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Abstract In this article, we consider two classes of discrete bilevel optimization problems
which have the peculiarity that the lower level variables do not affect the upper level con-
straints. In the first case, the objective functions are linear and the variables are discrete at
both levels, and in the second case only the lower level variables are discrete and the objec-
tive function of the lower level is linear while the one of the upper level can be nonlinear.
Algorithms for computing global optimal solutions using Branch and Cut and approximation
of the optimal value function of the lower level are suggested. Their convergence is shown
and we illustrate each algorithm via an example.

Keywords Bilevel programming · Solution algorithm · Discrete parametric optimization ·
Global optimization
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1 Introduction

Bilevel programming problems are mathematical problems with a special constraint which
is implicitly determined by another optimization problem. This latter problem, called the
follower’s or lower level problem, is defined by

min
y

{ f (x, y) : g(x, y) ≤ 0} ,

where f : Rn × R
m → R, g : Rn × R

m → R
s .
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The bilevel programming problem can formally be described as follows

min
x,y

F(x, y)

s.t. G(x) ≤ 0
y ∈ Ψ (x)

(1.1)

with

Ψ (x) := Argmin
y

{ f (x, y) : g(x, y) ≤ 0}

and functions F : Rn × R
m → R, G : Rn → R

k .
Problem (1.1) is called the upper level or leader’s problem. It is often referred to as the

optimistic formulation of the bilevel programming problem [9]. The variables x and y are
the upper and lower level variables or upper and lower level decisions, respectively.

It is well-known that the bilevel problem is a hard problem due to its inherent nonconvexity
and nondifferentiability [2]. Even the simplest case, the linear bilevel problem, has been
shown to be strongly NP-hard [3]. An overview of existing literature and applications can be
found in the annotated bibliographies and books [3,9,10,32].

Bilevel optimization problems may involve decisions in both discrete and continuous
variables. Therefore, when we consider the discrete bilevel program, four types come to our
attention [21,33]:

Type I: The upper level variables are integer and the lower level variables are continuous: In
this case, one usual approach to solve problem (1.1) is to replace the lower level problemwith
optimality conditions i.e., by its Karush–Kuhn–Tucker conditions. These conditions are nec-
essary and sufficient optimality conditions as long as the functions f and g are continuously
differentiable and convex with respect to y for fixed x and some constraint qualification (such
as Slater’s condition or the Mangasarian–Fromovitz-constraint-qualification) is satisfied. It
is worth to mention that this reformulation is equivalent to the original bilevel programming
problem with respect to global optimal solutions but not necessarily with respect to local
optimal solutions [11]. In the literature, one is in general more interested in finding global
optimal solutions for problem (1.1) with respect to all variables than finding local solutions
with respect to the continuous ones. In fact, a local solution for the follower’s program is not
meaningful. Even if the leader assumes the follower is a local optimizer, he should hedge
against all local solutions, which should be even harder than solving for the global follower’s
solution. Hence, the choice of the KKT approach seems reasonable when combined with
techniques of (mixed-integer) nonlinear optimization as Branch and Bound or Branch and
Cut.

Type II: The sets of both upper and lower level variables admit integer and continuous
values at the same time. This is themixed-integer upper and lower level problem: an overview
of different approaches for solving this type is given in [15,17,31,34], and in [35].

Type III: The upper and lower level variables are all integer: here, Bard and Moore [4]
were the first to suggest an approach solving the problem. They developed a specialized
algorithm for binary bilevel programs, and later DeNegre and Ralphs [16] improved the
previous algorithm by describing a branch and cut algorithm for solving integer bilevel linear
programs in the general case. Domínguez and Pistikopoulos [17] employed a reformulation
linearization technique to construct a parametric convex hull representation of the lower
problem constraint set. In this paper, we describe a method solving this type by transforming
our problem using the optimal value function reformulation.

Type IV: Here, the lower level variables are integer and the upper level variables are
continuous. Vicente et al. [33] showed that more assumptions are needed in order to prove
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the existence of an optimal solution to problem (1.1) in this case than in the first and third case,
respectively. Nevertheless, some research has been carried out: In [8], one solved problem
(1.1) using a cutting plane approach for approximating the feasible set of the discrete lower
level problem. A theoretical approach to the treatment of bilevel problems of this type is
given in [20]. In [24], the authors presented a polynomial time algorithm when the follower’s
dimension is fixed. Just recently, Dempe et al. [13] solved this type using an approximation
of the optimal value function of the lower level to solve the bilevel programming problem
globally. The main idea in [13] is to improve the quality of the approximation of the optimal
value function using feasible solutions of the lower level problem in each iteration. Notice
that although, the bilevel problem considered in [13] and the idea are quite similar to the one
we applied here, the principal differences rely on the lower level’s objective function (in fact,
there is no way to reduce one expression to the other one and conversely) and the method to
find the approximation of the optimal value function.

This approximation is one of themain three approaches dedicated to the study of optimistic
bilevel programming problems initiated by Outrata [30] (the two other approaches are the
Karush–Kuhn–Tucker reformulation and the replacement of the lower level by a generalized
equation [14]).

In this paper, we are more interested in the aforementioned approach where (1.1) is
replaced by the following one:

min
x,y

F(x, y)

s.t. G(x) ≤ 0
g(x, y) ≤ 0
f (x, y) ≤ ϕ(x)

(1.2)

with ϕ(x) := inf
y

{ f (x, y) : g(x, y) ≤ 0} for all x ∈ R
n .

It is easy to see that the nonlinear programming problem (1.2) is equivalent to (1.1).
We will use this approach in order to develop the new algorithms solving discrete bilevel
problems of Type III in which the upper level variables only affect the lower level objective
function; and Type IV in which the upper-level variables only appear in the right-hand side
of the lower level constraints.

It should be noted that, using this approach, we can allow for upper level constraints
depending on the lower level variable. But this is difficult with respect to the ideas behind
bilevel optimization where constraintsG(x, y) ≤ 0mean that the leader can check feasibility
of his selection only after being informed of the follower’s selection in case of non unique
optimal solutions of the follower. From point-of-view of bilevel optimization this means that
the leader assumes that the follower allows him to select out of the optimal solutions of the
follower’s problem one point which satisfies the upper level constraints and is a best one for
the resulting problem. These aims are again contradicting. For further details, we refer the
interested reader to [9].

Our research on discrete bilevel problemswith these peculiarities ismotivated by a number
of important applications in bilevel programming problems with parametric graph problems
in the lower level such as the minimum spanning tree problem, the toll problem, the shortest
path problem, the matching problem in a bipartite graph or the minimum knapsack problem.
Indeed, the parameter which is in the objective function (resp. constraints) of the lower level
is controlled by the leader in Type III (resp. Type IV).

Besides algorithms that have been described to solve one of the particular type given
above, we have some algorithms which have been conceived to solve nonlinear mixed inte-
ger bilevel programs in a more general setting [19,21,23,28]. While [28] uses the optimal
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value reformulation, [19,21] use the KKT conditions after some reformulations in order to
transform the bilevel problem into a one level problem. In [23], one presents a method based
on the parametric analysis of [6] . Here, we use the same idea as in [28] but our peculiarity
is that, in the first case we use a branch and cut method which has been proven to be a very
successful technique for solving integer programming problems, and in the second case,
we propose a method that deals with mixed bilevel problems for which the lower problem
constraint set do not need to be bounded as in [21].

The remainder of the paper is organized as follows: In Sect. 2, we describe an algorithm to
solveType III of problem (1.1).Here, the upper level variable does only appear in the objective
function of the lower level problem, the objective functions are linear and the variables are
discrete at both levels. An example is worked out where some peculiarities of the solution
are demonstrated. In Sect. 3, we present an algorithm to solve Type IV of problem (1.1). In
distinction to the foregoing case, the upper level variable is only in the right-hand side of the
constraints of the lower level problem, the lower variables are discrete, the upper ones are
continuous and the objective function of the lower level is linear while the one of the upper
level is not specified. We illustrate the algorithm via an example. Section 4 concludes the
paper.

In the paper, we use R
n+, Zn+, Qn , Bn , Rn×m , and Q

n×m to denote the cone of all n-
dimensional real vectors with nonnegative components, the set of all n-dimensional integer
vectors with nonnegative components, the set of all n-dimensional rational vectors, the set
of all n-dimensional binary vectors, the set of all real matrices with n rows and m columns,
and the set of all rational matrices with n rows and m columns, respectively. Furthermore,
recall that Rn+ induces the following partial order in R

n :

∀x1, x2 ∈ R
n+ : x1 ≤ x2 ⇔ x2 − x1 ∈ R

n+.

2 Approach for solving discrete bilevel optimization problems of Type III

In this section, we postulate that, the functions F and f (x, ·) for x ∈ R
n are linear, the

functions G and g(x, ·) for x ∈ R
n are affine, and that the upper level variable x only appears

in the objective function of the lower level problem. We propose an algorithm for solving
the binary case, but the procedure can be easily modified to solve a discrete linear bilevel
problem in the general case, i.e., when both x and y may take any bounded integer value.

2.1 Reformulation of the linear discrete bilevel optimization problem

The problem we consider is formulated as

min
x,y

d�
1 x + d�

2 y

s.t. Dx ≤ d
x ∈ B

n

y ∈ Ψ (x) := Argmin
y

{
x�y : Ay ≤ b, y ∈ B

n
}
,

(2.1)

where m = n, D ∈ Q
k×n , A ∈ Q

s×n are matrices, while b ∈ Q
s , d ∈ Q

k , and d1, d2 ∈ Q
n

are constant vectors.
We assume that

Ω := {
x ∈ B

n : Dx ≤ d
} × {

y ∈ B
n : Ay ≤ b

}

is nonempty.
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Note also that the assumption that the lower level objective function is f (x, y) = x�y is
not very restrictive. What we need is that the objective function is linear in the lower level
variable: if f (x, y) = H(x)�y, we can substitute z = H(x) in the upper level and use
z�y as objective function in the lower level. In that sense, our results can be applied to e.g.
toll setting problems where the lower level problem is modeled as a multicommodity flow
problem, O-D adjustment problems [26,27].

Using the optimal value reformulation of (2.1), we get the following equivalent problem:

min
x,y

d�
1 x + d�

2 y

s.t. Dx ≤ d
Ay ≤ b
x, y ∈ B

n

x�y ≤ min
{
x�yi : i = 1, . . . , p

}
.

(2.2)

Therein,
{
y1, . . . , y p

} = {
y ∈ B

n : Ay ≤ b
}
.

Remark 2.1 It is important to see that the set
{
y ∈ B

n : Ay ≤ b
}
is finite because |Bn | = 2n

and
{
y ∈ B

n : Ay ≤ b
} ⊆ B

n .

Remark 2.2 When generalizing to y ∈ Z
n+, one needs the set {y ∈ Z

n+ : Ay ≤ b} to be
bounded in order to ensure its finiteness.

Let I be a subset of {1, . . . , p} such that for all i ∈ I, yi ∈ {
y ∈ B

n : Ay ≤ b
}
is known.

We consider the relaxation

min
x,y

d�
1 x + d�

2 y

s.t. Dx ≤ d
Ay ≤ b
x�y ≤ min

{
x�yi : i ∈ I

}

x, y ∈ B
n

of (2.2) which is equivalent to:

min
x,y

d�
1 x + d�

2 y

s.t. Dx ≤ d
Ay ≤ b
x�y ≤ x�yi ∀i ∈ I
x, y ∈ B

n .

(2.3)

The last problem is a nonlinear integer programming problem. In its constraints, we have
some quadratic inequalities, namely x�y ≤ x�yi for all i ∈ I . We will relax these nonlinear
constraints by linear constraints without introducing additional variables.

Consider now the polynomial constraint x�y − x�yi ≤ 0 with i ∈ I .
For fixed i ∈ I we set hi (x, y) := x�y − x�yi (only yi is known). There are |I | of those

constraints hi (x, y) ≤ 0. This amounts to

hi (x, y) = x1y1 + · · · + xn yn − x1y
i
1 − · · · − xn y

i
n

=
n∑

j=1

x j y j −
n∑

j=1

x j y
i
j .
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Let

∀ j ∈ {1, . . . , 2n} : X j :=
{
x j , if j ∈ {1, . . . , n}
y j−n, if j ∈ {n + 1, . . . , 2n},

and Li := {l ∈ {n + 1, . . . , 2n} : yil−n = 1}. Then we rewrite hi (x, y) by changing its
variables.

hi (x, y) = hi (X) = hi (X1, . . . , Xn, Xn+1, . . . , X2n)

=
n∑

j=1

X j Xn+ j −
∑

j∈Li

X j−n

=
n∑

j=1

∏

l∈S j
Xl −

∑

j∈Li

∏

l∈S j
Xl

where

∀ j ∈ {1, . . . , n} ∪ Li : S j :=
{

{ j, n + j}, if j ∈ {1, . . . , n}
{ j − n}, if j ∈ Li .

We set N+ := {1, . . . , n}, Ni := N+ ∪ Li , and define the mapping γi : Li → { j − n :
j ∈ Li } by γi ( j) := j − n for all j ∈ Li .

For M ⊆ Ni , we set SM := ⋃
k∈M∩N+ Sk = ⋃

k∈M∩N+{k, n + k} and SMi := γi (M ∩
Li ) = {γi ( j) : j ∈ M ∩ Li }.

For X j ∈ B, denote by X j the complement of X j with respect to the set B, i.e., X j =
1 − X j .

Let us define a notion which will help us to relax the nonlinear inequality into a linear
one.

Definition 2.3 A setM ⊆ Ni is said to be a cover for the inequality hi (X) ≤ 0 if |M | > |Li |.
A cover M is said to be minimal if no strict subset of it is a cover.

We can remark that any cover M of hi contains at least one element of N+. This implies
that the set SM is not empty.

With this definition and the sets defined above, we obtain the following lemma which is a
specialization of [18, Theorem 11.2] in the sense that all the coefficients of h here are unitary.
We include the proof such that this paper is self-contained.

Lemma 2.4 If hi (X) ≤ 0 is satisfied, then
∑

j∈SM
X j +

∑

j∈SMi
X j ≥ 1 (2.4)

for any cover M ⊆ Ni of hi .

Proof See the “Appendix”.

We call (2.4) a generalized covering inequality.
Of course a minimal cover M results in a generalized covering inequality with less vari-

ables than any other cover.
The reader can see how to derive more compact linear inequalities than the generalized

covering inequality in [18].
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Lemma 2.4 gives us a relaxation of (2.3) which is in turn a relaxation of problem (2.1).
Namely, we consider

min
x,y

d�
1 x + d�

2 y

s.t. Dx ≤ d
Ay ≤ b∑

j∈SMi X j + ∑
j∈SMi

i
X j ≥ 1 ∀i ∈ I

x, y ∈ B
n,

(2.5)

where Mi is a cover of hi for all i ∈ I .
We can see that the problem (2.5) does not contain quadratic constraints anymore: it is a

linear programming problem with integer variables.
The inequalities

∑
j∈SMi X j + ∑

j∈SMi
i

X j ≥ 1 for all i ∈ I can be expressed as A′x +
B ′y ≤ d ′ where A′, B ′ ∈ R

|I |×n , and d ′ ∈ R
|I | are the corresponding matrices. Then the

problem (2.5) becomes
min
x,y

d�
1 x + d�

2 y

s.t. Dx ≤ d
Ay ≤ b
A′x + B ′y ≤ d ′
x, y ∈ B

n .

(2.6)

This is equivalent to
min
x,y

d�
1 x + d�

2 y

Ex + Fy ≤ B
x, y ∈ B

n

(2.7)

with E := [
(D)�|O|(A′)�

]�, F := [
O|(A)�|(B ′)�

]�, B := [
d�|b�|(d ′)�

]�.
Now we consider the continuous relaxation of problem (2.7) denoted by (GCR):

min
x,y

d�
1 x + d�

2 y

Ex + Fy ≤ B
x, y ∈ [0, 1]n .

(GCR)

We can see that every integer optimal solution of (GCR) that is feasible for (2.1) is also
optimal for this problem. This is shown in the next proposition.

Proposition 2.5 Let (x, y) be a global optimal solution of (GCR) which is integer. If y ∈
Ψ (x), then it is also a global optimal solution of problem (2.1).

Proof Let (x, y) be an integer optimal solution of (GCR). This implies that (x, y) is feasible
for (2.7), i.e., y ∈ B

n . Moreover, from y ∈ Ψ (x) we have that (x, y) is a feasible solution
for problem (2.1). Now let (x, y) be a feasible solution of (2.1). From Lemma 2.4, (x, y)
is also a feasible solution of (GCR), and the optimality of (x, y) in problem (GCR) entails
d�
1 x + d�

2 y ≤ d�
1 x + d�

2 y. Consequently, (x, y) is a global optimal solution of (2.1). 
�
2.2 An algorithm for solving the discrete linear bilevel problem

For the procedure of solving problem (2.1), we will solve the relaxation (GCR) first for some
cover M (we will see in the example below how to find such cover). If the solution obtained
is not integer, we can just delete it from the feasible set of (GCR). To do this, we can use the
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following method where we suppose that all components of P := [E |F] are integer (this can
be assumed since all the matrices are supposed to have rational elements).

The problem (2.7) is restated as min{q�z : Pz ≤ B, z ∈ B
2n} where q = (d�

1 , d�
2 ),

z = (x, y), P = [E |F] = (pi j )(i, j)∈{1,...,k+s+|I |}×{1,...,2n}.
Let

Ri :=
{
z ∈ B

2n :
∑

j∈{1,...,2n}
pi j z j ≤ Bi

}
, (2.8)

i.e., Ri is the set of all z which satisfy the constraint i (Ri represents the solution set of the
0-1 knapsack constraint). Obviously,

⋂k+s+|I |
i=1 Ri is the feasible set of (2.7).

We set N := {1, . . . , 2n}, Zi
< := {k ∈ N : pik < 0}, and Zi≥ := {k ∈ N : pik ≥ 0}.

Adding −∑
j∈Zi

<
pi j at each side of the inequality in (2.8) leads to

∑

j∈Zi
<

pi j z j +
∑

j∈Zi≥

pi j z j −
∑

j∈Zi
<

pi j ≤ Bi −
∑

j∈Zi
<

pi j ,

i.e., ∑

j∈N
|pi j |̂z j ≤ Bi −

∑

j∈Zi
<

pi j , (2.9)

where

ẑ j :=
{
z j if j ∈ Zi≥
1 − z j if j ∈ Zi

<.

Since both sides of (2.9) are positive, for every dependent set C with respect to (2.9),
∑

j∈C
ẑ j ≤ |C | − 1 (2.10)

is a valid inequality for Ri [29, Proposition 2.1 SectionII.2.2]. Recall that a setC is dependent
with respect to (2.9) if

∑
j∈C |pi j | > Bi − ∑

j∈Zi
<
pi j .

Let z∗ = (x∗, y∗) ∈ [0, 1]2n be a solution of (GCR) which is not integer.
In order to find an inequality which is satisfied for all feasible solutions of (2.7) and not

for z∗, it suffices to look for a dependent set C ⊆ N satisfying
∑

j∈C ẑ∗j > |C | − 1.

That is given by looking for t ∈ B
2n representing C , i.e.,

∀ j ∈ {1, . . . , 2n} : t j =
{
1, if j ∈ C

0, otherwise

such that {∑
j∈N (1 − ẑ∗j )t j < 1,

∑
j∈N

∣
∣pi j

∣
∣ t j > Bi − ∑

j∈Zi
<
pi j .

(2.11)

The two previous inequalities allow us to get our desired valid inequality.
Let then (x, y) be a global integer optimal solution of (GCR): If y ∈ Ψ (x), then we

conclude that (x, y) is an optimal solution of (2.1). Otherwise, wemust generate an inequality
separating (x, y) from the feasible set of (GCR). Actually, the type of inequality which has
to be added to problem (GCR) in order to assure finite convergence is x�y ≤ x� ỹ where ỹ
is a feasible solution of the lower level problem. Since this valid inequality for the feasible
set of problem (2.1) will not necessary cut the point (x, y), it is required to add an additional
inequality which will cut off the point (x, y) from the feasible set of (GCR) (just see the
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example below for better understanding). The following proposition from [16, Proposition
1] can be used to generate such an inequality.

Proposition 2.6 Let (x, y) ∈ B
2n be a basic feasible solution of the problem (GCR). Let

J be the set of indices such that the corresponding constraints are binding at (x, y), i.e.,
J = {i : e

′
i x + f

′
i y = Bi }, where e′

i , f
′
i and Bi

(
i ∈ {1, . . . , k + s + |I |}) are rows of the

matrices E, F, and B, respectively. Then

π1x + π2y ≤ π0 − 1,

where π1 := ∑
j∈J e

′
j , π2 := ∑

j∈J f
′
j , and π0 := ∑

j∈J B j is valid for every feasible
solution of (2.1).

Remark 2.7 1. Every feasible solution of (2.7) is an extreme point of the feasible set of
(GCR) [29, Proposition 2.1 Section II.6.2].

2. Every new extreme point generated by the cut from Proposition 2.6 cannot be feasible
for (2.1).
The second assertion just follows from the first one.

In what follows, we present a depth-first search centered on the upper level variables. The
basic idea of the algorithm is to solve the linear problem (GCR) which is actually a relaxation
of (2.1). At each iteration, a check is made to see if the solution of (GCR) is feasible for
(2.1). If so, the corresponding point is a potential solution of (2.1), if not a branch and cut
scheme is used to examine all other combinations of the upper level variables. The algorithm
terminates when either all subproblems have been solved, are known to have solution that
are suboptimal or are infeasible.

Before presenting the algorithm, we provide a structure for enumerating the upper level
variables.

Let W := {1, . . . , n}. At the k-th level of the branch and cut tree, we define a subset
of indices Wk ⊆ W . We set S+

k := {i ∈ Wk : xki = 1}, S−
k := {i ∈ Wk : xki = 0},

Sok := W \ Wk , (GCR)k is the problem (GCR) in the k-th iteration.

Step 0: Set k = 0, S+
k = ∅, S−

k = ∅, Sok = {1, . . . , n}, Wk = ∅, F = +∞, and
(GCR)0=(GCR). I is a fixed given set of lower level feasible points (I = ∅ is
also possible).

Step 1: Set x j = 1 for j ∈ S+
k , x j = 0 for j ∈ S−

k . Solve the linear problem (GCR)k : If
it is infeasible, go to Step 5. If its solution is non-integer, cut this point by means of
(2.11) or use some valid inequalities described in [7] and solve (GCR)k until getting
an integer solution. Let (xk, yk) be its optimal solution.

Step 2: Solve the lower level problem with x = xk . Let ŷk be its optimal solution. Compute
F(xk, ŷk) and put F = min{F, F(xk, ŷk)}.

Step 3: If (yk − ŷk)�xk = 0, then go to Step 5, otherwise choose io for which (ykio −
ŷkio)

�xkio �= 0 and io /∈ S+
k . Set S

+
k+1 = S+

k ∪ {io}, S−
k+1 = S−

k , S
o
k+1 = Sok \{io} and

go to Step 4.
Step 4: Generate respectively a generalized covering inequality of x�y ≤ x� ỹ where ỹ is

a feasible solution of the lower level problem and an inequality violated by (xk, yk)
and valid for the other feasible points of problem (2.1) in problem (GCR)k using
Proposition 2.6. Then add the two above generated inequalities to the constraints of
(GCR)k , set k = k + 1 and go to Step 1.

Step 5: If no live node (i.e., node associated with a subproblem that has not been fully
explored yet) exists, go to Step 6. Else go back to the current node (the most recently
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created live node) and call it j and call k′ the value of the counter where we have got
the last branching (for k′ = 0, set S−

k′ = ∅). Branch on its complement by setting
xkj = 0. Set S+

k+1 = S+
k \{ j}, S−

k+1 = S−
k′ ∪ { j}, Sok+1 = Sok ∪ { j} and go to Step 1.

Step 6: If F = +∞, no optimal solution for problem (2.1) exists, else the feasible point
associated with F is as an optimal solution.

Proposition 2.8 The algorithm will terminate at a global optimal solution of (2.1) in a finite
number of steps.

Proof It follows from Remark 2.1 that we will add in the worst case p generalized covering
inequalities with respect to the inequalities x�y ≤ x�yi for i = 1, . . . , p. We know that
every feasible solution of (2.7) is an extreme point of the feasible set of (GCR) (Remark 2.7,
Statement 1). Moreover, Proposition 2.6 implies that any integer optimal solution of (GCR)
which is not feasible for (2.1) will be cut off without cutting any other feasible point of (2.1).
Since we have a finite number of extreme points and from Remark 2.7 (Statement 2), the
algorithm must terminate at an optimal solution of (2.1) in a finite number of iterations. It is
worth to mention that the cuts added at Step 1 do not influence the finiteness of the algorithm
because we consider only a finite number of cuts in order to have the desired integer point
[7,29]. 
�
2.3 Illustration

The following example illustrates the procedure of the algorithm.

Example 2.9 Consider the following discrete bilevel programming problem:

min
x,y

2x1 + x2 − 2y1 + y2

s.t. x1 + x2 ≥ 2
x ∈ B

2

y ∈ Ψ (x) := Argmin
y

{
x�y : y1 + y2 ≤ 2.5, y ∈ B

2
}
.

We easily see that x1 = x2 = 1 is the only possible choice for the upper level variable. We
have Ψ (1, 1) = {(0, 0)}. Hence, the optimal solution of this bilevel programming problem
is (1, 1, 0, 0).

Let us take I = {(1, 1)} as starting point. After initializing the data at the Step 0, we
solve the problem (GCR)0 with the set I . Therefore, let us relax the nonlinear inequality
x�y ≤ x�y1, y1 ∈ I into a linear inequality:

h1(x, y) := x�y − x�y1 = x1y1 + x2y2 − x1 − x2 = h1(X1, X2, X3, X4) = X1X3 +
X2X4 − X1 − X2.

With respect to the setting in Sect. 2.1, we have N1 = {1, 2, 3, 4}, N+ = {1, 2}, L1 =
{3, 4}, S1 = {1, 3}, S2 = {2, 4}, S3 = {1}, S4 = {2}, and the mapping

γ1 :{3, 4} → {1, 2}
is defined by γ1(3) = 1 and γ1(4) = 2.

M ⊆ N1 is a cover of h1(X) ≤ 0 if |M | > |L1|. This implies that M = {1, 2, 3} is a
cover of h1(X) ≤ 0.

SM = ⋃
k∈M∩N+ Sk = S1 ∪ S2 = {1, 2, 3, 4} and SM1 = γ1(M ∩ L1) = {1}.

This leads to the inequality X1 + X2 + X3 + X4 + X1 ≥ 1, i.e., −X2 − X3 − X4 ≥ −3,
or x2 + y1 + y2 ≤ 3.
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Now solve the following linear programming problem:

min
x,y

2x1 + x2 − 2y1 + y2

s.t. x1 + x2 ≥ 2
x2 + y1 + y2 ≤ 3
y1 + y2 ≤ 2.5
x, y ∈ [0, 1]2.

The optimal solution is (1, 1, 1, 0) but (1, 0) /∈ Ψ (1, 1) = {(0, 0)} and F = 3.
At Step 3, S+

1 = {1} i.e., x1 = 1, S−
1 = ∅, So1 = {2} and at Step 4 we generate the

generalized covering inequality of x�y ≤ x�y2 with y2 = (1, 0) and the cut. Before, we
have to relax the previous nonlinear inequality into a linear inequality:

h2(x, y) := x�y− x�y2 = x1y1+ x2y2− x1 = h2(X1, X2, X3, X4) = X1X3+ X2X4−
X1.

Once more, with respect to the setting in Sect. 2.1, we have N2 = {1, 2, 3},
N+ = {1, 2}, L2 = {3}, S1 = {1, 3}, S2 = {2, 4}, S3 = {1} and

γ2 :{3} → {1}.
M = {1, 3} is a cover of h2(X) ≤ 0.

SM = ⋃
k∈M∩N+ Sk = {1, 3} and SM2 = γ2(M ∩ L2) = {1}. That leads to the inequality

X1 + X3 + X1 ≥ 1 i.e., y1 ≤ 1.
Then we have the following linear problem:

min
x,y

2 + x2 − 2y1 + y2

s.t. x2 ≥ 1
x2 + y1 + y2 ≤ 3
y1 + y2 ≤ 2.5
y1 ≤ 1
x, y ∈ [0, 1]2.

With x1 = 1, the optimal solution is still (1, 1, 1, 0). That is why we have to generate an
inequalitywhich is violated by (1, 1, 1, 0) and valid for the other feasible points of the original
problem.

y1 ≤ 1, x2 ≥ 1, and −y2 ≤ 0 are the inequalities which are binding at (1, 1, 1, 0). So we
just apply Proposition 2.6 and add −y2 + y1 − x2 ≤ −1 in the above problem and at Step 1
of the second iteration we solve the following problem:

min
x,y

2 + x2 − 2y1 + y2

s.t. x2 ≥ 1
y1 + y2 ≤ 2.5
y1 ≤ 1
−x2 − y2 + y1 ≤ −1
x2 + y2 + y1 ≤ 3
x, y ∈ [0, 1]2.

We get (1, 1, 1, 1) as solution with (1, 1) /∈ Ψ (1, 1) = {(0, 0)}.
At Step 3, we have S+

2 = {1, 2} i.e., x1 = 1, x2 = 1, S−
1 = ∅, So1 = ∅.

We can take y1 + y2 ≤ 2 as the generalized covering inequality of x�y ≤ x�y3 with
y3 = (1, 1). Then after summing up all the inequalities which are binding at (1, 1, 1, 1), we
get the following cut: 3y1 + y2 ≤ 3 with x2 = 1. We solve the problem at the first Step
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Fig. 1 Branch and cut tree

of the third iteration and get (1, 1, 0, 0) as the integer solution. Updating the sets at Step 5
gives S+

3 = {1}, S−
3 = {2} i.e., x1 = 1, x2 = 0, So3 = {2} but the corresponding problem

is infeasible. The same holds true at the fifth iteration with S+
4 = ∅, S−

4 = {1} i.e., x1 = 0,
So4 = {1, 2}.

The optimal solution is then given by (1, 1, 0, 0). The branch and cut tree is shown in
Fig. 1.

3 Approach for solving discrete bilevel optimization problems of Type IV

Here, for any x ∈ R
n+ the functions f (x, ·) and g(x, ·) are linear and affine respectively, the

upper level variable x appears only in the right-hand side of the lower level constraints and
the functions F and G are continuous. The problem we consider is formulated as

min
x,y

F(x, y)

s.t. G(x) ≤ 0
x ∈ R

n+
y ∈ Ψ (x) := Argmin

y

{
c�y : Ay ≥ x, y ∈ Z

m+
}
,

(3.1)

where A ∈ Q
n×m+ is a matrix and c = (c1, . . . , cm)� with ci > 0, i = 1, . . . ,m, is a fixed

vector. Again, the assumption that the constraints in the lower level problem are of the form
Ay ≥ x is not a strong restriction. We can add the equation z = b − Bx to the upper level
problem when the lower level constraints are of the form Ay + Bx ≥ b.

We make the following assumptions:

• The set X := {x ∈ R
n+ : G(x) ≤ 0} is not empty and bounded.

• For any x ∈ X , the set {y ∈ Z
m+ : Ay ≥ x} is not empty and the optimal solution of the

lower level problem denoted by yx is unique.
• The set Y := {y ∈ Z

m+ : ∃x ∈ X with y ∈ Ψ (x)} = ⋃
x∈X {yx } is finite.

Using the optimal value reformulation of the lower level of (3.1), we get the following
problem:
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min
x,y

F(x, y)

s.t. G(x) ≤ 0
Ay ≥ x
x ∈ R

n+, y ∈ Z
m+

c�y ≤ ϕ(x) := min
y

{
c�y : Ay ≥ x, y ∈ Z

m+
}
.

(3.2)

Proposition 3.1 The optimal value function ϕ possesses the following properties:

1. ϕ is nondecreasing on R
n+.

2. ϕ is subadditive, i.e., for all x1, x2 ∈ R
n+, ϕ(x1 + x2) ≤ ϕ(x1) + ϕ(x2) holds.

3. ϕ is lower semicontinuous on R
n+ and piecewise constant on X.

4. If ϕ is discontinuous at x̃ ∈ R
n+, then there exist ỹ1, . . . , ỹm ∈ Z+ such that x̃i =∑m

j=1 ai j ỹ j for all i = 1, . . . , n with A = (ai j )(i, j)∈{1,...,n}×{1,...,m}.

Proof 1. Let x1, x2 ∈ R
n+ and M(xi ) := {y ∈ Z

m+ : Ay ≥ xi }, i = 1, 2. Then x1 ≤ x2
implies M(x1) ⊇ M(x2) which in turn entails that ϕ is nondecreasing on R

n+.
2. Let y1, y2 be the optimal solution of the lower level problems of (3.2) for x1, x2 ∈ R

n+,

respectively. We have ϕ(x1) + ϕ(x2) = c�y1 + c�y2 = c�(y1 + y2) ≥ ϕ(x1 + x2)
because ϕ(x1 + x2) = min

y
{c�y : Ay ≥ x1 + x2, y ∈ Z

m+} and A(y1 + y2) ≥ x1 + x2.

3. The lower semicontinuity of ϕ comes from the fact that thematrix A has rational elements
and ϕ does not take the value −∞ [1, Theorem 4.5.2].
Moreover, we know that

X =
⋃

y∈Y
R(y)

with R(y) := {
x ∈ X : y ∈ Ψ (x)

}
. R(y) is called region of stability of y. We easily

see that ϕ is constant on each region of stability. Since Y is finite, the assertion of the
proposition follows.

4. Let x̃ be a point of discontinuity of the function ϕ and ỹ ∈ M(̃x) such that ϕ(̃x) = c� ỹ.
We want to show that x̃ = Aỹ.
Let Ĩ = {

j ∈ {1, . . . , n} : (Aỹ) j > x̃ j
}
(for v ∈ R

n , v j is the j-th row of v). If Ĩ �= ∅,
we consider the vector x0 defined by

x0j =
{

(Aỹ) j if j ∈ Ĩ ,

x̃ j otherwise.

We have x̃ ≤ x0 and x̃ �= x0 which imply ϕ(̃x) < ϕ(x0) because x̃ is a point of
discontinuity of ϕ. Furthermore since ỹ ∈ M(x0) we have

c� ỹ = ϕ(̃x) < ϕ(x0) ≤ c� ỹ,

a contradiction. Consequently the set Ĩ = ∅ and x̃ is a linear combination of some
nonnegative integer parameters with the respective columns of A.

This completes the proof. 
�

In the following, we will use the previous properties of ϕ in order to find an upper bound
of the optimal value function.
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3.1 Upper bound for a single constraint

Firstly, we suppose that the lower level has only one constraint, i.e., A ∈ Q
1×m+ , x ∈ R+. We

set A = (a1, . . . , am).
We have ϕ(0) = min

y

{
c�y : Ay ≥ 0, y ∈ Z

m+
} = 0 because c > 0. Therefore, we know

that ϕ(x) > −∞ for all x ∈ R
n+ for arbitrary n [29, Proposition 2.2 Section II.3.2].

Without loss of generality, we can suppose a1 ≤ a2 ≤ · · · ≤ am . Then, the first points
where the function could be discontinuous are: 0, a1, a2,min{a3, a1 + a2}, . . .

Let a ≥ a1 be the first nonzero point where ϕ is discontinuous. We observe that the
optimal value function on [0, a] satisfies

ϕ(x) =
{

ϕ(0) if x = 0,

ϕ(a) if x ∈]0, a]. (3.3)

Definition 3.2 Let e > 0. For every subadditive function f : [0, e] → R we can define:

• A subadditive extension of f on [0,+∞[: This is a function which extends f to [0,+∞[
and is subadditive. Some examples of subadditve extension functions can be found in
[25].

• Its maximal subadditive extension noted S( f ) : [0,+∞[→ R ∪ {−∞} given by

S( f )(x) := inf
{∑l

i=1 f (xi ) : {x1, . . . , xl} ∈ C(x)
}

, where C(x) is the set of all finite

collections {x1, . . . , xl} such that 0 ≤ xi ≤ e for all i = 1, . . . , l and
∑l

i=1 xi = x .

In the sequel, for ease of reference we denote S( f ) by S f .

Proposition 3.3 [25] If a function f is subadditive and nondecreasing, then S f is subad-
ditive and nondecreasing and for every other subadditive extension G of f to [0,+∞[, we
have G ≤ S f .

We can directly deduce from Proposition 3.3 that ϕ ≤ Sϕ since ϕ is already defined on
[0,+∞[ and subadditive, see Proposition 3.1.

It is worth to mention that supposing the subadditivity of ϕ is very important in order to
have ϕ ≤ Sϕ. If it is not satisfied, Sϕ may not be an upper bound of ϕ as we can see in the
following example from [13]:

ϕ(x) = min
y

{
y2 : 2y ≥ x, y ∈ {0, 1, 2, 3}} .

Here a = 2, ϕ(a) = 1 and

ϕ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if x = 0,

1 if x ∈]0, 2],
4 if x ∈]2, 4],
9 if x ∈]4, 6],
+∞ if x > 6.

ϕ is not subadditive on [0, 2] because ϕ(1 + 2) = 4 > ϕ(1) + ϕ(2) = 2 (we can also
justify the non-subadditivity of ϕ with the fact that the function y �→ y2 is not linear), and
we have Sϕ(3) ≤ 3ϕ(1) = 3 < ϕ(3) = 4.

On the other hand, we have the following theorem from [5]:
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Fig. 2 Optimal value function and maximal subadditive extension

Theorem 3.4 Let f be subadditive on [0, e] for e > 0. Then S f (ne + x) = n f (e) + f (x)
for all x ∈]0, e] and all positive integers n if and only if

∀y ∈]0, e] ∀u ∈ [y, e] : f (y) ≤ f (e + y − u) − f (e) + f (u). (3.4)

Since the function ϕ is subadditive and fulfills the condition (3.4) (this follows just from
(3.3)), we can express Sϕ for x ∈]na, (n + 1)a], n ∈ N, by

Sϕ(x) = nϕ(a) + ϕ(x − na)

= (n + 1)ϕ(a)

because 0 < x − na ≤ a implies ϕ(x − na) = ϕ(a) see (3.3).
In the following example, we visualize the functions Sϕ and ϕ in Fig. 2.

ϕ(x) = min{2y1 + 3.5y2 + 3y3 + 4y4 : 2y1 + 3.5y2 + 5y3 + 7.5y4 ≥ x, y ∈ Z
4+}.

Here, a = 2 is the first nonzero point of discontinuity, and ϕ(2) = 2. The dotted line
represents the function Sϕ, the bold line represents the function ϕ, and Sϕ(x) = ϕ(x) for
x ∈ [0, 2]. Moreover, we can see from this figure that the functions ϕ and Sϕ do not have
the same points of discontinuity.
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We will now replace problem (3.2) for n = 1 by

min
x,y

F(x, y)

s.t. G(x) ≤ 0
Ay ≥ x
c�y ≤ Sϕ(x)
x ∈ R+, y ∈ Z

m+,

(3.5)

where

Sϕ(x) =
{

ϕ(0) if x = 0,

(n + 1)ϕ(a) if na < x ≤ (n + 1)a, n ∈ N.

Problem (3.5) is a relaxation of problem (3.2) (because the feasible set of the problem
(3.5) is larger than the one of problem (3.2)), and it is a mixed integer programming problem
for which the existence of an optimal solution is not guaranteed because {y ∈ Z

m+ : Ay ≥ x}
is not bounded and the function Sϕ is discontinuous. Therefore, for each n ∈ N, we consider
the problem

min
x,y

F(x, y)

s.t. G(x) ≤ 0
Ay ≥ x
c�y ≤ Sϕ(x)
na ≤ x ≤ (n + 1)a
y ∈ Z

m+.

(Pn)

The family of problems (Pn)n∈N is deduced from (3.5) and is defined on the closure of the
interval where the function Sϕ is constant.

Remark 3.5 The family of problems (Pn)n∈N depends on the function Sϕ. Hence, if Sϕ

changes, then for all n ∈ N, Pn changes as well.

Since the set {(x, y) ∈ R
n+ × R

m+ : c�y ≤ (n + 1)ϕ(a), na ≤ x ≤ (n + 1)a} for fixed
n ∈ N is bounded and closed, an optimal solution of (Pn) exists. Furthermore, we have a
finite number of sub-problems (Pn)n∈N due to the boundedness of the set X (the function Sϕ

depends only on x). Consequently, the problem

min
(xn ,yn)

F(xn, yn)

s.t. (xn, yn) is an optimal solution of (Pn)
n ∈ N,

(3.6)

possesses a finite feasible set.
From the definition of (Pn), every feasible solution of (3.5) is in the feasible set of one of

the sub-problems (Pn). Therefore, the following proposition holds:

Proposition 3.6 Let (x, y) be a global optimal solution of (3.6) . If y ∈ Ψ (x), then it is also
a global optimal solution of problem (3.1).

Proof The point (x, y) is a feasible solution of (3.1) because it is a feasible solution of
(Pn) for a certain n ∈ N and y ∈ Ψ (x). Furthermore, every feasible solution of (3.1) is a
feasible solution of (3.5) and, hence, a feasible solution for one of the sub-problems (Pn).
Accordingly, the global optimality of (x, y) for (3.6) implies that (x, y) is also global optimal
solution of problem (3.1). 
�
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3.2 An algorithm for solving the discrete linear bilevel programming problem
with a single constraint

From Proposition 3.6, problem (3.6) is a relaxation of problem (3.1). Consequently, the
procedure to solve problem (3.1) is to reduce at each iteration the feasible set of (3.6) such
that in the worst case it becomes equal to the one of (3.1), that is we solve problem (3.6) by
updating the function Sϕ such that the set {x : Sϕ(x) = ϕ(x)} becomes larger by constructing
another function Sϕ(x) which approximates better the function ϕ(x). This is our algorithm:

Step 0: Solve problem (3.6): If it is infeasible, then problem (3.1) does not have a solution.
Let (x0, y0) be the optimal solution of (3.6). If (x0, y0) is a feasible solution for (3.1),
i.e., y0 ∈ Ψ (x0), then (x0, y0) is the global optimal solution of (3.1); otherwise go
to Step 1.

Step 1: Compute ϕ(x0) and define Sϕ0 by

Sϕ0(x) :=

⎧
⎪⎨

⎪⎩

Sϕ(x) if x ∈ [0, a],
ϕ(x0) if x ∈]a, x0],
Sϕ(x) if x > x0,

and then set k := 1.
Step 2: Solve problem (3.6) with respect to Sϕk−1: If it is infeasible, then problem (3.1)

does not have a solution. Let (xk, yk) be the optimal solution of (3.6). If (xk, yk) is
feasible solution for (3.1), then (xk, yk) is optimal solution of (3.1); otherwise go to
Step 3.

Step 3: Compute ϕ(xk) and define Sϕk by

Sϕk(x) :=
{
min{Sϕk−1(x), ϕ(xi )} if x ≤ xk,

Sϕk−1(x) if x > xk .

Step 4: Set k = k + 1 and go to Step 2.

If it turns out at Step 3 of a certain iteration that the function Sϕk does no longer change and
we do not yet have the optimal solution, then, in order to enlarge the set

{
x : Sϕ(x) = ϕ(x)

}
,

we can set x̃ = xk + 1 and define Sϕk+1 by:

Sϕk+1(x) :=

⎧
⎪⎨

⎪⎩

Sϕk(x) if x ≤ xk,

ϕ(̃x) if xk ≤ x ≤ x̃,

Sϕk(x) if x̃ < x .

One advantage of this algorithm is that we do not need to compute the global upper approx-
imation of the optimal value function at each iteration as we saw in [13].

Proposition 3.7 Let R(y) be the region of stability for y ∈ Z
m+. If all the regions of stability

are closed, then the algorithm will terminate at a global optimal solution of (3.1) in a finite
number of steps.

Proof We know from the assumptions that the set X is bounded and the union of a finite
number of regions of stability. Since at each iteration the new problem remains a relaxation of
problem (3.2) and the set

{
x : Sϕ(x) = ϕ(x)

}
is enlarged, we will obtain an optimal solution

of (3.1) after a finite number of steps. The closedness of the regions of stability ensures that
an optimal solution of (3.1) exists [20]. 
�
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Remark 3.8 In Proposition 3.7, we assumed that all the regions of stability are closed. In fact
our bilevel programming problem has continuous upper and discrete lower level variables.
Therefore, the optimal set mapping Ψ is not in general upper semicontinuous [20], and this
property is an essential assumption for the existence of an optimal solution of the optimistic
formulation of the bilevel programming problem [12].

If there exists y ∈ Z
n+ such that R(y) is not closed, we can nevertheless find a solution

which is nearly optimal of problem (3.1) called weak solution. To get this solution we need
to solve the problem

min
x,y

F(x, y)

s.t. G(x) ≤ 0
y ∈ ψ̂o(x),

(3.7)

where

ψ̂o(x) := {
y ∈ Z

m+ : R(y) �= ∅, x ∈ cl O(y)
}

O(y) :=
{
x ∈ R(y) : F(x, y) = min

z

{
F(x, z) : z ∈ Ψ (x)

}}
.

Problem (3.7) is a bilevel programming problem for which we are sure that an optimal
solution exists if the set X is compact because the point-to-set mapping x �→ ψ̂o(x) is upper
semi-continuous [20]. An algorithm to solve (3.7) is given in [20] as well.

3.3 Illustration

The following example illustrates the procedure of our algorithm.

Example 3.9

min
x,y

(x − 4.5)2 + y3

s.t. x ∈ [0, 6]
y ∈ Ψ (x) := Argmin

y

{
2y1 + 3.5y2 + 3y3 : 2y1 + y2 + 5y3 ≥ x, y ∈ Z

3+
}
.

The first nonzero point of discontinuity is a = 2 and we have ϕ(a) = 2. We consider the
mixed integer programming problem

min
x,y

(x − 4.5)2 + y3

s.t. x ∈ [0, 6]
2y1 + y2 + 5y3 ≥ x
2y1 + 3.5y2 + 3y3 ≤ Sϕ(x)
x ∈ R+, y ∈ Z

3+,

where

Sϕ(x) =
{
0 if x = 0,

2(n + 1) if 2n < x ≤ 2(n + 1), n ∈ N.
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The problems (Pn)n∈{0,1,2} are given by:

min
x,y

(x − 4.5)2 + y3

s.t. x ∈ [0, 6]
2y1 + y2 + 5y3 ≥ x
2y1 + 3.5y2 + 3y3 ≤ 2(n + 1)
2n ≤ x ≤ 2(n + 1)
y ∈ Z

3+.

(Pn)

Step 0: (4.5, 3, 0, 0) ∈ Argmin
{(
x − 4.5

)2 + y3 : (x, y) ∈ {(2, 1, 0, 0), (4, 2, 0, 0),
(4.5, 3, 0, 0)}} and (3, 0, 0) /∈ Ψ (4.5) = {(0, 0, 1)}

Step 1: Replace Sϕ by Sϕ0 defined by:

Sϕ0(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x = 0,

2 if x ∈]0, 2],
3 if x ∈]2, 4.5],
6 if x ∈]4.5, 6].

Step 3: The solution of each problem (Pn), n ∈ {0, 1, 2} is computed with respect to Sϕ0

and we get again (4.5, 3, 0, 0) as optimal solution of

min
{
(x − 4.5)2 + y3 : (x, y) ∈ {(2, 1, 0, 0), (4.5, 0, 0, 1), (4.5, 3, 0, 0)}} .

This implies that Sϕ1 = Sϕ0. In order to continue, wemust update Sϕ0.We consider
the point 5.5, ϕ(5.5) = 5 and define Sϕ1 by

Sϕ1(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if x = 0,

2 if x ∈ [0, 2],
3 if x ∈]2, 4.5],
5 if x ∈]4.5, 5.5],
6 if x ∈]5.5, 6].

At Step 3 of the next iteration, we solve for each n ∈ {0, 1, 2, 3} the problem (Pn)
with respect to Sϕ1 and compute the solution of (3.5) by solving the following
problem

min
{
(x − 4.5)2 + y3 : (x, y) ∈ {(2, 1, 0, 0), (4.5, 1, 0, 1), (4.5, 0, 0, 1),

(5.5, 3, 0, 0)}} .

We get the point (4.5, 0, 0, 1) with (0, 0, 1) ∈ Ψ (4.5).

This implies that (4.5, 0, 0, 1) solves the bilevel programming problem.

3.4 Upper bound in the general case

Now, we get back to the general case. We extend the result to higher-dimensional spaces, i.e.,
to the case m > 1 . We recall that ϕ is nondecreasing, piecewise constant, and subadditive.
To solve problem (3.1), we need to extend the upper approximation to the general case.
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Definition 3.10 Let a real-valued function f be subadditive on the cuboid [0, h1] × . . . ×
[0, hn], h ∈ R

n+. We denote the maximal subadditive extension of f as follows:

S f (d) :=
{
f (d) if di ∈ [0, hi ], ∀i ∈ {1, . . . , n}
inf

{∑l
i=1 f (ρi ) : {ρ1, . . . , ρl} ∈ C(d)

}
if ∃i ∈ {1, . . . , n} : di /∈ [0, hi ],

where C(d) is the set of all finite collections {ρ1, . . . , ρl} such that ρ j ∈ R
m , ρ j

i ∈ [0, hi ]
for all j ∈ {1, . . . , l}, and ∑l

i=1 ρ j = d .

Proposition 3.11 [22] Let h ∈ R
n+ be given and choose a real-valued function f which is

subadditive on the cuboid [0, h1] × . . . × [0, hn] with f (0) = 0. The maximal subadditive
extension of f is subadditive, and if G is any other subadditive extension of f on R

n+, then
G ≤ S f .

On the other hand, it turns out that the results of Theorem 3.4 obtained in one dimension
have their homologue in the n-dimension setting, where the interval I = [0, e] is replaced
by the region defined by the inequalities 0 ≤ xi ≤ ei for i = 1, . . . , n. Then, we can replace
Sϕ(x) by (n + 1)ϕ(a) for na < x ≤ (n + 1)a, n ∈ N, where a is a linear combination
of columns of the matrix A (Proposition 3.1, Statement 4). We will then substitute problem
(3.2) by the following one

min
x,y

F(x, y)

s.t. G(x) ≤ 0
Ay ≥ x
c�y ≤ Sϕ(x)
x ∈ R

n+, y ∈ Z
m+,

(3.8)

where

Sϕ(x) :=

⎧
⎪⎨

⎪⎩

ϕ(0) if x = 0,

(n + 1)ϕ(a) if na < x ≤ (n + 1)a, n ∈ N,

r otherwise,

and r is an arbitrary real number with ϕ(d) ≤ r for all d ∈ R
n+ respectively; note that such

an r exists due to the boundedness of X .
We also consider the sub-problems (Pn) with respect to Sϕ defined by

min
x,y

F(x, y)

s.t. G(x) ≤ 0
Ay ≥ x
c�y ≤ (n + 1)Sϕ′(x)
na ≤ x ≤ (n + 1)a, n ∈ N

y ∈ Z
m+,

(Pn)

where

Sϕ′(x) :=
{

(n + 1)ϕ(a) if na ≤ x ≤ (n + 1)a, n ∈ N,

r otherwise,

and the problem
min

(xn ,yn)
F(xn, yn)

s.t. (xn, yn) optimal solution of (Pn)
n ∈ N.

(3.9)
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In the sequel, we can simply apply the previous algorithm replacing Step 1 and Step 3 by the
following one:

New step: Let (xk, yk) be an optimal solution of (3.9). Replace Sϕk−1 by Sϕk given by

Sϕk(x) :=
{
min{Sϕk−1(x), ϕ(xk)} if x ≤ xk,

Sϕk−1(x) otherwise.

4 Conclusion

In the paper, we proposed two approaches for solving linear discrete bilevel programming
problems; firstly, in the case when all the variables are integers, secondly, when the upper
level variables are continuous and the lower level variables are discrete. Both approaches
use the optimal value reformulation in order to replace the original problem by a single
level program. This led to algorithms providing global solutions of the bilevel programming
problem. The accommodation of the algorithm in the first casewhere the upper level variables
appear in the lower level constraints can not be straightforward, the main problem relies on
the fact that in the inequality x�y ≤ x� ȳ, ȳ is a lower feasible point which depends on the
parameter x . Exploring further such direction is an area of future research.

Acknowledgements The authors wish to thank S. Franke and P. Mehlitz for many helpful comments and
recommendations.

Appendix

Proof of Lemma 2.4 We have

n∑

j=1

X j Xn+ j −
∑

j∈Li

X j−n = hi (X) ≤ 0

which implies

|Li | ≥
n∑

j=1

X j Xn+ j +
∑

j∈Li

(1 − X j−n),

namely

|Li | ≥
∑

j∈Ni

t j ,

where

t j :=
{
X j Xn+ j if j ∈ {1, . . . , n}
1 − X j−n if j ∈ Li .

Hence, for every cover M of hi there exists j ∈ M such that t j = 0. Otherwise, we have
|Li | ≥ ∑

j∈Ni
t j ≥ ∑

j∈M t j = |M | and this contradicts the fact that M is a cover.
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Consequently, we have
∏

j∈M t j = 0, i.e.,
⎛

⎝
∏

j∈M∩N+
X j Xn+ j

⎞

⎠ .

⎛

⎝
∏

j∈M∩Li

(1 − X j−n)

⎞

⎠ = 0.

In other words,
⎛

⎝
∏

j∈SM
X j

⎞

⎠ .

⎛

⎜
⎝

∏

j∈SMi
X j

⎞

⎟
⎠ = 0

which implies
∑

j∈SM
X j +

∑

j∈SMi
X j ≥ 1.

This completes the proof. 
�
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