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Abstract In this article, we introduce an inertial projection and contraction algorithm by
combining inertial type algorithms with the projection and contraction algorithm for solving
a variational inequality in a Hilbert space H . In addition, we propose a modified version of
our algorithm to find a common element of the set of solutions of a variational inequality
and the set of fixed points of a nonexpansive mapping in H . We establish weak convergence
theorems for both proposed algorithms. Finally, we give the numerical experiments to show
the efficiency and advantage of the inertial projection and contraction algorithm.
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1 Introduction

Let H be a Hilbert space with the inner product 〈., .〉 and C ⊆ H be a nonempty closed and
convex set in H .

In this article, we are concerned with the classical variational inequality, which is to find
a point x∗ ∈ C such that

〈 f (x∗), x − x∗〉 ≥ 0, ∀x ∈ C, (1)

where f : H → H is a mapping. This problem captures various applications arising in
many areas, such as partial differential equations, optimal control, optimization, mathemat-
ical programming and some other nonlinear problems (see, for example, [1] and references
therein).

It is well-known that if f is L-Lipschitz continuous and η-strongly monotone on C , i.e.

‖ f (x) − f (y)‖ ≤ L‖x − y‖, ∀x, y ∈ C,

and

〈 f (x) − f (y), x − y〉 ≥ η‖x − y‖2, ∀x, y ∈ C,

where L > 0 and η > 0 are the Lipschitz and strong monotonicity constants, respectively,
then the variational inequality (1) has a unique solution.Recently, Zhou et al. [2]weakened the
Lipschitz continuity to the hemicontinuity. However, if f is simply L-Lipschitz continuous
and monotone on C , i.e.

〈 f (x) − f (y), x − y〉 ≥ 0, ∀x, y ∈ C,

but not η-strongly monotone, then the variational inequality (1) may fail to have a solution.
We refer the readers to [2] for counterexamples.

Some authors have proposed and analyzed several iterative methods for solving the varia-
tional inequality (1). The simplest one is the following projection method, which can be seen
an extension of the projected gradient method for optimization problems:

xk+1 = PC (xk − τ f (xk)) (2)

for each k ≥ 1, where τ ∈ (0, 2η
L2 ) and PC denotes the Euclidean least distance projection

onto C . The projection method converges provided that the mapping f is L − Lipschitz
continuous and η-strongly monotone. By using a counterexample, Yao et al. (see [3]) proved
that the projected gradient method may diverge if the strong monotonicity assumption is
relaxed to plain monotonicity.

To avoid the hypotheses of the strong monotonicity, Korpelevich [4] proposed the extra-
gradient method: {

yk = PC (xk − τ f (xk)),

xk+1 = PC (xk − τ f (yk))
(3)

for each k ≥ 1, which converges if f is Lipschitz continuous and monotone.
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In fact, in the extragradient method, one needs to calculate two projections onto C in each
iteration. Note that the projection onto a closed convex setC is related to a minimum distance
problem. If C is a general closed and convex set, this might require a prohibitive amount of
computation time.

To our knowledge, there are two kinds of methods to overcome this difficulty. The first
one is the subgradient extragradient method developed by Censor et al. [5,6]:⎧⎪⎪⎨

⎪⎪⎩
yk = PC (xk − τ f (xk)),

Tk := {w ∈ H | 〈xk − τ f (xk) − yk, w − yk〉 ≤ 0},
xk+1 = PTk (x

k − τ f (yk))

(4)

for each k ≥ 1. This method replaces the second projection onto C of the extragradient
method by a projection onto a specific constructible subgradient half-space Tk . The second
one is the projection and contraction method studied by some authors [7–10]:⎧⎪⎪⎨

⎪⎪⎩
yk = PC (xk − τ f (xk)),

d(xk, yk) = (xk − yk) − τ( f (xk) − f (yk)),

xk+1 = xk − γβkd(xk, yk)

(5)

for each k ≥ 1, where γ ∈ (0, 2),

βk := ϕ(xk, yk)

‖d(xk, yk)‖2 , ϕ(xk, yk) := 〈xk − yk, d(xk, yk)〉.

The projection and contractionmethod needs only one projection ontoC in each iteration and
has an advantage in computing over the extragradient and subgradient extragradient methods
(see [9]).

The inertial type algorithms originate from the heavy ball method (an implicit discretiza-
tion) of the two order time dynamical system [11,12], the main features of which is that
the next iterate is defined by making use of the previous two iterates. Recently, there are
growing interests in studying inertial type algorithms. Some latest references are inertial
forward-backward splitting methods for certain separable nonconvex optimization problems
[13], strongly convex problems [14,15] and inertial dynamics methods [16,17].

For finding the zeros of a maximally monotone operator, Bot and Csetnek [18] proposed
the so-called inertial hybrid proximal-extragradient algorithm, which combines inertial type
algorithms and hybrid proximal-extragradient algorithms (see, e.g. [19,21]) and includes the
following algorithm as a special case (see, e.g. [22]):

xk+1 = PC
(
xk − ck f (x

k) + αk(x
k − xk−1)

)
. (6)

It is obvious that the algorithm (6) can be seen as the projection algorithm (2) with inertial
effects and also can be seen as a bounded perturbation of the projection algorithm (2) (see,
e.g. [20]). The authors showed that the algorithm (6) converges weakly to a solution of the
variational inequality (1) provided that (αk) is nondecreasing with α1 = 0, 0 ≤ αk ≤ α, and
0 < c ≤ ck ≤ 2γ σ 2, for α, σ ≥ 0 such that α(5 + 4σ 2) + σ 2 < 1.

Very recently, Dong et al. [22] introduced the following algorithm:⎧⎪⎪⎨
⎪⎪⎩

wk = xk + αk(x
k − xk−1),

yk = PC (wk − τ f (wk)),

xk+1 = (1 − λk)w
k + λk PC (wk − τ f (yk))

(7)
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for each k ≥ 1, where {αk} is nondecreasing with α1 = 0 and 0 ≤ αk ≤ α < 1 for each
k ≥ 1 and λ, σ, δ > 0 are such that

δ >
α[(1 + τ L)2α(1 + α) + (1 − τ 2L2)ασ + σ(1 + τ L)2]

1 − τ 2L2

and

0 < λ ≤ λk ≤ δ(1 − τ 2L2) − α[(1 + τ L)2α(1 + α) + (1 − τ 2L2)ασ + σ(1 + τ L)2]
δ[(1 + τ L)2α(1 + α) + (1 − τ 2L2)ασ + σ(1 + τ L)2] ,

where L is the Lipschitz constant of f .
In this paper, we study an inertial projection and contraction algorithm and analyze its

convergence in a Hilbert space H . We also present a modified inertial projection and contrac-
tion algorithm for approximating a common element of the set of solutions of a variational
inequality and the set of fixed points of a nonexpansive mapping in H . Finally, we give
numerical examples are presented to illustrate the efficiency and advantage of the inertial
projection and contraction algorithm.

2 Preliminaries

In the sequel, we use the notations:

(1) ⇀ for weak convergence and → for strong convergence;
(2) ωw(xk) = {x : ∃xk j ⇀ x} denotes the weak ω-limit set of {xk}.

We need some results and tools in a real Hilbert space H which are listed as lemmas
below.

Recall that, in a Hilbert space H ,

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2 (8)

for all x, y ∈ H and λ ∈ R (see Corollary 2.14 in [23]).

Definition 2.1 Let B : H ⇒ 2H be a point-to-set operator defined on a real Hilbert space
H . B is called a maximal monotone operator if B is monotone, i.e.,

〈u − v, x − y〉 ≥ 0

for all u ∈ B(x) and v ∈ B(y) and the graph G(B) of B,

G(B) := {(x, u) ∈ H × H : u ∈ B(x)},
is not properly contained in the graph of any other monotone operator.

It is clear that a monotone mapping B is maximal if and only if, for any (x, u) ∈ H × H ,
if 〈u − v, x − y〉 ≥ 0 for all (v, y) ∈ G(B), then it follows that u ∈ B(x).

Lemma 2.1 (Goebel and Kirk [24]) Let C be a closed convex subset of a real Hilbert space
H and T : C → C be a nonexpansive mapping such that Fix(T ) = ∅. If a sequence {xk}
in C is such that xk ⇀ z and xk − T xk → 0, then z = T z.

Lemma 2.2 Let K be a closed convex subset of real Hilbert space H and PK be the (metric
or nearest point) projection from H onto K (i.e., for x ∈ H, PK x is the only point in K such
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that ‖x − PK x‖ = inf{‖x − z‖ : z ∈ K }). Then, for any x ∈ H and z ∈ K, z = PK x if and
only if there holds the relation:

〈x − z, y − z〉 ≤ 0

for all y ∈ K.

Lemma 2.3 (see [11]) Let {ϕk}, {δk} and {αk} be the sequences in [0,+∞) such that, for
each k ≥ 1,

ϕk+1 ≤ ϕk + αk(ϕk − ϕk−1) + δk,

∞∑
k=1

δk < +∞

and there exists a real number α with 0 ≤ αk ≤ α < 1 for all k ≥ 1. Then the following
hold:

(i)
∑∞

k=1[ϕk − ϕk−1]+ < +∞, where [t]+ = max{t, 0};
(ii) there exists ϕ∗ ∈ [0,+∞) such that limk→+∞ ϕk = ϕ∗.

Lemma 2.4 (see [23], Lemma 2.39) Let C be a nonempty set of H and {xk} be a sequence
in H such that the following two conditions hold:

(i) for all x ∈ C, limk→∞ ‖xk − x‖ exists;
(ii) every sequential weak cluster point of {xk} is in C.

Then the sequence {xk} converges weakly to a point in C.

3 The inertial projection and contraction algorithm

In this section, we present the inertial projection and contraction algorithm and analyze its
convergence.

For a mapping f : H → H , we introduce the following algorithm:

Algorithm 3.1 Choose initial guesses x0, x1 ∈ H arbitrarily. Calculate the (k+1)th iterate
xk+1 via the formula:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wk = xk + αk(x
k − xk−1),

yk = PC (wk − τ f (wk)),

d(wk, yk) = (wk − yk) − τ( f (wk) − f (yk)),

xk+1 = wk − γβkd(wk, yk)

(9)

for each k ≥ 1, where γ ∈ (0, 2), τ > 0 and

βk :=
{

ϕ(wk, yk)/‖d(wk, yk)‖2, if d(wk, yk) = 0
0 if d(wk, yk) = 0,

(10)

where

ϕ(wk, yk) := 〈wk − yk, d(wk, yk)〉,
and {αk} is nondecreasing with α1 = 0, 0 ≤ αk ≤ α < 1, and σ, δ > 0 are such that

δ >
α2(1 + α) + ασ

1 − α2 , 0 < γ ≤ 2 [δ − α((1 + α) + αδ + σ)]

δ[1 + α(1 + α) + αδ + σ ] . (11)
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If yk = wk or d(wk, yk) = 0 then xk+1 is a solution of the variational inequality (1) (see
Lemma 3.1 below) and the iterative process stops; otherwise, we set k := k + 1 and go on
to (9) to evaluate the next iterate xk+2.

To discuss the convergence of the algorithm (9), we assume the following conditions.

Condition 3.1 The solution set of (1), denoted by SOL(C, f ), is nonempty.

Condition 3.2 The mapping f is monotone on H .

Condition 3.3 The mapping f is Lipschitz continuous on H with the Lipschitz constant
L > 0.

Lemma 3.1 Assume 0 < τ < 1/L . If yk = wk or d(wk, yk) = 0 in (9), then xk+1 ∈
SOL(C, f ).

Proof From conditions 3.2 and 3.3, it follows

‖d(wk, yk)‖ = ‖(wk − yk) − τ( f (wk) − f (yk))‖
≥ ‖wk − yk‖ − τ‖ f (wk) − f (yk)‖
≥ (1 − τ L)‖wk − yk‖.

Similarly, we can show

‖d(wk, yk)‖ ≤ (1 + τ L)‖wk − yk‖.
So, d(wk, yk) = 0 if and only if yk = wk . From (9), we have

yk = PC (yk − τ f (yk) + d(wk, yk)).

When d(wk, yk) = 0, by (9) and in (10), one has xk+1 = yk and

yk = PC (yk − τ f (yk)).

which with Lemma 2.2 yields xk+1 ∈ SOL(C, f ). This completes the proof. ��
Remark 3.1 From Lemma 3.1, we see that if the algorithm (9) terminates in a finite (say
k) step of iterations, then xk is a solution of the variational inequality (1). So in the rest of
this section, we assume that the algorithm (9) does not terminate in any finite iterations, and
hence generates an infinite sequence

The following lemma is crucial for the proof of our convergence theorem.

Lemma 3.2 Let {xk} be the sequence generated by (9) and let 0 < τ < 1/L . Assume
d(wk, yk) = 0. If u ∈ SOL(C, f ), then, under Conditions 3.1, 3.2 and 3.3, we have the
following:

(i)

‖xk+1 − u‖2 ≤ ‖wk − u‖2 − 2 − γ

γ
‖xk+1 − wk‖2; (12)

(ii)

‖wk − yk‖2 ≤ 1 + τ 2L2

[(1 − τ L)γ ]2 ‖xk+1 − wk‖2. (13)
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Proof (i) From the Cauchy-Schwarz inequality and Condition 3.3, it follows

ϕ(wk, yk) = 〈wk − yk, d(wk, yk)〉
= 〈wk − yk, (wk − yk) − τ( f (wk) − f (yk))〉
= ‖wk − yk‖2 − τ 〈wk − yk, f (wk) − f (yk)〉
≥ ‖wk − yk‖2 − τ‖wk − yk‖‖ f (wk) − f (yk)‖
≥ (1 − τ L)‖wk − yk‖2.

(14)

Using Condition 3.2, we have

‖d(wk, yk)‖2 = ‖(wk − yk) − τ( f (wk) − f (yk))‖2
= ‖wk − yk‖2 + τ 2‖ f (wk) − f (yk)‖2 − 2τ 〈wk − yk, f (wk) − f (yk)〉
≤ ‖wk − yk‖2 + τ 2‖ f (wk) − f (yk)‖2
≤ (1 + τ 2L2)‖wk − yk‖2.

(15)
Combining (14) and (15), we obtain

βk = ϕ(wk, yk)

‖d(wk, yk)‖2 ≥ 1 − τ L

1 + τ 2L2 . (16)

��
By the definition of xk+1, we have

‖xk+1 − u‖2 = ‖(wk − u) − γβkd(wk, yk)‖2
= ‖wk − u‖2 − 2γβk〈wk − u, d(wk, yk)〉 + γ 2β2

k ‖d(wk, yk)‖2. (17)

It follows that

〈wk − u, d(wk, yk)〉 = 〈wk − yk, d(wk, yk)〉 + 〈yk − u, d(wk, yk)〉. (18)

By the definition of yk and Lemma 2.2, we have

〈yk − u, wk − yk − τ f (wk)〉 ≥ 0. (19)

From Condition 3.2, it follows that

〈yk − u, τ f (yk) − τ f (u)〉 ≥ 0. (20)

Since u ∈ SOL(C, f ) and yk ∈ C, it follows from (1) that

〈yk − u, τ f (u)〉 ≥ 0. (21)

Adding up (19)–(21), we have

〈yk − u, d(wk, yk)〉 = 〈yk − u, wk − yk − τ( f (wk) − f (yk))〉 ≥ 0. (22)

Combining (18) and (22), we obtain

〈wk − u, d(wk, yk)〉 ≥ 〈wk − yk, d(wk, yk)〉 = ϕ(wk, yk). (23)

Substituting (23) into (17) and using βk = ϕ(wk ,yk )
‖d(wk ,yk )‖2 , we have

‖xk+1 − u‖2 ≤ ‖wk − u‖2 − 2γβkϕ(wk, yk) + γ 2β2
k ‖d(wk, yk)‖2

= ‖wk − u‖2 − γ (2 − γ )βkϕ(wk, yk).
(24)
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Again, using the definition of xk+1, we have

βkϕ(wk, yk) = ‖βkd(wk, yk)‖2 = 1

γ 2 ‖xk+1 − wk‖2. (25)

Combining (24) and (25), we obtain (12).
(ii) From (25) and (16), it follows that

ϕ(wk, yk) = 1

βkγ 2 ‖xk+1 − wk‖2 ≤ 1 + τ 2L2

(1 − τ L)γ 2 ‖xk+1 − wk‖2,

which with (14) yields

‖wk − yk‖2 ≤ 1

1 − τ L
ϕ(wk, yk) ≤ 1 + τ 2L2

[(1 − τ L)γ ]2 ‖xk+1 − wk‖2.

This completes the proof. ��
Theorem 3.1 Assume that Conditions 3.1, 3.2 and 3.3 hold and let 0 < τ < 1

L . Then the
sequence {xk} generated by (9) converges weakly to a solution of the variational inequal-
ity (1).

Proof Fix u ∈ SOL(C, f ). Applying (8), we have

‖wk − u‖2 = ‖(1 + αk)(x
k − u) − αn(x

k−1 − u)‖2
= (1 + αk)‖xk − u‖2 − αk‖xk−1 − u‖2 + αk(1 + αk)‖xk − xk−1‖2. (26)

Hence, from (12), it follows that

‖xk+1 − u‖2 − (1 + αk)‖xk − u‖2 + αk‖xk−1 − u‖2

≤ −2 − γ

γ
‖xk+1 − wk‖2 + αk(1 + αk)‖xk − xk−1‖2. (27)

We also obtain

‖xk+1 − wk‖2 = ‖(xk+1 − xk) − αk(x
k − xk−1)‖2

= ‖xk+1 − xk‖2 + α2
k‖xk − xk−1‖2 − 2αk〈xk+1 − xk, xk − xk−1〉

≥ ‖xk+1 − xk‖2 + α2
k‖xk − xk−1‖2

+ αk

(
− ρk‖xk+1 − xk‖2 − 1

ρk
‖xk − xk−1‖2

)
,

(28)

where ρk := 2
2αk+δγ

. Combining (27) and (28), we have

‖xk+1 − u‖2 − (1 + αk)‖xk − u‖2 + αk‖xk−1 − u‖2

≤ (2 − γ )(αkρk − 1)

γ
‖xk+1 − xk‖2 + λk‖xk − xk−1‖2, (29)

where

λk := αk(1 + αk) + αk
(2 − γ )(1 − αkρk)

ρkγ
≥ 0 (30)

since αkρk < 1 and γ ∈ (0, 2). Again, taking into account the choice of ρk , we have

δ = 2(1 − αkρk)

ρkγ
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and, from (30), it follows that

λk = αk(1 + αk) + αk(1 − γ

2
)δ ≤ α(1 + α) + αδ. (31)

This completes the proof. ��

In the following, we apply some techniques from [12,25] adapted to our problems. Define
the sequences {ϕk} and {ξk} by

ϕk := ‖xk − u‖2, ξk := ϕk − αkϕk−1 + λk‖xk − xk−1‖2

for all k ≥ 1, respectively. Using the monotonicity of {αk} and the fact that ϕk ≥ 0 for all
k ∈ N, we have

ξk+1 − ξk ≤ ϕk+1 − (1 + αk)ϕk + αkϕk−1 + λk+1‖xk+1 − xk‖2 − λk‖xk − xk−1‖2.
Employing (29), we have

ξk+1 − ξk ≤
(

(2 − γ )(αkρk − 1)

γ
+ λk+1

)
‖xk+1 − xk‖2. (32)

Now, we claim that
(2 − γ )(αkρk − 1)

γ
+ λk+1 ≤ −σ. (33)

Indeed, by the choice of ρk , we have

(2 − γ )(αkρk − 1)

γ
+ λk+1 ≤ −σ

⇐⇒ γ (λk+1 + σ) + (2 − γ )(αkρk − 1) ≤ 0

⇐⇒ γ (λk+1 + σ) − δγ (2 − γ )

2αk + δγ
≤ 0

⇐⇒ (2αk + δγ )(λk+1 + σ) + δγ ≤ 2δ.

By using (30), we have

(2αk + δγ )(λk+1 + σ) + δγ ≤ (2α + δγ )(α(1 + α) + αδ + σ) + δγ ≤ 2δ,

where the last inequality follows by using the upper bound for γ in (11). Hence the claim in
(33) is true.

Thus it follows from (32) and (33) that

ξk+1 − ξk ≤ −σ‖xk+1 − xk‖2. (34)

The sequence {μk} is nonincreasing and the bound for {αk} delivers
− αϕk−1 ≤ ϕk − αϕk−1 ≤ ξk ≤ ξ1. (35)

It follows that

ϕk ≤ αkϕ0 + ξ1

k−1∑
n=0

αn ≤ αkϕ0 + ξ1

1 − α
,
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where we notice that ξ1 = ϕ1 ≥ 0 (due to the relation α1 = 0). Combining (34) and (35),
we have

σ

k∑
n=1

‖xn+1 − xn‖2 ≤ ξ1 − ξk+1 ≤ ξ1 + αϕk

≤ αk+1ϕ0 + ξ1

1 − α
≤ ϕ0 + ξ1

1 − α
,

which shows that ∑
k∈N

‖xk+1 − xk‖2 < +∞. (36)

Thus we have limk→∞ ‖xk+1 − xk‖ = 0. By (9), we have

‖xk+1 − wk‖ ≤ ‖xk+1 − xk‖ + αk‖xk − xk−1‖ ≤ ‖xk+1 − xk‖ + α‖xk − xk−1‖. (37)

So, we have limk→∞ ‖xk+1 − wk‖ = 0. From (13), it follows that

lim
k→∞ ‖yk − wk‖ = 0.

Next, we prove this by using the result of Opial given in Lemma 2.4. For arbitrary u ∈
SOL(C, f ), by (29), (31), (36) and Lemma 2.3, we derive that limk→∞ ‖xk − u‖ exists (we
take into consideration also that, in (29), αkρk < 1). Hence {xk} is bounded.

Now, we only need to show ωw(xk) ⊆ SOL(C, f ). Due to the boundedness of {xk}, it
has at least one weak accumulation point. Let x̂ ∈ ωw(xk). Then there exists a subsequence
{xki } of {xk} which converges weakly to x̂ . Also, it follows that {wki } and {yki } converge
weakly to x̂ .

Finally, we show that x̂ is a solution of the variational inequality (1). Let

Av =
{

f (v) + NC (v), v ∈ C,

∅, v /∈ C,
(38)

where NC (v) is the normal cone of C at v ∈ C , i.e.,

NC (v) := {d ∈ H | 〈d, y − v〉 ≤ 0,∀y ∈ C}.
It is known that A is a maximal monotone operator and A−1(0) = SOL(C, f ). If (v,w) ∈
G(A), then we have w − f (v) ∈ NC (v) since w ∈ A(v) = f (v) + NC (v). Thus it follows
that

〈w − f (v), v − y〉 ≥ 0

for all y ∈ C . Since yki ∈ C , we have

〈w − f (v), v − yki 〉 ≥ 0.

On the other hand, by the definition of yk and Lemma 2.2, it follows that

〈wk − τ f (wk) − yk, yk − v〉 ≥ 0

and, consequently, 〈
yk − wk

τ
+ f (wk), v − yk

〉
≥ 0.
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Hence we have

〈w, v − yki 〉 ≥ 〈 f (v), v − yki 〉

≥ 〈 f (v), v − yki 〉 −
〈 yki − wki

τ
+ f (wki ), v − yki

〉
= 〈 f (v) − f (yki ), v − yki 〉 + 〈 f (yki ) − f (wki ), v − yki 〉

−
〈 yki − wki

τ
, v − yki

〉

≥ 〈 f (yki ) − f (wki ), v − yki 〉 −
〈 yki − wki

τ
, v − yki

〉
,

which implies

〈w, v − yki 〉 ≥ 〈 f (yki ) − f (wki ), v − yki 〉 −
〈 yki − wki

τ
, v − yki

〉
.

Taking the limit as i → ∞ in the above inequality, we obtain

〈w, v − x̂〉 ≥ 0.

Since A is a maximal monotone operator, it follows that x̂ ∈ A−1(0) = SOL(C, f ). This
completes the proof. ��

Remark 3.2 (1) γ ∈ (0, 2) is a relaxation factor of Algorithm 3.1 and the projection and
contraction algorithm (5). Cai et. al. [10] explained why taking a suitable relaxation factor
γ ∈ [1, 2) can achieve the faster convergence in the proof of main results of the projection
and contraction algorithm (5). However, we do not obtain a suitable relaxation factor γ in
the proof of Algorithm 3.1.

(2) Moudafi [26] proposed an open problem on investigating, theoretically as well as
numerically, which are the best choices for the inertial parameter αk in order to accelerate the
convergence. Since the open problem was proposed, there has been little progress, except for
some special problems. Beck and Teboulle [27] introduced the well-known FISTA to solve
the linear inverse problems, which is an inertial version of the ISTA. They proved that the
FISTA has global rate O(1/k2) of convergence, while the global rate of convergence of the
ISTA is O(1/k). The inertial parameter αk in the FISTA is chosen as follows:

αk = tk − 1

tk+1
,

where t1 = 1, and

tk+1 =
1 +

√
1 + 4t2k
2

, ∀k ≥ 1.

Chambolle and Dossal [28] took tk as follows:

tk = k + a − 1

a
, ∀k ≥ 1, (39)

where a > 2 and showed that the FISTA has better property, i.e., the convergence of the
iterative sequence when tk is taken as in (39).
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4 The modified projection and contraction algorithm and its convergence
analysis

Let S : H → H be a nonexpansive mapping and denote by Fix(S) its fixed point set, i.e.,

Fix(S) = {x ∈ H : S(x) = x}.
Next, we present a modified projection and contraction algorithm to find a common ele-

ment of the set of solutions of the variational inequality and the set of fixed points of the
nonexpansive mapping S as follows:

Algorithm 4.1 Choose initial guesses x0, x1 ∈ H arbitrarily. Calculate the (k+1)th iterate
xk+1 via the formula:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wk = xk + αk(x
k − xk−1),

yk = PC (wk − τ f (wk)),

d(wk, yk) = (wk − yk) − τ( f (wk) − f (yk)),

xk+1 = (1 − μk)w
k + μk S(wk − γβkd(wk, yk))

(40)

for each n ≥ 1, where γ ∈ (0, 2), τ > 0 and

βk :=
{

ϕ(wk, yk)/‖d(wk, yk)‖2, if d(wk, yk) = 0
0 if d(wk, yk) = 0,

(41)

where

ϕ(wk, yk) := 〈wk − yk, d(wk, yk)〉,
and {αk} is nondecreasing with α1 = 0, 0 ≤ αk ≤ α < 1, and σ, δ > 0 are such that

δ >
α2(1 + α) + ασ

1 − α2 , 0 < μ ≤ μk ≤ [δ − α((1 + α) + αδ + σ)]

δ[1 + α(1 + α) + αδ + σ ] = μ̄.

Now, we assume the following condition:

Condition 4.1 Fix(S) ∩ SOL(C, f ) = ∅.
Set tk := wk − γβkd(wk, yk) for each k ≥ 1. Then we have

xk+1 = (1 − μk)w
k + μk S(tk). (42)

Remark 4.1 From Lemma 3.1, if d(wk, yk) = 0 in (40), then yk = wk . Using the definition
of tk and (41), we have wk = tk when d(wk, yk) = 0.

Following along the lines of Lemma 3.2, we get the following Lemma:

Lemma 4.1 Let {xk} be the sequence generated by (40) and let 0 < τ < 1/L . Assume
d(wk, yk) = 0. If u ∈ SOL(C, f ), then, under Conditions 3.2, 3.3 and 4.1, we have the
following:

(i)

‖tk − u‖2 ≤ ‖wk − u‖2 − 2 − γ

γ
‖wk − tk‖2; (43)
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(ii)

‖wk − yk‖2 ≤ 1 + τ 2L2

[(1 − τ L)γ ]2 ‖wk − tk‖2. (44)

Remark 4.2 From Remark 4.1, (43) and (44) in Lemma 4.1 still holds when d(wk, yk) = 0.

Theorem 4.1 Assume that Conditions 3.2, 3.3 and 4.1 hold. Let 0 < τ < 1
L and {αk} ⊂

[c, d] for some c, d ∈ (0, 1). Then the sequence {xk} generated by (40) converges weakly to
the same solution u∗ ∈ Fix(S) ∩ SOL(C, f ).

Proof By (28), we have

‖xk+1 − wk‖2 ≥ ‖xk+1 − xk‖2 + α2
k‖xk − xk−1‖2

+ αk

(
− ρk‖xk+1 − xk‖2 − 1

ρk
‖xk − xk−1‖2

)
,

(45)

where we denote ρk = 1
αk+δμk

. Let u ∈ Fix(S) ∩ SOL(C, f ). From (26), it follows that

‖wk − u‖2 ≤ (1 + αk)‖xk − u‖2 − αk‖xk−1 − u‖2 + αk(1 + αk)‖xk − xk−1‖2. (46)

Using (8), (42), Lemma 4.1(i) and Remark 4.2, we have

‖xk+1 − u‖2 = ‖(1 − μk)(w
k − u) + μk(S(tk) − u)‖2

= (1 − μk)‖wk − u‖2 + μk‖S(tk) − u‖2 − μk(1 − μk)‖wk − S(tk)‖2

≤ (1 − μk)‖wk − u‖2 + μk‖tk − u‖2 − (1 − μk)

μk
‖xk+1 − wk‖2

≤ ‖wk − u‖2 − (1 − μk)
2 − γ

γ
‖wk − tk‖2 − (1 − μk)

μk
‖xk+1 − wk‖2

≤ ‖wk − u‖2 − (1 − μk)

μk
‖xk+1 − wk‖2.

(47)
Combining (45), (46) and (47), we obtain

‖xk+1 − u‖2 − (1 + αk)‖xk − u‖2 + αk‖xk−1 − u‖2

≤ (1 − μk)(αkρk − 1)

1 − μk
‖xk+1 − xk‖2 + λk‖xk − xk−1‖2, (48)

where

λk := αk(1 + αk) + αk
(1 − μk)(1 − αkρk)

μkρk
≥ 0 (49)

since αkρk < 1 and μk ∈ (0, 1). Again, taking into account the choice of ρk , we have

δ = (1 − αkρk)

ρkμk

and, from (49), it follows that

λk = αk(1 + αk) + αk(1 − μk)δ ≤ α(1 + α) + αδ. (50)

Following along the lines of Theorem 3.1, we obtain

∞∑
k=1

‖xk+1 − xk‖2 < +∞.
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Thus we have limk→∞ ‖xk+1 − xk‖ = 0. From (48), (50), αkρk < 1 and Lemma 2.3, we
can show that limk→∞ ‖xk − u‖ exists for arbitrary u ∈ Fix(S) ∩ SOL(C, f ). Hence {xk}
is bounded. By (37), we have

∑∞
k=1 ‖xk+1 − wk‖2 < +∞ and so

lim
k→∞ ‖xk+1 − wk‖ = 0. (51)

By (47), we have
∑∞

k=1 ‖tk − wk‖2 < +∞ and so

lim
k→∞ ‖tk − wk‖ = 0. (52)

Using (44), we have

lim
k→∞ ‖wk − yk‖ = 0.

Since {xk} is bounded, it has a subsequence {xki } which converges weakly to a point x̂ . By
(51)–(52), the subsequences {wki } and {tki } also converge weakly to x̂ .

Now, we show that x̂ ∈ Fix(S)∩ SOL(C, f ). Define the operator A as in (38). By using
arguments similar to those used in the proof of Theorem 3.1, we can show that

x̂ ∈ A−1(0) = SOL(C, f ).

It is now left to show that x̂ ∈ Fix(S). To this end, it follows from (42) that

‖wk − S(tk)‖ = 1

μk
‖xk+1 − wk‖ ≤ 1

μ
‖xk+1 − wk‖,

which with (51) implies that

lim
k→∞ ‖wk − S(tk)‖ = 0.

Using (52), we obtain

lim
k→∞ ‖tk − S(tk)‖ = 0.

By Lemma 2.1, we obtain x̂ ∈ Fix(S). Now, again, by using similar arguments to those
used in the proof of Theorem 3.1, we can show that the sequence {xk} converge weakly to
x̂ ∈ Fix(S) ∩ SOL(C, f ). This completes the proof. ��
Remark 4.3 Note that we need to restrict γ in the the algorithm (9) for the variational inequal-
ity, however, we only need to make restriction on {μk} in the algorithm (40).

5 Numerical experiments

In order to evaluate the performance of the proposed algorithm, we present numerical experi-
ments relative to the variational inequality. In this section, we provide an example to compare
the inertial projection and contraction algorithm with the projection and contraction algo-
rithm, the inertial extragradient algorithm and the extragradient algorithm.

Example 5.1 Let f : R2 → R
2 be defined by

f (x, y) = (2x + 2y + sin(x),−2x + 2y + sin(y)), ∀x, y ∈ R.
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Claim that f is Lipschitz continuous and strongly monotone. Therefore the variational
inequality (1) has a unique solution and (0, 0) is its solution.

Firstly, we show that f is Lipschitz continuous. Take arbitrarily z1 = (x1, y1) ∈ R
2,

z2 = (x2, y2) ∈ R
2. Then

|(2x1 + 2y1 + sin(x1)) − (2x2 + 2y2 + sin(x2))|
≤ 2|x1 − x2| + 2|y1 − y2| + | sin(x1) − sin(x2)|
≤ 3|x1 − x2| + 2|y1 − y2|,

(53)

where the last inequality comes from

| sin(x) − sin(y)| ≤ |x − y|, (54)

for any x, y ∈ R. Similarly, we have

|(−2x1 + 2y1 + sin(y1)) − (−2x2 + 2y2 + sin(y2))| ≤ 2|x1 − x2| + 3|y1 − y2|. (55)

Combining (53) and (55), we obtain that

‖ f (z1) − f (z2)‖2 = [(2x1 + 2y1 + sin(x1)) − (2x2 + 2y2 + sin(x2))]
2

+ [(−2x1 + 2y1 + sin(y1)) − (−2x2 + 2y2 + sin(y2))]
2

≤ 26[(x1 − x2)
2 + (y1 − y2)

2] = 26‖z1 − z2‖2,
(56)

where the inequality comes from the relation (a + b)2 ≤ 2(a2 + b2) for any a, b ∈ R. From
(56), we get that f is Lipschitz continuous with L = √

26.
Next we verify that f is strongly monotone. It is easy to get

〈 f (z1) − f (z2), z1 − z2〉 = [(2x1 + 2y1 + sin(x1)) − (2x2 + 2y2 + sin(x2))] (x1 − x2)

+ [(−2x1 + 2y1 + sin(y1)) − (−2x2 + 2y2 + sin(y2))](y1−y2)

= 2(x1 − x2)
2 + (sin(x1) − sin(x2))(x1 − x2)

+ 2(y1 − y2)
2 + (sin(y1) − sin(y2))(y1 − y2)

≥ ‖z1 − z2‖2,
where the inequality follows from (54). Hence, f is 1−strongly monotone.

Let C = {x ∈ R
2 | e0 ≤ x ≤ 10e1}, where e0 = (−10,−10) and e1 = (10, 10). Take the

initial point x0 = (1, 10) ∈ R
2 and τ = 1/(2L). Since (0, 0) is the unique solution of the

variational inequality (1), denote by ‖xk‖ ≤ 10−8 the stopping criterion.

Example 5.2 Let f : Rn → R
n defined by f (x) = Ax +b, where A = ZT Z , Z = (zi j )n×n

and b = (bi ) ∈ R
n where zi j ∈ [1, 100] and bi ∈ [−100, 0] are generated randomly.

It is easy to verify that f is L−Lipschitz continuous and η−strongly monotone with
L = max(eig(A)) and η = min(eig(A)). Take arbitrarily x1, x2 ∈ R

n . Firstly, we have

‖ f (x1) − f (x2)‖ = ‖Ax1 − Ax2‖ ≤ max(eig(A))‖x1 − x2‖.
On the other hand,

〈 f (x1) − f (x2), x1 − x2〉 = 〈Ax1 − Ax2, x1 − x2〉 = 〈A(x1 − x2), x1 − x2〉
= (x1 − x2)

T A(x1 − x2) ≥ min(eig(A))‖x1 − x2‖2.
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Fig. 1 Comparison of the number of iterations of the inertial projection and contraction algorithm (iPCA)
with the projection and contraction algorithm (PCA), the inertial extragradient algorithm (iEgA) and the
extragradient algorithm (EgA) for Example 5.1
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Fig. 2 Comparison of the number of iterations of the inertial projection and contraction algorithm (iPCA)
with the projection and contraction algorithm (PCA), the inertial extragradient algorithm (iEgA) and the
extragradient algorithm (EgA) for Example 5.2

where the third equality comes from the symmetry of the matrix A and the inequality follows
from the symmetry and the positive definiteness of the matrix A. Note that the matrix Z is
randomly generated, so it is full rank. Therefore, the matrix A is positive definite.

Let C := {x ∈ R
n | ‖x − d‖ ≤ r}, where the center d ∈ R

n and radius r are randomly
chosen. Take the initial point x0 = (ci ) ∈ R

n , where ci ∈ [0, 1] is generated randomly. Set
n = 100 and τ = 1/(1.05L). Although the variational inequality (1) has an unique solution,
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it is difficult to get the exact solution. So, denote by Dk = ‖xk+1 − xk‖ ≤ 10−5 the stopping
criterion.

Take γ = 1.5 in the inertial projection and contraction algorithm, and the projection and
contraction algorithm. Take αk = 0.4 in the inertial projection and contraction algorithm and
the inertial extragradient algorithm. Choose λk = 0.6 in the inertial extragradient algorithm.

The Figs. 1 and 2 illustrate that the inertial projection and contraction algorithm is more
efficient in comparison with existing algorithms such as the the projection and contraction
algorithm, the inertial extragradient algorithm and the extragradient algorithm.

6 Conclusions

In this paper, we introduce a new inertial projection and contraction algorithm by incorpo-
rating the inertial terms in the projection and contraction algorithm, which does not need
the summability condition for the sequence. The convergence result is presented under some
assumptions and several numerical results confirm the effectiveness of proposed algorithm.

Acknowledgements The authors express their thanks to the reviewers, whose constructive suggestions led
to improvements in the presentation of the results.
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