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Abstract In this paper we investigate multilevel programming problems with multiple fol-
lowers in each hierarchical decision level. It is known that such type of problems are highly
non-convex and hard to solve. A solution algorithm have been proposed by reformulating the
given multilevel program with multiple followers at each level that share common resources
into its equivalent multilevel program having single follower at each decision level. Even
though, the reformulated multilevel optimization problem may contain non-convex terms at
the objective functions at each level of the decision hierarchy, we applied multi-parametric
branch-and-bound algorithm to solve the resulting problem that has polyhedral constraints.
The solution procedure is implemented and tested for a variety of illustrative examples.

Keywords Multilevel programs with multiple followers · Multilevel programs with single
follower · Nash equilibrium · Hierarchical decision · Parametric optimization
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1 Introduction

Multilevel programming problems are nested optimization problems in which part of the
constraint set is determined by the solution sets of another optimization problems, so-
called follower’s problems. These kind of problems are common in divers application
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areas [7,9,10,21,34]. However, multilevel programming problems are non-convex and quite
difficult to deal with even for their linear formulations [8,23,34]. In proposing solution
mechanisms to such kind of problems, most of the methods proposed so far assume that the
functions involved in themodel are linear or strictly convex so that the reaction of the followers
at each stage can be determined uniquely [21,23,31,35]. In practice, however, there are sev-
eral problems that require a nonconvex structure also at lower level problems. For instance,
the utility functions at the lower levels could be nonconvex and sometimes stochastically
noisy. Moreover, in allocation of healthcare resources the models of the diseases to be com-
bated at the lower levels are usually nonconvex in their nature. The solution for hierarchical
problems in general are obtained at the Stackelberg equilibrium point in the vertical decision
structure.

Moreover, many practical problems could bemodeled as multilevel programs havingmul-
tiple decision makers at the same level over the hierarchy and are called multilevel programs
with multiple followers [7,22]. Using the common notation in multilevel programming, such
kind of problems can be stated mathematically as:
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where y1 ∈ Y1 ⊂ R
n1 is a decision vector for the leader’s optimization problem whereas,

ycm ∈ Y c
m ⊂ R

nc
m is a decision vector for the cth follower at level m, and y−c

m is a vector
of the decision variables for all followers at the level m without the decision variables ycm ,
of follower c. i.e., y−c

m = (y1m, . . . , yc−1
m , yc+1

m , . . . , ynm), where, c = i, j, . . . , l and m ∈
{2, 3, . . . , k}. The shared constraint hm is the mth level followers common constraint set
whereas, the constraint gim determines the constraint only for the i th follower at themth level
optimization problem. Throughout this paper, it is assumed that F, G, f cm, hm and gcm are
twice continuously differentiable functions.

One can easily see a bilevel program with multiple followers in problem (1.1) by setting
m = 2 and can be described as:
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min
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The i th follower problem in (1.2) could be seen as a multi-parametric programming problem
(for a given strategy y1), by considering the optimization variables from other followers as
parameters. But, the main difficulty with this problem is that an individual decision maker
does not know the choice, y−i

2 , of the other followers. This further increases the complexity
of problem (1.2) in addition to its implicit structure.

Even if it is not a generic assumption, it has been assumed in many papers that the i th
follower knows the strategies y−i

2 of other followers. For example, Faísca et al. [17] have
proposed a solution approach to the special case of problem (1.2) by considering the i th
follower as a multi-parametric programming problem where, the leader’s and the rest of
the followers optimization variables are considered as parameters. The algorithm uses a
parametric comparison approach to compute a Nash equilibrium reaction.

Using strong constraint qualification assumptions, Wang et al. [36] have proposed an
approach to solve problem (1.2) after replacing the followers problem with its concatenated
KKT conditions based on the idea of vertex searching without the complementarity con-
straints, while the gradient of the followers objective function is linear and the followers
constraint set is defined by linear functions. Moreover, the leader’s optimization problem is
considered as strictly convex. However, this approach could not be extended to solve general
k-level programs with multiple followers, because there exist non-convex terms and shared
variables across the followers at the k − 1 level due to complementarity conditions from
the kth level followers. This may result in non-solvable multilevel program with multiple
followers having shared variables (which means the approach is restricted only for bilevel
programs with multiple followers).

In general, solving a multilevel program having multiple followers at each decision level
is quite difficult and complex when there is information exchange between followers. Thus,
it would be interesting to identify a class of problem (1.1) which can be reformulated as a
multilevel program having single follower at each decision level. In Calvete et al. [9] and
Bard [5] problem (1.2) has been reformulated equivalently as a bilevel program with single
follower. The two papers are devoted for bilevel programs with independent followers (i.e.,
One of the follower does not affect the decision of the other follower and vice-versa). In
practice however, there could be communication and sharing of resources between followers
at the same level of decision.

Wang et al. [36] have reformulated a bilevel program with multiple follower into an
equivalent bilevel program with single follower when there is information exchange (If one
follower tries to alter his/her strategy, he/she can not improve his/her own objective) and
resource sharing across the followers. The discussion of the paper pays attention for the case
in which the objective functions of each of the followers should be separable in the sense
that, fi (y1, yi2, y

−i
2 ) = f 1i (y1, yi2) + f i2 (y1, y

−i
2 ) for i = 1, 2, . . . , I . However, in some real

applications, the followers problem in (1.1)may have implicit formulation of non-separability
while keeping its convexity with respect to its own decision variable.
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In this paper we reformulate the class of multilevel programs with multiple followers, that
consist of separable terms and parameterized common terms across all the followers, into
equivalent multilevel programs having single follower at each level of decision and propose
an efficient method of solving the resulting problem. The proposed solution approach can
solve multiple-follower problems whose objective values have common, but having different
positive weights of, nonseparable terms. The rest of the paper is organized as follows; in
Sect. 2 the relation between some classes of multilevel programs with multiple followers
and multilevel programs with single followers is discussed and described briefly. Section 3
suggests appropriate solution methods to the reformulated multilevel programm with single
followers and some numerical examples are provided to illustrate the approach in Sect. 4.
Finally, the paper ends with concluding remarks in Sect. 5.

2 Relation between multilevel programs with multiple followers and
multilevel programs with single followers

In this Section, we will consider the possibilities of reformulating some classes of multilevel
programs with multiple followers as multilevel programs having only single follower at each
level of the hierarchy. For the sake of clarity in presentation, the methodology is described
using bilevel programswithmultiple followers and trilevel programswithmultiple followers,
however it can be extended to general k-level hierarchical programs with multiple followers
at each level of decision.

2.1 Relations between some classes of bilevel programs with multiple followers
and bilevel programs with single follower

Let us consider each objective function in problem (1.2) consisting of separable terms and
parameterized common terms across all followers with positive weights ρ ∈ RI+, that is,
f i2 (y1, y

i
2, y
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2 ) = f i2 (y1, y

i
2) + f i2 (y1, y

−i
2 ) + ρi f̃ (y1, yi2, y
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2 ), with ρi > 0 for each i =

1, 2, . . . , I . Thus, problem (1.2) can be reformulated as:
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h2
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i
2, y

−i
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Let us assume that the followers constraint functions satisfy some constraint qualification
conditions (for instance, the Guignard constraint qualifications conditions) and to make the
presentation clear, let us define some relevant sets as follows:

(i) The setΩ = {(y1, yi2, y−i
2 ) : G(y1, yi2, y

−i
2 ) ≤ 0, h(y1, yi2, y

−i
2 ) ≤ 0, gi2(y1, y

i
2) ≤ 0}

is called the constraint set of problem (2.1)
(ii) The feasible set for the i th follower (for any strategy y1 of the leader’s problem) can be

defined as, Ωi (y1, y
−i
2 ) = {yi2 : h2(y1, yi2, y−i

2 ) ≤ 0, gi2(y1, y
i
2) ≤ 0}

123



J Glob Optim (2017) 68:729–747 733

(iii) The set RRi
2(y1, y

−i
2 ) = {yi2 : yi2 ∈ argmin{ f i2 (y1, yi2, y−i

2 ) : h2(y1, yi2, y
−i
2 ) ≤

0, gi2(y1, y
i
2) ≤ 0}} is the Nash rational reaction set for the i th follower

(iv) Projection of the feasible set Ω onto the leader’s decision space can be defined as:
Ω(y1) = {y1 : ∃(yi2, y

−i
2 ) : G(y1, yi2, y

−i
2 ) ≤ 0, h2(y1, yi2, y

−i
2 ) ≤ 0, gi (y1, yi2) ≤ 0}

(v) The set IR = {(y1, yi2, y−i
2 ) : (y1, yi2, y

−i
2 ) ∈ Ω, yi2 ∈ RRi

2(y1, y
−i
2 ), i = 1, 2, . . . , I }

is called the inducible set or feasible set for the leader’s problem.

We also assume that IR is non-empty to guaranty the existence of a solution to problem
(2.1). With these definitions of sets and assumptions, problem (2.1) can be rewritten as:

min
y1∈Y1

F
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(
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On the other hand, suppose that f i2 , g
i
2 and h2 are convex with respect to yi2, for each

i = 1, 2, . . . , I , and if the Guignard constraint qualification hold [20] at the optimal Nash

equilibrium point (y∗
1 , y

i,∗
2 , y−i,∗

2 ). Then as can be seen in [36] (y∗
1 , y

i,∗
2 , y−i,∗

2 ) solves the
following non-convex optimization problem and conversely.

min
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i
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gi2(y1, y

i
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μi gi2(y1, y
i
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λh2(y1, y
i
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−i
2 ) = 0

λ,μi ≥ 0, i = 1, 2, . . . , I

The description given above shows that problem (2.3) and (2.2) are equivalent to problem
(2.1). The following discussion gives a good understanding on the relation between single
follower bilevel programming problems and bilevel programs with multiple followers based
on the above results.

Now let us consider the following bilevel program with single follower:

min
y1

F
(
y1, y

i
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)
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h2
(
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i
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−i
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Note that the terms f i2 (y1, y
−i
2 ) for i = 1, 2, . . . , I are omitted in problem (2.4) because,

they are constant functions with respect to yi2 at the followers problem in (2.1) and hence
they do not contribute to the optimization process.
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Here again let us define some sets corresponding to problem (2.4) as follows:

(a) The set S = Ω is the feasible set of problem (2.4)

(b) The set SL(y1) = {(yi2, y−i
2 ) : gi2(y1, yi2) ≤ 0, h2(y1, yi2, y

−i
2 ) ≤ 0, i = 1, 2, . . . , I }

defines the feasible set of the second level problem in (2.4).

(c) The set Ψ (y1) =
{
(yi2, y

−i
2 ) : (yi2, y

−i
2 ) ∈ argmin

{[∑I
i=1

1
ρi f

i
2 (y1, y

i
2)
]

+ f̃ (y1, yi2, y
−i
2 ) : (yi2, y

−i
2 ) ∈ SL(y1)

}}
is the rational reaction set of the second level

decision maker in problem (2.4)

(d) The set IRS = {(y1, yi2, y−i
2 ) : (y1, yi2, y

−i
2 ) ∈ Ω, (yi2, y

−i
2 ) ∈ Ψ (y1)} denotes the

inducible region.

Based on the definitions of sets given above, a bilevel programming problem (2.4) can be
rewritten as:

min
y1

F
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i
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2

)

s.t.
(
y1, y

i
2, y
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2

)
∈ IRS (2.5)

Theorem 2.1 Problem (2.1) is equivalent to problem (2.4).

Proof In order to prove the equivalence of the two problems it is enough to show IR = IRS ,
because the objective functions in (2.2) and (2.5) are identically similar. To this end, let
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2 ) ∈ IR. Hence, (ȳ1, ȳi2, ȳ
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2 ), i = 1, 2, . . . , I.
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But, since (y∗i
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that,
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+ ρi f̃

(
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⇒ 1
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2 , ȳ−i
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Which contradicts inequality (2.6). Hence, (ȳ1, ȳi2, ȳ
−i
2 ) ∈ IRS .

Conversely, let (ȳ1, ȳi2, ȳ
−i
2 ) ∈ IRS . This implies that, (ȳ1, ȳi2, ȳ

−i
2 ) ∈ Ω , (ȳ1, ȳi2, ȳ

−i
2 ) ∈

SL(ȳ1), and ȳi2 ∈ Ωi (ȳ1, ȳ
−i
2 ), i = 1, 2, . . . , I. If there exist at least one j ∈ {1, 2, . . . , I }

such that ȳ j
2 /∈ RR j

2 (ȳ1, ȳ
− j
2 ), then ∃y∗ j

2 ∈ Ω j (ȳ1, ȳ
− j
2 ) such that the following holds;

f j
2

(
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∗ j
2

)
+ f j

2

(
ȳ1, ȳ

− j
2

)
+ ρ j f̃
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∗ j
2 , ȳ− j

2
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2
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2

)
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ȳ1, ȳ

j
2 , ȳ− j

2

)
(2.7)
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where y∗ j
2 refers to an optimal solution of the j th follower problem in (2.1) for y1 = ȳ1. But,

since (ȳ1, y
∗ j
2 , ȳ− j

2 ) ∈ SL(ȳ1) and (ȳ1, ȳ
j
2 , ȳ− j

2 ) is an optimal solution to the second level of
problem (2.4) for y1 = ȳ1, then we have
⎡
⎣

I∑
j=1

1

ρ j
f j
2

(
ȳ1, ȳ

j
2

)⎤⎦+ f̃
(
ȳ1, ȳ

j
2 , ȳ− j

2

)
≤ 1

ρ1 f 12
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ȳ1, ȳ

1
2

)+ 1

ρ2 f 22
(
ȳ1, ȳ

2
2

)

+ · · · + 1

ρ j
f j
2
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ȳ1, y

∗ j
2

)

+ · · · + 1

ρ I
f I2

(
ȳ1, ȳ

I
2

)
+ f̃

(
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∗ j
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)

This implies, 1
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j
2 (ȳ1, ȳ

j
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2 (ȳ1, ȳ

− j
2 ) + f̃ (ȳ1, ȳ

j
2 , ȳ− j

2 ) ≤ 1
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1
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j
2 (ȳ1, ȳ

− j
2 ) + f̃ (ȳ1, y

j∗
2 , ȳ− j

2 ), which contradicts equation (2.7). Hence, (ȳ1, ȳi2, ȳ
−i
2 ) ∈

IR
Alternative Proof:On the other hand, it is enough to see problem (2.4) has a form similar

to problem (2.3). Now since, the follower’s problem are all convex and the constraints in (2.4)
are assumed to satisfy the Guignard constraint qualifications at yi2, the Karush-Kuhn-Tucker
conditions can be used to obtain

min
x

F
(
y1, y

i
2, y

−i
2

)

s.t. G
(
y1, y

i
2, y

−i
2

)
≤ 0 (2.8)

∇yi2

1

ρi
f i2

(
y1, y

i
2

)
+ ∇yi2

f̃
(
y1, y

i
2, y

−i
2

)
+ λ∇yi2

h2
(
y1, y

i
2, y

−i
2

)
+ μi∇yi2

gi2

(
y1, y

i
2

)
= 0

λh2
(
y1, y

i
2, y

−i
2

)
= 0, λ ≥ 0,

μi gi2

(
y1, y

i
2

)
= 0, μi ≥ 0

Since ρ > 0 and λρ = λ0 ≥ 0, we can reformulate problem (2.8) as

min
x

F
(
y1, y

i
2, y

−i
2

)

s.t. G
(
y1, y

i
2, y

−i
2

)
≤ 0 (2.9)

∇yi2
f i2

(
y1, y

i
2

)
+ ∇yi2

ρi f̃
(
y1, y

i
2, y

−i
2

)
+ ρiλ∇yi2

h2
(
y1, y

i
2, y

−i
2

)
+ μiρi∇yi2

gi2

(
y1, y

i
2

)
= 0

λρi h2
(
y1, y

i
2, y

−i
2

)
= 0, λρi ≥ 0

μiρi gi2

(
y1, y

i
2

)
= 0, μiρi ≥ 0

Now by setting λ0 = ρλ and ηi = μiρi , we see that (2.9) is equivalent to problem (2.3)
with Lagrange multipliers λ0 and ηi . 
�
2.2 Relation between classes of trilevel programming problems with multiple

followers and hierarchical trilevel programming problems

Consider the following trilevel programming problem with multiple followers at the two
lower levels and in which the followers objective functions have the form as discussed in
Sect. 2.1. That is:
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min
y1∈Y1

F
(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)

s.t. G
(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)
≤ 0

min
yi2∈Y i

2

{
f i2

(
y1, y

i
2, y

j
3 , y− j

3

)
+ f i2

(
y1, y

−i
2 , y j3 , y− j

3

)
+ ρi f i2

(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)}
,

s.t. gi2

(
y1, y

i
2, y

j
3 , y− j

3

)
≤ 0, (2.10)

h2
(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)
≤ 0, i ∈ {1, 2, . . . , I }

min
y j3∈Y j

3

{
f j3

(
y1, y

i
2, y

−i
2 , y j3

)
+ f j3

(
y1, y

i
2, y

−i
2 , y− j

3

)
+ δ j f j3

(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)}
,

s.t. g j
3

(
y1, y

i
2, y

−i
2 , y j3

)
≤ 0,

h3
(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)
≤ 0, j ∈ {1, 2, . . . , J }

A1: Assume that each of the objective functions is convex with respect to its own deci-
sion variable vector for the third and second level followers and the Guignard constraint
qualifications hold for the followers constraints.

To proceed the presentation let us define the following sets,

1. The set

Ω3

(
y1, y

i
2, y

−i
2 , y− j

3

)
=
{
y j
3 ∈ Y j

3 : g j
3

(
y1, y

i
2, y

−i
2 , y j

3

)
≤ 0, h3

(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
≤ 0

}

is called a feasible set for the third level followers problem.
2. The set of parametric solutions defined by,

Ψ3

(
y1, y

i
2, y

−i
2 , y− j

3

)
=
{
ȳ j
3 ∈ Y j

3 : ȳ j
3 ∈ argmin

{
f j
3

(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
:

y j
3 ∈ Ω3

(
y1, y

i
2, y

−i
2 , y− j

3

)}
, j = 1, 2, . . . , J

}

is called the rational reaction set for the third level followers problem.
3. The set

Ω2

(
y1, y

−i
2

)
=
{(

yi2, y
j
3 , y− j

3

)
∈ Y i

2 × Y j
3 × Y− j

3 : g2
(
x1, x2, x3

) ≤ 0,

g j
3

(
y1, y

i
2, y

−i
2 , y j

3

)
≤ 0, h3

(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
≤ 0,

y j
3 ∈ Ψ3

(
y1, y

i
2, y

−i
2 , y− j

3

)}

is called a feasible set for the second level problem.
4. The set of solutions

Ψ2

(
y1, y

−i
2

)
=
{(

yi2, y
j
3 , y− j

3

)
∈ Y i

2 × Y j
3 × Y− j

3 :
yi2 ∈ argmin

{
f i2

(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
:

(
yi2, y

j
3 , y− j

3

)
∈ Ω2

(
y1, y

−i
2

)
, i = 1, 2, . . . , I

}}

is called the rational reaction set for the second level followers problem.
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5. The set

Φ =
{(

y1, y
i
2, y

−i
2 , y j

3 , y− j
3

)
: g j

3

(
y1, y

i
2, y

−i
2 , y j

3

)
≤ 0, h3

(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
≤ 0,

gi2

(
y1, y

i
2, y

−i
2 , y j

3

)
≤ 0, h2

(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
≤ 0,

G
(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
≤ 0

}
(2.11)

is called the feasible set of problem (2.10)
6. The region

IR =
{(

y1, y
i
2, y

−i
2 , y j

3 , y− j
3

)
:
(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)

∈ Φ,
(
yi2, y

−i
2 , y j

3 , y− j
3

)
∈ Ψ2

(
y1, y

−i
2

)}

is called the inducible region

Considering the above sets, problem (2.10) could be rewritten as:

min
y1∈Y1

F
(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)

s.t.
(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
∈ IR (2.12)

Consider the following hierarchical trilevel programming problem having single decision
maker at each decision level:

min
y1∈Y1

F
(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)

s.t. G
(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)
≤ 0

min
yi2,y

−i
2

⎧
⎨
⎩

⎡
⎣

I∑
i=1

1

ρi
f i2

(
y1, y

i
2, y

j
3 , y− j

3

)⎤
⎦+ f̃2

(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)
⎫
⎬
⎭ (2.13)

s.t gi2

(
y1, y

i
2, y

j
3 , y− j

3

)
≤ 0, (i = 1, 2, . . . , I )

h2
(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)
≤ 0

min
y j
3 ,y− j

3

⎧
⎨
⎩

⎡
⎣

J∑
j=1

1

δ j
f j3

(
y1, y

i
2, y

−i
2 , y j3

)
⎤
⎦+ f̃3

(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)
⎫
⎬
⎭

s.t g j
3

(
y1, y

i
2, y

−i
2 , y j3

)
≤ 0, ( j = 1, 2, . . . , J )

h3
(
y1, y

j
2 , y− j

2 , y j3 , y− j
3

)
≤ 0

In problem (2.13) the terms f i2 (y1, y
−i
2 , y j

3 , y− j
3 ) and f3(y1, yi2, y

−i
2 , y− j

3 ) at the second and

third level respectively are omitted because, they are constant with respect to yi2 and y
j
3 which

means they do not contribute to the optimal decision at the i th and j th followers of the second
and third level in problem (2.10)

Similarly, we can define some sets related to problem (2.13) as follows:
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1. The set

ϕ3

(
y1, y

i
2, y

−i
2

)
=
{(

y j
3 , y− j

3

)
∈ Y j

3 × Y− j
3 :

g j
3

(
y1, y

i
2, y

−i
2 , y j

3

)
≤ 0,

h3
(
y1, y

j
2 , y− j

2 , y j
3 , y− j

3

)
≤ 0, ( j = 1, 2, . . . , J )

}

is called a feasible set for the third level.
2. The set of parametric solutions defined by,

ψ3

(
y1, y

i
2, y

−i
2

)
=
⎧
⎨
⎩
(
y j3 , y− j

3

)
∈ Y j

3 × Y− j
3 :

(
y j3 , y− j

3

)

∈ argmin

⎧⎨
⎩

⎡
⎣

J∑
j=1

1

δ j
f j3

(
y1, y

i
2, y

i
2, y

j
3

)
⎤
⎦

+ f̃3
(
y1, y

i
2, y

−i
2 , y j3 , y− j

3

)
:
(
y j3 , y− j

3

)
∈ ϕ3

(
y1, y

i
2, y

−i
2

)
⎫
⎬
⎭

⎫
⎬
⎭

is called the rational reaction set for the third level.
3. The set

ϕ2(y1) =
{(

yi2, y
−i
2 , y j

3 , y− j
3

)
∈ Y i

2 × Y−i
2 × Y j

3 × Y− j
3 :

gi2

(
y1, y

i
2, y

j
3 , y− j

3

)
≤ 0, h2

(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
≤ 0,

g j
3

(
y1, y

i
2, y

−i
2 , y j

3

)
≤ 0, h3

(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
≤ 0,

(
y j
3 , y− j

3

)
∈ ψ3

(
y1, y

i
2, y

−i
2

)}

is called a feasible set for the second level problem.
4. The set of solutions

ψ2(y1) =
{(

yi2, y
−i
2 , y j

3 , y− j
3

)
∈ Y i

2 × Y−i
2 × Y j

3 × Y− j
3 :

(
yi2, y

−i
2

)
∈ argmin

{
I∑

i=1

1

ρi
f i2

(
y1, y

i
2, y

j
3 , y− j

3

)

+ f̃2
(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
:
(
yi2, y

−i
2 , y j

3 , y− j
3

)
∈ ϕ2(y1)

}}

is called the rational reaction set for the second level, for Xi ⊆ Rni , i = 1, 2, 3.
5. The set � = Φ (which is defined in Equation (2.11)) is the feasible set for problem

(2.13).
6. The set IR3 = {(y1, yi2, y−i

2 , y j
3 , y− j

3 ) : (y1, yi2, y
−i
2 , y j

3 , y− j
3 )∈�, (yi2, y

−i
2 , y j

3 , y− j
3 )∈

ψ2(y1)}
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Using the definitions described above, the hierarchical problem (2.13) can be rewritten as
follows:

min F
(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)

s.t
(
y1, y

i
2, y

−i
2 , y j

3 , y− j
3

)
∈ IR3 (2.14)

Theorem 2.2 Problem (2.14) and (2.12) are equivalent.

Proof Let (ȳ1, ȳi2, ȳ
−i
2 , ȳ j

3 , ȳ− j
3 ) ∈ IR3. This implies (ȳi2, ȳ

−i
2 ) and (ȳ j

3 , ȳ− j
3 ) minimizes

the second and third level problems in (2.13) respectively. Let (ȳ1, ȳi2, ȳ
−i
2 , ȳ j

3 , ȳ− j
3 ) /∈ IR,

then there exist at least one k ∈ {1, 2, . . . , J } and p ∈ {1, 2, . . . , I }, respectively, such that
ȳk3 /∈ Ψ3(ȳ1, ȳi2, ȳ

−i
2 , ȳ−k

3 ) and ȳ p2 /∈ Ψ2(ȳ1, ȳ
−p
2 ). This implies the following:

f k3

(
ȳ1, ȳ

i
2, ȳ

−i
2 , y∗k

3

)
+ f k3

(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳ−k

3

)

+δk f̃3
(
ȳ1, ȳ

i
2, ȳ

−i
2 , y∗k

3 , ȳ−k
3

)
< f k3

(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳk3

)
(2.15)

+ f k3

(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳ−k

3

)

+δk f̃3
(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳk3 , ȳ

−k
3

)

and

f p2

(
ȳ1, y

∗p
2 , ȳ j

3 , ȳ− j
3

)
+ f p2

(
ȳ1, ȳ

−p
2 , ȳ j

3 , ȳ− j
3

)

+ρ p f̃2
(
ȳ1, y

∗p
2 , ȳ−p

2 , ȳ j
3 , ȳ− j

3

)
< f p2

(
ȳ1, ȳ

p
2 , ȳ j

3 , ȳ− j
3

)
(2.16)

+ f p2

(
ȳ1, ȳ

−p
2 , ȳ j

3 , ȳ− j
3

)

+ρ p f̃2
(
ȳ1, ȳ

p
2 , ȳ−p

2 , y j
3 , ȳ− j

3

)

where, y∗k
3 and y∗p

2 are optimal solutions for the third level (kth follower) and second
level (pth follower) respectively. Since y∗k

3 minimizes the kth follower problem of the third
level, we have y∗k

3 ∈ Ψ3(ȳ1, ȳi2, ȳ
−i
2 , y−k

3 ) which implies y∗k
3 ∈ ϕ3(ȳ1, ȳi2, ȳ

−i
2 ) and hence,

(y∗k
3 , ȳ−k

3 ) ∈ ϕ3(ȳ1, ȳi2, ȳ
−i
2 ) and similarly, (y∗p

2 , ȳ−p
2 , ȳ j

3 , ȳ− j
3 ) ∈ ϕ2(ȳ1) aswell.Moreover,

we know that (ȳ j
3 , ȳ− j

3 ) is an optimal solution to the third level subproblem in (2.13) for a
given point (ȳ1, ȳi2, ȳ

−i
2 ), then we have the following

[
J∑

k=1

1

δk
f k3

(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳk3

)]

+ f̃3
(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳk3 , ȳ

−k
3

)
≤ 1

δ1
f 13

(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳ13

)
+ 1

δ2
f 23

(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳ23

)
(2.17)

+ · · · + 1

δk
f k3

(
ȳ1, ȳ

i
2, ȳ

−i
2 , y∗k

3

)
+ · · · + 1

δ J
f J3

(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳ J3

)

+ f̃3
(
ȳ1, ȳ

i
2, ȳ

−i
2 , y∗k

3 , ȳ−k
3

)
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which implies

1

δk
f k3

(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳk3

)
+ 1

δk
f k3

(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳ−k

3

)

+ f̃3
(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳk3 , ȳ

−k
3

)
≤ 1

δk
f k3

(
ȳ1, ȳ

i
2, ȳ

−i
2 , y∗k

3

)

+ 1

δk
f k3

(
ȳ1, ȳ

i
2, ȳ

−i
2 , ȳ−k

3

)

+ f̃3
(
ȳ1, ȳ

i
2, ȳ

−i
2 , y∗k

3 , ȳ−k
3

)

which contradicts equation (2.15) and hence (ȳ1, ȳi2, ȳ
−i
2 , ȳ j

3 , ȳ− j
3 ) ∈ IR .

Similarly, if (ȳi2, ȳ
−i
2 ) is an optimal solution to the second level subproblem in (2.13), then

we have the following

⎡
⎣

I∑
p=1

1

ρ p
f p2

(
ȳ1, ȳ

p
2 , ȳ j

3 , ȳ− j
3

)
⎤
⎦

+ f̃2
(
ȳ1, ȳ

−p
2 , ȳ j

3 , ȳ− j
3

)
≤ 1

ρ1 f 12

(
ȳ1, ȳ

1
2 , ȳ

j
3 , ȳ− j

3

)
+ 1

ρ2 f 22

(
ȳ1, ȳ

2
2 , ȳ

j
3 , ȳ− j

3

)
(2.18)

+ · · · + 1

ρ p
f p2

(
ȳ1, y

∗p
2 , ȳ j

3 , ȳ− j
3

)
+ · · · + 1

ρ I
f I2

(
ȳ1, ȳ

I
2 , ȳ j

3 , ȳ− j
3

)

+ f̃2
(
ȳ1, y

∗p
2 , ȳ−p

2 , ȳ j
3 , ȳ− j

3

)

which implies

1

ρ p
f p2

(
ȳ1, ȳ

p
2 , ȳ j

3 , ȳ− j
3

)
+ 1

ρ p
f p2

(
ȳ1, ȳ

−p
2 , ȳ j

3 , ȳ− j
3

)

+ f̃2
(
ȳ1, ȳ

p
2 , ȳ−p

2 , ȳ j
3 , ȳ− j

3

)
≤ 1

ρ p
f p2

(
ȳ1, ȳ

p∗
2 , y j

3 , ȳ− j
3

)

+ 1

ρ p
f p2

(
ȳ1, ȳ

−p
2 , ȳ j

3 , ȳ− j
3

)

+ f̃2
(
ȳ1, y

p∗
2 , ȳ−p

2 , ȳ j
3 , ȳ− j

3

)

which contradicts (2.16) and hence (ȳ1, ȳi2, ȳ
−i
2 , ȳ j

3 , ȳ− j
3 ) ∈ IR. 
�

Remark 1 The alternative proof we described in Theorem 2.1 which is common in literature
(see for instance [28]) does not work for the proof of Theorem 2.2. Moreover, the Lagrange
multipliers of the third level followers are considered as shared variables for the second level
followers. Further, the reformulated problem will be non-convex due to the complementar-
ity condition. As a consequence, the resulting non-convex bilevel program with multiple
followers may not have a Nash equilibrium reaction solution.

Remark 2 The idea described above can be extended to any finite k-level optimization prob-
lem with multiple followers while the objective function at each level has similar form as in
problem (2.10).
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3 Solution procedure

In this section we suggest an appropriate solution method to solve the resulting multilevel
programwith a single follower at each decision level. And we introduce a pseudo algorithmic
approach to solve some classes of multilevel programs with multiple followers.

Step 1. Reduce the given multilevel program with multiple followers equivalently into mul-
tilevel program having only single follower at each decision level as discussed in
Sect. 2

Step 2. If the followers objective functions aswell as the commonconstraint (h) are separable
(i.e., both have a form like f cm(y1, ycm, y−c

m ) = f cm(y1, ycm) + f cm(y1, y−c
m ), where

m = 2, 3, . . . , k; c = i, j, . . . , l) and convex functions with respect to their own
decision variables at each decision level, the reduced problem has convex follower
at each decision level. In this case, we should apply one of the proposed algorithms
described in [16,23,24,30,31,38]. However, these approaches are suitable for bilevel
programming problems and it seems too difficult to extend such an approach beyond
two levels, because of the non-convex constraints introduced due to complementarity
conditions. For general k-level multilevel programming problems having convex
quadratic objective function and affine constraints at each decision level, we should
use the algorithm proposed by Faísca et al. [17].

Step 3. However, we may have implicit formulation at the objective functions of followers
keeping convexity in its own decision variable. In this case, the resulting equivalent
multilevel program with single follower (as in Sect. 2.2) is non-convex because the
problem is optimized over the whole variables as can be seen in (2.4) and (2.13). And
hence, we can apply the algorithm proposed in [21] for the bilevel case. However,
here again it seems difficult to extend such an approach to general k-level multilevel
programming problems because of the non-convex constraints introduced due to
complementarity conditions. As a result, one should apply the algorithm proposed
in [27] for general k-level programming problems with polyhedral constraints. In
this paper the latest algorithm is implemented for the examples in the next section.
Though the detail procedures of the algorithm is described in [27], here some basic
steps are described.

Basic steps of the proposed algorithm
Given a k-level optimization problem with multiple followers as in equation (1.1) where

the constraints at each level are polyhedral. Then to solve this problem we proceed as in the
follows steps:

(i) Convert the problem into its equivalent k-level problemwith single follower as described
in Sect. 2.2.

(ii) Consider the kth level optimization problemof the converted problem in step (i) above as
multi-parametric programming problem where, the variables from upper level decision
makers are considered as parameters. Reduce it into standard non-convex optimization
problem by fixing a feasible value to the parameters.

(iii) Find a tight underestimator sub-problem using the branch-and-bound algorithm
(described in [27]) and apply a multi-parametric programming approach to obtain a
parametric solution and corresponding parametric regions in which the obtained solu-
tions remain optimal. Repeat (i) and (ii) until the entire parametric region has been
explored successfully.

(iv) Incorporate the solutions and the corresponding regions into the (k − 1)-level problem
and again consider it as a multi-parametric programming problem where, the upper
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levels’ decision variables are considered as parameters. Repeating the above procedures
[(i), (ii) and (iii)] one can reach at the leader’s optimization problem.

4 Numerical experiment

Example 1 Consider the following linear bilevel program with three followers

min
x

F(x, y1, y2, y3) = −x − y1 − 2y2 − y3

s.t. (y1, y2, y3) solve{
min
y1

f1(x, y1, y2, y3) = x − 3y1 + y2 + y3,

min
y2

f2(x, y1, y2, y3) = x + y1 − 3y2 + y3,

min
y3

f3(x, y1, y2, y3) = x + y1 + y2 − 3y3
}

s.t 3x + 3y1 ≤ 30 (4.1)

2x + y1 ≤ 20, y2 ≤ 10

y2 + y3 ≤ 15, y3 ≤ 10

x + 2y1 + 2y2 + y3 ≤ 40

x, y1, y2, y3 ≥ 0

The problem in this example is relatively simple. Since each of the three followers are sep-
arable functions and hence the resulting equivalent bilevel programm with a single follower
is also simple which can be formulated as follows:

min
x

F(x, y1, y2, y3) = −x − y1 − 2y2 − y3

s.t min
y1,y2,y3

f (x, y1, y2, y3) = 3x − 3y1 − 3y2 − 3y3

s.t 3x + 3y1 ≤ 30

2x + y1 ≤ 20, y2 ≤ 10 (4.2)

y2 + y3 ≤ 15, y3 ≤ 10

x + 2y1 + 2y2 + y3 ≤ 40

x, y1, y2, y3 ≥ 0

Reformulating the follower’s decision maker in problem (4.2) as a parametric programming
problem where, x is considered as a parameter, it can be formulated as,

min
y1,y2,y3

f (x, y1, y2, y3) = 3x − 3y1 − 3y2 − 3y3

s.t 3x + 3y1 ≤ 30

2x + y1 ≤ 20, y2 ≤ 10 (4.3)

y2 + y3 ≤ 15, y3 ≤ 10

x + 2y1 + 2y2 + y3 ≤ 40

x, y1, y2, y3 ≥ 0

Since problem (4.3) is linear, there is no need of convexification of the problem and one
can solve it globally as discussed in [16,17]. As a result, we have solved problem (4.3) and
obtained a parametric solution described as follows:
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CRR
1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y∗(x) =
⎡
⎣
10 − x
x + 5
10 − x

⎤
⎦

x ≤ 10
−x ≤ 0

(4.4)

and problem (4.3) is infeasible for x > 10, because if x > 10 the inequality, 3x + 3y1 ≤ 30
can not be satisfied unless y1 < 0, but the fact is that all the y values are assumed to be
non-negative.

Incorporate the expression (4.4) into the leader’s problem to obtain a single level con-
vex optimization problem. Solving the resulting problem we arrive at the following result
(x, y1, y2, y3) = (5, 5, 10, 5) with F = −35 corresponding to CRR

1 which is similar to the
result reported in [17].

Example 2 The second test problem is a bilevel program with two followers having bilinear
forms as described here below:

max
x

F(x, y1, y2) = 7x + 5y1 + 8y2

s.t (y1, y2) solves{
max
y1

f1(x, y1, y2) = −2y21 − 2y1y2 + 3y1,

max
y2

f2(x, y1, y2) = −y1y2 − y22 + 6y2
}

(4.5)

s.t x + y1 + y2 ≤ 3, − x + y1 ≤ 0

x − y1 − y2 ≤ 1, y1 + y2 ≤ 2

x, y1, y2 ≥ 0

The followers’ objectives in problem (4.5) can be reduced to a single follower by multiplying
f1 by 1

2 and add it with the separable part of f2 to get

f (x, y1, y2) = −y21 + 3

2
y1 − y22 + 6y2 − y1y2,

as the resulting nonseparable term −y1y2 becomes common to both the followers. Then, the
above problem can be reformulated as minimization problem as follows,

min
x

F(x, y1, y2) = −7x − 5y1 − 8y2

s.t min
y1,y2

f (x, y1, y2) = y21 + y1y2 − 3

2
y1 + y22 − 6y2

s.t x + y1 + y2 ≤ 3, − x + y1 ≤ 0 (4.6)

x − y1 − y2 ≤ 1, y1 + y2 ≤ 2

x, y1, y2 ≥ 0

Problem (4.6) has a single follower with quadratic and bilinear formulation at the objective
function. This formulation can result in multiple Nash equilibrium reaction for at least one
feasible choice of the leader’s problem. To overcome this ambiguity we should apply a
mathematical procedure described in [27]. Hence, one can treat the follower’s problem as a
parametric programming problem by considering x as a parameter and it can be described
as follows,
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min
y1,y2

f (x, y1, y2) = y21 + y1y2 − 3

2
y1 + y22 − 6y2

s.t x + y1 + y2 ≤ 3, − x + y1 ≤ 0 (4.7)

x − y1 − y2 ≤ 1, y1 + y2 ≤ 2

x, y1, y2 ≥ 0

Solving problem (4.7) using the algorithm proposed in [27], one can obtain the following
approximate parametric solutions with corresponding critical regions,

CRR
1 =

⎧⎪⎪⎨
⎪⎪⎩

y∗(x) =
[−0.5x + 0.75
2.25 − 0.5x

]

x ≤ 2
x ≥ 1

and CRR
2 =

⎧⎪⎪⎨
⎪⎪⎩

y∗(x) =
[
0
2

]

x ≤ 1
x ≥ 0

and problem (4.7) is infeasible for x > 2. Incorporating each of the above solution expres-
sions into the leader’s problem, one can get two bounded optimization problems. After
solving the resulted problems, we have got best solution (x, y1, y2) = (1, 0, 2) with corre-
sponding values F = 23, f1 = 0, and f2 = 8 which is a similar (even it is better in terms
of the followers response) solution as compared to the result reported in [36], which was,
F = 22.5, f1 = 0, and f2 = 6.75.

Example 3 Consider the following bilevel program involving two followers at the second
level which have advanced nonlinear formulations than the two examples discussed above,

min
x

F(x, y1, y2) = −x − y1 − 2y2

s.t (y1, y2) solves
{
min
y1

f1(x, y1, y2) = 1

4
y21 − 7

4
y1 − 3y2 + 3

4
y22 + 3

5
y1y2 + 3

5
y1e

y2 ,

min
y2

f2(x, y1, y2) = 2y22 − 1

8
y2 + y31 + 8

3
y1y2 + 8

3
y1e

y2
}

(4.8)

s.t x + y1 − y2 ≤ 3, − x − y1 + y2 ≤ 4

x − y1 − y2 ≤ 1, 2x − y1 + y2 ≤ 2

−2 ≤ x ≤ 1

2
, 0 ≤ y1 ≤ 1

2
, 1 ≤ y2 ≤ 2

The non-separable terms in f1 have coefficient 3
5 and the same terms in f2 have coefficient

8
3 . To combine the two followers’ objective functions we multiply f1 by 5

3 and f2 by 3
8

and add the separable terms. (Note that, the non-minimizing variables of the objectives that
come from problems of the same level are omitted in the combination process.) Now using
this procedure, the followers in (4.8) can be reduced to the following standard parametric
optimization problem. (See Sect. 2.1 for the details.)

min
y1,y2

{
5

12
y21 − 35

12
y1 + 3

4
y22 − 3y2 + y1y2 + y1e

y2

}

s.t x + y1 − y2 ≤ 3, − x − y1 + y2 ≤ 4 (4.9)

x − y1 − y2 ≤ 1, 2x − y1 + y2 ≤ 2

−2 ≤ x ≤ 1

2
, 0 ≤ y1 ≤ 1

2
, 1 ≤ y2 ≤ 2
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Solving problem (4.9) using the proposed algorithm in [27], we have got the following
parametric solutions with the corresponding critical regions,

CRR
1 =

⎧
⎪⎪⎨
⎪⎪⎩

y∗(x) =
[
0.25 − 7.4461 × 10−9x
5.4883 × 10−9x + 1.2502

]

x ≤ 0
−x ≤ 2

, and CRR
2 =

⎧
⎪⎪⎨
⎪⎪⎩

y∗(x) =
[
1.1263x − 0.3132
1.6868 − 0.8737x

]

x ≥ 0
x ≤ 1

2

which can be incorporated into the leader’s problem of (4.8) and solved globally to obtain
best solution (x, y1, y2) = (0.5, 0.24995, 1.24995) with F = −3.24985.

Example 4 Consider the following trilevel program with multiple followers:

min
x

F(x, y1, y2, y3, z1, z2) = −5x1 + 0.1x22 − 3y1 − 4y2 + 0.05y21 + 0.005y22

s.t (y1, y2, z1, z2) solves
{
min
y1

f 12 (x, y1, y2, z1, z2) = 1

2
ey

2
1 + 1

2
y1y2 − 1

2
z2 + 1

2
x2 − y22 + y2,

min
y2

f 22 (x, y1, y2, z1, z2) = 1

2
y22 + 1

2
y1y2 − 6y1 − 2x1

}

s.t − 2y1 − 2y2 − 1

2
x1 ≤ 0 (4.10)

y1 − 3x1 − 2y2 ≤ 6
{
min
z1

f 13 (x, y1, y2, z1, z2) = 1

2
z21 + 1

2
z1z2 − 1

2
x1z1 − z22,

min
z2

f 23 (x, y1, y2, z1, z2) = 1

2
z22 + 1

2
z1z2 + 1

2
y2z2 + z21 − 6z1

}

s.t − 2z1 + z2 + x1 − 0.5y1 − y2 ≤ 0

0.5y1 − z1 − 3z2 − 2x2 − x1 ≤ 0

0 ≤ z1, z2 ≤ 1,−0.5 ≤ y1 ≤ 0.5

0 ≤ x2, y2 ≤ 1,−1 ≤ x1 ≤ 0.2

As discussed in Sect. 2.2 and outlined in the solution of Example 3 above, problem (4.10)
can be reduced to an equivalent trilevel programming problem with single follower at each
level and is described as follows:

min
x

F(x, y1, y2, y3, z1, z2) = −5x1 + 0.1x22 − 3y1 − 4y2 + 0.05y21 + 0.005y22

min
y1,y2

f2(x, y1, y2, z1, z2) = ey
2
1 + y22 + y1y2 − z2 + x2 − 4x1

s.t − 2y1 − 2y2 − 1

2
x1 ≤ 0 (4.11)

y1 − 3x1 − 2y2 ≤ 6

min
z1,z2

f3(x, y1, y2, z1, z2) = z21 + z22 + z1z2 − x1z1 + y2z2

s.t − 2z1 + z2 + x1 − 0.5y1 − y2 ≤ 0

0.5y1 − z1 − 3z2 − 2x2 − x1 ≤ 0

0 ≤ z1, z2 ≤ 1,−0.5 ≤ y1 ≤ 0.5

0 ≤ x2, y2 ≤ 1,−1 ≤ x1 ≤ 0.2
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After solving problem (4.11) using the method suggested in Sect. 3 one can get an opti-
mal solution (x1, x2, y1, y2, z1, z2) = (0.2000, 0.0048, 0.2500, 0.5000, 0.5500, 0.1000),
with corresponding objective values, F = −3.7456, ( f 12 , f 22 ) = (0.797147,−1.7125) and
( f 13 , f 23 ) = (0.11375,−2.94).

5 Conclusion

In this paper we identified a class of nonlinear multilevel programs with multiple followers
which can be reduced to multilevel programs with single follower at each decision level in
the hierarchy. Moreover, we have reformulated some classes of multilevel programs with
multiple followers as an equivalent multilevel programs having single follower at each level
in the hierarchy. We have shown that the two problems are equivalent, in the sense that they
have the same solution. In this process, the resulting multilevel program with single follower
at each level may have non-convex formulation even if each of the followers are convex
with respect to their own decision variables. Therefore, we have identified suitable solution
approach to the reformulated multilevel programming problem, especially for problems with
polyhedral constraints. The proposed approach has been successfully implemented and tested
using different illustrative examples with polyhedral constraints at each level of the hierarchy.
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