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Abstract A discretization-based algorithm for the global solution of semi-infinite programs
(SIPs) is proposed, which is guaranteed to converge to a feasible, ε-optimal solution finitely
under mild assumptions. The algorithm is based on the hybridization of two existing algo-
rithms. The first algorithm (Mitsos in Optimization 60(10–11):1291–1308, 2011) is based on
a restriction of the right-hand side of the constraints of a discretized SIP. The second algo-
rithm (Tsoukalas andRustem inOptimLett 5(4):705–716, 2011) employs a discretized oracle
problem and a binary search in the objective space. Hybridization of the approaches yields an
algorithm, which leverages the strong convergence guarantees and the relatively tight upper
bounding problem of the first approach while employing an oracle problem adapted from
the second approach to generate cheap lower bounds and adaptive updates to the restriction
of the first approach. These adaptive updates help in avoiding a dense population of the dis-
cretization. The hybrid algorithm is shown to be superior to its predecessors both theoretically
and computationally. A proof of finite convergence is provided under weaker assumptions
than the assumptions in the references. Numerical results from established SIP test cases are
presented.

Keywords SIP · NLP · Nonconvex · Feasible point method · Global optimization

1 Introduction

Semi-infinite programs (SIPs) are mathematical programs with a finite number of variables
and an infinite number of constraints. This is commonly expressed by a parameterized con-
straint that has to hold for all possible realizations of its parameter(s). Here we consider SIPs
of the form
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f ∗ = min
x∈X

f (x)

s.t. g(x, y) ≤ 0, ∀ y ∈ Y
X � R

nx , Y � R
ny , |Y| = ∞,

(SIP)

where the restriction to |Y| = ∞ is made only for convenience. Furthermore, additional
constraints (semi-infinite or otherwise) do not pose a problem for the methods presented
here. The generalizations to arbitrarily many constraints and mixed-integer problems are
discussed in Sect. 5. No convexity or concavity assumptions are made on the participating
functions. The properties of the sets and functions participating in (SIP) are discussed in
detail in Sect. 2.2 along with other assumptions.

SIPs emerge in many problems from science and engineering including robust design [7],
model reduction [3], and design centering [19]. For a review of SIP theory, methods, and
applications, the reader is referred to [6,8,15,16]. The difficulty in solving (SIP) lies in the
definition of the feasible set by infinitely many constraints. In order for a point x̄ ∈ X to be
feasible in (SIP), the globally optimal objective of the lower-level program

max
y∈Y

g(x̄, y)

must be non-positive. For constraint functions g(x̄, ·) that are concave on Y and satisfy
constraint qualification, the lower-level program can be replaced equivalently by its Karush–
Kuhn–Tucker (KKT) conditions and the SIP can be reduced to a finite problem. However, in
the nonconcave case considered here, this approach is not applicable.

There exist approaches that approximate (SIP) by a finite problem, e.g., through replacing
Y with a discretization [4]. Such discretization approaches represent outer approximations
andgenerally donot provide feasible points finitely.Bhattacharjee et al. [1] proposed amethod
that guarantees the generation of feasible points in finite time under appropriate assumptions.
This is achieved through the replacement of the semi-infinite constraint by an overestimation
based on interval extensions. Convergence of the overestimation is achieved through a sub-
division of the parameter set. Subsequently, Bhattacharjee et al. [2] used the above approach
in conjunction with a discretization-based lower bounding procedure to solve (SIP) approxi-
mately to global optimality in finite time. Therein, the central assumption is that there exists a
sequence of SIP-Slater points, i.e., points satisfying the Slater condition for the semi-infinite
constraints. Alternatively, convex overestimation approaches were proposed by Floudas and
Stein [5] and then by Mitsos et al. [13]. The former was later extended to arbitrary index sets
by Stein and Steuermann [20]. While providing tighter overestimations than interval exten-
sions, these approaches are typically more expensive [13]. Mitsos [11] proposed an approach
that employs a discretization-based outer approximation and an approximation that is based
on discretization and restriction of the right-hand side of the discretized constraints. The
algorithm is guaranteed to solve (SIP) approximately to global optimality in finite time under
mild assumptions. Indeed this approach only requires the existence of a single ε-optimal
SIP-Slater point. This approach has subsequently been extended to generalized SIPs (GSIPs)
by Mitsos and Tsoukalas [14]. Tsoukalas and Rustem [24] proposed an approach that is
centered around an oracle problem that decides whether a given objective value is attainable
by (SIP) or not. Through a binary search of the objective space, the algorithm solves (SIP)
approximately to global optimality under slightly stronger assumptions than the approach by
Mitsos [11]. The oracle approach was originally proposed for GSIPs, bilevel, and continuous
coupled min-max programs by Tsoukalas et al. [25]. As SIPs and GSIPs are closely related to
bilevel programs [21], it bears mentioning that discretization-based approaches to the solu-
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tion of bilevel programs have been proposed by Mitsos for the nonconvex case [12] and by
Mitsos et al. for the mixed-integer case [10]. Furthermore, a method with feasible iterates for
GSIPs with convex lower-level problems has been proposed by Stein and Winterfeld [22].

Here, we present a hybrid of the algorithm byMitsos [11] and the algorithm by Tsoukalas
andRustem [24].As its predecessors, the algorithmemploys existingNLP-solvers to solve the
finite subproblems and thus appropriate assumptions on the solution provided by these solvers
are necessary. We propose a strategy to determine the required optimality tolerance for the
NLP-solvers, which allows weakening of the assumptions. Under these relaxed assumptions,
the hybrid algorithm is guaranteed to solve (SIP) approximately to global optimality in finite
time. Furthermore, the hybridization addresses the issue of choosing appropriate values for
the tuning parameters for the algorithm by Mitsos [11] and the hybrid algorithm shows
superior overall performance over its predecessors.

The remainder of the present manuscript is organized as follows. In Sect. 2, definitions
and assumptions used throughout the manuscript are introduced. In Sect. 3, the algorithm
by Mitsos [11] is presented along the proposed strategy for the determination of NLP-solver
tolerances and a proof of finite termination. In Sect. 4, the properties of the oracle problem and
its adaptation to the hybrid algorithm are discussed, followed by the statement of the hybrid
algorithm and a proof of finite convergence. In Sect. 5, generalizations of (SIP) to mixed-
integer problems and multiple constraints are discussed. In Sect. 6, numerical experiments
performed on established SIP benchmark problems and a newly developed problem are
presented, while Sect. 7 gives conclusions and potential future work.

2 Definitions and assumptions

In this section, definitions and assumptions are introduced that are used throughout the
remainder of the manuscript.

2.1 Definitions

Definition 1 (Approximate solution) Given an optimality tolerance εNLP , the approximate
solution of a feasible nonlinear program

ϕ∗ = min
z∈Z

ϕ(z), Z ⊆ R
nz

provides a feasible solution point z̄ and a lower bound ϕ− on the exact globally optimal
objective value ϕ∗ with

ϕ( z̄) ≥ ϕ∗ ≥ ϕ− ≥ ϕ( z̄) − εNLP .

In compact notation we write
[
ϕ−, ϕ( z̄)

] 	 ϕ∗ = min
z∈Z

ϕ(z), Z ⊆ R
nz .

Similarly, for a maximization problem, with approximate solution z̄, upper bound ψ+, and
exact globally optimal objective value ψ∗ we write

[
ψ( z̄), ψ+] 	 ψ∗ = max

z∈Z
ψ(z), Z ⊆ R

nz .

Definition 2 (Lower level program) For a given point x̄ ∈ X , the lower level program
is denoted along with its optimal objective value and approximate solution according to
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Definition 1
[
g(x̄, ȳ), g+(x̄)

] 	 g∗(x̄) = max
y∈Y

g(x̄, y). (LLP)

Definition 3 (SIP-feasibility) A given point x̄ ∈ X is called SIP-feasible if and only if

g(x̄, y) ≤ 0, ∀ y ∈ Y,

or equivalently

g∗(x̄) ≤ 0.

Definition 4 (ε-optimality) A point x̄ ∈ Rnx is ε-optimal if and only if it is SIP-feasible and
its objective value is not more than ε worse than the optimal solution f ∗ of (SIP), i.e.,

g(x̄, y) ≤ 0, ∀ y ∈ Y
f (x̄) ≤ f ∗ + ε.

Definition 5 (SIP-Slater point) A point x̄ ∈ X is called SIP-Slater point if and only if it
satisfies the semi-infinite constraint strictly, i.e.,

g(x̄, y) < 0, ∀ y ∈ Y.

Remark 1 Note that x̄ is not restricted to the interior of X . Therefore, finite constraints are
not required to be satisfied strictly at an SIP-Slater point.

2.2 Assumptions

Assumption 1 (Host sets) The host sets X � Rnx and Y � Rny are compact.

Assumption 2 (Basic properties of functions) The functions f : X → R and g : X×Y → R

are continuous on X and X × Y respectively.

Remark 2 Assumptions 1 and 2 are standard in deterministic global optimization.

Assumption 3 (ε̃ f -optimal SIP-Slater point) There exists some ε̃ f > 0 such that there
exists an SIP-Slater point xS ∈ X that is ε̃ f -optimal, i.e.,

g(xS, y) < 0, ∀ y ∈ Y
f (xS) ≤ f ∗ + ε̃ f .

Assumption 3 was first used in [11]. As discussed in [14], it is slightly weaker than the
assumption in [24], which is equivalent to Assumption 3 holding for arbitrarily small ε̃ f .

Assumption 4 (Approximate solution of NLPs) If a nonlinear program (NLP) is infeasible,
it is found to be infeasible without any infeasibility tolerance (ε I N F = 0). Otherwise, it can
be solved globally to within an arbitrary optimality tolerance εNLP > 0.

Assumption 4 is a relaxation of similar assumptions in [11] and [24]. In [11], it is assumed
that the approximate solution of (LLP) provides either g+(x̄) ≤ 0 or g(x̄, ȳ) > 0, which
may not be given, especially for g∗(x̄) = 0. In [24], it is assumed implicitly that all NLP
subproblems are solved exactly. Obviously this is the strongest of the mentioned assumptions
and can in general not be provided by numerical solution methods.
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3 Restriction of the right-hand-side

The algorithm proposed by Mitsos [11] solves (SIP) by employing three finite subproblems.
Through the solution of these problems by existing NLP-solvers, bounds on the solution
of (SIP) are obtained. Under mild assumptions discussed later on, the algorithm terminates
finitely with an ε f -optimal point, where ε f > 0 is a user-defined optimality tolerance.
In Sect. 3.1, the subproblems used in the original algorithm are reviewed, followed by the
statement of the algorithmwith revisions in Sect. 3.2. In Sect. 3.3, a proof of finite convergence
is given for the revised algorithm under weaker assumptions than in [11]. While the overall
structure of the proof remains unchanged from [11], the weaker assumptions, specifically
Assumption 4, require the explicit consideration ofNLP-tolerances. This approach is inspired
by the proofs provided in [12] and [10]. Finally, in Sect. 3.4, the choice of values for the tuning
parameters of the algorithm is discussed on the basis of a newly developed benchmark case.

3.1 Review of subproblems in [11]

The first problem is the lower bounding problem (LBD) originally proposed by Blankenship
and Falk [4]. A finite relaxation of (SIP) is obtained by replacing the parameter set Y with a
finite discretization YLBD � Y .

[
f LBD,−, f

(
x̄LBD

)]
	 f LBD,∗ = min

x∈X
f (x)

s.t. g(x, y) ≤ 0, ∀ y ∈ YLBD

YLBD
� Y, |YLBD| < ∞.

(LBD)

Due to the fact that the discretization YLBD is a subset of the parameter set Y , (LBD) is
a valid relaxation of (SIP). Consequently, any lower bound f LBD,− on its exact globally
optimal objective value is a lower bound on the exact globally optimal objective value of
(SIP).

The second problem is the upper bounding problem (UBD). It is obtained by first replacing
the parameter set Y with a finite discretization YUBD and subsequently restricting the right-
hand-side of the semi-infinite constraint by a restriction parameter εg > 0.

[
f U BD,−, f

(
x̄UBD

)]
	 f U BD,∗ = min

x∈X
f (x)

s.t. g(x, y) ≤ −εg, ∀ y ∈ YUBD

YUBD
� Y, |YUBD| < ∞.

(UBD)

In general, this problem is neither a relaxation nor a restriction of (SIP). Therefore, it is
possible that a solution x̄UBD of (UBD) is SIP-infeasible. Consequently, an upper bound
f (x̄UBD) to (UBD) is not necessarily an upper bound to (SIP). Also, due to the restriction
of the right-hand-side, a lower bound f U BD,− to (UBD) is not necessarily a lower bound to
(SIP). SIP-feasible points and therefore upper bounds to (SIP) are obtained by successively
reducing the restriction parameter εg and populating the discretization YUBD . Three cases
can be distinguished in order to determine the required modification of (UBD):

1. (UBD) is infeasible. In this case, the restriction parameter εg is reduced in order to
relax (UBD) and obtain a feasible instance of (UBD) in a following iteration.

2. (UBD) is feasible and its solution x̄UBD is SIP-infeasible. In this case, YUBD is pop-
ulated with a new discretization point in order to make x̄ infeasible in the following
iteration of (UBD).
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3. (UBD) is feasible and its solution x̄UBD is SIP-feasible. In this case, f (x̄UBD) is an
upper bound to (SIP). The restriction parameter εg is reduced in order to obtain tighter
upper bounds in following iterations.

Consequently, in all three cases, (UBD) is refined to better approximate (SIP).
The final problem is the lower-level program (LLP) from Definition 2.

[
g(x̄, ȳ), g+(x̄)

] 	 g∗(x̄) = max
y∈Y

g(x̄, y) (LLP)

For a given point x̄, g∗(x̄) is positive if x̄ is SIP-infeasible and non-positive if x̄ is SIP-
feasible. Within the algorithm, (LLP) is solved for the solution points of (LBD) and (UBD)
to either determine their SIP-feasibility or populate the respective discretization sets YLBD

and YUBD with the solution point ȳ of (LLP). To guarantee convergence, Mitsos [11]
assumes that an approximate solution of (LLP) either provides g+(x̄) ≤ 0 or g(x̄, ȳ) > 0.
Thereby, either x̄ is found to be SIP-feasible, or a solution ȳ ∈ Y is found that when added
to the respective discretization makes x̄ infeasible in the following iteration of (LBD) or
(UBD). In the following section, the algorithm is formally stated with revisions that allow
the relaxation of this assumption. This is of interest since the previous assumptions can-
not be guaranteed by state-of-the-art NLP-solvers. While the case g+(x̄) > 0 ≥ g(x̄, ȳ)
becomes increasingly unlikely for decreasing NLP-tolerances, it cannot be excluded a pri-
ori.

3.2 Algorithm statement with revisions

Here, the revised algorithm by Mitsos [11] is stated formally based on the subproblems
(LBD), (UBD), and (LLP). These problems are solved approximately according to Defi-
nition 1 with their respective tolerances εLBD, εUBD, εLBD,LLP , εUBD,LLP > 0. In the
original statement of the algorithm, the tolerances εLBD,LLP and εUBD,LLP are fixed by
the user, while in the revised version below they are adjusted to guarantee finite termination
under the relaxed assumptions. This refinement is contained in Lines 10 and 14 of Algo-
rithm 1.

In the upper bounding procedure, (LLP) is always solved with εUBD,LLP < εg due to
εUBD,LLP = εg/rU BD,LLP (Line 14) and rU BD,LLP > 1. Consequently, if x̄UBD is not
found to be SIP-feasible it is guaranteed to be infeasible in the next instance of (UBD).
This is shown in detail in Lemma 3. Note that x̄UBD may become feasible in a subsequent
instance of (UBD) due to the reduction of εg and the fact that g(x̄UBD, ȳ) > 0 does not
necessarily hold. Indeed, the case g+(x̄UBD) > 0 ≥ g(x̄UBD, ȳ) may occur since the
contrary is not assumed as it is in [11]. This however, does not impede the finite termination
of the algorithm since only a finite number of reductions of εg can occur before the algorithm
terminates (see Lemma 4). In the lower bounding procedure, a value for εLBD,LLP cannot
be given a priori such that x̄LBD becomes infeasible in the following instance of (LBD).
However, in Lemma 1 it is shown that the proposed reduction strategy is sufficient to make
x̄LBD infeasible in (LBD) with a finite number of reductions. With these properties, the
proposed refinement strategy replaces the assumption in [11] that either g+(x̄) ≤ 0 or
g(x̄, ȳ) > 0.

By Assumption 3, there exists an ε̃ f -optimal SIP-Slater point and consequently (SIP) is
feasible. Theorem 1 of the following section states that for appropriately chosen ε f , εLBD ,
and εUBD , Algorithm 1 terminates finitely with an ε f -optimal point x∗.
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Algorithm 1: Revised approach by Mitsos [11] based on restriction of the right-hand-
side. User inputs are the initial discretization sets YLBD,0,YUBD,0 � Y , the initial
restriction parameter εg,0 > 0 and the corresponding reduction parameter r g > 1,
the initial lower-level tolerances εLBD,LLP,0, εUBD,LLP,0 > 0 and the corresponding
reduction parameter r LBD,LLP , rU BD,LLP > 1, and the tolerances εLBD, εUBD, ε f >

0.
1 Set LBD ← −∞, UBD ← ∞, YLBD ← YLBD,0, YUBD ← YUBD,0, εg ← εg,0,

εLBD,LLP ← εLBD,LLP,0, εUBD,LLP ← εUBD,LLP,0.
2 Solve (LBD) globally according to Definition 1 with εNLP = εLBD to obtain f LBD,− and x̄LBD .

3 Set LBD ← f LBD,−.

4 Solve (LLP) globally according to Definition 1 with εNLP = εLBD,LLP for x̄LBD to obtain

g+(x̄LBD) and ȳ.
5 if g+(x̄LBD) ≤ 0 then
6 Set UBD ← f (x̄LBD), x∗ = x̄LBD and terminate.

7 else if g(x̄LBD, ȳ) > 0 then
8 Set YLBD ← YLBD ∪ { ȳ}.
9 else

10 Set εLBD,LLP ← (g+(x̄LBD) − g(x̄LBD, ȳ))/r LBD,LLP .
11 end
12 Solve (UBD) globally according to Definition 1 with εNLP = εUBD to obtain f U BD,− and x̄UBD .
13 if (UBD) is feasible then
14 if εUBD,LLP ≥ εg then Set εUBD,LLP ← εg/rU BD,LLP .

15 Solve (LLP) globally according to Definition 1 with εNLP = εUBD,LLP for x̄UBD to obtain

g+(x̄UBD) and ȳ.
16 if g+(x̄UBD) ≤ 0 then
17 if f (x̄UBD) < UBD then Set UBD ← f (x̄UBD), x∗ ← x̄UBD .
18 Set εg ← εg/rg .
19 else
20 Set YUBD ← YUBD ∪ { ȳ}.
21 end
22 else
23 Set εg ← εg/rg .
24 end
25 if UBD − LBD ≤ ε f then Terminate. else Go to Line 2.

Remark 3 Note that the algorithm could be changed to check for convergence after each
update of the bounds, which would potentially save the last iteration of the upper bounding
procedure.

3.3 Finite termination

The proof follows the structure of the proof provided in [11] but considers explicitly the
NLP-tolerances and the revisions to the algorithm. In order to prove finite termination of
Algorithm 1, it is first proven in Lemma 1 that the successive refinement of the optimality
tolerance εLBD,LLP guarantees that a point x̄LBD can only be visited a finite number of
times by (LBD), unless it is SIP-feasible. Note that due to approximate solution of (LLP),
an SIP-Slater point x̄LBD can indeed be visited by (LBD) without the algorithm terminating
immediately. This however, is not a problem since at this point, the lower bound LBD is
sufficiently accurate for the algorithm to terminate finitely. Indeed, given Lemma 1, Lemma 2
shows that the lower bounding procedure provides an εLBD-underestimate of f ∗ finitely
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or in the limit. Next, it is proven in Lemma 3 that the discretization point added in the
upper bounding procedure is guaranteed to make the associated point x̄UBD infeasible in
the following iteration of (UBD). Based on this, Lemma 4 shows that the upper bounding
procedure furnishes an (ε̃ f + εUBD)-optimal point finitely. Finally, Theorem 1 proves that,
given appropriate choices of the optimality tolerances ε f , εLBD , and εUBD , Algorithm 1
terminates finitely with an ε f -optimal point.

In the following, {x̄LBD,k}k≥1 is the sequence of points produced by approximate solutions
of (LBD). For each x̄LBD,k , { ȳLBD, j } j∈J k is the sequence of points produced by approximate

solutions of (LLP) for x̄ = x̄LBD,k .

Lemma 1 For some k ≥ 1, let x̄LBD,k be SIP-infeasible (g∗(x̄LBD,k) > 0). Assume that
the optimality tolerance εLBD,LLP is tightened successively according to Algorithm 1. Then,
under Assumption 4, x̄LBD,k can only be visited a finite number of times by (LBD) before
one of the discretization points generated by the solution of (LLP) makes x̄LBD,k infeasible
in (LBD).

Proof It is to show that the index set J k has finite cardinality and that there exists an index
j k ∈ J k with g(x̄LBD,k , ȳLBD, j k ) > 0.

It holds g∗(x̄LBD,k) > 0.Therefore andby approximate solutionof (LLP) (Assumption4),
if at any iteration of Algorithm 1, x̄LBD,k is evaluated and it holds εLBD,LLP < g∗(x̄LBD,k),
it also holds

g
(
x̄LBD,k , ȳLBD, j k

)
≥ g+ (

x̄LBD,k
)

− εLBD,LLP ≥ g∗ (
x̄LBD,k

)
− εLBD,LLP > 0

(1)

and εLBD,LLP remains unchanged. The consequently generated discretization point ȳLBD, j k

renders x̄LBD,k infeasible in (LBD) for all following iterations. If conversely x̄LBD,k is
evaluated and (1) does not hold, εLBD,LLP is reduced. Therefore, it follows |J k | = 1
in the case that εLBD,LLP < g∗(x̄LBD,k) holds the first time x̄LBD,k is evaluated. Oth-
erwise, according to Algorithm 1, x̄LBD,k is rendered infeasible in (LBD) after at most
logr LBD,LLP (εLBD,LLP/g∗(x̄LBD,k))� + 1 reductions of εLBD,LLP . With r LBD,LLP > 1
and εLBD,LLP ≥ g∗(x̄LBD,k) > 0 it holds |J k | < ∞. ��
Remark 4 Given a finite sequence of SIP-infeasible points x̄LBD,k , Lemma 1 implies that
there exists a value εLBD,LLP > 0 such that each point x̄LBD,k can only be visited once
by (LBD). However, the sequence of points generated by (LBD) depends on the particular
instance of (SIP) and the NLP-solver used to solve the subproblems. Furthermore, it is not
obvious how the existence of points x ∈ X with g∗(x) positive but arbitrarily small could be
excluded for nontrivial and feasible instances of (SIP) obeying Assumption 2. Consequently,
it is not obvious how to determine said value for εLBD,LLP a priori. Similarly, given an initial
value εLBD,LLP,0, it is not obvious how to determine a priori whether or not a refinement of
εLBD,LLP will become necessary.

Lemma 2 Let YLBD,0 � Y . Then, under Assumptions 1, 2, and 4, the lower bound
f LBD,− produced by the lower bounding procedure of Algorithm 1 converges to an εLBD-
underestimate of the globally optimal objective value f ∗ of (SIP) either finitely or in the
limit.

Proof It will be shown that the lower bounding procedure furnishes an SIP-feasible point
either finitely or in the limit. In both cases, it will be shown that the corresponding lower
bound is an εLBD-underestimate of f ∗.
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If for any k, (LBD) furnishes a point x̄LBD,k with g∗(x̄LBD,k) ≤ 0, then the lower
bounding procedure has finitely furnished an SIP-feasible point. By definition of f ∗ and
by SIP-feasibility of x̄LBD,k , it holds f (x̄LBD,k) ≥ f ∗. Furthermore, since (LBD) is a
valid relaxation of (SIP) and is solved to εLBD-optimality, it holds f ∗ ≥ f LBD,− and
f LBD,− ≥ f (x̄LBD,k) − εLBD . Consequently,

f ∗ ≥ f LBD,− ≥ f
(
x̄LBD,k

)
− εLBD ≥ f ∗ − εLBD

is achieved finitely.
Otherwise, it will be shown that an SIP-feasible point is generated in the limit. Con-

sider an infinite sequence of solutions to (LBD). By compactness of X and Lemma 1, an

infinite subsequence can be selected with the limit point x̂LBD ∈ X , i.e., x̄LBD,k k→∞−−−→
x̂LBD . By Lemma 1 the sequences { ȳLBD, j } j∈J k are finite and furthermore, it holds

g(x̄LBD,k , ȳLBD, j k ) > 0, ∀k ≥ 1. By construction of (LBD), it holds

g
(
x̄LBD,l , ȳLBD, j k

)
≤ 0, ∀l, k : l > k ≥ 1.

By continuity of g(·, ·) onX ×Y and compactness ofX ×Y , g(·, ·) is uniformly continuous.
Therefore, for any ε > 0 there exists δ > 0 such that

g
(
x, ȳLBD, j k

)
< ε, ∀x ∈ X : ||x − x̄LBD,l || < δ, ∀l, k : l > k ≥ 1. (2)

Since x̄LBD,k k→∞−−−→ x̂LBD , for any δ > 0 there exists K such that

||x̄LBD,l − x̄LBD,k || < δ, ∀l, k : l > k ≥ K ≥ 1. (3)

Combining (2) and (3), we obtain that for any ε > 0, there exists K such that

g
(
x̄LBD,k , ȳLBD, j k

)
< ε, ∀k ≥ K ≥ 1.

With g(x̄LBD,k , ȳLBD, j k ) > 0 it follows that g(x̄LBD,k , ȳLBD, j k )
k→∞−−−→ 0. Consequently,

the limit point x̂LBD is SIP-feasible, i.e.,

g∗ (
x̂LBD

)
= lim

k→∞ g
(
x̄LBD,k , ȳLBD, j k

)
= 0.

By definition of f ∗ and by SIP-feasibility of x̂LBD , it holds f (x̂LBD) ≥ f ∗. Due to
x̄LBD,k → x̂LBD it follows by continuity of f (·) that f (x̄LBD,k) → f (x̂LBD). Since
(LBD) is a valid relaxation of (SIP) and by solution of (LBD) to εLBD-optimality, the lower
bounds to (LBD) converge to a value in the set

[
f
(
x̂LBD

)
− εLBD, f ∗] ⊆

[
f ∗ − εLBD, f ∗] ,

which gives the desired property. ��
In the following, {x̄UBD,k}k≥1 is the sequence of points produced by approximate solutions

of (UBD). Furthermore, { ȳUBD,k}k≥1 is the sequence of points produced by approximate
solutions of (LLP).

Lemma 3 For any k ≥ 1, under Assumption 4, either x̄UBD,k is found to be SIP-feasible,
or the addition of the solution ȳUBD,k to YUBD renders x̄UBD,k infeasible in the following
iteration of (UBD).
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Proof Consider the first case that g+(x̄UBD,k) ≤ 0.With g∗(x̄UBD,k) ≤ g+(x̄UBD,k), it fol-
lows immediately that x̄UBD,k is found to be SIP-feasible. Otherwise it holds g+(x̄UBD,k) >

0 and by solution of (LLP) to εUBD,LLP -optimality

g
(
x̄UBD,k, ȳUBD,k

)
≥ g+ (

x̄UBD,k
)

− εUBD,LLP > −εUBD,LLP .

The constraint resulting from the addition of ȳUBD,k to YUBD is

g
(
x, ȳUBD,k

)
≤ −εg.

Due to εUBD,LLP < εg , x̄UBD,k is infeasible in the following iteration of (UBD). ��
Lemma 4 Let YUBD,0 � Y , εg,0 > 0, and rg > 1. Then, under Assumptions 1, 2, 3, and 4,
the upper bounding procedure furnishes an (ε̃ f + εUBD)-optimal point x̂UBD finitely.

Proof At each iteration of the upper bounding procedure there are three possible outcomes:

1. (UBD) is infeasible.
2. (UBD) is feasible and furnishes a point that is confirmed to be SIP-feasible by (LLP).
3. (UBD) is feasible and furnishes a point that is not confirmed to be SIP-feasible by

(LLP).

In the former two cases, the restriction parameter εg and the lower-level tolerance εUBD,LLP

are reduced. In the latter case, YUBD is populated. Any point x ∈ X can be characterized
either as SIP-feasible or SIP-infeasible. Moreover, any point has either an objective value
f (x) ≤ f ∗ + ε̃ f + εUBD or not. It will first be shown that an infinite sequence of infeasible
problems (UBD) or points x̄UBD,k with f (x̄UBD,k) > f ∗ + ε̃ f + εUBD cannot occur.
Subsequently, it will be shown that the case of an infinite sequence of SIP-infeasible points
or points with undetermined SIP-feasibility cannot occur.

At all iterations it holdsYUBD � Y . By assumption, there exists an ε̃ f -optimal SIP-Slater
point with

f
(
xS

)
≤ f ∗ + ε̃ f , g

(
xS, y

)
≤ −εS, ∀ y ∈ Y.

This point is feasible in (UBD) for εg ≤ εS irrespective of YUBD . Therefore, (UBD) is feasi-
ble for εg ≤ εS irrespective of YUBD . Moreover, the approximate global solution of (UBD)
guarantees that for εg ≤ εS , the upper bounding procedure produces points x̄UBD,k with

f
(
x̄UBD,k

)
≤ f

(
xS

)
+ εUBD ≤ f ∗ + ε̃ f + εUBD .

The restriction parameter εg is updated if and only if (UBD) is infeasible, or it furnishes an
SIP-feasible point x̄UBD,k . As a consequence, after logr g (εg,0/εS)� updates of εg the upper
bounding problem generates points x̄UBD,k with f (x̄UBD,k) ≤ f ∗ + ε̃ f + εUBD . If one of
these points is found to be SIP-feasible, the algorithm terminates. Otherwise, the restriction
parameter is not updated beyond a final value εg,min ≥ εS/r g .

It remains to be shown that it is impossible for (UBD) to furnish an infinite sequence of SIP-
infeasible points or points with undetermined SIP-feasibility. Since εg ≥ εg,min > 0 holds
for all iterations, this can be proven similarly to Lemma 2. Consider an infinite sequence
of solutions to instances of (UBD). By compactness of X and Lemma 3, we can select a

convergent subsequence x̄UBD,k k→∞−−−→ x̂UBD , x̂UBD ∈ X . Consider the corresponding
solutions to (LLP) ȳUBD,k . By construction of (UBD) we have

g
(
x̄UBD,l , ȳUBD,k

)
≤ −εg,min, ∀l, k : l > k ≥ 1.
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By continuity of g(·, ȳUBD,k) and compactness of X , g(·, ȳUBD,k) is uniformly continuous
on X . Therefore, for any 0 < γ < 1, there exists δ > 0 such that

g
(
x, ȳUBD,k

)
< −γ εg,min < 0, ∀x ∈ X : ||x − x̄UBD,l || < δ, ∀l, k : l > k ≥ 1. (4)

Since x̄UBD,k k→∞−−−→ x̂UBD , for any δ > 0, there exists K such that

||x̄UBD,l − x̄UBD,k || < δ, ∀l, k : l > k ≥ K ≥ 1. (5)

Combining (4) and (5) yields that for any 0 < γ < 1 there exists K such that

g
(
x̄UBD,k, ȳUBD,k

)
< −γ εg,min < 0, ∀k : k ≥ K ≥ 1.

Therefore, after a finite number K of iterations, the points furnished by the upper bounding
procedure are SIP-feasible. Moreover, since εUBD,LLP < εg,min, these points are found by
(LLP) to be SIP-feasible. ��
Remark 5 In Lemma 4, it is used that εg is not updated beyond a final value εg,min ≥ εS/r g . It
follows byAlgorithm1 that the tolerance εUBD,LLP is not updated beyond εg,min/rU BD,LLP .
By extension, setting εUBD,LLP,0 < εS/r g would render the tolerance update obsolete.How-
ever, determining εS usually requires the solution of (SIP). Consequently, finding a value for
εUBD,LLP,0 a priori that guarantees that no tolerance updates are required is usually not
possible.

Theorem 1 Let ε f , εLBD, and εUBD be chosen such that

ε f > ε̃ f + εLBD + εUBD .

Then, under Assumptions 1, 2, 3, and 4, Algorithm 1 terminates finitely with an ε f -optimal
point x∗.

Proof By Lemma 2, the lower bound f LBD,− converges to an εLBD-underestimate of f ∗,
i.e.,

lim
k→∞ f LBD,−,k ∈

[
f ∗ − εLBD, f ∗] ,

with the lower bound f LBD,−,k produced by instance k of (LBD). Therefore, for any δ > 0
there exists K LBD such that

f LBD,−,k ≥ f ∗ − εLBD − δ, ∀k > K LBD ≥ 0. (6)

By Lemma 4, after a finite number KUBD of instances of (UBD), the upper bounding
procedure furnishes an (ε̃ f + εUBD)-optimal point x̂UBD . It holds

f
(
x̄UBD,k

)
≤ f ∗ + ε̃ f + εUBD, ∀k > KUBD ≥ 0. (7)

Combining (6) and (7) and choosing δ = ε f − ε̃ f − εLBD − εUBD > 0, we obtain that there
exists a finite number K = max{K LBD, KUBD} of iterations of Algorithm 1 such that

f
(
x̄UBD,K

)
− f LBD,K ≤ ε f ,

at which point the algorithm terminates with an ε f -optimal point. ��
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Recall that ε f , εUBD , and εLBD are tolerances set as inputs to Algorithm 1. ε̃ f on the
other hand is assumed to be nonzero and is, in general, unknown a priori. In case ε̃ f is known,
εLBD and εUBD should be chosen such that the desired ε f can be guaranteed. Absent such
information, it may be assumed that ε̃ f is of similar magnitude as the chosen εLBD and
εUBD . In any case, εLBD and εUBD should be substantially smaller, e.g., by one order of
magnitude, than ε f .

3.4 Choice of parameter values and benchmark problem

Although the algorithm is guaranteed to converge finitely under Assumptions 1, 2, 3, and 4,
its computational performance is subject to the choice of the parameters εg,0 and r g . In
the following, small values for εg,0 and large values for r g are termed aggressive since
such a choice is aimed at achieving the termination criterion in few updates of the restriction
parameter. Accordingly, large values for εg,0 and small values for r g are termed conservative.
In general, for aggressive parameter choices, the worst case number of reductions of εg that
is required to obtain feasibility in (UBD) of a point x with f (x) ≤ f ∗ + ε f is lower than for
conservative choices. However, if a small value for εg is reached before YUBD is sufficiently
populated, the subsequent solutions of (UBD)may furnish many SIP-infeasible points before
YUBD contains the discretization points that entail an SIP-feasible iterate. This phenomenon
manifests in a dense population of YUBD and slow convergence of the upper bound.

For the initial restriction εg,0, the above discussion suggests that a conservative choice is
appropriate. Startingwith an aggressive value for εg would defeat the purpose ofAlgorithm 1,
which is to find a small discretization that appropriately represents (SIP). While there are
problems that are not particularly prone to a dense population of YUBD , choosing a small
value εg,0 for an unknown problem seems to be undesirable.

The reduction parameter r g has already been discussed as pivotal byMitsos [11]. Therein,
itwas shown for certain test problems that awide range of values (approximately r g ∈ [2, 20])
yields acceptable results for overall performance of the algorithm. Here we expand on that
analysis by considering the impact on the upper bounding procedure specifically. If overall
algorithm performance is considered, a slowly converging lower bounding procedure may
mask the impact of the choice of parameters on the upper bounding procedure. In order
to explore the possible adverse impact of an aggressive choice of r g , consider the dense
population problem (DP) described by

X = [0, 6], Y = [2, 6],

f (x) = 10 − x, g(x, y) = y2

1 + exp(−40(x − y))
+ x − y − 2.

(DP)

Figure 1 depicts the objective function f (·), multiple instances g(·, yi ) of the semi-infinite
constraint, aswell as the parametric optimal objective value g∗(·)of (LLP).While the problem
is equivalently represented by a single instance of the semi-infinite constraint (y = 2), it is
expected that this instance is not found immediately by Algorithm 1 because it is the solution
to (LLP) for values x̄ ∈ X with relatively large objective value f (x̄). Rather, it is expected that
the upper bounding procedure furnishes x̄U BD of large value. The corresponding solutions of
(LLP) in turn yield large values ȳ. For these parameter values, g(x, ȳ) ≤ 0 holds for values
x that are only slightly lower than x̄U BD . Therefore, if εg is very small, many iterations
are required, until an SIP-feasible point is found. Furthermore, since (LBD) is equivalent to
(UBD) for εg = 0, it is also expected to converge slowly on this problem.
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Fig. 1 Benchmark problem (DP): Objective function f (·), constraint function instances g(·, yi ) for yi ∈
{2, 3, 4, 5}, and parametric optimal objective value of (LLP) g∗(·). Optimal solution: x∗ = 2 with f (x∗) = 8

Table 1 Benchmark results for (UBD) on problem (DP)

rg CPU(s) |YUBD |
(UBD) (LLP)

1.2 0.94 0.81 3

2 1.26 1.32 11

4 1.64 1.75 18

The resultswere obtained by initializingAlgorithm1with the exact globally optimal objective value f (x∗) = 8
as lower bound. Further initial settings were an empty initial discretizationYUBD,0 = ∅, a conservative value
for the initial restriction parameter εg,0 = 8, and tolerances ε f = 10−3 and εUBD = εUBD,LLP = 10−4.
Multiple different values for rg were chosen and rU BD,LLP = 10 was chosen in all instances. Note that
the choice of rU BD,LLP was irrelevant for the given results since no need for tolerance refinement was
encountered during optimization. Details on the implementation of Algorithm 1 are provided in Sect. 6

Table 1 contains the benchmark results for the upper bounding procedure in problem (DP).
It can be observed that the number discretization points that are added to YUBD depends on
the reduction parameter r g . The more aggressive the choice, the more points are added due
to SIP-infeasible iterates of the upper bounding procedure. Furthermore, the computational
times required for the upper bound to converge are adversely impacted by aggressive choices
for r g . In the following section, a strategy is presented that aims at providing an adaptive
restriction update that remains conservative on problems like (DP) and provides aggressive
parameter updates when possible.

4 Hybrid algorithm

In this section, a hybrid algorithm is derived by employing subproblems from Algorithm 1
and an oracle problem adapted from Tsoukalas and Rustem [24]. The hybridization provides
an adaptive update to the restriction parameter εg in order to circumvent the problem of a
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dense discretization YUBD . The aim is for the update to reduce the restriction parameter
quickly when possible while avoiding a dense population of YUBD in problems similar to
(DP). The original oracle problem is reviewed in Sect. 4.1 and adapted for hybridization in
Sect. 4.2. In Sect. 4.3, the hybrid algorithm is formally stated and a proof of finite convergence
is given in Sect. 4.4.

4.1 An oracle problem

Similarly to Algorithm 1, the algorithm proposed by Tsoukalas and Rustem [24] solves
(SIP) by solving multiple finite subproblems which are obtained through discretization of
the parameter setY . A so-called oracle problem is solved to determinewhether or not a certain
target objective function value is attainable by (SIP). Based on this problem, a binary search
of the objective function space is performed, which under slightly stronger assumptions than
previously, yields an ε f -optimal point finitely. In a previous publication [25], the authors use
a stochastic global optimization algorithm to solve the subproblems of a similar algorithm
for generalized semi-infinite programs and related problems.

The central subproblem of the algorithm is the oracle problem (ORA). For given lower and
upper bounds LBD and UBD on f ∗, a target objective value is set to f ORA = 1

2 (LBD +
UBD). With a finite discretization YORA � Y the oracle problem is the program

min
x∈X

max

{
f (x) − f ORA, max

y∈YORA
g(x, y)

}
.

To facilitate comparability with the subproblems (LBD) and (UBD), the oracle problem is
here rewritten equivalently as

[−ζ+,−ζ̄
] 	 −ζ ∗ = min

x∈X ,ζ∈R − ζ

s.t. f (x) − f ORA ≤ −ζ

g(x, y) ≤ −ζ, ∀ y ∈ YORA

YORA
� Y, |YORA| < ∞.

(ORA)

The oracle problem can be understood as a decision problem that determines whether or
not the target objective value f ORA is attainable by (LBD) with the discretization YLBD =
YORA. If ζ ∗ is negative, then there exists no point x̄ORA ∈ X that is feasible with respect
to the discretized semi-infinite constraint and has an objective value f (x̄ORA) ≤ f ORA.
Consequently, f ORA is a lower bound to (LBD) with YLBD = YORA and by the properties
of (LBD) also a lower bound to (SIP). If, in contrast, ζ ∗ is non-negative and the solution
point x̄ORA of (ORA) is SIP-feasible, f (x̄ORA) is an upper bound to (SIP). Considering that
f ORA is always chosen below the current upper bound on (SIP), f (x̄ORA) is an update to
the upper bound. The third possible outcome (ζ ∗ ≥ 0 and x̄ORA SIP-infeasible) does not
yield information about bounds on the globally optimal objective value of (SIP). In this case,
YORA is refined to yield a conclusive instance of (ORA) in a following iteration.

Remark 6 Due to the possibility of an instance of (ORA) being non-conclusive, the number
of iterations needed to obtain a certain optimality tolerance is not known a priori.

Due to the choice f ORA = 1
2 (LBD+UBD), the bound update resulting from the solution

of (ORA) will always be the update that closes the gap between lower and upper bound the
furthest. Indeed, consider the case f ORA ≥ f ∗. Obviously, f ORA is an upper bound and
when an SIP-feasible point x̄ORA is found, it holds

123



J Glob Optim (2017) 68:227–253 241

UBD − f
(
x̄ORA

)
≥ UBD − f ORA = f ORA − LBD ≥ f ∗ − LBD,

where UBD − f (x̄ORA) is the reduction in the gap due to the new upper bound f (x̄ORA)

and f ∗ − LBD is the maximum possible reduction in the gap due to an exact lower bound.
Similarly, if f ORA < f ∗, it holds

f ORA − LBD = UBD − f ORA > UBD − f ∗,

whereUBD− f ∗ is the maximum possible reduction in the gap due to an exact upper bound.
The second subproblem is the lower-level program (LLP). It is solved to determine SIP-

feasibility of a point x̄ORA or populate the discretization YORA.
The algorithm must be initialized with lower and upper bounds on f ∗ based on which the

binary search on the objective function space is performed. Finite termination of the algorithm
is contingent onAssumptions 1, 2, aswell as the exact solution of all subproblems. Obviously,
the latter assumption is stronger than both Assumption 4 and the original assumption by
Mitsos [11] on the approximate solution of subproblems. Furthermore, it is required that the
case f ORA = f ∗ does not occur and that g∗(·) does not have a local minimum with value 0
at the exact global solution of (SIP). This last assumption can be compared to Assumption 3.
Given the structure of (SIP), the assumption by Tsoukalas and Rustem [24] gives ε̃ f -optimal
SIP-Slater points for arbitrarily small ε̃ f and is therefore stronger than Assumption 3. This
relation has previously been observed by Mitsos and Tsoukalas [14] for similar assumptions
used in the context of generalized semi-infinite programs in [25] and [14]. A formal statement
of the oracle algorithm is given in “Appendix 1”.

4.2 Adapted oracle problem

With respect to Algorithm 1 and especially with respect to a dense population of YUBD , an
alternative interpretation of (ORA) is useful. In (ORA), the dummy variable −ζ is bounded
from below by f (x) − f ORA and also by g(x, y) for all y ∈ YORA. Therefore, the objective
of (RES) is a compromise between minimizing f (x) and maximizing the restriction of
the discretized semi-infinite constraint such that the solution point remains feasible with
respect to the restricted constraints. In particular, if (ORA) returns ζ ∗ ≥ 0, a point x̄ORA

is guaranteed to exist with objective value f (x̄ORA) ≤ f ORA that is feasible in (UBD)
with YUBD = YORA and εg = ζ ∗. If beyond that, x̄ORA is SIP-feasible, f (x̄ORA) is an
upper bound to (SIP), and εg = ζ ∗ is a value for the restriction parameter under which the
current upper bound is attainable by (UBD) with YUBD = YORA. Since the objective of a
subsequent solution of (UBD) is to improve on the upper bound, εg = ζ ∗ may be considered
a sensible choice for (UBD). However, due to the involvement of term f (x) − f ORA, ζ ∗
may still be an aggressive choice, which would not solve the problem of a dense population
of YUBD described in Sect. 3.4.

For this reason, we propose the adapted problem (RES) to provide lower and upper bounds
as well as a truly conservative choice of the restriction parameter.

[−η+,−η̄
] 	 −η∗ = min

x∈X ,η∈R − η

s.t. f (x) − f RES ≤ 0

g(x, y) ≤ −η, ∀ y ∈ Y RES

Y RES
� Y, |Y RES | < ∞

(RES)
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Note that (RES) has the same bounding and decision properties as (ORA). If η∗ is negative,
f RES is a lower bound to (SIP). If η∗ is non-negative and the solution point x̄RES is SIP-
feasible, f (x̄RES) is an upper bound to (SIP) and provided f RES < UBD an update to
the upper bound. Beyond that, in the case of an SIP-feasible solution x̄RES , εg = η∗ is the
largest possible restriction under which f (x̄RES) is attainable by (UBD) forYUBD = Y RES .
Therefore, provided that (UBD) and (RES) utilize the same discretization, any choice εg > η∗
will not decrease the upper bound further. Since (RES) considers the objective function
only in form of a constraint, it is possible that (UBD) can improve on the upper bound for
εg = η∗. However, it is expected that this will only yield small improvements and that a
choice εg = η∗/r g with a small value for r g will yield better results.

While these properties are desirable in the context of an adaptive update of εg , (RES)
cannot be guaranteed to be conclusive regardless of the discretization Y RES under Assump-
tions 1, 2, 3, and 4. While very unlikely, the following proposition illustrates the point.

Proposition 1 Let f RES = f ∗. Then, under Assumptions 1, 2, 3, and 4, (RES) cannot be
guaranteed to be conclusive.

Proof Since f RES is the exact global solution to (SIP), it is both an exact lower and upper
bound. We will show that based on approximate solution of (RES) and (LLP), it cannot be
guaranteed to be confirmed to be either.

Due to f RES = f ∗, it holds η+ ≥ 0 irrespective of Y RES . Therefore, the condition for
the detection of a lower bound (η+ < 0) cannot be reached.

Furthermore, consider the following example, for which f RES cannot be found to be an
upper bound. Suppose that the exact globally optimal solution x∗ of (SIP) is unique and that
it holds g∗(x∗) = 0, which does not conflict with any of the assumptions. Then, x∗ is the
only SIP-feasible point that is also feasible in (RES). Therefore, in order to decide f RES to
be an upper bound to (SIP), (LLP) must be solved for x∗ such that g+(x∗) = 0. This, in turn,
can only be guaranteed under the assumption of exact solution of (LLP). ��
As mentioned, this scenario is very unlikely and numerical experiments confirm that this
property has little impact on algorithm performance. However, to guarantee convergence
under the given assumptions, it must be ensured that (RES) cannot lead to an infinite loop in
which discretization points are added to Y RES . This is done by deferring to (LBD) whenever
(RES) fails to be conclusive.

4.3 Algorithm statement

Here, the hybrid algorithm is stated formally basedon the subproblems (LBD), (UBD), (RES),
and (LLP).All subproblems are assumed to be solved approximately according toDefinition 1
with their respective tolerances εLBD, εUBD, εRES, εLLP > 0. The subproblems (LBD),
(UBD), and (RES) operate on a single discretization set YLBD = YUBD = Y RES = YD to
leverage the properties discussed in Sect. 4.1. Due to the shared discretization, there is also a
shared tolerance εLLP used for all problems to ensure the appropriate accuracy of the entries
in the discretization.
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Algorithm 2: Hybrid approach. User inputs are the initial discretization set YD,0 � Y ,
the initial restriction parameter εg,0 > 0 and the corresponding reduction parameter
r g > 1, the initial lower-level tolerance εLLP,0 > 0 and the corresponding reduction
parameter r LLP > 1, and the tolerances εLBD, εUBD, εRES, ε f > 0.

1 Set LBD ← −∞, UBD ← ∞, f RES ← ∞, YD ← YD,0, εg ← εg,0, εLLP ← εLLP,0, l ← 0.

2 Solve (LBD) globally according to Definition 1 with εNLP = εLBD to obtain f LBD,− and x̄LBD .

3 Set LBD ← f LBD,−.

4 Solve (LLP) globally according to Definition 1 with εNLP = εLLP for x̄LBD to obtain g+(x̄LBD)

and ȳ.
5 if g+(x̄LBD) ≤ 0 then
6 Set UBD ← f (x̄LBD), x∗ = x̄LBD and terminate.

7 else if g(x̄LBD, ȳ) > 0 then
8 Set YD ← YD ∪ { ȳ}.
9 else

10 Set εLLP ← (g+(x̄LBD) − g(x̄LBD, ȳ))/r LLP .
11 end
12 Solve (UBD) globally according to Definition 1 with εNLP = εUBD to obtain f U BD,− and x̄UBD .
13 if (UBD) is feasible then
14 if εLLP ≥ εg then Set εLLP ← εg/r LLP .

15 Solve (LLP) globally according to Definition 1 with εNLP = εLLP for x̄UBD to obtain

g+(x̄UBD) and ȳ.
16 if g+(x̄UBD) ≤ 0 then
17 if f (x̄UBD) < UBD then Set UBD ← f (x̄UBD), x∗ ← x̄UBD .
18 Set εg ← εg/rg .
19 else
20 Set YD ← YD ∪ { ȳ} and go to Line 12.
21 end
22 else
23 Set εg ← εg/rg and go to Line 12.
24 end
25 if UBD − LBD ≤ ε f then Terminate.
26 Set l ← 0.

27 Solve (RES) globally according to Definition 1 with εNLP = εRES to obtain η+, η̄, and x̄RES .
28 if η+ < 0 then
29 Set LBD ← f RES , f RES ← 1

2 (LBD +UBD) and go to Line 27.
30 else if η̄ > 0 then
31 Solve (LLP) globally according to Definition 1 with εNLP = εLLP for x̄RES to obtain g+(x̄RES)

and ȳ.
32 if g+(x̄RES) ≤ 0 then
33 if η+/rg < εg then Set εg ← η+/rg .

34 Set UBD ← f (x̄RES), x∗ ← x̄RES and go to Line 12.

35 else if g(x̄RES , ȳ) > 0 and l ≤ lmax then
36 Set YD ← YD ∪ { ȳ}, l ← l + 1 and go to Line 27.
37 else
38 Go to Line 2.
39 end
40 else
41 Go to Line 2.
42 end
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Remark 7 Similar to Algorithm 1, the algorithm could be changed to check for convergence
after each update of the bounds, which would potentially save the solution of one subproblem
instance.

In Algorithm 2, the lower bounding problem (LBD) serves mainly the purpose of initializing
the lower bound on (SIP). Due to the decision properties discussed in Sect. 4.1, (RES)
is preferred for lower bounding. (LBD) is only used in the main loop of the algorithm if
(RES) fails to be conclusive. Note that (RES) can only loop onto itself a finite number of
times before it either provides a bound update or defers to one of the subproblems from
Algorithm 1. Therefore, Algorithm 2 inherits the convergence guarantees from Algorithm 1.
Nevertheless, for the sake of completeness, a formal proof of convergence is given in the
following section.

4.4 Finite termination

The proof of finite termination for Algorithm 2 relies on Lemmata 1, 2, 3, and 4.

Theorem 2 Let ε f , εLBD, and εUBD be chosen such that

ε f > ε̃ f + εLBD + εUBD .

Then, under Assumptions 1, 2, 3, and 4, Algorithm 2 terminates finitely with an ε̃ f -optimal
point x∗.

Proof By Lemma 2, the lower bounds f LBD,−,k to (LBD) converge to an εLBD-
underestimate of f ∗, i.e.,

lim
k→∞ f LBD,−,k ∈

[
f ∗ − εLBD, f ∗] .

Therefore, for any δ > 0 there exists a K LBD such that

f LBD,−,k > f ∗ − εLBD − δ, ∀k > K LBD . (8)

By Lemma 4, after a finite number KUBD of instances of (UBD), the upper bounding
procedure furnishes an (ε̃ f + εUBD)-optimal point x̂UBD . It holds

f
(
x̄UBD,l

)
≤ f ∗ + ε̃ f + εUBD, ∀l > KUBD . (9)

Combining (9) and (10), we obtain

f
(
x̄UBD,l

)
− f LBD,−,k < ε̃ f + εUBD + εLBD < ε f , ∀k > K LBD, l > KUBD

The first solution of (LBD) is guaranteed to provide a finite value for the lower bound
LBD > −∞. Similarly, after a finite number of instances of (UBD), a finite value for the
upper bound UBD < ∞ is found. Therefore, the gap 	 f = UBD − LBD is finite when
(RES) is solved for the first time.

For any f RES = 1
2 (LBD+UBD), (RES) is only solved a finite number of times. At this

point, if a lower bound LBD = f RES is obtained, (RES) is solved for the updated f RES . If
an upper boundUBD = f (x̄RES) ≤ f RES is obtained, (UBD) is solved. Otherwise, (LBD)
and (UBD) are solved. After at most

K RES = log2
(
	 f/ε f

)
(10)
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bound updates by (RES), the optimality tolerance ε f is reached.
(RES) either provides K RES bound updates or refers K LBD times to (LBD). Either way,

the optimality tolerance ε f is achieved finitely. ��
Note that the tolerance εRES is not required to fulfill any condition. This is due to the fact, that
the convergence guarantee is inherited from Algorithm 1. The same is true for the solutions
of (LLP) at the solution points of (RES).

5 Generalizations

In this section, the generalizations to multiply constrained SIPs and mixed-integer SIPs are
discussed. For the latter case, the discussion provided by Mitsos [11] is fully applicable to
Algorithm 2 and consequently, these problems pose no additional challenge as long as an
MINLP-solver is available that satisfies Assumption 4.

Consider the generalization of (SIP) to multiple semi-infinite constraints according to

f ∗ = min
x∈X

f (x)

s.t. gi (x, y) ≤ 0, i = 1, . . . , ng, ∀ y ∈ Y
X � R

nx , Y � R
ny , |Y| = ∞.

Algorithm 2 is applicable with minor alterations. In particular, multiple lower-level problems
must be solved to determine SIP-feasibility of a given point x̄. Furthermore, two questions
emerge concerning the number of discretizations and restriction parameters to use. With
respect to the number of discretizations, there is no reason to expect the use of one shared
discretization is justified in the general case. This was observed previously by Mitsos [11].
With respect to the number of restriction parameters, the introduction of the restriction update
changes prior observations. There are two possibilities to preserve the bounding and decision
properties of (RES) when considering multiple constraints:

1. One instance of (RES) is used, in which η is bounded by all constraints. This results in
a single update to a shared restriction parameter.

2. An instance of (RES) is introduced for each constraint, such that η is bounded by only
one constraint, while all other constraints are considered in their original form. This
results in a dedicated restriction parameter for each constraint.

While the latter option is preferable in terms of the conservatism of the updates to the
restriction, it has disadvantageous solution properties. Indeed, such a problem is similar to
(LBD) with respect to the constraints not bounding η. As a consequence, the finite generation
of an SIP-feasible point cannot be guaranteed even under strong assumptions. Therefore, the
former option seems more promising.

6 Numerical results

Algorithms 1, 2, and 3 are implemented in the general algebraic modeling system (GAMS)
24.3.1 [17] with the GAMS-F preprocessor. Note that in the implementation of Algorithm 3
in “Appendix 1”, a single instance of (LBD) is solved to initialize the lower bound with a
finite value. This initialization is not part of the original algorithm by Tsoukalas and Rustem
[24] and is added to remove the requirement for an initial lower bound. Furthermore, while
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the authors require a finite initial value for the upper bound, this is not necessary since the first
instance of (ORA) with f ORA = ∞ is guaranteed to provide a finite upper bound. The NLP
subproblems are solved with BARON 14.0.2 [18,23]. The implementation of the algorithms
is available in the supplementary material. All numerical experiments were run on a 64-bit
Intel Core i3-2100 CPU with 3.1 GHz running Windows 7.

The test set consists of small-scale SIPs with up to six variables, two parameters, and
four semi-infinite constraints, most of which were proposed by Watson in [26] and in some
cases corrected by Mitsos et al. in [13]. The problems 2, 5, 6, 7, 8, and 9 were selected from
the Watson test set, taking the corrections by [13] into account. Problems 1, 3, and 4 were
excluded due to the involvement of trigonometric functions, which cannot be handled by
BARON. Beyond that, the problems H, N, S, and the design centering problems D1_0_1
through D2_1_2 by Mitsos were added alongside the newly proposed dense population
problem (DP).All benchmark problems are available in [9] and in the supplementarymaterial.
The labels of the problems are kept in line with the labels in the original publications while
the dense population problem is labeled as DP.

All algorithms are initialized with empty initial discretizations YLBD,0 = YUBD,0 =
YORA,0 = YD,0 = ∅. The initial restriction parameter εg,0 is set to 1 in all cases but
the problem DP, where a value of 8 is used. For all cases, the optimality tolerances are
set to ε f = 10−3 and εLBD = εUBD = εORA = εRES = εLLP,0 = εLBD,LLP,0 =
εUBD,LLP,0 = εORA,LLP,0 = εRES,LLP,0 = 10−4. ε f , εLBD , εUBD , εORA, and εRES are
used as both absolute and relative tolerances. Further NLP-solver options are lpsol = 3,
nlpsol = 4, contol = 10−12, boxtol = 10−3, and inttol = 10−9. The complete results are
given in Tables 2, 3, 4 and 5 in “Appendix 2”.

In general terms, it can be observed that all algorithms show promise with respect to
their scaling properties, which has previously been observed for Algorithm 1 in [11]. Indeed,
while problems 7, 8, and 9 exhibit two-dimensional parameter sets Y , they only require
moderately more or similarly many NLP solutions as the problems with one-dimensional
parameter sets. Note that the design centering problems D1_0_1 through D2_1_2 exhibit
up to four semi-infinite constraints, each generating a lower-level problem that is solved to
establish SIP-feasibility. Therefore, the relatively large number of NLPs solved is expected.
Furthermore, themajority of the relatively largeCPUrequirement on these problems is due the
relatively expensive problems (LBD), (UBD), (RES), and (ORA)with up to six dimensions in
X . This indicates that for the tested algorithms, the difficulty of an SIP is mainly determined
by the difficulty of the NLP subproblems. Note however that this inference is drawn from
the numerical results on a limited test set and does not derive from a theoretical analysis of
the scaling properties of the algorithms.

Figure 2 depicts the performance plot comparing the tested algorithms on all problems
in the test set. It can be observed that only the algorithm by Mitsos (Algorithm 1) and the
hybrid algorithm (Algorithm 2) solve all problems. This is expected because of the stronger
assumptions required for convergence of Algorithm 3. Indeed, in every case the failure of
Algorithm 3 is due to either (ORA) or (LLP) failing to be conclusive. Recall that this is due
to the use of Algorithm 3 with the approximate solution of subproblems, which violates the
assumptions in [24]. Therefore, finite convergence is not guaranteed and the large number of
failed problem instances can be explained.

Beyond the number of solved problems, the hybrid algorithm offers the best overall per-
formance, both in terms of the number of quickest solutions and in terms of the time factor in
adverse cases. Particularly the superior performance compared to Algorithm 1 with aggres-
sive parameter choice r g = 2, which in turn is superior to Algorithm 1 with r g = 1.2
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Fig. 2 Performance plot for the algorithm by Mitsos [11], Algorithm 1 (rg = 1.2, 2.0), the algorithm by
Tsoukalas and Rustem [24], Algorithm 3, and the hybrid algorithm, Algorithm 2 (rg = 1.2)

indicates that the adaptive restriction allows the hybrid algorithm to produce competitive
results despite employing a conservative reduction parameter.

7 Conclusions

A hybrid of two existing discretization algorithms for the global solution of SIPs is proposed.
The algorithm employs a lower and an upper bounding problem of a bounding algorithm
[11] and an adapted problem from an oracle algorithm [24]. The upper bounding problem is
based on discretization and the restriction of the right-hand-side of semi-infinite constraints.
Adaptive updates to the restriction parameter are introduced through the hybridization with
the oracle algorithm. By virtue of the adaptive restriction, the algorithm hedges against a
dense population the discretization of the parameter set and the associated poor performance.
Employing a loosened assumption on the solution of the NLP subproblems, the algorithm
is guaranteed to terminate finitely with an ε f -optimal point finitely under weaker assump-
tions than its predecessors. The superiority of the hybrid approach is demonstrated through
theoretical discussion and numerical experiments.

One possible variant of the hybrid algorithm is the solution of the added oracle problem by
stochastic solvers as was done by the authors of the original oracle algorithm [25]. Possibly
improving overall performance through the quicker solution of the oracle problem, this would
leave the convergence guarantees intact since the solutions of the oracle problem do not need
to fulfill any conditions for the algorithm to converge. Another possible task for future work
is the initialization of the discretization sets to nonempty sets. While empty sets are used here
to investigate the core functionality of the algorithms, nonempty sets promise performance
gains, which may allow the application of the proposed methods to larger problems.

Acknowledgements We gratefully acknowledge the financial support from Deutsche Forschungsgemein-
schaft (GermanResearch Foundation) through the project “Optimization-based Control of Uncertain Systems”
PAK 635/1; MA1188/34-1.
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Appendix 1: Oracle algorithm

Here, the oracle algorithm is stated formally.Asmentioned previously, Tsoukalas andRustem
[24] consider the exact solution of all subproblems. However, exact solutions cannot be
provided for the investigated problems.Algorithm3, is an adaptation of the original algorithm
by Tsoukalas and Rustem [24] and considers the approximate solution of the subproblems
according to Definition 1. Note that the convergence proof by Tsoukalas and Rustem [24]
does not hold for Algorithm 3.

Algorithm 3:Oracle approach by Tsoukalas and Rustem [24]. User inputs are the initial
discretization YORA,0 � Y , the initial lower and upper bounds LBD0 and UBD0, the
tolerances εORA, εORA,LLP , ε f > 0

1 Set LBD ← LBD0, UBD ← UBD0, YORA ← YORA,0.

2 Set f ORA ← 1
2 (LBD +UBD).

3 Solve (ORA) globally according to Definition 1 with εNLP = εORA to obtain ζ+, ζ̄ , and x̄ORA .
4 if ζ+ < 0 then
5 Set LBD = f ORA .
6 end
7 Solve (LLP) globally according to Definition 1 with εNLP = εORA,LLP for x̄ORA to obtain

g+(x̄ORA) and ȳ.
8 if g+(x̄ORA) ≤ 0 then
9 Set UBD = f (x̄ORA), x∗ = x̄ORA .

10 else
11 Set YORA ← YORA ∪ { ȳ}.
12 end
13 if UBD − LBD ≤ ε f then Terminate. else Go to Line 2.
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