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Abstract The problem of packing ellipsoids is considered in the present work. Usually, the
computational effort associated with numerical optimization methods devoted to packing
ellipsoids grows quadratically with respect to the number of ellipsoids being packed. The
reason is that the number of variables and constraints of ellipsoids’ packing models is asso-
ciated with the requirement that every pair of ellipsoids must not overlap. As a consequence,
it is hard to solve the problem when the number of ellipsoids is large. In this paper, we
present a nonlinear programming model for packing ellipsoids that contains a linear number
of variables and constraints. The proposed model finds its basis in a transformation-based
non-overlapping model recently introduced by Birgin et al. (J Glob Optim 65(4):709–743,
2016). For solving large-sized instances of ellipsoids’ packing problems with up to 1000
ellipsoids, a multi-start strategy that combines clever initial random guesses with a state-of-
the-art (local) nonlinear optimization solver is presented. Numerical experiments show the
efficiency and effectiveness of the proposed model and methodology.
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1 Introduction

Ellipsoids’ packing techniques are important tools for several physical-chemistry and con-
densed matter physics applications (see [20–24,35] and the references therein). In a robotic
problem addressed in [18], a robot arm and other elements in a scene are approximated by
three-dimensional ellipsoids and it allows the authors to explore the relation between the
overlapping of ellipsoids and the overlapping of free-form objects. In [4,20], simulation
techniques are employed to study the properties of random packings of ellipsoids. In both
works, rectangular boxes with periodic boundaries are considered in order to simulate the
three-dimensional infinite space, and properties like density, orientation, and contacts among
the ellipsoids are analyzed.

In the last few decades, many works [5,7,14–16,19,29,41–44] addressed the problem
of packing non-overlapping spheres in the n-dimensional space within a variety of fixed-
or variable-dimensions containers of different shapes by means of nonlinear programming
(NLP) models and methods. However, to the best of our knowledge, only eight very recent
works [8,25,30–33,38,40] have considered the problem of packing non-overlapping ellipses,
spheroids, or ellipsoids using nonlinear programming models and optimization techniques.

In 2013, the problem of packing as many identical ellipses as possible within a rectangular
container was considered in [25]. By restricting the ellipses to have their semi-axes parallel to
the Cartesian axes and allowing the centers of the ellipses to belong to a finite set of points in
the plane (grid), the problem was modelled as a mixed-integer linear programming problem
(MILP). As expected, only small instances of the MILP model could be solved to optimality
within an affordable time.

In 2014, the problem of packing a given set of (non-necessarily identical) freely-rotated
ellipses within a rectangle of minimum area was considered [31]. The non-overlapping
between the ellipses was modelled using the idea of separating lines. State-of-the-art global
optimization solvers were able to find solutions for instances with up to 14 ellipses. For
instances with up to 100 ellipses, the authors presented solutions obtained by a constructive
heuristic method. The same problemwas addressed in [40]. The problemwasmodelled using
“quasi-phi-functions” that is an extension of the phi-functions [17] extensively and success-
fully used to model a large variety of complicated packing problems. As well as in [31],
the non-overlapping between ellipses was modelled based on the idea of separating lines.
Models were tackled by a local optimization solver combined with ad hoc initial points and
a multi-start strategy. Most of the solutions presented in [31] were improved in [40], where
numerical experiments with additional instances with up to 120 ellipses were also shown.

In 2015, thework [30] extended the ideas presented for the two-dimensional case in [31] to
deal with the three-dimensional problem of packing a given set of (non-necessarily identical)
freely-rotated ellipsoids within a rectangular container of minimum volume. The idea of
separating lines to model the non-overlapping between ellipses was naturally extended to
separating planes to model the non-overlapping between ellipsoids. Resulting NLP models
are non-convex and highly complex.Numerical experiments in [30], that considered instances
with up to 100 ellipsoids, showed that state-of-the-art global optimization solvers were only
able to deliver feasible solutions within an affordable prescribed CPU time limit. Heuristic
methods were also proposed in [30]. Also in 2015, Pankratov et al. [38] extended themethods
and methodology proposed in [40] from the two- to the three-dimensional case; but only
spheroids, instead of arbitrary ellipsoids, were considered in the three-dimensional case. In
that work, quasi-phi-functions were defined, NLP models proposed (based on separating
planes), and solutions were delivered by applying a multi-start strategy associated with a
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local NLP solver. Illustrative numerical experiments in [38] describe solutions obtained for
instances with up to 12 spheroids.

Still in 2015, continuous and differentiable NLP models for n-dimensional ellipsoids’
packing problems were proposed in [8]. The non-overlapping between ellipsoids was formu-
lated in two different ways: (i) based on separating hyperplanes (and, in this sense, similarly
to the already mentioned approaches) and (ii) based on linear transformations. In the lat-
ter case, the non-overlapping between a pair of ellipsoids reduces to the non-overlapping
between a sphere and an ellipsoid. The solution to this simpler problem was inspired in the
models proposed in [5] for packing circles within an ellipse. The non-overlapping models
proposed in [8] were employed in the same work, as an illustration of their applicability, to
tackle five variations of two- and three-dimensional ellipsoids’ packing problems: (a) packing
the maximum number of identical ellipses with given semi-axis lengths within a rectangular
container with given length and width; (b) finding the rectangular container with minimum
area that can pack a given set of ellipses; (c) finding the elliptical container with minimum
area that can pack a given set of identical ellipses; (d) finding the spherical container with
minimum volume that can pack a given set of identical ellipsoids; and (e) finding the cuboid
with minimum volume that can pack a given set of identical ellipsoids. In all cases, a multi-
start strategy combined with a local nonlinear programming solver was employed with the
aim of finding good quality solutions. Numerical experiments showed that, when applied
to the instances of problem (b) presented in [31], the proposed models and methodology
improved most of the solutions presented in [31,40]. When applied to problem (e), models
proposed in [8] can deal with instances with up to 100 ellipsoids in the sense that good
quality solutions can be found within an affordable CPU time limit. On the other hand, only
small-sized instances of the NLPmodels proposed in [30,38] can be handled by off-the-shelf
local or global nonlinear solvers.

In 2016, the problems of packing ellipses within minimizing-area circles and regular
polygons were considered in [32,33], respectively. The introduced models include variables
classified as “primary variables”, that are the variables that define the ellipses’ positions
(center and orientation), and “secondary variables”, that are auxiliary variables required to
model the non-overlapping between the ellipses and the container fitting constraints. The later
variables can be seen as “embedded Lagrange multipliers” since they are, in fact, Lagrange
multipliers of underlying optimization subproblems related to the non-overlapping and fitting
constraints (this idea is also present in the models proposed in [8]). In [33], illustrative
numerical examples that consider the ellipses of the instances presented in [31] are given (all
with up to 14 ellipses). In [32], instances with up to 20 ellipses are considered. It is worth
noting that the authors mention that the application of non-dedicated deterministic global
optimization strategies could become prohibitively expensive for larger instances and that
heuristic approaches might be useful in such case.

Nonlinear programming models introduced in [8,30–33,38,40] share the following prop-
erty: If m ellipsoids are considered, the cost of evaluating the constraints that define the
models is O(m2). This means that, independently of variations in the modelling process that
may affect the difficulties that appear when a local or global solver is employed, they all
share the quadratic complexity in the number of ellipsoids. This inhibits their applicability
to large-sized instances of any kind of ellipsoids’ packing problem. For the two-dimensional
case, this difficulty was addressed in [40] by means of an heuristic approach that solves a
sequence of NLP problems with expected O(m) variables and constraints. Starting from a
given initial point, for each ellipse, a square that contains the ellipse is considered and an
additional constraint that says that the ellipse must belong to the square is added to an under-
lying model with O(m2) variables and constraints (based on quasi-phi-functions). Since
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a pair of ellipses that must belong to non-overlapping squares cannot overlap, its associ-
ated non-overlapping constraint and auxiliary variables can be deleted from the model. The
resulting NLPmodel is solved and the process is repeated. Hopefully, all subproblems have a
linear number of variables and constraints and the sequence of their solutions converges to a
solution to the original problem. This strategy was also extended in [39] for tackling several
three-dimensional related packing problems.

In the present work, we introduce non-overlapping models with an evaluation cost that
is linear in the number of ellipsoids. As a consequence, models for a variety of ellipses’
and ellipsoids’ packing problems are introduced and numerical experiments with up to 1000
ellipsoids are delivered. To fix ideas, suppose that our problem consists of packingm different
ellipsoids in a given container in R

n without overlapping. Assume that, in principle, each
ellipsoid is placed with its center in the origin. The natural variables of the problem turn out to
be the displacements of the ellipsoids bymeans of which each ellipsoid is inside the container
and intersections between (the interior of the) ellipsoids do not occur. Each displacement is
a combination of a translation and a rotation. Since the translation is represented by n real
parameters and the rotation is represented by n(n−1)/2 rotation angles, it is natural to think
that the problem has m[n + n(n − 1)/2] variables. However, practical mathematical formu-
lations usually involve O(m2) unknowns. This is because there exists one non-overlapping
requirement for each pair of ellipsoids and each non-overlapping requirement involves addi-
tional specific variables. For example, in order to verify whether two ellipsoids overlap, one
finds the points in the ellipsoids that realize the minimum distance. These points are “spe-
cific” variables that we would like to eliminate. The main idea of this paper is to eliminate
the additional O(m2) variables by making them implicit by means of suitable geometrical
transformations. Although the non-overlapping model we present has a linear number of
variables and constraints, it is still a very-hard-to-solve nonlinear model. In order to find
good quality solutions for the ellipsoids’ packing problem, we consider a multi-start method
with ad hoc initial guesses.

The rest of this work is organized as follows. A formal definition of the problem is given
in Sect. 2. The model introduced in [8] that formulates the non-overlapping problem in
terms of its natural variables plus O(m2) additional variables is briefly presented in Sect. 3.
This model is then used to derive a new non-overlapping model with implicit variables in
Sect. 4. The new model contains a linear number of variables and constraints on the number
of ellipsoids to be packed. In Sect. 5, we show how to efficiently evaluate the constraints
of the non-overlapping model. In Sect. 6, we briefly discuss the applicability of existent
state-of-the-art deterministic global optimization tools to tackle packing problems based on
the proposed model. In Sect. 7, we present some numerical experiments that show that the
non-overlapping model introduced in the present work can be used to pack a large number
of ellipsoids. Finally, we draw some conclusions in Sect. 8. The computer implementation of
the models and methods introduced in the current work and the solutions reported in Sect. 7
are freely available at http://www.ime.usp.br/~lobato/.

2 Statement of the problem

An ellipsoid inRn is a set of the form {x ∈ R
n | (x−c)�M−1(x−c) ≤ 1}, where M ∈ R

n×n

is a symmetric and positive definite matrix. The vector c ∈ R
n is the center of the ellipsoid.

The eigenvectors of M−1 determine the principal axes of the ellipsoid and the eigenvalues of

M
1
2 are the lengths of the semi-axes of the ellipsoid. In this work, we deal with the problem of
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packing ellipsoids in the n-dimensional space. This problem can be stated as follows. Let m
be the number of ellipsoids to be packed.We are given the lengths l1i , . . . , l

n
i of the semi-axes

of the i-th ellipsoid for each i ∈ {1, . . . ,m} and we are also given a set C ⊂ R
n , which we

call the container. The objective of the problem is to find ellipsoids E1, . . . , Em such that:

1. Ei has semi-axes with lengths l1i , . . . , l
n
i for all i ∈ {1, . . . ,m};

2. int(Ei ) ∩ int(E j ) = ∅, for each i, j ∈ {1, . . . ,m} with i �= j ;
3. Ei ⊆ C for all i ∈ {1, . . . ,m}.
The first constraint states that the ellipsoids must have the given lengths of the semi-axes.
The second requirement is that the ellipsoids must not overlap each other, which means
that the interiors of the ellipsoids must be mutually disjoint. The last constraint says that
the ellipsoids must be inside the container. This is a feasibility problem where one must
determine the center and rotation of each ellipsoid so that the constraints 1, 2, and 3 are
satisfied. We also consider an optimization version of this problem in which the volume of
the container must be minimized.

3 Transformation-based non-overlapping model

In [8], continuous and differentiable nonlinear programming models for packing ellipsoids
within polyhedra and ellipsoids were introduced. Two models for the non-overlapping con-
straints were given. One of them is based on a linear transformation that, for every pair of
ellipsoids, converts one of the ellipsoids into a ball. Since this model forms the basis for the
non-overlapping model that will be introduced in this work, we briefly describe it below. For
a more detailed explanation, see [8].

Let I = {1, . . . ,m} be the set of indices of the ellipsoids to be packed. For each i ∈ I ,

we denote by P
1
2
i the n × n diagonal matrix whose diagonal entries are the lengths of the

semi-axes of the ellipsoid Ei . Then, for each i ∈ I , we can represent the ellipsoid Ei as

Ei =
{
x ∈ R

n | (x − ci )
�Qi P

−1
i Q�

i (x − ci ) ≤ 1
}

,

where ci ∈ R
n is the center of the ellipsoid and Qi ∈ R

n×n is an orthogonal matrix that
determines the orientation of the ellipsoid. For example, for n = 2, we can represent Qi as

Qi =
(
cos θi − sin θi
sin θi cos θi

)
, (1)

whereas, for n = 3, we can represent Qi as

Qi =
⎛
⎝
cos θi cosψi sin φi sin θi cosψi −cosφi sinψi sin φi sinψi +cosφi sin θi cosψi
cos θi sinψi cosφi cosψi +sin φi sin θi sinψi cosφi sin θi sinψi −sin φi cosψi

− sin θi sin φi cos θi cosφi cos θi

⎞
⎠ .

(2)
The parameters θi (when n = 2) and θi , φi , andψi (when n = 3) are called “rotation angles”
of the ellipsoid. Similar parametrizations can be made for n > 3.

Let i, j ∈ I be such that i < j and consider the ellipsoids Ei and E j . Let Ti j : Rn → R
n

be the linear transformation defined by

Ti j (x) = P
− 1

2
i Q�

i (x − c j ). (3)
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Let E i ji and E i jj be the ellipsoids obtainedwhen the transformation Ti j defined in (3) is applied
to Ei and E j , respectively, i.e.,

E i ji =
{
x ∈ R

n |
[
x − P

− 1
2

i Q�
i (ci − c j )

]� [
x − P

− 1
2

i Q�
i (ci − c j )

]
≤ 1

}

and
E i jj = {x ∈ R

n | x�Si j x ≤ 1},
where

Si j = P
1
2
i Q�

i Q j P
−1
j Q�

j Qi P
1
2
i .

Therefore, E i ji is a unit-radius ball centered at P
− 1

2
i Q�

i (ci − c j ) and E i jj is an ellipsoid

centered at the origin (since Si j = V�
i j Vi j with Vi j = P

− 1
2

j Q�
j Qi P

1
2
i ). By Lemma 3.1 below

(that is a restatement of Lemma 3.1 in [8]), we have that the ellipsoids Ei and E j overlap if

and only if the ellipsoids E i ji and E i jj overlap.

Lemma 3.1 Consider the ellipsoids Ei , E j , E i ji , and E i jj defined above. Thus, the ellipsoids

Ei and E j overlap if and only if the ellipsoids E i ji and E i jj overlap.

Proof For any x ∈ R
n , we have

(x − ci )
�Qi P

−1
i Q�

i (x − ci ) = (x − ci )
�Qi P

− 1
2

i P
− 1

2
i Q�

i (x − ci )

= (x − ci )
�

(
P

− 1
2

i Q�
i

)�
P

− 1
2

i Q�
i (x − ci )

= [
(x − c j ) − (ci − c j )

]� (
P

− 1
2

i Q�
i

)�

P
− 1

2
i Q�

i
[
(x − c j ) − (ci − c j )

]

=
[
P

− 1
2

i Q�
i (x − c j ) − P

− 1
2

i Q�
i (ci − c j )

]�

[
P

− 1
2

i Q�
i (x − c j ) − P

− 1
2

i Q�
i (ci − c j )

]

=
[
Ti j (x)−P

− 1
2

i Q�
i (ci −c j )

]� [
Ti j (x)−P

− 1
2

i Q�
i (ci − c j )

]
.

Therefore, we have that x ∈ int(Ei ) if and only if Ti j (x) ∈ int(E i ji ). Furthermore,

(x−c j )
�Q j P

−1
j Q�

j (x−c j ) = (x−c j )
�Qi P

− 1
2

i P
1
2
i Q�

i Q j P
−1
j Q�

j Qi P
1
2
i P

− 1
2

i Q�
i (x−c j )

= (x − c j )
�Qi P

− 1
2

i Si j P
− 1

2
i Q�

i (x − c j )

= (x − c j )
�

(
P

− 1
2

i Q�
i

)�
Si j P

− 1
2

i Q�
i (x − c j )

=
[
P

− 1
2

i Q�
i (x − c j )

]�
Si j P

− 1
2

i Q�
i (x − c j )

= Ti j (x)
�Si j Ti j (x).
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Then, x ∈ int(E j ) if and only if Ti j (x) ∈ int(E i jj ). Hence, int(Ei ) ∩ int(E j ) �= ∅ if and only

if int(E i ji ) ∩ int(E i jj ) �= ∅. In other words, the ellipsoids Ei and E j overlap if and only if the

ellipsoids E i ji and E i jj overlap. ��
Two propositions given in [8] are now required. The frontier of a set E is denoted by ∂E .

Proposition 3.1 Let E = {x ∈ R
n | x�Mx ≤ 1}, where M ∈ R

n×n is symmetric and
positive definite. Thus, for each y ∈ R

n \ int(E), there exist unique x∗ ∈ R
n and μ∗ ∈ R

such that y = x∗ + μ∗Mx∗ and x∗ is the projection of y onto E . Moreover, x∗ ∈ ∂E and
μ∗ ∈ R+.

Proof See the proof of Proposition 4.1 in [8]. ��
Proposition 3.2 Let E = {x ∈ R

n | x�Mx ≤ 1}, where M ∈ R
n×n is symmetric and

positive definite. Thus, for each x ∈ ∂E andμ > 0, we have (x +μMx)�M(x +μMx) > 1.

Proof See the proof of Proposition 4.2 in [8]. ��
For the ball E i ji not to overlap with E i jj , the distance between the center ci ji of the unit-

radius ball E i ji and the ellipsoid E i jj must be at least one. In particular, ci ji must not belong to

E i jj . If c
i j
i /∈ E i jj , then, by Proposition 3.1, there exist unique xi j ∈ ∂E i jj and μi j ∈ R+ such

that

ci ji = xi j + μi j Si j xi j .

Moreover, xi j is the projection of ci ji onto E i jj . Hence, the distance d(ci ji , E i ji ) between ci ji
and E i ji is given by

d
(
ci ji , E i ji

)
=

∥∥∥ci ji − xi j
∥∥∥ =

∥∥∥μi j Si j xi j
∥∥∥.

By Proposition 3.2, if xi j ∈ ∂E i jj and μi j > 0, then ci ji /∈ E i jj . Therefore, we obtain the
following non-overlapping model:

x�
i j Si j xi j = 1, ∀i, j ∈ I such that i < j (4)

μ2
i j

∥∥∥Si j xi j
∥∥∥
2 ≥ 1, ∀i, j ∈ I such that i < j (5)

P
− 1

2
i Q�

i (ci − c j ) = xi j + μi j Si j xi j , ∀i, j ∈ I such that i < j (6)

μi j ≥ 0, ∀i, j ∈ I such that i < j (7)

Figure 1 illustrates the transformation-based non-overlapping model. The unit-radius
ball E i ji centered at ci ji is shown to the left; while the ellipsoid E i jj is shown to the right.

The point ci ji can be written as the sum of xi j (which is the orthogonal projection of c
i j
i onto

the frontier of E i jj ) and a positive multiple of the vector Si j xi j .
Notice thatμi j must be positive in order to satisfy constraints (5, 7). Proposition 3.3 below

provides a positive lower bound εi j on μi j .

Proposition 3.3 Any solution to the system (4)–(7) is such that μi j ≥ εi j for all i < j ,
where

εi j ≡ ε(Pi , Pj ) = λmin

(
P−1
i

)
λmin

(
P

1
2
i

)
λmin(Pj )λmin

(
P

− 1
2

j

)
> 0.
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E ij
j

Sijxij xij

ciji

E ij
i

Fig. 1 Illustration of the transformation-based non-overlapping model

Proof See the proof of Proposition 4.3 in [8]. ��
Bymanipulating the equalities and inequalities inmodel (4)–(7) and including the positive

bound on μi j , we obtain the following equivalent non-overlapping model:

x�
i j

(
P

− 1
2

i Q�
i (ci − c j ) − xi j

)
= μi j , ∀i, j ∈ I such that i < j (8)

∥∥∥P− 1
2

i Q�
i (ci − c j ) − xi j

∥∥∥
2 ≥ 1, ∀i, j ∈ I such that i < j (9)

P
− 1

2
i Q�

i (ci − c j ) = xi j + μi j Si j xi j , ∀i, j ∈ I such that i < j (10)

μi j ≥ εi j , ∀i, j ∈ I such that i < j. (11)

The numbers of variables and constraints of this non-overlapping model are quadratically
proportional to the number of ellipsoids to be packed. Thus, when the number of ellipsoids
is relatively high, this model becomes very hard to be numerically solved. The introduction
of a new model that does not suffer from this inconvenience starts by reducing the number
of variables and constraints of model (8)–(11). Although those reductions do not reduce the
complexity of evaluating the model, they are the first step in the direction of developing
a more tractable model. In order to reduce the number of constraints, we will combine all
constraints from the non-overlapping model (8)–(11) into a linear number of constraints by
simple summing up the squared infeasibilities. To reduce the number of variables, we will
replace the variables xi j and μi j from model (8)–(11) with functions that play the same roles
as these variables.

4 Non-overlapping model with implicit variables

In this section, we present a non-overlapping model with implicit variables. The model
is derived from the transformation-based non-overlapping model briefly described in the
previous section. In Sect. 4.1, we show how to reduce the number of constraints and in
Sect. 4.2 we show how to reduce the number of variables. The complete model with implicit
variables, that contains a linear number of variables and constraints, is presented in Sect. 4.3.
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4.1 Reduction of the number of constraints

Consider the non-overlappingmodel (8)–(11). By replacing each of the inequality constraints
of this model with its squared infeasibility measure, we obtain the following model:

(
x�
i j

(
P

− 1
2

i Q�
i (ci − c j ) − xi j

)
− μi j

)2

= 0, ∀i, j ∈ I such that i < j (12)

max

{
0, 1 −

∥∥∥P− 1
2

i Q�
i (ci − c j ) − xi j

∥∥∥
2
}2

= 0, ∀i, j ∈ I such that i < j (13)

∥∥∥xi j + μi j Si j xi j − P
− 1

2
i Q�

i (ci − c j )
∥∥∥
2 = 0, ∀i, j ∈ I such that i < j (14)

max{0, εi j − μi j }2 = 0, ∀i, j ∈ I such that i < j. (15)

This model is equivalent to the model (8)–(11), in the sense that any solution to (12)–(15) is
a solution to the model (8)–(11) and vice-versa.

For each i ∈ I , let �i ∈ R
q denote the vector of rotation angles of the i-th ellipsoid. For

each i, j ∈ I such that i < j , define the sumof the squared infeasibilitieso : R3n+2q+1 → R+
by

o(ci , c j ,�i ,� j , xi j , μi j ; Pi , Pj ) =
(
x�
i j

(
P

− 1
2

i Q�
i (ci − c j ) − xi j

)
− μi j

)2

+ max{0, εi j − μi j }2

+
∥∥∥xi j + μi j Si j xi j − P

− 1
2

i Q�
i (ci − c j )

∥∥∥
2

+ max

{
0, 1 −

∥∥∥P− 1
2

i Q�
i (ci − c j ) − xi j

∥∥∥
2
}2

.

(16)

Observe that the set of constraints (12)–(15) is equivalent to the constraints

o(ci , c j ,�i ,� j , xi j , μi j ; Pi , Pj ) = 0, ∀i, j ∈ I such that i < j. (17)

In order to obtain a model with a linear number of constraints, we can combine the con-
straints (17) in the following way

m∑
j=i+1

o(ci , c j ,�i ,� j , xi j , μi j ; Pi , Pj ) = 0, ∀i ∈ I \ {m}, (18)

or even combining them into a single constraint:

m−1∑
i=1

m∑
j=i+1

o(ci , c j ,�i ,� j , xi j , μi j ; Pi , Pj ) = 0. (19)

The constraints (18) (or the constraint (19)) are equivalent to the constraints (17). Therefore,
we can replace the constraints (8)–(11) with constraints (18) (or constraint (19)) and obtain
an equivalent model for the non-overlapping of ellipsoids.

Although this new model has a linear number of constraints that models the non-
overlapping of ellipsoids, the total number of terms in the summations is quadratically
proportional to the number of ellipsoids to be packed. Thus, the computational cost of eval-
uating the constraints (18) at a given point is practically the same as the cost of evaluating
the constraints (8)–(11). In Sect. 5, we will see how to efficiently evaluate these constraints.
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4.2 Reduction of the number of variables

Consider the constraints (18) and suppose that the ellipsoids Ei and E j do not over-
lap. In this case, we know that there exist values for xi j and μi j such that the term
o(ci , c j ,�i ,� j , xi j , μi j ; Pi , Pj ) as defined in (16) vanishes and, therefore, does not con-

tribute to the summation in (18). We can simply take xi j as the projection of ci ji onto the

ellipsoid E i jj and μi j as the nonnegative scalar that satisfies ci ji = xi j + μi j Si j xi j . The

projection of ci ji onto the ellipsoid E i jj is the solution to the problem

minimize
∥∥∥x − ci ji

∥∥∥
2

subject to x�Si j x ≤ 1.
(20)

However, taking xi j as the solution to the problem (20) does not lead to a good overlapping

measure when ellipsoids Ei and E j do overlap. If ci ji ∈ int(E i jj ), then the solution to the

problem (20) is ci ji and we must have μi j = 0. Then, the term associated with the distance

between ci ji and E i jj will be constant for any ci ji ∈ int(E i jj ), as well as the term associated
with the positivity of μi j in (18). Consider the following problem:

minimize
∥∥∥x − ci ji

∥∥∥
2

subject to x�Si j x = 1.
(21)

If ci ji /∈ int(E i jj ), problems (20) and (21) are equivalent and they both have a single
solution. Notice that the null vector is not a feasible solution to problem (21). Thus, since
problem (21) has a single constraint and the matrix Si j is positive definite, the gradient of the
constraint is nonzero at every feasible point. Therefore, any solution to this problem satisfies
the linear independence constraint qualification. This means that the Karush–Kuhn–Tucker
optimality conditions of problem (21) (see, for example, Proposition 3.3.1 in [3]) is satisfied
by every solution to problem (21). Thus, if x∗ is a solution to this problem then there exists
μ∗ ∈ R such that

x∗ + μ∗Si j x∗ − ci ji = 0. (22)

If ci ji /∈ int(E i jj ) then, by Proposition 3.1, there exist a unique x∗ ∈ ∂E i jj and a unique μ∗

that satisfy (22). Moreover, μ∗ ≥ 0. On the other hand, if ci ji ∈ int(E i jj ) then problem (21)
may havemore than one solution. But, by Proposition 4.2, the Lagrangemultiplier associated
with the constraint of this problem is the same for any solution and belongs to the interval
[−1/λmax(Si j ), 0].

We restate here Lemma 4.1 and Proposition 4.1 that were proved in [8]. Lemma 4.1 will be
used in the proof ofLemma4.2 andProposition 4.1will be used in the proof of Proposition 4.2.
Lemma 4.2 and Proposition 4.2 are introduced in the present work. Lemma 4.2 will be used
in the proof of the Proposition 4.2, which shows that the Lagrange multiplier associated with
the constraint of problem (21) is the same for any solution to this problem. Lemma 4.2 is a
particular case of Proposition 4.2.

Lemma 4.1 Consider ellipsoid E = {z ∈ R
n | z�Dz ≤ 1}, where D ∈ R

n×n is a positive
definite diagonal matrix. For each y ∈ E , there exist x ∈ ∂E and α ∈ [−1/λmax(D), 0] such
that y = x + αDx.

Proof See the proof of Lemma 5.1 in [8]. ��
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Proposition 4.1 Consider ellipsoid E = {z ∈ R
n | z�Sz ≤ 1}, where S ∈ R

n×n is symmet-
ric and positive definite. For each y ∈ E , there exist x ∈ ∂E and α ∈ [−1/λmax(S), 0] such
that y = x + αSx.

Proof See the proof of Proposition 5.1 in [8]. ��
Lemma 4.2 Consider the ellipsoid E = {z ∈ R

n | z�Dz ≤ 1}, where D ∈ R
n×n is diagonal

and positive definite. Given y ∈ E , there exists a unique α ∈ [−1/λmax(D), 0] and there
exists x ∈ ∂E such that y = x + αDx. Moreover, if α ∈ (−1/λmax(D), 0] then x ∈ ∂E is
unique.

Proof Let I = {1, . . . , n}. For each i ∈ I, denote the i-th diagonal element of matrix D by
di . Consider the system

yi = xi + αdi xi , ∀i ∈ I, (23)

x�Dx = 1, (24)

α ∈ [−1/λmax(D), 0]. (25)

By Lemma 4.1, the system (23)–(25) has at least one solution. Suppose that (x∗, α∗) be
a solution to this system and that α∗ > −1/λmax(D). We shall prove that this is the only
solution to this system. Notice that this is enough to prove the lemma.

Since α∗ > −1/λmax(D), we have that

1 + α∗di > 0, ∀i ∈ I. (26)

By (23), we have yi = (1+ α∗di )x∗
i for each i ∈ I. Then, (23) and (26) imply that, for each

i ∈ I, x∗
i = 0 if yi = 0. However, since x∗ = 0 does not satisfy (24), there must exist i ∈ I

such that yi �= 0.
Since 1 + α∗di > 0 for each i ∈ I, by (23) we have that

x∗
i = yi

1 + α∗di
, ∀i ∈ I. (27)

In order to derive a contradiction, suppose that the system has a solution (x̄, ᾱ) �= (x∗, α∗).
If ᾱ = α∗, then x̄ = x∗ by (27). Thus, we must have ᾱ �= α∗. We shall divide the proof in
the cases where ᾱ > −1/λmax(D) and ᾱ = −1/λmax(D).

Case 1 Suppose that ᾱ > −1/λmax(D). Then, 1 + ᾱdi > 0 for each i ∈ I and, therefore,

x̄i = yi
1 + ᾱdi

, ∀i ∈ I.

By (24), we have that

1 = x∗�Dx∗ =
n∑

i=1

di (x
∗
i )2 =

n∑
i=1

di
y2i

(1 + α∗di )2
.

If ᾱ < α∗, then 1 + α∗di > 1 + ᾱdi > 0 for each i ∈ I and

1 =
n∑

i=1

di
y2i

(1 + α∗di )2
<

n∑
i=1

di
y2i

(1 + ᾱdi )2
=

n∑
i=1

di (x̄i )
2 = x̄�Dx̄ .

If ᾱ > α∗, then 0 < 1 + α∗di < 1 + ᾱdi for each i ∈ I and

1 =
n∑

i=1

di
y2i

(1 + α∗di )2
>

n∑
i=1

di
y2i

(1 + ᾱdi )2
=

n∑
i=1

di (x̄i )
2 = x̄�Dx̄ .
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In both cases we have that x̄�Dx̄ �= 1 and, therefore, (x̄, ᾱ) is not a solution to the system
(23)–(25).

Case 2 Suppose that ᾱ = −1/λmax(D). Let I+ = {i ∈ I | di = λmax(D)} and I− = I \I+.
By (23), we must have that yi = 0 for each i ∈ I+, since 1 + ᾱdi = 0 for each i ∈ I+.
Thus, since α∗ > −1/λmax(D), we must have that x∗

i = 0 for each i ∈ I+. Hence, since
x∗�Dx∗ = 1, there exists i ∈ I− such that x∗

i �= 0 and, consequently, yi �= 0, since
yi = (1 + α∗di )x∗

i . Since 1 + ᾱdi > 0 for each i ∈ I−, by (23) we have that

x̄i = yi
1 + ᾱdi

, ∀i ∈ I−.

Therefore,

1 = x∗�Dx∗ =
∑
i∈I

di (x
∗
i )2 =

∑
i∈I−

di (x
∗
i )2 =

∑
i∈I−

di
y2i

(1 + α∗di )2
<

∑
i∈I−

di
y2i

(1 + ᾱdi )2

=
∑
i∈I−

di x̄
2
i .

Thus,
x̄�Dx̄ =

∑
i∈I

di x̄
2
i ≥

∑
i∈I−

di x̄
2
i > 1,

that is, (x̄, ᾱ) is not a solution to the system (23)–(25).
Hence, (x∗, α∗) is the only solution to the system (23)–(25). ��

Proposition 4.2 Consider the ellipsoid E = {z ∈ R
n | z�Sz ≤ 1}, where S ∈ R

n×n is a sym-
metric and definite positive matrix. Given y ∈ E , there exists a unique α ∈ [−1/λmax(S), 0]
and there exists x ∈ ∂E such that y = x + αSx. Moreover, if α ∈ (−1/λmax(S), 0] then
x ∈ ∂E is unique.

Proof By Proposition 4.1, there exist x∗ ∈ ∂E and α∗ ∈ [−1/λmax(S), 0] such that
y = x∗ + α∗Sx∗. (28)

Suppose that α∗ ∈ (−1/λmax(S), 0]. We shall prove that there do not exist x̄ ∈ ∂E and
ᾱ ∈ [−1/λmax(S), 0] such that y = x̄ + ᾱSx̄ and (x̄, ᾱ) �= (x∗, α∗). In order to derive a
contradiction, suppose that there exist x̄ ∈ ∂E and ᾱ ∈ [−1/λmax(S), 0] such that

y = x̄ + ᾱSx̄ (29)

and (x̄, ᾱ) �= (x∗, α∗).
Since S is symmetric, there exist an orthogonal matrix Q ∈ R

n×n and a diagonal matrix
D ∈ R

n×n formed by the eigenvalues of S such that S = QDQ� and λmax(S) = λmax(D)

(see, for example, Theorem 8.1.1 in [26]). Consider the ellipsoid E ′ = {z ∈ R
n | z�Dz ≤ 1}.

Then, Q�y ∈ E ′, Q�x∗ ∈ ∂E ′, Q� x̄ ∈ ∂E ′. Moreover, since λmax(S) = λmax(D), we
have that α∗ ∈ (−1/λmax(D), 0] and ᾱ ∈ [−1/λmax(D), 0]. By left multiplying both sides
of Eqs. (28) and (29) by Q, we obtain

Q�y = Q�x∗ + α∗DQ�x∗ (30)

and

Q�y = Q� x̄ + ᾱDQ� x̄ . (31)
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By Lemma 4.2, if ᾱ = α∗, we must have Q� x̄ = Q�x∗ and, consequently, x̄ = x∗, which
contradicts the hypothesis that (x̄, ᾱ) �= (x∗, α∗). If ᾱ �= α∗, then (30) and (31) contradict
Lemma 4.2.

Hence, if α∗ ∈ (−1/λmax(S), 0], then the system

y = x + αSx,

x�Sx = 1,

α ∈ [−1/λmax(S), 0]
has a unique solution. ��

The equation (22) implies that

x∗� (
x∗ + μ∗Si j x∗ − ci ji

)
= 0.

Since x∗�Si j x∗ = 1, this implies that

x∗� (
ci ji − x∗) − μ∗ = 0.

Therefore, since ci ji = P
− 1

2
i Q�

i (ci − c j ), any solution x∗ to problem (21) together with the
corresponding Lagrange multiplier μ∗ satisfy

x∗�
(
P

− 1
2

i Q�
i (ci − c j ) − x∗

)
− μ∗ = 0

x∗ + μ∗Si j x∗ − P
− 1

2
i Q�

i (ci − c j ) = 0.

Thus, if we take Xi j as a solution to problem (21) and Ui j as the corresponding Lagrange
multiplier, the constraints (18) become

m∑
j=i+1

max

{
0, 1 −

∥∥∥P− 1
2

i Q�
i (ci − c j ) − Xi j

∥∥∥
2
}2

+max{0, εi j −Ui j }2 = 0, ∀i ∈ I \{m}.
(32)

Thus, the variables xi j and μi j cease to be part of the non-overlapping model. In (32), we
define Xi j to be a mapping whose value is a solution to problem (21) and Ui j is the function
whose value is the Lagrange multiplier associated with the value of Xi j .

4.3 The model

To make it clearer that xi j and μi j are no longer variables of the model but functions of the
centers and rotation angles of the ellipsoids Ei and E j , we shall rewrite (32) in the following
way:

m∑
j=i+1

f (ci , c j ,�i ,� j ; Pi , Pj ) = 0, ∀i ∈ I \ {m}, (33)

where

f (ci , c j , �i , � j ; Pi , Pj ) =max

{
0, 1 −

∥∥∥P− 1
2

i Q�
i (ci − c j ) − X (ci , c j , �i , � j ; Pi , Pj )

∥∥∥
2
}2

+ max{0, εi j − U(ci , c j , �i , � j ; Pi , Pj )}2,
(34)
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X (ci , c j ,�i ,� j ; Pi , Pj ) is a solution to the problem

minimize
∥∥∥x − ci ji

∥∥∥
2

subject to x�Si j x = 1,
(35)

and U(ci , c j ,�i ,� j ; Pi , Pj ) is the Lagrange multiplier associated with this solution.
This new non-overlapping model hasm−1 constraints given by (33) and its variables are

the centers of the ellipsoids (ci ∈ R
n for each i ∈ {1, . . . ,m}) and the rotation angles of the

ellipsoids (�i ∈ R
q for each i ∈ {1, . . . ,m}). Therefore, this model has a linear number of

variables and a linear number of constraints on the number of ellipsoids to be packed. The
following lemma shows that the constraints (33) constitute indeed a non-overlapping model.

Lemma 4.3 The constraints (33) are satisfied if and only if the ellipsoids do not overlap.

Proof Firstly, notice that the function f (ci , c j ,�i ,� j ; Pi , Pj ) is nonnegative at every point.
Let i, j ∈ {1, . . . ,m} be such that i < j . Suppose that the ellipsoids Ei and E j do not overlap.

Thus, we have that the ellipsoids E i ji and E i jj do not overlap either. So, the distance from

the center ci ji of the unit-radius ball E i ji to the ellipsoid E i jj is at least one. Since in this case

ci ji /∈ E i jj , we have that X (ci , c j ,�i ,� j ; Pi , Pj ) is the projection of ci ji onto the ellipsoid

E i jj . Therefore, recalling that ci ji = P
− 1

2
i Q�

i (ci − c j ), we have

∥∥∥P− 1
2

i Q�
i (ci − c j ) − X (ci , c j ,�i ,� j ; Pi , Pj )

∥∥∥ ≥ 1.

Consequently, we have that

max

{
0, 1 −

∥∥∥P− 1
2

i Q�
i (ci − c j ) − X (ci , c j ,�i ,� j ; Pi , Pj )

∥∥∥
2
}2

= 0.

SinceX (ci , c j ,�i ,� j ; Pi , Pj ) is the solution to problem (21) and U(ci , c j ,�i ,� j ; Pi , Pj )

is the Lagrange multiplier associated with this solution and satisfies (22), we have that

U(ci , c j ,�i ,� j ; Pi , Pj ) ≥ 0

by Proposition 3.1. By Proposition 3.3, we have that

U(ci , c j ,�i ,� j ; Pi , Pj ) ≥ εi j .

Therefore,
max{0, εi j − U(ci , c j ,�i ,� j ; Pi , Pj )}2 = 0.

Hence, if the ellipsoids do not overlap, f (ci , c j ,�i ,� j ; Pi , Pj ) vanishes.
Suppose that there exist two ellipsoids that overlap. Let i, j ∈ {1, . . . ,m} such that

i < j be the indices of those ellipsoids. Let ci ji be the center of the ball E i ji , that is, ci ji =
P

− 1
2

i Q�
i (ci − c j ). Let us consider two cases. Suppose that ci ji /∈ int(E i jj ). In this case,

X (ci , c j ,�i ,� j ; Pi , Pj ) is the projection of c
i j
i onto ellipsoid E i jj . Since Ei and E j overlap,

we have that the ellipsoids E i ji and E i jj also overlap. Thus,
∥∥∥ci ji − X (ci , c j ,�i ,� j ; Pi , Pj )

∥∥∥ < 1.
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Therefore,

max

{
0, 1 −

∥∥∥P− 1
2

i Q�
i (ci − c j ) − X (ci , c j ,�i ,� j ; Pi , Pj )

∥∥∥
2
}2

> 0.

Now, suppose that ci ji ∈ int(E i jj ). Since ci ji ∈ int(E i jj ) and X (ci , c j ,�i ,� j ; Pi , Pj ) ∈ ∂E i jj ,
by (22) and by Proposition 3.2, we must have U(ci , c j ,�i ,� j ; Pi , Pj ) ≤ 0. Moreover,

since ci ji �= X (ci , c j ,�i ,� j ; Pi , Pj ), we must have U(ci , c j ,�i ,� j ; Pi , Pj ) �= 0. Conse-
quently,

U(ci , c j ,�i ,� j ; Pi , Pj ) < 0.

Then,
max{0, εi j − U(ci , c j ,�i ,� j ; Pi , Pj )}2 > 0.

Therefore, if the ellipsoids Ei and E j overlap, f (ci , c j ,�i ,� j ; Pi , Pj ) is strictly positive.
��

We now show that the overlapping measure f of two ellipsoids Ei and E j given by (34)
does not depend on the scaling of the ellipsoids.

Definition 1 Consider the set E ⊆ R
n . For each ν ∈ R++, we define νE = {νx | x ∈ E}.

Consider the ellipsoid Ei = {x ∈ R
n | (x − ci )�Qi P

−1
i Q�

i (x − ci ) ≤ 1}. Let ν ∈ R++.
According to Definition 1, we have

νEi = {νx ∈ R
n | x ∈ Ei }

= {
x ∈ R

n | ν−1x ∈ Ei
}

=
{
x ∈ R

n | (ν−1x − ci )
�Qi P

−1
i Q�

i (ν−1x − ci ) ≤ 1
}

=
{
x ∈ R

n | (x − νci )
�Qi (ν

2Pi )
−1Q�

i (x − νci ) ≤ 1
}

.

Thus, νEi is an ellipsoid defined by the tuple (νci ,�i , ν
2Pi ). It is centered at νci , its semi-

axis lengths form the diagonal of νP
1
2
i , and it has the same orientation as the one of ellipsoid

Ei .

Lemma 4.4 The function defined in (34) is invariant with respect to the scaling of the
ellipsoids. That is, f (ci , c j ,�i ,� j ; Pi , Pj ) = f (νci , νc j ,�i ,� j ; ν2Pi , ν2Pj ) for each
ν ∈ R++.

Proof Consider the ellipsoids Ei = {x ∈ R
n | (x − ci )�Qi P

−1
i Q�

i (x − ci ) ≤ 1} and
E j = {x ∈ R

n | (x−c j )�Q j P
−1
j Q�

j (x−c j ) ≤ 1}. Let ν ∈ R++. According to Definition 1,
we have that

νEi =
{
x ∈ R

n | (x − νci )
�Qi (ν

2Pi )
−1Q�

i (x − νci ) ≤ 1
}

νE j =
{
x ∈ R

n | (x − νc j )
�Q j (ν

2Pj )
−1Q�

j (x − νc j ) ≤ 1
}

.
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Notice that the constant εi j given by Proposition 3.3 for the pair of ellipsoids Ei and E j is
the same for the pair of ellipsoids νEi and νE j , since

εi j ≡ ε(Pi , Pj ) = λmin

(
P−1
i

)
λmin

(
P

1
2
i

)
λmin(Pj )λmin

(
P

− 1
2

j

)

= (
ν−2νν2ν−1) λmin

(
P−1
i

)
λmin

(
P

1
2
i

)
λmin(Pj )λmin

(
P

− 1
2

j

)

= ν−2λmin

(
P−1
i

)
νλmin

(
P

1
2
i

)
ν2λmin(Pj )ν

−1λmin

(
P

− 1
2

j

)

= λmin
(
(ν2Pi )

−1) λmin

(
(ν2Pi )

1
2

)
λmin

(
ν2Pj

)
λmin

(
(ν2Pj )

− 1
2

)

= ε
(
ν2Pi , ν

2Pj
)
.

Thus, we have that

f
(
νci , νc j ,�i ,� j ; ν2Pi , ν

2Pj
) = max

{
0, 1 −

∥∥∥(ν2Pi )
− 1

2 Q�
i (νci − νc j )

−X (
νci , νc j ,�i ,� j ; ν2Pi , ν

2Pj
) ∥∥∥

2
}2

+ max
{
0, εi j − U (

νci , νc j ,�i ,� j ; ν2Pi , ν
2Pj

)}2
.

Let (νEi )i j be the set obtained by applying the transformation Ti j to the ellipsoid νEi , that
is,

(νEi )i j = {
x ∈ R

n | x = Ti j (z), z ∈ νEi
}

=
{
x ∈ R

n | x =
(
ν2Pi

)− 1
2
Q�

i (z − νc j ), z ∈ νEi
}

=
{
x ∈ R

n | z = Qi

(
ν2Pi

) 1
2
x + νc j , z ∈ νEi

}

=
{
x ∈R

n |
(
Qi

(
ν2Pi

) 1
2
x+νc j −νci

)�
Qi

(
ν2Pi

)−1
Q�

i

(
Qi (ν

2Pi )
1
2 x+νc j −νci

)
≤1

}

=
{
x ∈ R

n |
(

νQi P
1
2
i x + νc j − νci

)�
Qi

(
ν2Pi

)−1
Q�

i

(
νQi P

1
2
i x + νc j − νci

)
≤ 1

}

=
{
x ∈ R

n | ν

[
Qi P

1
2
i x − (ci − c j )

]�
Qiν

−2P−1
i Q�

i ν

[
Qi P

1
2
i x − (ci − c j )

]
≤ 1

}

=
{
x ∈ R

n |
[
Qi P

1
2
i x − (ci − c j )

]�
Qi P

−1
i Q�

i

[
Qi P

1
2
i x − (ci − c j )

]
≤ 1

}

=
{
x ∈R

n |
[
x−P

− 1
2

i Q�
i (ci −c j )

]�
P

− 1
2

i Q�
i Qi P

−1
i Q�

i Qi P
1
2
i

[
x−P

− 1
2

i Q�
i (ci −c j )

]
≤1

}

=
{
x ∈ R

n |
[
x − P

− 1
2

i Q�
i (ci − c j )

]� [
x − P

− 1
2

i Q�
i (ci − c j )

]
≤ 1

}

= E i j
i .

Thus, (νEi )i j = E i ji . Similarly, we obtain (νE j )
i j = E i jj . Therefore, since X (ci , c j ,�i ,� j ;

Pi , Pj ) is a projection of the center of E i ji onto the frontier of E i jj and X (νci , νc j ,�i ,� j ;
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ν2Pi , ν2Pj ) is a projection of the center of (νEi )i j onto the frontier of (νE j )
i j , (νEi )i j = E i ji

and (νE j )
i j = E i jj imply that

U (
νci , νc j ,�i ,� j ; ν2Pi , ν

2Pj
) = U (

ci , c j ,�i ,� j ; Pi , Pj
)

by Proposition 4.2, and it is possible to take

X (
νci , νc j ,�i ,� j ; ν2Pi , ν

2Pj
) = X (

ci , c j ,�i ,� j ; Pi , Pj
)
.

Consequently,

f
(
νci , νc j ,�i ,� j ; ν2Pi , ν

2Pj
) = max

{
0, 1 −

∥∥∥ (
ν2Pi

)− 1
2 Q�

i (νci − νc j )

−X (
νci , νc j ,�i ,� j ; ν2Pi , ν

2Pj
) ∥∥∥

2
}2

+ max
{
0, εi j − U(νci , νc j ,�i ,� j ; ν2Pi , ν

2Pj )
}2

= max

{
0, 1 −

∥∥∥P− 1
2

i Q�
i (ci − c j )

−X (
ci , c j ,�i ,� j ; Pi , Pj

) ∥∥∥
2
}2

+ max
{
0, εi j − U (

ci , c j ,�i ,� j ; Pi , Pj
)}2

= f
(
ci , c j ,�i ,� j ; Pi , Pj

)
.

Hence, the function defined in (34) is invariant with respect to the scaling of the
ellipsoids. ��

Let ci ji ∈ R
n and Si j ∈ R

n×n be a symmetric and positive definite matrix.We have defined
X to be the mapping that returns a solution to problem (35) and U to be the mapping that
returns the Lagrangemultiplier associatedwith that solution. By Proposition 4.2, any solution
to problem (35) is associated with the same Lagrange multiplier. Therefore, no matter what
optimal solution to problem (35) is returned by the mappingX , U will behave like a function.

If ci ji /∈ int(E i jj ) then problem (35) has only one solution. On the other hand, if ci ji ∈
int(E i jj ) then problem (35) may have multiple optimal solutions. Figure 2a illustrates some
of those cases. This picture shows an ellipse with semi-axis lengths a and b with a > b. The
projection of the point y1 onto the frontier of the ellipse is univocally determined: the point
x1. However, for any point y2 in the set {y ∈ R

2 | b2/a − a < y1 < a − b2/a, y2 = 0},
there are two projections: x̄2 and x2. If the ellipse is a circle, that is, a = b, then every point
in the frontier of the circle is a projection of the center of the circle onto the frontier. Even if
we were able to determine a single solution to be returned by X in the case in which multiple
solutions exist (which is an easy task since it can be accomplished by tackling (35) with a
deterministic nonlinear programming solver), X would be discontinuous in those cases (see
Fig. 2b). In any case, since the set of points for which problem (35) has multiple optimal
solutions has zero measure, it does not appear that it would be an issue in practice.

Since the constraints (33) depend on X and U whose values are given by the solution of
an optimization problem, the computation of their derivatives (at the points where they are
continuous and differentiable) is nontrivial. In “Appendix”, we show how to compute the
first and second order derivatives of the functions that define the constraints (33).
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Fig. 2 a Projections of the points y1 and y2 onto the frontier of the ellipse. The projection of y1 is univocally
determined; while y2 has two projections x̄2 and x2. b The points y1 and y2 can be arbitrarily close, but their
projections x1 and x2 may be far from each other

5 Evaluation of the constraints

5.1 Evaluation of the overlapping measure

In order to evaluate the constraints (33) at a given point, we need to find the values of
X (ci , c j ,�i ,� j ; Pi , Pj ) and U(ci , c j ,�i ,� j ; Pi , Pj ). As we have seen, if the ellipsoids
Ei and E j do not overlap, then f (ci , c j ,�i ,� j ; Pi , Pj ) in the summation in (33) is zero.
Thus, if we know that the ellipsoids Ei and E j do not overlap, then we do not need to evaluate
the functions X and U .

Suppose that we do not know whether the ellipsoids Ei and E j overlap. In this case, we
need to compute the values of X (ci , c j ,�i ,� j ; Pi , Pj ) and U(ci , c j ,�i ,� j ; Pi , Pj ). For
this, we need to solve the problem

minimize 1
2

∥∥∥x − ci ji

∥∥∥
2

subject to x�Si j x = 1,

where ci ji = P
− 1

2
i Q�

i (ci −c j ). By performing the change of variablew = S
1
2
i j x , this problem

is equivalent to the problem

minimize 1
2w

�S−1
i j w − ci ji

�
S

− 1
2

i j w

subject to w�w = 1.
(36)

The objective function of problem (36) is a convex quadratic function and the feasible set is
the frontier of the unit-radius ball centered at the origin. This problem can be numerically
solved by the algorithm proposed in [36].

5.2 Efficient evaluation of the constraints

The total number of terms presented in constraints (33) is O(m2). However, most of these
terms do not need to be computed when the constraints are evaluated at a point that is almost
feasible, that is, a point where most of the ellipsoids do not overlap each other. In a feasible
solution, only a constant number of ellipsoids may touch a given ellipsoid. For example,
suppose that the ellipsoids are identical balls. In the two-dimensional case, at most six balls
can touch a given ball. In the three-dimensional case, this number is twelve. For identical
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ellipsoids, the number of ellipsoids that can touch a given onewill depend on the eccentricities
of these ellipsoids. In any case, in a (almost) feasible solution, only O(m) terms need to be
evaluated.

If the ellipsoidsEi andE j donot overlap, then the termassociatedwith this pair of ellipsoids
in the summation (33) is zero and does not need to be evaluated. A sufficient condition for the
ellipsoids Ei and E j not to overlap is that their enclosing balls do not overlap. An enclosing
ball of a set is a ball that contains that set. The minimal enclosing ball of Ei is the ball with
radius ri = λmax(P

1
2
i ) centered at ci . Therefore, if

∥∥∥ci − c j
∥∥∥ ≥ ri + r j

then the ellipsoids Ei and E j do not overlap. Let

R = max
i∈I {ri }.

Thus, every ellipsoid Ei is contained in a ball with radius R centered at ci . Therefore, if
∥∥∥ci − c j

∥∥∥ ≥ 2R (37)

then the ellipsoids Ei and E j do not overlap.
The method described here to identify the pairs of ellipsoids that do not meet the condi-

tion (37) has been used in other works, such as [15,37], to identify pairs of balls that may
overlap. Let l = 2R and consider a hypercube with edge length L that contains the container.
This hypercube can be covered by �L/ l�n hypercubes with edge lengths l whose interiors are
mutually disjoint. We refer to each of these hypercubes with edge lengths l as a region. Two
regions are adjacent if they share at least one vertex. Suppose that Ei and E j have their centers
in non-adjacent regions. In this case, since each region is a hypercube with edge length 2R,
we must have

∥∥ci − c j
∥∥ ≥ 2R, that is, the ellipsoids Ei and E j do not overlap. Therefore, if

two ellipsoids are in non-adjacent regions, they do not overlap. If two ellipsoids are in the
same region or in adjacent regions, they may or may not overlap. Hence, considering all the
terms that appear in the constraints (33), we can evaluate only those that are associated with
pairs of ellipsoids that lie in the same region or in adjacent regions.

Each ellipsoid can be assigned to a region in constant time based on its center. The region
of the ellipsoid Ei is defined as the tuple

(p([ci ]1), . . . , p([ci ]n))
where

p(x) = min{max{1, �x/ l�}, Nreg}
and Nreg = �L/ l�. The method to determine which pairs of ellipsoids should be considered
works as follows. First, ann-dimensional arraywith Nreg entries for eachdimension is created.
Each element of this array is associated with a region and stores a list with the indices of
ellipsoids that belong to that region. This structure can be constructed in O(m) time. Also,
there is a list with the non-empty regions (regions that have at least one ellipsoid). This list
is also constructed in O(m) time. Then, for each non-empty region and for each ellipsoid
Ei in that region, the term f (ci , c j ,�i ,� j ; Pi , Pj ) associated with the ellipsoids Ei and E j

is computed for each ellipsoid E j in that region and in adjacent regions. Considering the
case where all the ellipsoids have approximately the same size, each region will contain only
a constant number of ellipsoids in an almost feasible solution. In this case, this algorithm
performs in O(m) time.
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6 Solvability of the proposed model

In the present paper, solutions to large-sized instances of ellipsoids’ packing problems are
being sought. Nonlinear programming models (that involve a quadratic number of variables
and constraints) for several variants of the problem of packing ellipsoids have already been
introduced in the literature [8,30–33,38,40]. Numerical experiments in all the mentioned
papers show that state-of-the-art deterministic global optimization methods are able to find
global solutions with a certificate of optimality for instances (of the models with a quadratic
number of variables and constraints) with only 3 (three) ellipsoids in the two- and three-
dimensional spaces. In all the papers, the authors highlight how fast the difficulty of the
problems increases with the number of ellipsoids. In [32], it is suggested that global opti-
mization strategies could become prohibitively expensive for an arbitrarily increasing number
of ellipsoids and that large-sized instances might be tackled with heuristic approaches.

A non-overlappingmodelwith a linear number of variables and constraints was introduced
in Sect. 4. A procedure for evaluating the model in linear expected cost was described in
Sect. 5. Those two ingredients overcome the quadratic cost inherent to all the previously
introducedmodels. However, considering the poor performance reported in the literature, this
improvement is not enough to expect that state-of-the-art deterministic global optimization
solvers would be able to tackle the large-sized instances that are the focus of the present
work.

In any case, assuming that applying existent deterministic global optimization tools to a
given problem requires the analytical expressions of the problem to be written in an algebraic
modelling language, there are two characteristics of the proposed non-overlapping model
that impair the attempt of applying those tools to a packing problem based on it. The non-
overlapping constraints (33) are constituted, as a whole, by the summation of a quadratic
number of non-negative terms. Their efficient evaluation consists in determining, in linear
expected cost, which terms may be strictly positive, discarding those that are certainly null.
This procedure (described in Sect. 5) uses complex data structures and algorithms and,
therefore, up to the authors’ acknowledge, it cannot be efficiently expressed in an algebraic
modelling language. Moreover, once the terms that need to be evaluated have been identified,
their evaluation requires the computation of implicit variables that are the (primal and dual)
solutions to nonlinear optimization problems of the form (35). Since those subproblems are
numerically solved, no analytical expressions for the implicit variables are available and,
once again, this situation cannot be handled by an algebraic modelling language.

By the reasons exposed in the previous paragraphs, we concluded that the adequate tool
for enhancing the probability of finding good quality solutions to large-sized instances of
ellipsoids’ packing problem would be to consider stochastic multi-start global optimization
methods. Two are the main ingredients of the considered method: (a) specially devised
random initial guesses and (b) a robust local solver that was developed with the intention of
actively pursue good quality local minimizers. The description of the considered local solver
as well as the ad hoc initial guesses, that depend on the packing problem being considered,
are described in detail in the following section.

7 Numerical experiments

In this section, we present some experiments to show that the non-overlapping model (33)
with implicit variables introduced in the present work can be used to solve instances larger
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than the ones solved by the transformation-based model (8)–(11) introduced in [8]. Since the
former model can be solved faster (by solved we mean that a stationary point can be found),
it opens the possibility for the use of a multi-start strategy to potentially obtain better quality
solutions. On the one hand, this strategy could not be appliedwith the original transformation-
based model for medium- or large-sized instances due to the excessive amount of time spent
to perform a single local minimization starting from a given initial guess. For example, a
single local minimization of the problem of packing 100 three-dimensional ellipsoids within
a minimum volume ball took almost 20h in the numerical experiments reported in [8]. On
the other hand, the model with implicit variables is not suitable for small-sized instances
because of the overhead of evaluating the non-overlapping constraints that were designed
for medium- and large-sized instances and, in that case, the models introduced in [8] should
be preferred. For a given ellipsoids’ packing problem, the decision on whether the model
introduced in the present work or the model proposed in [8] should be used depends on
how different the ellipsoids being packed are and on the number of ellipsoids being packed.
If there are O(m) ellipsoids that are much smaller than the largest ellipsoid, the “efficient
evaluation” of constraint (33) described in Sect. 5.2 may cost O(m2). If this is not the case,
numerical experiments in [34] (that are not being included here by lack of space) suggest
that m ≥ 50 is the rule of thumb for using the model with implicit variables introduced in
the present work.

We have implemented two- and the three-dimensional versions of the introduced non-
overlapping models with implicit variables in Fortran 2003, as well as the optimization
procedure. To solve the nonlinear programming problems, we used Algencan [1,11] version
3.0.0, which is available for downloading at the TANGO Project web page (http://www.
ime.usp.br/~egbirgin/tango/). The models, the optimization procedure, and Algencan were
compiled with the GNU Fortran compiler (GCC) 4.7.2 with the -O3 option enabled. The
experiments were run on an Intel 2.4GHz Intel®Core™ i7-3770with 16GB of RAMmemory
and Debian GNU/Linux 7.8 (Linux version 3.2.0-4-amd64) operating system. Our computer
implementation and the solutions reported in this section are freely available at http://www.
ime.usp.br/~lobato/.

Algencan is an augmented Lagrangian method for nonlinear programming that solves
the bound-constrained subproblems using Gencan [2,9,10], an active-set method for bound-
constrained minimization. Gencan adopts the leaving-face criterion described in [9], that
employs spectral projected gradients defined in [12,13]. For the internal-to-the-face min-
imization, Gencan uses an unconstrained algorithm that depends on the dimension of the
problem and the availability of second-order derivatives. For small problems with avail-
able Hessians, a Newtonian trust-region approach is used (see [2]); while for medium- and
large-sized problems with available Hessians a Newtonian line-search method that combines
backtracking and extrapolation is used. When second-order derivatives are not available,
each step of Gencan computes the direction inside the face using a line-search truncated-
Newton approach with incremental quotients to approximate the matrix-vector products and
memoryless BFGS preconditioners (this is the case of the problems considered in the present
section, for which only first-order derivatives were coded). In all the experiments described in
the present section, the local solver Algencan was run using its default parameters; while the
optimality and feasibility tolerances εfeas and εopt (that are parameters that must be provided
by the user) were both set to 10−4. Those tolerances, related to the stopping criteria, are used
to determine whether a solution (stationary point) to the optimization problem being solved
has been found. See [11, pp. 116–117] for details.

Although Algencan is a local nonlinear programming solver, it was designed in such a
way that global minimizers of subproblems are actively pursued, independently of the fulfill-
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ment of approximate stationarity conditions in the subproblems. In other words, Algencan’s
subproblem solvers try always to find the lowest possible function values, even when this
is not necessary for obtaining approximate local minimizers. As a consequence, practical
behavior of Algencan is usually well explained by the properties of their global-optimization
counterparts [6]. The “preference for global minimizers” of Algencan has been discussed
in [1]. This has also been observed in papers devoted to numerical experiments concerning
Algencan and other solvers (see, for example, [27,28] and the references therein). This does
not mean at all that Algencan is always able to find global minimizers.

7.1 Two-dimensional packing

In this section, we consider the problem of packing ellipses within a minimum area container.
Each instance is defined by the lengths of the semi-axes of the m ellipses to be packed and
the type of the container. For illustration purposes, we have considered circles, ellipses, and
rectangles as containers.We used the models introduced in [8] for modelling the confinement
of ellipses within circles, ellipses, and rectangles. Assuming that the lengths of semi-axes

of the i-th ellipse are ai and bi , for each i ∈ I , P
1
2
i is the diagonal matrix whose diagonal

entries are ai and bi . For each i ∈ I , the rotation matrix for the i-th ellipse is given by (1).
Therefore, the variables of the problem that determine the center and orientation of the i-th
ellipse are ci ∈ R

2 and θi ∈ R, respectively, for i ∈ I . When the container is a circle, the
additional variable r determines the radius of the circular container. When the container is an
ellipse, the additional variables a and b determine the lengths of semi-axes of the elliptical
container. When the container is a rectangle, the additional variables l and w determine the
length and width of the rectangular container. The containment model may have additional
variables depending on the type of the container. For more details about the containment
models, see [8].

7.1.1 Identical ellipses

Since this is a non-convex optimization problem, we employ a multi-start strategy in order to
enhance the probability of finding good quality solutions. At each iteration of the multi-start
strategy, an initial solution is constructed and then the NLP local solver Algencan is used to
solve the problem starting from this initial solution. In the initial solution of the first iteration,
the ellipses to be packed are not rotated and their centers are arranged in a generalisation of
the hexagonal lattice for circles (see Fig. 3a). For each of the subsequent iterations, the initial
solution is given by a random perturbation of the most recent feasible solution found. The
centers and rotation angles of the ellipses are perturbed by at most 2.5%. A CPU time limit
of 48h for running the multi-start strategy on each considered instance was imposed.

Table 1 shows the results obtained for the problem of packing m ∈ {100, 200, 300, 400,
500, 1000} identical ellipses with semi-axis lengths 2 and 1 within a minimum area ellipse.
The first column shows the numberm of ellipses packed. The second and third columns show
the area of the container and the density of the packing in the best solution found, respectively.
Areas and densities are rounded to 5 decimal places (results up to themachine precision can be
found in http://www.ime.usp.br/~lobato/). The fourth and fifth columns show the number of
local minimizations and the total time spent until the best solution was found, respectively.
The sixth column shows the total number of (completed) local minimizations performed
within the imposed CPU time limit and the last column shows the average time per local
minimization.
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(c)(b)(a)

Fig. 3 First and final solutions to the problem of packing m = 100 identical ellipses with semi-axis lengths
a = 2 and b = 1 within a minimum area ellipse. a First initial (feasible) solution. b Initial (infeasible) solution
at iteration 542. c Solution found at iteration 542

Table 1 Numerical results of the solutions found to the problem of packing m ∈ {100, 200, 300, 400, 500,
1000} identical ellipses with semi-axis lengths a = 2 and b = 1 within a minimum area ellipse

m Area Density # Local
minimizations
to find the
best solution

Time to find the
best solution

Total # local
minimizations

Avg. time
per local
minimization

100 720.94153 0.87152 542 1d09h00m38s 755 3m48s

200 1429.04475 0.87935 168 1d02h41m47s 295 9m40s

300 2135.66113 0.88261 49 13h30m17s 188 15m14s

400 2849.03264 0.88215 88 1d21h32m10s 93 30m19s

500 3553.45497 0.88410 104 1d22h15m45s 112 25m10s

1000 7110.81559 0.88361 22 1d22h10m38s 22 2h05m56s

Figure 3 shows graphical representations of the initial and the best solutions found for the
problem of packing 100 ellipses within a minimum area ellipse. Figure 3a depicts the initial
solution of the first iteration. Figure 3b represents the initial solution of the 542nd iteration and
Fig. 3c shows the solution found in the 542nd local minimization. Figure 4 illustrates the best
solutions found for the problem of packing m ellipses, for m ∈ {200, 300, 400, 500, 1000},
within a minimum area ellipse.

The results we obtained for the problem of packing identical ellipses within a minimum
area rectangle are shown in Table 2. Figure 5 depicts the best solutions found within the
imposed CPU time limit.

7.1.2 Non-identical ellipses

Wealso dealt with the problemPC of packingm non-identical ellipseswithin aminimumarea
circle.We considered an instance formed bym = 231 ellipseswithmutually different pairs of
semi-axis lengths belonging to the set {(1+0.2α, 1+0.2β) | α, β ∈ {0, 1, . . . , 20}, α ≤ β}.
In order to create an initial solution to this problem, we considered another problem, called
PS , whose solution will serve as a starting guess to problem PC . Problem PS is the problem
of packing the ellipses without overlap so that the sum of the squared distances of the ellipses’
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m = 200 m = 300 m = 400

m = 500 m = 1000

Fig. 4 Graphical representation of the solutions found to the problem of packing m ∈
{200, 300, 400, 500, 1000} identical ellipses with semi-axis lengths a = 2 and b = 1 within a minimum
area ellipse

Table 2 Numerical results of the solutions found to the problem of packing m ∈ {100, 200, 300, 400, 500,
1000} identical ellipses with semi-axis lengths a = 2 and b = 1 within a minimum area rectangle

m Area Density # Local
minimizations
to find the
best solution

Time to find the
best solution

Total # local
minimizations

Avg. time
per local
minimization

100 718.30400 0.87473 5462 1d15h24m55s 6759 25s

200 1424.01823 0.88246 1811 1d23h30m46s 1827 1m34s

300 2125.50589 0.88683 839 1d23h30m27s 846 3m23s

400 2821.35592 0.89080 425 1d15h37m55s 529 5m20s

500 3524.99378 0.89123 773 1d15h01m11s 996 2m52s

1000 7012.42249 0.89601 94 1d22h09m52s 103 27m36s
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m = 100 m = 200 m = 300

m = 400 m = 500

m = 1000

Fig. 5 Graphical representation of the solutions found to the problem of packing m ∈
{100, 200, 300, 400, 500, 1000} identical ellipses with semi-axis lengths a = 2 and b = 1 within a mini-
mum area rectangle

centers to the origin of the Cartesian coordinate system is minimum. For solving problemPS ,
we considered amulti-start strategy similar to the one used for solving the problem of packing
ellipses within a minimum area ellipse. We imposed a CPU time limit of 1h to solve problem
PS . Figure 6a depicts the solution found to this problemwithin the given time limit. This is the
first initial solution to problemPC . (The circle that appears around the ellipses in Fig. 6a is not
related to problemPS but it is part of the initial solution for problemPC .) For problemPC , the
same multi-start strategy was used and Fig. 6b shows the best solution found after 48h (and
135 local minimizations). In this solution, the container has radius 49.39860, approximately.

7.2 Three-dimensional packing

In this section, we consider the problems of packing ellipsoids within aminimum volume ball
and within a minimum volume cuboid. We used the models introduced in [8] for modelling
the confinement of ellipsoids within balls and cuboids. We deal with instances formed by
m ∈ {100, 200, 300, 400, 500} identical ellipsoids with semi-axis lengths l1 = 1, l2 = 0.75,

and l3 = 0.5. For each i ∈ I , P
1
2
i is the diagonal matrix whose diagonal entries are l1,

l2, and l3. For each i ∈ I , the rotation matrix for the i-th ellipsoid is given by (2). As in
the two-dimensional experiments, we use a multi-start strategy in order to find good quality

123



492 J Glob Optim (2017) 68:467–499

(b)(a)

Fig. 6 Initial and final solutions to the problem of packing m = 231 non-identical ellipses with semi-axis
lengths belonging to the set {(1 + 0.2α, 1 + 0.2β) | α, β ∈ {0, 1, . . . , 20}, α ≤ β} within a minimum area
ball. a Initial (feasible) solution. b Best solution found

Table 3 Numerical results of the solutions found to the problem of packing m ∈ {100, 200, 300, 400, 500}
identical ellipsoids with semi-axis lengths l1 = 1, l2 = 0.75, and l3 = 0.5 within a minimum volume ball

m Volume Density # Local
minimizations
to find the
best solution

Time to find the
best solution

Total # local
minimizations

Avg. time
per local
minimization

100 235.84476 0.66603 369 22h45m07s 894 3m13s

200 466.02054 0.67413 252 1d14h37m57s 309 9m18s

300 690.88831 0.68208 137 1d23h07m55s 142 20m15s

400 924.38840 0.67971 64 1d23h43m17s 64 44m44s

500 1166.65841 0.67320 89 1d20h49m59s 89 30m13s

Table 4 Numerical results of the solutions found to the problem of packing m ∈ {100, 200, 300, 400, 500}
identical ellipsoids with semi-axis lengths l1 = 1, l2 = 0.75, and l3 = 0.5 within a minimum volume cuboid

m Volume Density # Local minimiza-
tions
to find the
best solution

Time to find the
best solution

Total # local
minimizations

Avg. time
per local
minimization

100 245.00312 0.64113 125 19h22m54s 324 8m51s

200 477.21441 0.65832 113 1d18h17m59s 139 20m16s

300 708.62093 0.66501 165 1d06h34m00s 298 9m16s

400 935.85630 0.67138 45 1d22h32m20s 45 1h02m03s

500 1163.44519 0.67506 16 1d01h44m10s 27 1h43m41s
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Fig. 7 First and final solutions to the problem of packingm = 100 identical ellipsoids with semi-axis lengths
l1 = 1, l2 = 0.75, and l3 = 0.5 within a minimum volume ball. a First initial (feasible) solution. b Initial
(infeasible) solution at iteration 369. c Solution found at iteration 369

m = 200 m = 300

m = 400 m = 500

Fig. 8 Graphical representation of the solutions found to the problem of packing m ∈ {200, 300, 400, 500}
identical ellipsoids with semi-axis lengths l1 = 1, l2 = 0.75, and l3 = 0.5 within a minimum volume ball
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solutions. The initial solution is defined as follows. The ellipsoids are not rotated and their
centers correspond tom points in the set {(δ1l1, δ2l2, δ3l3) | δ1, δ2, δ3 ∈ Z} that are closest to
the origin. In this way, the ellipsoids do not overlap in the initial solution. The containers (ball
and cuboid) in the initial solution are the smallest ones that contain the enclosing balls of
each ellipsoid. For each of the subsequent iterations, the initial solution is given by a random
perturbation of the most recent feasible solution found. The centers and rotation angles of
the ellipsoids were perturbed by at most 10%.

Table 3 exhibits the results for the minimization of the volume of the spherical container;
while Table 4 presents the results for the minimization of the volume of the cuboidal con-
tainer. The first column shows the number m of packed ellipsoids. The second and third
columns show the volume of the container and the packing density in the best solution found,
respectively. The fourth and fifth columns show the number of local minimizations (number
of multi-start iterations) and the total time required to find the best solution found. The sixth
and seventh columns show the number of (completed) local minimizations and the average
time per local minimization within the CPU time limit of 48h.

m = 100 m = 200 m = 300

m = 400 m = 500

Fig. 9 Graphical representation of the solutions found to the problem of packing m ∈
{100, 200, 300, 400, 500} identical ellipsoids with semi-axis lengths l1 = 1, l2 = 0.75, and l3 = 0.5 within
a minimum volume cuboid
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Figure 7 depicts some solutions that appeared during the multi-start procedure for the
problem of packing m = 100 identical ellipsoids within a minimum volume ball. Figure 7a
illustrates the first initial solution that was constructed for this problem. Figure 7b shows the
initial solution for the 369th iteration and Fig. 7c displays the solution found at iteration 369.
Figure 8 illustrates the solutions for the problem of packing m ∈ {200, 300, 400, 500} iden-
tical ellipsoids within a minimum volume ball; while Fig. 9 exhibits the solutions for the
problem of packing m ∈ {100, 200, 300, 400, 500} identical ellipsoids within a minimum
volume cuboid.

8 Concluding remarks

Up to the authors’ acknowledge, all published nonlinear programming models for avoiding
the overlapping between ellipsoids have a quadratic number of variables and constraints on the
number of ellipsoids to be packed. Therefore,when the number of ellipsoids is relatively large,
solving these models become a computationally prohibitive task. In order to alleviate this
shortcoming, we proposed a model with implicit variables, inspired by the transformation-
based non-overlapping model introduced in [8], that has a linear number of variables and
constraints. Moreover, a clever algorithm for evaluating the whole model in linear time
was also proposed. Numerical experiments showed that, by considering the proposed non-
overlapping model, it is possible to tackle problems one or two order of magnitude larger
than the instances previously addressed in the literature.

Acknowledgements The authors are indebted to the anonymous referees whose comments helped to improve
this paper.

Appendix: Derivatives

The computation of the derivatives of the function defined in (33) is nontrivial. That is because
this function depends on the functions X and U whose values are given by the solution of
an optimization problem. Firstly, we will show the derivatives of the terms that compose
the function defined in (33) in terms of the derivatives of the functions X and U . Next,
we will show how to compute the derivatives of the functions X and U . To simplify the
notation, we will denote by Xi j the value X (ci , c j ,�i ,� j ; Pi , Pj ) and by Ui j the value
U(ci , c j ,�i ,� j ; Pi , Pj ).

First order derivatives

Let i, j ∈ {1, . . . ,m} such that i < j . We have that X (ci , c j ,�i ,� j ; Pi , Pj ) is a solution
to the problem

minimize 1
2

∥∥∥x − ci ji

∥∥∥
2

subject to x�Si j x = 1,
(38)

where ci ji = P
− 1

2
i Q�

i (ci − c j ), and U(ci , c j ,�i ,� j ; Pi , Pj ) is the corresponding Lagrange
multiplier. According to the Karush–Kuhn–Tucker first-order necessary conditions for prob-
lem (38), we have
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Xi j + Ui j Si jXi j − ci ji = 0

Xi j
�Si jXi j − 1 = 0.

Thus, by defining the function F : Rn × R
n × R

q × R
q → R

n+1 as

F(ci , c j ,�i ,� j ) =
[
Xi j + Ui j Si jXi j − ci ji
1
2

(Xi j
�Si jXi j − 1

)
]

, (39)

we have that F(ci , c j ,�i ,� j ) = 0 for all ci , c j ∈ R
n and for all �i ,� j ∈ R

q . That is,
F is an identically zero function. Therefore, we have that the derivative of function F is
also an identically zero function. Hence, for each variable v of the function F and for each
component � ∈ {1, . . . , n + 1} of F , we have

dF�

dv
= ∂F�

∂v

dv

dv
+ ∂F�

∂Ui j

dUi j

dv
+

n∑
k=1

∂F�

∂[Xi j ]k
d[Xi j ]k
dv

= 0. (40)

Once the values of Xi j and Ui j are known, we have, for each � ∈ {1, . . . , n + 1}, analytical
expressions for ∂F�

∂v
, ∂F�

∂Ui j
, and ∂F�

∂[Xi j ]k for each k ∈ {1, . . . , n}. On the other hand, the values
of

dUi j
dv and

d[Xi j ]k
dv for each k ∈ {1, . . . , n} are unknown, but can be computed by solving the

linear system provided by (40):

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂F1
∂[Xi j ]1 · · · ∂F1

∂[Xi j ]n
∂F1
∂Ui j

∂F2
∂[Xi j ]1 · · · ∂F2

∂[Xi j ]n
∂F2
∂Ui j

...
...

...
...

∂Fn+1
∂[Xi j ]1 · · · ∂Fn+1

∂[Xi j ]n
∂Fn+1
∂Ui j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d[Xi j ]1
dv

...

d[Xi j ]n
dv

dUi j
dv

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

∂F1
∂v

∂F2
∂v

...

∂Fn+1
∂v

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then, for each i, j ∈ {1, . . . ,m} such that i < j , we need to solve 2(n + q) linear systems
with n + 1 equations and n + 1 variables (one linear system for each variable among ci , c j ,
�i and � j ).

Once i and j are fixed, observe that the 2(n + q) linear systems have the same coefficient
matrix. The only difference between these systems are their right-hand sides. Thus, in order
to solve these linear systems, we can factorize the coefficient matrix only once and then, for
each right-hand side, solve the linear system with the coefficient matrix already factorized.

Second order derivatives

For each variable v of the function F defined in (39) and for each component � of F , we
define the function Gv

� as the total derivative of the function F� with respect to v:

Gv
�(ci , c j ,�i ,� j ) = dF�

dv
(ci , c j ,�i ,� j ).

Since the function F is identically zero, its derivative is also identically zero. Then, for each
variable u of the function Gv

� , we have

dGv
�

du
= ∂Gv

�

∂u

du

du
+ ∂Gv

�

∂Ui j

dUi j

du
+

n∑
k=1

∂Gv
�

∂[Xi j ]k
d[Xi j ]k
du

= 0. (41)
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Next, we present the partial derivatives of the function Gv
� , that appear in the expression (41).

The partial derivative of Gv
� with respect to the variable u is given by

∂Gv
�

∂u
= ∂2F�

∂u∂v
+ ∂2F�

∂u∂Ui j

dUi j

dv
+ ∂F�

∂Ui j

∂

∂u

(
dUi j

dv

)
+

n∑
k=1

∂2F�

∂u∂[Xi j ]k
d[Xi j ]k
dv

+
n∑

k=1

∂F�

∂[Xi j ]k
∂

∂u

(
d[Xi j ]k
dv

)
.

The partial derivative of Gv
� with respect to Ui j is given by

∂Gv
�

∂Ui j
= ∂2F�

∂Ui j∂v
+ ∂2F�

∂Ui j∂Ui j

dUi j

dv
+ ∂F�

∂Ui j

∂

∂Ui j

(
dUi j

dv

)

+
n∑

k=1

∂2F�

∂Ui j∂[Xi j ]k
d[Xi j ]k
dv

+
n∑

k=1

∂F�

∂[Xi j ]k
∂

∂Ui j

(
d[Xi j ]k
dv

)

= ∂2F�

∂Ui j∂v
+

n∑
k=1

∂2F�

∂Ui j∂[Xi j ]k
d[Xi j ]k
dv

.

Finally, the partial derivative of Gv
� with respect to Xi j is given by

∂Gv
�

∂[Xi j ]t = ∂2F�

∂[Xi j ]t∂v
+ ∂2F�

∂[Xi j ]t∂Ui j

dUi j

dv
+ ∂F�

∂Ui j

∂

∂[Xi j ]t
(
dUi j

dv

)

+
n∑

k=1

∂2F�

∂[Xi j ]t∂[Xi j ]k
d[Xi j ]k
dv

+
n∑

k=1

∂F�

∂[Xi j ]k
∂

∂[Xi j ]t
(
d[Xi j ]k
dv

)

= ∂2F�

∂[Xi j ]t∂v
+ ∂2F�

∂[Xi j ]t∂Ui j

dUi j

dv
+

n∑
k=1

∂2F�

∂[Xi j ]t∂[Xi j ]k
d[Xi j ]k
dv

.

The simplifications in the expressions of the derivatives of Gv
� with respect to Ui j and Xi j

come from the removal of null elements.
Considering that the values of the first order derivatives of the function F are known, the

equation (41) provides the following linear system
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂F1
∂[Xi j ]1 · · · ∂F1

∂[Xi j ]n
∂F1
∂Ui j

∂F2
∂[Xi j ]1 · · · ∂F2

∂[Xi j ]n
∂F2
∂Ui j

...
...

...
...

∂Fn+1
∂[Xi j ]1 · · · ∂Fn+1

∂[Xi j ]n
∂Fn+1
∂Ui j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂u

(
d[Xi j ]1

dv

)

...
∂
∂u

(
d[Xi j ]n

dv

)

∂
∂u

(
dUi j
dv

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

bu,v
1

bu,v
2

...

bu,v
n+1

⎤
⎥⎥⎥⎥⎥⎥⎦

for each variable u and for each variable v of the function F . The components of the right-hand
side of this system are given by

bu,v
� = ∂2F�

∂u∂v
+ ∂2F�

∂u∂Ui j

dUi j

dv
+

n∑
k=1

∂2F�

∂u∂[Xi j ]k
d[Xi j ]k
dv

+ ∂Gv
�

∂Ui j

dUi j

du
+

n∑
k=1

∂Gv
�

∂[Xi j ]k
d[Xi j ]k
du

for each � ∈ {1, . . . , n + 1}. Notice that the coefficient matrix of this linear system does not
depend on the variables u and v. Therefore, for each i, j ∈ {1, . . . ,m} such that i < j , we
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have (n + q)(2(n + q) + 1) linear systems (one for each pair of variables u and v of the
function F) with n + 1 variables each one, and all of them have the same coefficient matrix.
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