallel. We investigate the question
by implementing a multidimensional Global Optimization B&B algorithm with the help of
three frameworks with a different level of abstraction (from more to less): Bobpp, Threading
Building Blocks (TBB), and a customized Pthread implementation. The following has been
found. The Bobpp implementation is easy to code, but exhibits the poorest scalability. On the
contrast, the TBB and Pthread implementations scale almost linearly on the used platform.
The TBB approach shows a slightly better productivity.

B Eligius M. T. Hendrix
eligius.hendrix @wur.nl

Juan F. R. Herrera
j-herrera@epcc.ed.ac.uk

José M. G. Salmerén
josemanuel @ual.es

Rafael Asenjo
asenjo@uma.es

Leocadio G. Casado
leo@ual.es

1 EPCC, The University of Edinburgh, Edinburgh, UK
Informatics Department, University of Almeria (ceiA3), Almerfa, Spain
Department of Computer Architecture, Universidad de Malaga, Malaga, Spain

Operations Research and Logistics, Wageningen University, Wageningen, The Netherlands

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-017-0508-y&domain=pdf
http://orcid.org/0000-0002-5074-1662
http://orcid.org/0000-0003-1572-1436
http://orcid.org/0000-0002-1570-3863
http://orcid.org/0000-0001-8459-4982

548 J Glob Optim (2017) 69:547-560

Keywords Branch-and-Bound - Load balancing - Shared-memory - Framework - TBB

Mathematics Subject Classification 68P05 - 68W10 - 90C57

1 Introduction

A Branch and Bound (B&B) algorithm is a commonly-used method to solve Global Optimiza-
tion (GO) problems in a deterministic way [20,26,27,38]. This method iteratively divides
the search space and discards those areas where a global solution cannot be found. The pro-
cedure generates a search tree, where the root node is the initial search space or feasible area.
The algorithm explores nodes or branches of this tree, that represent subspaces of the initial
search space. Before a node is branched, it is checked whether it can contain a solution better
than the best one found so far by the algorithm using upper and/or lower bounds on its local
solution. The node is discarded instead if it cannot.

B&B algorithms make use of a working set where the pending nodes are stored to be
processed. The number of elements and the structure of the working set usually depend
on the selection method used by the algorithm [28]. A stack or LIFO (Last In First Out)
data structure is suitable for depth-first search. For best-first search, one can use several
approaches: sorted linked-lists, AVL trees, priority queues, etc. Depth-first search requires
less memory than best-first search but depth-first may steer the search towards a non-optimal
subspace for some time.

The computational burden to solve a GO problem usually increases exponentially with
the dimension of the search space due to the performed exhaustive search. Thanks to
parallel computation, a larger number of this type of problems can be solved in a rea-
sonable computational time [29,39]. Parallel B&B algorithms can be classified based on
several characteristics [13]. One of them is the distinction between the use of single and
multiple working sets. Multiple working sets seem appropriate when the number of pro-
cessing units is large, because each process can work independently on its working set,
avoiding bottlenecks in concurrent access to a shared single set. A hybrid approach may
use multiple working sets, where each set can be associated to several processes. Similar
hybridization can be applied to selection rules. Hence, the number of possible choices is
large.

Literature discusses several strategies to parallelize a B&B algorithm, among others: (1)
Parallel evaluation of a node; (2) Parallel processing of nodes of the search tree, i.e., the
search tree is built in parallel; and (3) A combination of the strategies (1) and (2). Strategy
(1) is suitable for problems where the computational burden of evaluating a node is high.
Strategy (2) seems appropriate when the number of generated nodes is high and the burden
to evaluate a node is low. The GO problem considered here belongs to the latter class of
problems [18]. Therefore, the three approaches studied here will traverse the search tree in
parallel.

The question is how the chosen platform influences the ease of programming and whether
it affects the performance of a B&B algorithm. To investigate this question, we imple-
mented the same B&B algorithm on three libraries with a varying level of abstraction: (1)
Bobpp is a high-level library that greatly simplifies the programming effort; (2) TBB can
be regarded as a medium-level abstraction in which the programmer manually has to deal
with the task coding, but task execution and scheduling is automatically carried out by the
runtime; and (3) Pthread is the lowest-level counterpart in which the user has to tackle both

@ Springer

J Glob Optim (2017) 69:547-560 549

the task and scheduling coding. Bobpp has been chosen for this study because this frame-
work has been recently used by researchers to solve optimization problems [2,22-24]. It is
a representative of specifically dedicated frameworks for parallel B&B of high abstraction
level.

Section 2 describes the chosen Global Optimization B&B algorithm for the experiments.
Section 3 discusses the libraries and skeletons used to facilitate parallel programming of
B&B algorithms. The options on the range of working sets and selection rules to ease the load
balancing between the processor units are discussed for the Bobpp framework in Sect. 3.1,
TBB in Sect. 3.2 and a custom coding with low-level POSIX threads in Sect. 3.3. A test
bed of instances with their required constant for bounding purposes is presented in the
results Sect. 4. We report on the measured ease of programming and the consequences of the
chosen frameworks on the algorithm performance. Section 5 reports on the findings of the
investigation.

2 A B&B Global Optimization algorithm

The objective of the algorithm is to find a minimum point x*, such that f* = f(x*)
= minycx f(x), where the search space X C R" is a non-empty hyper-rectangle, sometimes
called a box constrained area, i.e., there exist lower and upper bounds for each dimension.
The objective function under consideration does not need to be differentiable nor everywhere
(Lipschitz)-continuous.

Algorithm 1 as described in [18], uses a simplicial partition, see [15]. Therefore, the box-
constrained area is sub-divided into n! simplices by a standard method [35]. The evaluated
points in the search space are the vertices of the simplices and the best function value found
thus far fU is stored as the general upper bound of f*. Simplex division is performed
bisecting the simplex over its longest edge. A lower bound f, given by the description in
[18], of objective function f is calculated for each simplex based on the function values at
its vertices.

Algorithm 1 Simplicial B&B algorithm
Require: X, f, K,$

: Partition X into simplices Sg, k =1,...,n!

: Start the working setas A :={S; :k=1,...,n!}

: The set of evaluated vertices V := {v; € Sy € A}

: Set fU = minyey f(v) and 1V = arg minyey f(v)
: Determine lower bounds ka = fL (Sg) based on K
: while A # () do

Extract a simplex S from A

Bisect S into S1 and S2 generating x

if x ¢ V then

10: AddxtoV

11: if f(x) < fU then

12: Set fU = f(x) and xVi=x

13: Remove all Sy from A with ka > fU—s
14: end if

15: endif

16: Determine lower bounds fL(S]) and fL(SZ)
17: Store S1in Aif fL(S1) < fU -3

18: Store S2in Aif fL(52) < fU —5

19: end while

20: return xU, fU

@ Springer

550 J Glob Optim (2017) 69:547-560

As selection rule, depth-first search is used in order to reduce memory requirements and
facilitate the memory management [17]. The selection rule will be discussed in Sect. 3. A
simplex S is deleted if ££(S) > fY — 8, where § is the search accuracy, i.e. the procedure
guarantees that the best function value returned by the algorithm does not deviate more than
8 from the optimum function value f*.

The bounding is based on a so-called upper fitting according to [3]. Consider the objective
function f with a global minimum f* on box-constrained area X. Given a global minimum
point x*, let scalar K be such that

*
K > max L® =1)
xeX |lx —x*|
where || - || denotes the Euclidean norm. The function f* + K||x — x*|| is an upper fitting
according to [3] for an arbitrary x € X. Consider a set of evaluated points x; € X with
function values f; = f(x;), then the area below

¢(x) = max{f; — K|lx — x|} (@)

cannot contain the global minimum (x*, £*). Let fU = min; f; be the best function value of
all evaluated points, i.e., an upper bound of f*. Then the area {x € X : ¢(x) > fY} cannot
contain the global minimum point x*.

Now consider a simplex S with evaluated vertices v, vy, ..., v,, Where f; = f(v;). To
determine the existence of optimal solution x* in S, each evaluated vertex (v;, f;) provides
a cutting cone:

@i(x) == fi — Kllx —vi. (3)

Let @ be defined by
@ (S) = min max ¢; (x). “4)
xeS i

If fU < @(S), then simplex S cannot contain the global minimum point x*, and therefore
S can be rejected. Notice that @ (S) is a lower bound of f* if S contains the minimum point
x*.

Equation (4) is not easy to determine as shown by Mladineo [25]. Therefore, alternative
lower bounds of (4) can be generated in a faster way. We use two of them and take the best
(highest) value. An easy-to-evaluate alternative is to consider the best value of min,cg ¢; (x)

over the vertices i. This results in a lower bound
QI(S)zmiax{fi—Km]avaj—viH}. (®)]

The second lower bound is based on the more elaborate analysis of infeasibility spheres in
[5] and developed to non-optimality spheres in [16]. It says that S cannot contain an optimal
point if it is covered completely by so-called non-optimality spheres. According to [5], if
there exists a point ¢ € S such that

fi—Klle—vill > fYi=0,...,n, (6)

then S is completely covered and cannot contain x*. This means that any interior point ¢ of
S provides a lower bound min;{f; — K max; |[[c — v;||}. Instead of trying to optimize the
lower bound over ¢, we generate an easy-to-produce weighted average based on the radii of
the spheres. Consider that f; > fU, otherwise S can contain an optimum point. Let
A - (N
l‘ =
fi—fv

@ Springer

J Glob Optim (2017) 69:547-560 551

and take !

c = ijjz)\[vi’ ()

A second lower bound based on (6) is

2 ,(8) = min{f; — Kflc — v} (€))

The final lower bound we consider in this paper for the B&B is the best value fL(S)
= max{® (3), @ ,(5)}.

3 Parallel Branch-and-Bound

Parallelizations of Branch-and-Bound algorithms have been widely studied for a large number
of applications and machine architectures. A highly-cited survey was performed in 1994 by
Gendron and Crainic [13].

One of the goals of a parallelization is to achieve a trade-off between reduction of parallel
overhead and maintaining the cores busy by doing useful work. Parallel overhead is caused
among others by communications, memory management and inclusion of new code to handle
the parallelism. Regarding the useful work, a parallel version of the algorithm should perform
the same computations or evaluations as the sequential one. The Search Overhead Factor
(SOF) is defined as the ratio between the work done by the parallel and the sequential
versions. Two different types of anomalies can occur [19,21]:

— Accelerating anomalies, where a sharper upper bound fU is found in earlier stages of the
parallel algorithm, than for the sequential version. This reduces the number of evaluated
nodes of the search tree.

— Detrimental anomalies, where the parallel version visits more branches of the search tree
than the sequential one due to the unawareness of the update of the upper bound fY.

In general, the use of best-first search and its variations leads to less anomalies than depth-
first search, but requires more memory. High memory requirement slows the execution down
due to data structure management and the speed/amount of the different levels of the memory
hierarchy in the system. Detrimental anomalies also increase execution time, because more
sub-problems are evaluated. Notice that initiation of global upper bound Y with the global
minimum f* causes the number of evaluated sub-problems to be the same and not to depend
on the selection rule.

Load balancing among the process units of the parallel system is one of the main problems
that arise due to parallel exploration of the search space. Parallel B&B algorithms usually
perform a load balancing strategy. The Relative Load Imbalance (RLI) measures the effec-
tiveness of the load balancing strategy [33]. Let W;,; be the total work (number of evaluated
simplices) performed by p working units (threads) and W;,i = 0, ..., p — 1, the work
performed by working unit i such that le:_ol W; = W;or. Let Wo = max; W;. Then, the
Relative Load Imbalance is defined as

RLI=1— ———. (10)
P Wmnax

RLI is defined on the interval [0, 1 — (1/p)]; a value close to zero shows a small load
imbalance. For the sake of simplicity, the value of RLI shown in Sect. 4 is normalized
towards a range of [0, 100].

@ Springer

552 J Glob Optim (2017) 69:547-560

Many frameworks have been proposed since 1994 to facilitate the development of parallel
B&B algorithms, such as PPBB [37], ZRAM [4], Symphony [31], PICO [9], PeBBL [10],
BCP [34], ALPS [40], Bobpp [8], and MallBA [1], to name a few. These frameworks can be
classified according to the provided methods (B&B, Branch and Cut, Dynamic Programming,
etc.) and the techniques used to code the algorithm (programming language, parallelization
libraries, etc). An overview of some of these frameworks can be found in [7]. The use of a
framework is not always the best approach in terms of efficiency. A framework offers a general
skeleton to code a specific instance of the algorithm [30]. In some cases, the developer is not
concerned about aspects like the data structure or the way in which the search is performed.
In general, it is difficult for a framework to provide the best performance compared to a
custom developed algorithm, because some characteristics of the problem are specific and
they are not taken into account by the framework.

B&B methods are more efficient on multicore than on GPU or FPGA systems for problems
with few arithmetic computations and challenging memory handling due to the size of the
search tree [11]. Our study focuses on this case. We consider three approaches with different
levels of abstraction. The first one is based on the Bobpp framework, the second makes use of
the Thread Building Blocks (TBB) library and the last one is based on an in-house low-level
Pthread library.

3.1 Bobpp framework

Bobpp is a C++ framework that facilitates the creation of sequential and parallel solvers
based on search tree algorithms, such as Divide-and-Conquer and Branch-and-Bound [8].
The framework has been used to solve Quadratic Assignment Problems [12], Constrained
Programming [22-24], and biochemical simulation [2]. The possible parallelizations are
based on Pthreads, MPI or Athapascan/Kaapi libraries. Here, we focus on the behaviour of
the B&B algorithms for sequential and threaded versions using Pthreads.

Bobpp provides a set of C++ templates or skeletons on top of which the user has to
code some classes in order to configure the behavior of the algorithm. These templates are
aimed at facilitating the development of search algorithms over irregular and dynamic data
structures. The developer may use the example classes provided in the framework, but may
also reimplement these classes to code a more specific algorithm. The Bobpp framework
allows different ways to schedule the search (depth-first search, best-first search, etc.) as well
as provides templates for different data structures. For instance, our B&B implementation
selects depth-first search and relies on a priority queue that serves as a working set storing
the simplices that have to be processed. Using one global set, one of the threads extracts
a node from the set. Then, it is divided according to the branching rule, generating two or
more children. In case the termination rule is not satisfied, the generated nodes are evaluated
and added to the set. Otherwise, the nodes are discarded. In order to avoid the bottleneck
caused by accessing the same set, several sets (priority queues) can be used. The dynamic
load balancing strategy followed in Bobpp relies on work-stealing among sets in order to
achieve better performance. The optimal number of sets is difficult to predict, because it
depends on the problem characteristics and system resources.

3.2 Threading Building Blocks (TBB)

The Intel® Threading Building Blocks (TBB) library provides a productive framework to
develop parallel applications in C++ [32]. TBB facilitates the development of loop and task-

@ Springer

J Glob Optim (2017) 69:547-560 553

based algorithms with high performance and scalability, even for fine-grained and irregular
applications.

TBB class task_group is a high-level interface that allows to create groups of poten-
tially parallel tasks from functors or lambda expressions. TBB class task is a low-level
interface that provides more control but is less user-friendly.

Nodes in a B&B search tree seamlessly map onto tasks. Each thread keeps a “ready pool”
of ready-to-run tasks. TBB features a work-stealing task scheduler that automatically takes
care of the load balancing among pools. From the developer point of view, using a task-based
approach could be simpler than using a threaded-based approach, because the user does not
need to code the data structure to store and schedule the pending tasks. The developer only
has to spawn the tasks and the task scheduler decides when to execute them.

Potential parallelism is typically exploited by a split/join pattern. Two basic patterns
of split/join are supported. The most efficient, but also programming demanding, is the
continuation-passing pattern, in which the programmer constructs an explicit “continuation”
task. The parent task creates child tasks and specifies a continuation task to be executed when
the children complete. The continuation inherits the parent’s ancestor. The parent task then
exits; it does not block waiting for its children. The children sub-sequently run, and after
they (or their continuations) finish, the continuation task starts running. This pattern has been
used to develop the B&B algorithm previously described in Sect. 2.

In addition to the productive programming interface and to the work-stealing load balanc-
ing, TBB features two additional advantages when it comes to parallel tree traversals. First,
TBB exhibits a good trade-off between breadth-first and depth-first traversals of the tree.
The first one leverages parallelism, while the second avoids too much memory consumption.
TBB relies on breadth-first only when stealing work, but otherwise it is biased towards going
deep in its branch until the cut-off criterion [36] (not used in the experimentation) is met
and that way, the remaining sub-tree is processed sequentially (in order to avoid generating
too many fine-grained tasks). Second, TBB can efficiently keep all the cores busy without
oversubscribing them. This is, in TBB only one thread/worker per core should be created,
but the programmer is responsible of coding an algorithm that generates enough tasks to feed
all the workers.

3.3 Pthreads model

This model is based on the dynamic generation/destruction of threads with (asynchronous)
multiple sets [13]. Each thread handles its own working set. This strategy was used to suffer
less from memory contention problems than a single set, where the working set is shared by
all threads [6].

The execution starts creating one thread in charge of the complete search space. In this
model, a thread can create a new thread if there is enough work to share, up to the maximum
number of threads MaxThreads, defined by the user. The newly generated thread will
receive half of the simplices stored in its parent [6]. The best upper bound fY is shared
between the threads using a global shared variable. A thread dies when it ends its assigned
work.

The time a core is waiting for a new thread, is given by the time needed by a thread to: (1)
check that the number of threads is less than MaxThreads; (2) divide its working set; (3)
create a new thread; and (4) migrate the new thread to an idle process unit (or less overheaded
unit, in case of having more threads than processing units). The migration of threads is done
by the Operating System, which is out of the scope of this study. Depth-first search using a
stack has been used as selection rule.

@ Springer

554 J Glob Optim (2017) 69:547-560

4 Experimental results

We first provide the design of experiments in Sect. 4.1. Then the performance of the algorithm
on the various platforms is compared in Sect. 4.2. Finally Sect. 4.3 compares the ease of
programming for the platforms.

4.1 Design of experiments

Algorithms have been coded in C/C++ and compiled using gcc version 4.8.1 with Intel®
TBB 4.1 Update 2 library. Experiments have been conducted on a node of the BullX machine,
that features two Intel® Xeon® E5-2620 (Sandy Bridge) at 2 GHz with eight cores each (16
cores total), with 20MB of L3 cache and 64 GB of RAM. The Operating System is Ubuntu
Server 12.04. Default OS thread manager was used, without thread affinity.

The test bed developed in [18] was used to have a varying tree size. The test instances can
be found in Table 1. Each test function is five-dimensional and is indexed by a number. The
used accuracy is § = 0.05 (f — f*), where f is the maximum function value on the search
space. The accuracy has been chosen such that the resulting tree for the largest instance still
fits in a desktop computer.

4.2 Performance on the various platforms

The numerical results in Table 1 show the computational effort in terms of the number of
evaluated simplices (N. Eval. S.) and the wall-clock time in seconds (Time) for the sequential
implementation in the Bobpp framework and for the custom-made implementation in serial
C. The number of evaluated simplices is similar in both cases. It is not the same, because
there is no selection criterion defined to choose between two simplices of the same depth in
the search tree. Regarding the execution time, Bobpp is from two to seven times slower than
the serial C version.

Table 2 shows the parallel performance of the Bobpp implementation varying the number
pq of priority queues and number of threads. For 2, 4, and 8 threads, the performance is
higher if the number of priority queues matches the number of threads. However, the optimal

Table 1 Sequential execution time of the Bobpp and custom-made implementation

No. Function name Bobpp version Custom-made version
N. Eval. S. Time N. Eval. S. Time

1 Ackley 1,033,107,720 8281.4 1,010,945,400 1178.6
2 Dixon & Price 123,575,854 299.4 123,575,850 96.0
3 Holzman 219,996,634 518.6 219,996,634 241.7
4 MaxMod 1,877,094,680 3109.1 1,877,094,680 1389.7
5 Perm 166,839,972 2458.2 166,831,502 443.7
6 Pinter 989,052,844 9168.5 989,052,844 1378.4
7 Quintic 261,000,328 670.0 261,009,818 206.4
8 Rosenbrock 175,614,988 433.4 175,613,436 136.4
9 Schwefel 1.2 87,628,502 197.3 87,628,502 68.2
10 Zakharov 603,693,472 1537.2 603,678,276 471.3

@ Springer

J Glob Optim (2017) 69:547-560 555

Table 2 Elapsed time of the Bobpp version varying the number of priority queues (pq)

16 threads 8 threads 4 threads 2 threads
pqg 16 8 1 8 4 1 4 2 1 2 1
1 1203 655 1714 1125 1239 1762 2207 2316 2713 4511 4959
2 175 61 204 64 76 198 96 114 210 184 305
3 272 107 363 112 127 346 226 199 370 313 545
4 1493 911 3097 900 1034 3010 1220 1493 3035 2028 4358
5 245 166 272 316 326 367 630 648 681 1264 1336
6 985 687 1641 1225 1323 1796 2417 2524 2860 4874 5340
7 331 128 425 138 171 411 216 263 449 397 663
8 227 86 286 92 109 281 145 173 300 257 444
9 115 43 144 85 53 137 68 84 147 121 210
10 799 292 992 314 363 951 443 600 1045 918 1499

number of priority queues is 8 for 16 threads. For 16 threads and pg = 16, workload balancing
overhead picks up and in this case RLI (see Sect. 3) is higher (between 6 and 17%), whereas
RLI is always less than 9% for the other cases. The workload imbalance is small, but the
high cost of the dynamic workload balancing hinders the parallel performance.

Overall, Tables 1 and 2 show a quite poor performance of the Bobpp version on the used
platform. Its relative speedup! for 16 threads and pg = 8 is less than 6, but for test functions
1,5 and 6 it is between 12 and 14. However, the speedup, that uses the best sequential time
as reference (last column of Table 1), using 16 threads is just between 1.5 and 2.2 for all test
functions, as can be seen in Fig. 1a. In this figure, the speedup at “x = 0 threads” represents
the fastest serial version and serves as a reference for the speedup degradation of Bobpp with
1 thread (ranging from 0.14 to 0.47).

Figure 1a, c, e show the real speedup of the Pthread and TBB versions for the test func-
tions varying the number of threads. Again the best sequential version is used as reference.
TBB performs slightly better than Pthread, although both implementations show near-linear
speedup. A speedup slightly below one for a single thread is shown, explicitly quantifying
the parallel overhead incurred by the Pthreads and TBB implementations, respectively.

Figure 1b, d, f show the CPU Usage Histogram of the three implementations, that repre-
sents the CPU usage in terms of number of active cores during the execution of the algorithm.
Bars represent the fraction of the total time during which a given number of cores are simul-
taneously running. The idle bar represents the fraction of time during which all cores are
waiting, i.e., no thread is running. The histogram has been obtained by profiling test problem
number 2 (Dixon & Price) using 16 threads (with pg = 8 for Bobpp). The profiler indicates
that the performance of Bobpp suffers from a high spin time (45%). The executions for
pq = 1 and pg = 16 show an even larger spin time of 82 and 60%, respectively.

Bothin Pthread and TBB implementations, the only synchronization point between threads
is due to the update of the upper bound (stored in a global variable and protected with a lock).
For the used test bed, this update is not a frequent operation. This fact, along with an efficient
load balancing policy, results in an almost linear speedup for both implementations. The
small difference in speedup between Pthread and TBB can be analysed studying Fig. 1d, f,
where it is noticeable that TBB achieves full utilization of the 16 cores. On the contrary,

1 Computed w.r.t. the sequential Bobpp version, i.e. using the fourth column of Table 1 as the sequential time.

@ Springer

556 J Glob Optim (2017) 69:547-560
16—
o—e 1
14 2
+—+ 3
Vv 4
12»._- 5
-0 6
o 10Hee 7
.g e 8 Q
2 8leeo E
Q << 10 =
a 6} — Linear
4
i / H 7
bee—t—F 1 -
0 1 2 4 8 16 de I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Threads Number of cores
(a) (b)
16— 5
*—e 1
14l 2]
+—+ 3
Vv 4 4
2 ga s
o0 6
o 10Hee 7 N
.g —e 8 Q
g 8loeo g
Q. <+ 10 =
w 6} — Linear 2
4 /
1
2
0 o Em
0 1 2 4 8 16 de 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Threads Number of cores
(c) (d)
16—
e 40
144> 2 i
+—+ 3 35
Vv 4
12t
|5 30
10| oes
a [|o—a 7
_g —e 8 ° z
g g0 g 2
Q. <+ 10 =
n —— Linear &=
61 15
4 10
2 5
0 obi e o o
0 1 2 4 8 16 e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Threads Number of cores
(e) (®

Fig. 1 Speedup and CPU usage histogram for Bobpp, Pthread and TBB implementations. a Speedup for
Bobpp. b CPU usage histogram for Bobpp. ¢ Speedup for Pthread. d CPU usage histogram for Pthread. e

Speedup for TBB. f CPU usage histogram for TBB

Pthread leaves one, two or even all cores idle for a small fraction of time which may be
convenient if cooling or energy saving are taken into account. This behaviour is due to the
dynamic thread creation implemented in the Pthread approach.

It is worth mentioning that in TBB, it is more challenging to monitor some statistics of
the execution. For instance, the Pthread version efficiently keeps track of the number of
evaluated simplices by using per-thread private variables. However, in TBB, tasks are not

@ Springer

J Glob Optim (2017) 69:547-560 557

tied to a particular thread so per-thread privatization of a variable requires expensive system
calls. A straightforward alternative is to store the number of evaluated simplices as a global
atomic variable. However, the frequent and concurrent optimization of this single global
memory position can kill the scalability of the code, mainly due to cache invalidations, but
also due to contention in the access to the atomic variable. Therefore, such statistics have
been deactivated in the production version of the TBB implementation in order to collect the
data in Fig. 1.

4.3 Programmability of the implementations

Measuring the programmability or ease of programming to the user of the investigated B&B
implementations is a challenge. For this purpose we follow the methodology proposed in
[14], which defines three quantitative metrics: the SLOC (Source Lines Of Code), the CC
(Cyclomatic Complexity) and the PE (Programming effort).

When computing the SLOC, comments and empty lines are excluded. This metric probably
depends more on the user programming style than the other two metrics. In general, we
can assume that higher values for this metric correspond to more error prone and difficult
to maintain codes. The CC metric is defined as the number of linearly independent paths
through the code. Finally, the PE parameter is defined as a function of the number of unique
operands, unique operators, total operands and total operators found in a code. The operands
correspond to constants and identifiers, while the symbols or combinations of symbols that
affect the value of operands constitute the operators. CC and PE metrics can measure the
programming effort required to implement an algorithm: higher values mean that it is more
complex for a programmer to code the algorithm.

Table 3 shows the Programmability metrics for Bobpp, TBB and Pthread codes, without
considering auxiliary functions that are common to the three implementations (like function
evaluation, bounding logic, etc.). The table also provides the ratio of the Pthread metrics ver-
sus the TBB metrics and the TBB metrics versus the Bobpp metrics. Although the Pthread
implementation has 10% more SLOC and 32% more Cyclomatic Complexity than TBB,
the former exhibits 5% less programming effort than the latter. This is because in TBB we
have to declare the task and continuation task classes, which slightly increases
the number of operands and operators. On the other hand, the Pthread version requires
more conditional instructions in order to manage the threads creation/destruction and syn-
chronization, which translates into the mentioned 32% higher level of CC. Regarding the
comparison between TBB and Bobpp, they are pretty similar in terms of SLOC and PE.
However, Bobpp is 93% easier in terms of CC. Clearly, the Bobpp framework successfully
encapsulates the deep-first search and cut-off logic that can not be totally hidden in TBB and
not at all in Pthread. This translates into 1.93 x more code-paths in TBB and 2.55x more in
Pthreads.

f’l;arbtllfeSB 0[; rt(frf}rg%b;l;g gsﬁ;g;; Implementation SLOC CcC PE

implementations Bobpp 327 29 1,474,377.56
TBB 323 56 1,486,205.33
Pthread 357 74 1,409,007.80
Ratio Pthread/TBB 1.10 1.32 0.95
Ratio TBB/Bobpp 0.98 1.93 1.01

@ Springer

558 J Glob Optim (2017) 69:547-560

5 Conclusion

This paper compares three parallel implementations using different abstraction levels of a
Global Optimization Branch-and-Bound algorithm in performance on a test bed of instances
and on ease of programming. Features like the selection rule, load balancing method and
customizable number of working sets are important. Depth-first search is the strategy which
has least memory requirement. This fact leads to less memory management and thus less exe-
cution time. The use of a single data structure is not appropriate, because memory contention
arises when several threads access a position at the same time. The highest abstraction code
based on the Bobpp framework obtains a low speedup for most of the test problems. The
lowest abstraction code based on Pthreads uses a load balancing method inherit to dynamic
thread creation and obtains a similar performance as the middle abstraction code based on
TBB. Using a dynamic number of threads opens the possibility to adapt the parallel level of
the application to the current available computational resources during run-time.

To wrap up, we consider TBB an interesting tradeoff between ease of programming and
parallel performance. For the evaluated B&B problem, TBB is significantly faster and more
scalable than Bobpp with a slight increment in the programming effort. On the other hand,
coding this problem in Pthread does not add parallel performance nor ease of programming
w.r.t. TBB. We believe, that these results also hold for other similar B&B problems.

The use of a dynamic number of threads in future TBB auto-tuned versions is an appealing
approach to be studied as well as the decision when to use more than one thread per queue.
Additionally, an interesting future research question is the effect of using a cut-off to limit
the parallelism until certain level of the search tree in order to reduce the parallel overhead
in the TBB and Pthreaded versions.

Acknowledgements This work has been funded by grants TIN2014-53522-REDT (CAPAP-H5 network)
and TIN2015-66680 from the Spanish Ministry, and grants P11-TIC-7176 and P12-TIC-301 from Junta de
Andalucia, in part financed by the European Regional Development Fund (ERDF). J.M.G. Salmerén is a
fellow of the Spanish FPU program.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alba, E., Almeida, F., Blesa, M., Cabeza, J., Cotta, C., Daz, M., Dorta, 1., Gabarr, J., Len, C., Luna, J.,
Moreno, L., Pablos, C., Petit, J., Rojas, A., Xhafa, F.: Mallba: a library of skeletons for combinatorial
optimisation. In: Monien, B., Feldmann, R. (eds.) Euro-Par 2002 Parallel Processing. Lecture Notes in
Computer Science, vol. 2400, pp. 927-932. Springer, Berlin (2002)

2. Amar, P, Baillieul, M., Barth, D., LeCun, B., Quessette, F., Vial, S.: Parallel biological in silico simulation.
In: Czachérski, T., Gelenbe, E., Lent, R. (eds.) Information Sciences and Systems 2014: Proceedings of
the 29th International Symposium on Computer and Information Sciences, pp. 387-394. Springer, Cham
(2014). doi:10.1007/978-3-319-09465-6_40

3. Baritompa, W.: Customizing methods for global optimization, a geometric viewpoint. J. Glob. Optim.
3(2), 193-212 (1993)

4. Briingger, A., Marzetta, A., Fukuda, K., Nievergelt, J.: The parallel search bench ZRAM and its applica-
tions. Ann. Op. Res. 90, 45-63 (1999)

5. Casado, L.G., Hendrix, E.M.T., Garcia, L.: Infeasibility spheres for finding robust solutions of blending
problems with quadratic constraints. J. Glob. Optim. 39(4), 577-593 (2007)

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/978-3-319-09465-6_40

J Glob Optim (2017) 69:547-560 559

20.
21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Casado, L.G., Martinez, J.A., Garcia, I., Hendrix, E.M.T.: Branch-and-Bound interval global optimization
on shared memory multiprocessors. Optim. Method Softw. 23(5), 689-701 (2008)

Crainic, T.G., Le Cun, B., Roucairol, C.: Parallel branch-and-bound algorithms. In: Parallel Combinatorial
Optimization, pp. 1-28. Wiley (2006). doi:10.1002/9780470053928.ch1

Djerrah, A., Le Cun, B., Cung, V.D., Roucairol, C.: Bob++: framework for solving optimization problems
with branch-and-bound methods. In: 2006 15th IEEE International Conference on High Performance
Distributed Computing, pp. 369-370 (2006). doi:10.1109/HPDC.2006.1652188

Eckstein, J., Phillips, C.A., Hart, W.E.: Inherently parallel algorithms in feasibility and optimization and
their applications, studies in computational mathematics. In: Dan Butnariu, Y.C. (ed.) Pico: An Object-
Oriented Framework for Parallel Branch and Bound, vol. 8, pp. 219-265. Elsevier, Amsterdam (2001)
Eckstein, J., Hart, W.E., Phillips, C.A.: PEBBL: an object-oriented framework for scalable parallel Branch
and Bound. Math. Program. Comput. 7(4), 429-469 (2015)

. Escobar, FA., Chang, X., Valderrama, C.: Suitability analysis of FPGAs for heterogeneous platforms in

HPC. IEEE Trans. Parallel. Distrib. 27, 600-612 (2016). doi:10.1109/TPDS.2015.2407896

Galea, F., Le Cun, B.: Bob++ : a framework for exact combinatorial optimization methods on parallel
machines. In: PGCO’2007 as Part of HPCS’07, pp. 779-785 (2007)

Gendron, B., Crainic, T.G.: Parallel Branch-and-Bound algorithms: survey and synthesis. Oper. Res.
42(6), 1042-1066 (1994)

Gonzdlez, C.H., Fraguela, B.B.: A generic algorithm template for divide-and-conquer in multicore sys-
tems. In: 2010 IEEE 12th International Conference on High Performance Computing and Communications
(HPCC), pp. 79-88 (2010). doi:10.1109/HPCC.2010.24

Hendrix, E.M.T., T6th, B.G.: Introduction to Nonlinear and Global Optimization. Springer, New York
(2010)

Hendrix, E.M.T., Casado, L.G., Amaral, P.: Global Optimization simplex bisection revisited based on
considerations by Reiner Horst. In: Murgante, B., et al. (eds.) Computational Science and its Applications
ICCSA 2012. Lecture Notes in Computer Science, vol. 7335, pp. 159-173. Springer, Heidelberg (2012)
Herrera, J.F.R., Casado, L.G., Hendrix, E.M.T., Paulavicius, R., Zilinskas, J.: Dynamic and hierarchical
Load-Balancing techniques applied to parallel branch-and-bound methods. In: 2013 Eighth International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 497-502 (2013). doi:10.1109/
3PGCIC.2013.85

Herrera, J.E.R., Casado, L.G., Hendrix, E.M.T., Garcfa, I.: Heuristics for longest edge selection in simpli-
cial Branch and Bound. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications—ICCSA
2015, pp. 445-456. Springer, Berlin (2015)

Lai, T.H., Sahni, S.: Anomalies in parallel Branch-and-Bound algorithms. Commun. ACM 27(6), 594-602
(1984)

Lawler, E.L., Wood, D.E.: Branch-and-Bound methods: a survey. Oper. Res. 14(4), 699-719 (1966)

Li, G.J., Wah, B.W.: Coping with anomalies in parallel Branch-and-Bound algorithms. IEEE Trans.
Comput. 35(6), 568-573 (1986)

Menouer, T., Le Cun, B.: Anticipated dynamic load balancing strategy to parallelize constraint program-
ming search. In: 2013 IEEE International Symposium on Parallel Distributed Processing, Workshops and
Phd Forum, pp. 1771-1777 (2013). doi:10.1109/IPDPSW.2013.210

Menouer, T., Le Cun, B.: A parallelization mixing or-tools/gecode solvers on top of the Bobpp framework.
In: 2013 Eighth international conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 242—
246 (2013). doi:10.1109/3PGCIC.2013.42

Menouer, T., Le Cun, B.: Adaptive N to P portfolio for solving constraint programming problems on top
of the parallel Bobpp framework. In: 2014 IEEE International Parallel Distributed Processing Symposium
Workshops, pp. 1531-1540 (2014). doi:10.1109/IPDPSW.2014.171

Mladineo, R.H.: An algorithm for finding the global maximum of a multimodal multivariate function.
Math. Program. 34, 188-200 (1986)

Paulavicius, R., Zilinskas, J.: Simplicial Global Optimization. Springer, New York (2014a)

Paulavi¢ius, R., Zilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob.
Optim. 59(1), 23—40 (2014b)

Paulavicius, R., Zilinskas, J., Grothey, A.: Investigation of selection strategies in Branch and Bound
algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173-183
(2010)

Paulavicius, R., Zilinskas, J., Grothey, A.: Parallel Branch and Bound for Global Optimization with
combination of Lipschitz bounds. Optim. Methods Softw. 26(3), 487-498 (2011)

Poldner, M., Kuchen, H.: Algorithmic skeletons for Branch and Bound. In: Filipe, J., Shishkov, B., Helfert,
M. (eds.) Software and Data Technologies, Communications in Computer and Information Science, vol.
10, pp. 204-219. Springer, Berlin (2008)

@ Springer

http://dx.doi.org/10.1002/9780470053928.ch1
http://dx.doi.org/10.1109/HPDC.2006.1652188
http://dx.doi.org/10.1109/TPDS.2015.2407896
http://dx.doi.org/10.1109/HPCC.2010.24
http://dx.doi.org/10.1109/3PGCIC.2013.85
http://dx.doi.org/10.1109/3PGCIC.2013.85
http://dx.doi.org/10.1109/IPDPSW.2013.210
http://dx.doi.org/10.1109/3PGCIC.2013.42
http://dx.doi.org/10.1109/IPDPSW.2014.171

560 J Glob Optim (2017) 69:547-560

31. Ralphs, T., Gzelsoy, M.: The symphony callable library for mixed integer programming. In: Golden, B.,
Raghavan, S., Wasil, E. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies,
Operations Research/Computer Science Interfaces Series, vol. 29, pp. 61-76. Springer, Berlin (2005)

32. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism.
O’Reilly, Newton (2007)

33. Sakellariou, R., Gurd, J.R.: Compile-time minimisation of load imbalance in loop nests. In: 11th Inter-
national Conference on Supercomputing, ACM, New York, ICS *97, pp. 277-284 (1997)

34. Saltzman, M.J.: Coin-or: an open-source library for optimization. In: Nielsen, S. (ed.) Programming Lan-
guages and Systems in Computational Economics and Finance, Advances in Computational Economics,
vol. 18, pp. 3-32. Springer, Berlin (2002)

35. Todd, M.J.: The computation of fixed points and applications. Lecture Notes in Economics and Mathe-
matical Systems, vol. 124. Springer (1976). doi:10.1007/978-3-642-50327-6

36. Tousimojarad, A., Vanderbauwhede, W.: Comparison of three popular parallel programming models on
the Intel Xeon Phi. In: Lopes, L., et al. (eds.) Euro-Par 2014: Parallel Processing Workshops. Lecture
Notes in Computer Science, vol. 8806, pp. 314-325. Springer, Berlin (2014)

37. Tschoke, S., Polzer, T.: Portable parallel branch-and-bound library user manual, library version 2.0. Tech.
rep., University of Paderborn (1996). http://www2.cs.uni-paderborn.de/cs/ag-monien/SOFTWARE/
PPBB/documentation.html

38. Zilinskas, J.: Branch and Bound with simplicial partitions for Global Optimization. Math. Modell. Anal.
13(1), 145-159 (2008)

39. Zilinskas, J.: Parallel Branch and Bound for multidimensional scaling with city-block distances. J. Glob.
Optim. 54(2), 261-274 (2012)

40. Xu, Y., Ralphs, T., Ladnyi, L., Saltzman, M.: Alps: a framework for implementing parallel tree search
algorithms. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Next Wave in Computing, Optimization, and
Decision Technologies, Operations Research/Computer Science Interfaces Series, vol. 29, pp. 319-334.
Springer, Berlin (2005)

@ Springer

http://dx.doi.org/10.1007/978-3-642-50327-6
http://www2.cs.uni-paderborn.de/cs/ag-monien/SOFTWARE/PPBB/documentation.html
http://www2.cs.uni-paderborn.de/cs/ag-monien/SOFTWARE/PPBB/documentation.html

	On parallel Branch and Bound frameworks for Global Optimization
	Abstract
	1 Introduction
	2 A B&B Global Optimization algorithm
	3 Parallel Branch-and-Bound
	3.1 Bobpp framework
	3.2 Threading Building Blocks (TBB)
	3.3 Pthreads model

	4 Experimental results
	4.1 Design of experiments
	4.2 Performance on the various platforms
	4.3 Programmability of the implementations

	5 Conclusion
	Acknowledgements
	References

