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Abstract Evolutionary multi-objective optimization algorithms aim at finding an approxi-
mation of the Pareto set. For hard to solve problems with many conflicting objectives, the
number of functions evaluations to represent the Pareto front can be large and time consum-
ing. Parallel computing can reduce the wall-clock time of such algorithms. Previous studies
tackled the parallelization of a particular evolutionary algorithm. In this research, we focus
on improving one of the most time consuming procedures—the non-dominated sorting—,
which is used in the state-of-the-art multi-objective genetic algorithms. Here, three paral-
lel versions of the non-dominated sorting procedure are developed: (1) a multicore (based
on Pthreads); (2) a Graphic Processing Unit (GPU) (based on CUDA interface); and (3) a
hybrid (based on Pthreads and CUDA). The user can select the most suitable option to effi-
ciently compute the non-dominated sorting procedure depending on the available hardware.
Results show that the use of GPU computing provides a substantial improvement in terms
of performance. The hybrid approach has the best performance when a good load balance is
established among cores and GPU.
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1 Introduction

Many real-world problems are multi-objective, where several conflicting objective functions
have to be optimized. Themain aim ofMulti-Objective Optimization (MOO) is to provide the
set of solutions that determine the Pareto front used by the Decision Maker (DM). The most
popular approaches to solve MOO problems are evolutionary multi-objective optimization
(EMO) and Multiple Criteria Decision Making (MCDM). In MCDM, the DM’s preferences
are important when we deal with multi-objective optimization problems, because the main
goal is to find the most satisfactory solution for the DM without exploring the whole Pareto
set.MCDMapproaches usually are classified into a priori, posteriori and interactivemethods,
depending onwhen the preference information is requested to the DM [24]. EMO approaches
do not require any DM’s preference information — the main target is to find such elements
of Pareto set which correspond to well-converged and well-distributed non-dominated objec-
tive vectors along the entire Pareto front. The set of achieved solutions by an algorithm is
presented to the DM, who finally chooses one among them, according to his/her prefer-
ences. EMO approaches are popular because they do not require any characteristic of the
objective functions and are easy to code. Some well-known EMO algorithms to approxi-
mate the Pareto front are: NSGA-II [7], PAES [20], MOAE/D [36], IBEA [39], SPEA2 [40],
etc.

There exist many works where EMO algorithms are successfully applied to solve rela-
tively small problems, i.e., problems with two or three objective functions, using population
sizes from 100 to 500 individuals to compute the Pareto front. Usually, the population size
do not exceed 1000 individuals for many instances of the problem which is not enough to
generate the level of detail in the Pareto front needed by the DM in general. The reason
of relative small populations is the significative increase in the computational burden with
the population size. Parallel computing allows to handle larger populations in a reasonable
amount of time. Only in few studies, relatively big populations were used for approximating
the Pareto front. For instance, populations of sizes up to 10,000 individuals were used in
NSGA-II and MOAE/D algorithms to solve 2–10 objectives knapsack problems [18]. The
parallel GPU implementation of an EMO algorithm was experimentally tested with more
that 16,000 individuals in [35]. An EMO algorithm was proposed and experimentally tested
in [1] with population sizes varying from 100 to 20,000 individuals. A parallel GPU imple-
mentation of NSGA-II using ZDT and DTLZ benchmark problems with population up to
30,000 individuals was investigated in [15].

Usually, a multi-objective algorithm can be organized in several phases [2,21]: evalua-
tion of an objective function, Pareto dominance ranking (non-dominated sorting) and genetic
operations. Examples of EMO approaches based on Pareto dominance ranking are: PESA-
II [5], NSGA-II [7], R-NSGA-II [8], Synchronous R-NSGA-II [13],MOGA [14], PAES [20],
NSGA [32], SPEA2 [40], etc. The Pareto dominance ranking can be one of the most compu-
tationally expensive phases of the EMO algorithms, mainly when the computational cost of
the evaluation of the objective functions is not high. The fast non-dominated sorting (FNDS)
procedure, which is used in NSGA-II, has a complexity order of O(vp2), where v is the num-
ber of objective functions and p is the number of individuals [7]. Its complexity was reduced
to O(plogv−1 p) by adopting divide-and-conquer strategy in [19]. However, as it was argued
in [12,23], this algorithm is not applicable to many instances of the problem, e.g., when
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ε-dominance is used for comparison of the individuals [6,22] or the population has duplicate
individuals or strong dominance. In [34], non-dominated sorting approach based on Arena’s
Principle was proposed, which technically has the same complexity as the sorting approach
used in NSGA-II. Nevertheless, a O(vp

√
p) can be achieved for some instances of the prob-

lem. Deductive sort was proposed in [23], where dominance relation between individuals is
recorded, avoiding some unnecessary comparisons. Similar ideawas presented in [37], where
individuals to be assigned to the front are compared only with those that have already been
assigned to the front. There are more proposals to reduce the computational burden of the
non-dominated sorting procedure: Deb et al. proposed the omni-optimizer in [10], Shi et al.
introduced a better non-dominated sorting in [30], Zheng et al. applied quick sort in [38], Du
et al. proposed a sorting based algorithm in [11] and Fang et al. presented divide-and-conquer
based non-dominated sorting algorithm in [12]. Summarizing, the reduction of the complex-
ity order of the non-dominated sorting procedure has gained much interest from researchers.
However, its computational burden have a complexity O(vp2) in the worst case for all the
approaches. The time complexity of the studied algorithms in this work is also O(vp2).
Therefore, parallel strategies have been used to accelerate the computation of the procedure.

Nowadays, CPUs are multicore. They usually include accelerators such as Graphics
Processing Units (GPUs) [16], that provide a considerable computational power to the
desktop, laptop and mobile platforms. GPUs are widely used in the High Performance
Computing (HPC) field due to their performance/cost ratio [16]. In the last few years, the
use of GPUs in general purpose applications has greatly increased thanks to the availabil-
ity of application programming interfaces, such as Compute Unified Device Architecture
(CUDA)1 and OpenCL [25]. GPUs have hundreds of cores that can collectively run thou-
sands of computing GPU-threads. However, only few attempts have been done to develop
a parallel Pareto dominance ranking. For instance, parallel stochastic ranking operator was
proposed in [28] and the solution of several two-objective benchmark problems are pre-
sented in [29]. Formal proofs to reduce the time complexity of these algorithms and an
efficient parallel version of FNDS have been presented in [31], but their experimental
results deserve a more detailed explanation. Recently, a novel NSGA-II parallel imple-
mentation on a GPU, focusing on NDS and achieving promising speed-ups, has been
proposed in [15]. Although it is closely related to our proposal, the goal of our work is the
exploitation of all the resources of modern heterogeneous platforms, not only the GPUs.
So, we propose a new NDS parallel version which can be accelerated by using simul-
taneously the multicore and the GPU. Moreover, our proposal defines the NDS module
which can be easily used, not only by NSGA-II but also by the NSGA family of algo-
rithms.

The implementations carried out in this work squeeze out the performance of themulticore
and GPU platforms. Additionally, to facilitate the use of the new codes, they have been
encapsulated in Matlab2 thanks to MEX-files [33]. Thus, our developed routines can be
called fromMatlab codes when solvingMOO problems by EMO approaches, allowing users
to chose between multicore, GPU or hybrid implementations, according to the features of
their computers and MOO problems.

The main contributions of this research are:

– The development of new parallel versions of the FNDS procedure on multicore and/or
GPU, that allow a significant reduction of the wall-clock time of EMO algorithms by
the exploitation of the resources of the current desktop computers. They are: a multicore

1 https://developer.nvidia.com/cuda-toolkit.
2 http://www.mathworks.com/help/pdf_doc/matlab/getstart.
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version (based on Pthreads3); a GPU version (based on CUDA); and a hybrid version
(based on Pthreads and CUDA).

– The evaluation of the parallel algorithms on several multicore and/or GPU configurations
with several test cases by varying the number of objective functions and populations size,
in order to identify which parallel version results in a better performance for each test
case.

– The provision of a training procedure to help the user to select the most suitable FNDS
version according to the particular characteristics of the problem and the computational
platform.

Additionally, the codes of the developed algorithms are open source4 and they can be called
from Matlab or C.

The rest of this paper is organized as follows. In Sect. 2, the definition of themulti-objective
problem is provide, as well as the description of the fast non-dominated sorting procedure
(FNDS). Section 3 shows the data structures considered for the implementations. Section 4
discusses the improvement of the Dominance Comparison, which is one of the most time
consuming phases of the FNDS procedure. The parallel implementations of non-dominated
sorting (multicore, GPU and hybrid) are presented in Sect. 5. Experimental results of the
parallel implementations are discussed in Sect. 6. Finally, Sect. 7 shows the conclusions of
this work.

2 Background

Multi-objective optimization as well as description of the fast non-dominated sorting proce-
dure are summarized in next subsections.

2.1 Multi-objective optimization problem

Let us have v � 2 conflicting objectives, described by the functions f1(x), f2(x), . . . , fv(x),
where x = (x1, x2, . . . , xn) is a vector of variables (decision vector) and n is the number of
variables or dimension of the problem.Amulti-objectiveminimization problem is formulated
as follows [24]:

min
x∈S f(x) = [ f1(x), f2(x), . . . , fv(x)]T (1)

where z = f(x) is an objective vector, defining the values for all objective functions,
fi : S ⊆ R

n → R, i ∈ {1, 2, . . . , v}, where v is the number of objective functions, and
S ⊆ R

n is an n-dimensional euclidean space, called search space, which defines all feasible
decision vectors. When solving a multi-objective optimization problem a feasible solution
that minimizes all objective functions simultaneously does not exist. Therefore, Pareto opti-
mal solutions are obtained and provided to the DM.

A decision vector x′ ∈ S is a Pareto optimal solution if fi (x′) � fi (x) for all x ∈ S and
f j (x′) < f j (x) for at most one j . Objective vectors are defined as optimal if none of their
elements can be improved without worsen at least one of the other elements. An objective
vector z′ =f(x′) is Pareto optimal if the corresponding decision vector x′ is Pareto optimal.
The set of all the Pareto optimal decision vectors is called the Pareto set. The region defined
by all the objective function values for the Pareto set points is called the Pareto front.

3 https://computing.llnl.gov/tutorials/pthreads/.
4 https://sites.google.com/site/hpcoptimizationproblems/FNDS.
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Fig. 1 Two dimensional
illustration of fronts and
dominance among individuals
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We say that an objective vector z′ ∈ R
v dominates another objective vector z ∈ R

v (or
z′ � z) if z′i � zi for all i = 1, . . . , v and there exists at least one j such that z′j < z j .

In EMO algorithms, the subset of solutions in a population whose objective vectors are not
dominated by any other objective vector is called the non-dominated set, and the objective
vectors are called the non-dominated objective vectors. The main aim of the EMO algorithms
is to generate well-distributed non-dominated objective vectors as close as possible to the
Pareto front.

In the following subsection, one of the most time consuming procedures used in most of
the state-of-the-art EMO algorithms to calculate the Pareto dominance ranking is analysed.

2.2 Fast non-dominated sorting procedure

The FNDS procedure assigns ranks to the individuals, and classifies the population into sev-
eral non-dominated levels (so-called fronts) (see the Fig. 1). According to Pareto dominance,
the individuals with the same rank are non-dominated among them and they can be only
dominated by a solution in a lower rank. Dominance comparisons between the individuals
is the most repeated operation in non-dominated sorting with a high computational burden,
which determines its efficiency.

Algorithm 1 (FNDS-UDC) shows a pseudocode of the FNDS procedure. The presented
procedure can be divided into three phases.Phase 1—UnidirectionalDominanceComparison
–, where comparisons between individuals of initial population P are computed and the
information about their dominance is collected. Phase 2, where the individuals of the first
front are classified, and Phase 3—Front assignment—, where the initial population P is
classified in several fronts by the usage of dominance information. The FNDS-UDC sorts
the population (P) in ranks (or fronts) (Ri ) starting from the front 1. The following notations
are used:

– n : the dimension of the search region S ∈ R
n .

– p : the number of individuals.
– v : the number of objective functions.
– X(p×n): the matrix of individuals’ decision vectors.
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– V(p×v): the matrix of the individuals’ objective vectors.
– rank(Pi ) is the rank of Pi .
– T(p×1): the column vector with the rank of each individual, i.e., Ti = rank(Pi ),

i = 1, . . . , p.
– P = [X |V |T ](p×(n+v+1)): the matrix of individuals, as the result of the concatenation

of the columns of X , V and T .
– F(p×p): the front matrix. It stores the individuals at each front or rank. Each row Fi of

F stores the set of indices of individuals at front i , i.e., Fi = { j : rank(Pj ) = i}.
– #F(p×1): the column vector with the number of individuals at each front. #Fi = |{ j

: rank(Pj ) = i}|.
– tmax : the number of fronts, i.e. the number of non zero rows of #F .
– R = [#F |F](p×(p+1)): the rank matrix, as the result of the concatenation of the columns

of #F and F .
– #M(p×1): the column vector with the number of dominators (masters) of each individual.
– #D(p×1): the column vector with #Di = |{ j : Pj ≺ Pi }|, i.e, the element i stores the

number of individuals dominated by Pi .
– D(p×p): the dominated matrix. The row i stores the indexes of individuals dominated by

Pi , i.e., Di = { j : Pj ≺ Pi }.
– MD = [#M |#D|D](p×(p+2)): the masters-dominated matrix, as the result of the con-

catenation of the columns of #M , #D and D.

Each i th iteration (or individual processing) of the algorithm is irregular because it contains
conditional instructions that can change the program trace. However, if we assume that the
population to be sorted by FNDS is large enough, the workload for several sets of iterations
can be considered to be near to their average value.

3 Data structures in Fast non-dominated sorting

Due to the importance of the exploitation of the memory hierarchy in the performance of the
algorithms, the data structures in FNDS has been designed to preserve as much as possible
the locality of the data in memory. Figure 2 shows the bi-dimensional data structures used in
FNDS-UDC.

The input of the FNDS is the population P and the output is the rank matrix R and the
update of T in the P structure. FNDS generates the dominance matrix D which is very sparse
to calculate R. Because the number of fronts (or ranks) is unknown when FNDS starts, the
number of rows of R is set to p. P , MD and R matrices have been defined as static data
structures of size (p× (n + v + 1)), (p× (p+ 2)) and (p× (p+ 1)), respectively. It means
that the sizes of these matrices are invariant throughout their lifetime. They are set to their
maximum size. The elements of a static structure are held in contiguous memory words to
improve the spatial locality of the memory access. Focusing on P and MD, they have been
stored column-wise, which presents a better spatial locality in memory accesses than the
row-wise approach. On one hand, the dominance checking between every individual and the
population is computed with a high spatial locality in the access to P . On the other hand, first
columns of MD are frequently acceded to update the number of dominators and dominated
of an individual. Storing MD in column order increases the probability of maintaining first
columns in cache memory and the number of cache misses is consequently reduced. This
has a strong impact on the performance of FNDS when the population is very large, since
most of the running time consumed by the algorithm is due to the memory access performed
in the dominance comparison.
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Algorithm 1 FNDS-UDC. Fast non-dominated sorting procedure - Unidirectional Domi-
nance Comparison.
Input:

n: the dimension of the search space,
p: the number of individuals,
v: the number of objective functions,
P(p×(n+v+1)): population.

Output:
F : the front matrix,
T : the rank of each individual.
Phase 1: Unidirectional Dominance Comparison (UDC)

1: for i ← 1 to p do
2: Di ← {∅}
3: #Mi ← 0
4: for j ← 1 to p do
5: for k ← 1 to v do

Check dominance between individuals Pi and Pj for the objective k

6: if Pi � Pj then
7: Di ← Di ∪ { j} �Add Pj to the set of individuals dominated by Pi
8: else if Pj � Pi then
9: #Mi ← #Mi + 1 � Increase dominators counter for Pi

Phase 2: Assign front to the individuals of the 1st front
10: for i ← 1 to p do
11: if #Mi = 0 then � If individual Pi belongs to the 1st front
12: Ti = 1 � Set individual i to the 1st front
13: F1 ← F1 ∪ {i}

Phase 3: Front Assignment
14: t = 1 � Initialize the front counter
15: while Ft �= {∅} do
16: Q ← {∅} �Temporary set used to store individuals of the next front
17: for each i ∈ Ft do
18: for each j ∈ Di do
19: #Mj ← #Mj − 1
20: if #Mj = 0 then � If individuals Pj belongs to the next front
21: Tj ← t + 1 � Set individual j to the t + 1 front
22: Q ← Q ∪ { j}
23: t ← t + 1 � Increase the front counter
24: Ft ← Q
25: tmax ← t
26: return R, T �Returns the Pareto Dominance Ranking

Static allocations have the drawback of oversizingMD and R to guarantee enoughmemory
for them due to the unknown dominance patterns. However, the memory requirements for R
could be greatly reduced if the number of fronts is a priori known.

4 The Dominance Comparison Phase

Experimental results of the execution of the sequential implementation have shown that
Dominance Comparison phase (see Phase 1 in Algorithms 1 and 2) consumes most of the
computational burden of the FNDS procedure (see Sect. 6, Table 2) due to the intensive
memory accesses and the large number of performed comparisons.

The number of comparisons in the UDC phase of FNDS-UDC procedure (see Alg. 1) is
reduced in FNDS-BDC (see Alg. 2) by using a BDC (Bidirectional Dominance Comparison)
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Fig. 2 Data structures defined in the implementations of FNDS

instead. In the later, when two individuals (Pi and Pj ) are compared, the information about
the dominance of both is updated (MDi and MDj ). The main difference between UDC and
BDC is the modification of the for nested loop (Alg. 2, line 5).

Algorithm 2 FNDS-BDC. Fast Non-Dominated Sorting Procedure - Bidirectional Domi-
nance Comparison.
Input:

n: the dimension of the search space,
p: the number of individuals,
v: the number of objective functions,
P(p×(n+v+1)): population.

Output:
F : the front matrix,
T : the rank of each individual.

1: for i ← 1 to p do
2: Si ← {∅}
3: #Mi ← 0

Phase 1: Bidirectional Dominance Comparison (BDC)
4: for i ← 1 to p do
5: for j ← i + 1 to p do
6: for k ← 1 to v do
7: Check dominance between individuals Pi and Pj for the objective k

8: if Pi � Pj then
9: Di ← Di ∪ { j} �Add Pj to the set of individuals dominated by Pi
10: #Mj ← #Mj + 1 � Increase the dominators counter for Pj
11: else if Pj � Pi then
12: Dj ← Dj ∪ {i} �Add Pi to the set of individuals dominated by Pj
13: #Mi ← #Mi + 1 � Increase dominator counter for Pi

Phase 2 (see Alg. 1)
Phase 3 (see Alg. 1)

14: return R, T �Returns the Pareto Dominance Ranking
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As explained in next section, the drawback of the BDC in comparison with UDC phase
is the existence of more conflicting concurrent writes in the parallel versions produced in
the former than in the later, which reduces the efficiency of the parallel algorithm. However,
sequential BDC codes are widely used5 due to their better performance on a CPU-core.

5 Parallel implementations of the non-dominated sorting

As aforementioned, experimental results of the execution of the sequential implementation
have shown that Unidirectional Dominance Comparison phase consumes most of the com-
putational burden of FNDS (see Sect. 6, Table 2).

In previous sections, unidirectional (UDC) and bidirectional (BDC) dominance compar-
ison phases have been shown. Their parallel versions have been experimentally evaluated
on the computer architectures described in Sect. 6. The experimental evaluation shows rel-
evant execution time differences between these parallel versions. Parallel BDC achieves a
worse performance than parallel UDC as the number of parallel processes increases, in spite
of the smaller number of comparisons performed by BDC. This result is a consequence of
the parallelization of the outer for-loop of BDC, because the dominance information of one
individual can be updated by several processes at the same time. Therefore, to preserve the
correctness of parallel BDC, it is necessary to update the dominance of every individual
(row of MD) by atomic write operations, which produces the serialization of the concurrent
accesses. However, for the parallel UDC version, the comparisons of several individuals can
be executed in parallel and they can update their dominance information in different rows of
MD, without conflicting writings.

According to the previous considerations,we only address the following parallelizations of
theFNDS-UDCalgorithm: (1)multicore basedonPthreads; (2)GPUbasedonCUDA; and (3)
hybrid multicore-GPU, which combines both parallel architectures. These implementations
will be chosen by researchers according to the dimensions of their particular problems and/or
their computational platforms.

5.1 Multicore implementation

The proposed multicore implementation is based on Pthread (Posix-Threads) interface [3]
and ANSI C to exploit the parallelism of the cores available on the platform. The multicore
version of FNDS-UDC is described in Algorithm 3.

At the beginning, a number of threads (less than or equal to the number of CPU cores)
is initialized. Thus, each thread runs on a CPU core. Each thread computes the dominance
comparison of a subset of individuals in parallel and its output is saved in the corresponding
rows of MD, without writing conflicts among threads and synchronization points. P is the
input for all threads to compute the dominance of the corresponding subpopulation. The
information in the cache memory is useful for all threads. Therefore, the accesses of threads
to P are optimized.

The total workload is proportional to p (population size), since it determines the number of
comparisons andmemory accesses that consume themost of the FNDS runtime. A static load
distribution among threads has been performed. Thus, each thread classifies a sub-population
of similar size because the outer for-loop ofUDChas been homogeneously distributed among
the threads.

5 http://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4.
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When the parallel Phase 1 of UDC finishes a synchronization point among all threads is
necessary to guarantee that the following phases start after all rows of MD were computed.
Then, the threads join and only one is maintained active to continue the computation of
Phases 2 and 3. The serialization of these phases has not a high impact in the performance,
according to the profiling analysed in Sect. 6, Table 2, since they have a low computational
burden.

Algorithm 3Multicore implementation of FNDS-UDC.
Input:

n: the dimension of the search space,
p: the number of individuals,
v: the number of objective functions,
P(p×(n+v+1)): population,
nT h: number of threads.

Output:
F : the front matrix,
T : the rank of each individual.

1: for id ← 1 to nT h do
2: Create id thread
3: ini tid = id ∗ ceil(p/nT h)

4: endid = ini tid + ceil(p/nT h)

Parallel Phase 1: Unidirectional Dominance Comparison (UDC)
5: for i ← ini tid to endid do �Every thread computes a subset ofMD rows
6: Di ← {∅}
7: #Mi ← 0
8: for j ← 1 to p do
9: for k ← 1 to v do
10: Check dominance between individuals Pi and Pj for the objective k

11: if Pi � Pj then
12: Di ← Di ∪ { j} �Add Pj to the set of individuals dominated by Pi
13: else if Pj � Pi then
14: #Mi ← #Mi + 1 � Increase dominators counter for Pi
15: Synchronization and join of threads �Only one thread is computing

Sequential Phase 2: Assign front to the individuals of the 1st front (see Alg. 1)
Sequential Phase 3: Front assignment (see Alg. 1)

16: return R, T �Return the Pareto Dominance Ranking

5.2 GPU implementation

The keys of the GPU computing are described in this section for a better understanding of
the proposed FNDS version on a GPU, which is detailed in Sect. 5.2.2.

5.2.1 CUDA programming model

GPU platforms are appropriated to compute procedures that involve launching large number
of threads in parallel with the same sequence of instructions over several input data. Thus, the
programmer can consider the GPU as a set of SIMT (Single Instruction, Multiple Threads)
multiprocessors [4].

The parallel code executed on a GPU is called kernel [26]. GPUs are composed of hun-
dreds of cores that can collectively run thousands of GPU-threads. Each core, called Scalar
Processor (SP), belongs to a set of multiprocessors units called Streaming Multiprocessors
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(SM or SMX) that compose the device. The SPs in a SMX share resources such as registers
and memory. The on-chip shared memory allows the parallel tasks running on these cores to
access the data without using the system memory bus [26].

To develop codes for NVIDIAGPUswith CUDA, the programmer has to take into account
several architectural characteristics, such as the topology of the multiprocessors and the
management of the memory hierarchy. For the execution of the program, the CPU (called
host in CUDA) performs a succession of kernel invocations to the device. The input/output
data to/from the GPU kernels are communicated between CPU and GPU memories by the
PCI Express bus. These communications reduce the performance.

Each kernel is executed as a batch of threads organized as a grid of thread blocks. The
execution of every thread block is assigned to every SMX.Moreover, every block is composed
by several groups of 32 threads, called warps. The occupancy is defined as the ratio between
the number of active warps and the theoretical maximum number of active warps. Therefore,
the higher the occupancy, the higher the exploitation. The occupancy depends on the threads
block size (BS), which is defined by the programmer. Themaximum instruction throughput is
achieved when all threads of the same warp execute the same instruction sequence. Threads
of the same warp diverge when they follow different execution paths due to control flow
statements. If this occurs, the different executions paths have to be serialized, increasing the
total number of instructions executed by the warp [26].

There are several kinds of memory available on GPUs, with different access time and sizes
that constitute the memory hierarchy. The exploited memory bandwidth can vary by an order
of magnitude depending on the access pattern for each type of memory. There is a parallel
memory interface between the global memory and every SMX of the GPU. It is necessary
to maintain the coalescent and aligned memory access by the threads in order to improve
the bandwidth. Hence, the data structure and the ordering of the chosen data accesses in an
algorithm may affect significantly to the performance.

Summarising, in order to optimise the performance of the GPU, several good practices
have to be considered by the CUDA programmer: (1) to balance the computation among
the sets of threads, (2) to optimise the data access through the memory hierarchy, (3) to
define enough number of threads to maximize the occupancy of the GPU, (4) to avoid the
serialization of the kernel due to control instructions, and (5) to minimize the data transfers
between CPU and GPU.

5.2.2 GPU implementation of FNDS

Algorithms 4 and 5 show the GPU version of FNDS-UDC. They are CUDA pseudocodes
for the CPU host and GPU (kernel), respectively. Only UDC is parallelized on GPU and
Phases 2 and 3 are sequentially computed on the CPU, as it was done for the multicore
version. Algorithm 4 starts its execution on CPU and activates the GPU (denoted by device
d). Then, it allocates memory for the input (d_V(p×v)) and output (d_MD(p×(p+2))) data
on GPU (Alg. 4, line 3). The input data for GPU kernel is the matrix of objective vectors,
V (see Fig. 3). Then, GPU_UDC kernel is launched (Alg. 5) to compute UDC, where p
threads are activated. Each GPU thread computes one individual (tid), i.e., the tidth row
(d_#Mtid , d_#Dtid and d_Dtid ) of the masters-dominated (d_MD) matrix. When all GPU
threads finish, d_MD stores the output data which will be copied from the GPU to CPU.

The values of d_#M and d_#Dwill be copied fromGPU to #M and #D onCPU.However,
in order to communicate only the useful information of d_D, d_#Dmax = max{d_#D} is
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Fig. 3 Data structures which are involved in the GPU kernel to compute the individual dominance

computed in parallel on GPUwith a CUDAThrust routine6. Only the first d_#Dmax columns
of d_D store useful information and will be copied from d_D on GPU to D on CPU (Alg. 4,
line 7). Therefore, the selected columns of d_MD are copied to MD in just one step. After
that, the computation of FNDS-UDC continues (Phases 2 and 3) on the CPU. Figure 3 shows
a sketch of the data structures and communications between CPU/GPU, which are involved
in the UDC kernel.

Giving an outline of the GPU version of FNDS-UDC, the GPU is in charge of the
UDC computation because this process usually exhibits enough parallelism to squeeze such
kind of architecture. UDC kernel has been optimized since we have considered the good
practices of GPU programming, mentioned in Sect. 5.2.1. The load balance is achieved
because each GPU thread revises the dominance of an individual and therefore, the work
load is similar for every GPU warp of threads. The memory access to the input data is
coalescent, since the structure d_V is stored in column-major order. This way, consecu-
tive threads, i and i + 1, access to consecutive data in memory to revise the dominance
related to the k objective, d_V [ , k + i] and d_V [ , k + i + 1]. The coalescent read-
ing of d_V has a strong impact in the kernel performance since it is dominated by the
access to the objective vectors. It is very relevant to supply enough workload to maintain
active the GPU resources. Therefore, the UDC kernel will be accelerated on GPU only if
the population size p is large enough. The minimal population size to optimize UDC on
GPU mainly depends on the number of SMX of the specific GPU. UDC computation is
usually expressed using control instructions, which can serialize the threads execution on
GPU. To help the CUDA compiler to generate object code that avoids the serialization of
threads, the dominance checking between individuals has been coded using Boolean oper-
ators instead of control instructions (see Alg. 5, lines 6–8). For instance, line 6 actually
computes for every objective i : Obj Eq ← Obj Eq + (d_V (tid, i) == d_V ( j, i)) instead
of i f (d_V (tid, i) == d_V ( j, i)) then Obj Eq ← Obj Eq + 1. The communications
between CPU and GPU play a relevant role in the GPU version of FNDS-UDC since only
UDC process is computed on GPU and its input and output data have to be communicated

6 http://docs.nvidia.com/cuda/thrust/index.html.
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between CPU and GPU. As described above, the size of input/output data is large if theMOO
problem deals with large populations and many objectives. Thus, only the sub-matrices that
are useful for UDC computation are communicated.

Algorithm 4 GPU implementation of FNDS-UDC.
Input:

d: device to use,
n: the dimension of the search space,
p: the number of individuals,
v: the number of objective functions,
P(p×(n+v+1)): population.

Output:
F : the front matrix,
T : the rank of each individual.

1: Initialize the GPU device, d
2: Allocate memory on GPU for d_V(p×v) and d_MD(p×(p+2))
3: Copy objective vectors from CPU to GPU � d_V ← V ∈ P
4: Launch the GPU kernel to compute d_MD � See Alg. 5
5: Synchronization point
6: Launch the computation of d_#Dmax on GPU.
7: Copy d_MD on GPU toMD on CPU � d_#M , d_#D and d_#Dmax columns of d_D
8: Deallocate memory for d_MD and d_V

CPU Sequential Phase 2: Assign front to the individuals of the 1st front (see Alg. 1)
CPU Sequential Phase 3: Front assignment (see Alg. 1)

9: return R, T �Return the Pareto Dominance Ranking

Algorithm 5 GPU_UDC kernel.
Input:

d: device to use,
p: the number of individuals,
v: the number of objective functions,
d_V : the individuals’ objective matrix.

Output: Updating masters-dominated matrix d_MD = [#M |#D|D](p×(p+2)).
1: tid ← blockDim.x · block Idx .x + thread Idx .x � Identifier of every thread.
2: if tid < p then
3: Dtid ← {∅} � Set of individuals dominated by Ptid .
4: #Mtid ← 0 �The number of masters of Ptid .
5: for j ← 1 to p do
6: Obj Eq = |{i : d_V (t id, i) = d_V ( j, i), i = 1, . . . , v}|
7: Obj Lt = |{i : d_V (t id, i) < d_V ( j, i), i = 1, . . . , v}|
8: ObjGt = |{i : d_V (tid, i) > d_V ( j, i), i = 1, . . . , v}|
9: if Obj Lt = 0 and Obj Eq �= v then � Ptid � Pj
10: Dtid ← Dtid ∪ { j}
11: else if ObjGT = 0 and Obj Eq �= v then � Pj � Ptid
12: #Mtid ← #Mtid + 1

return d_MD �Return the matrix of masters-dominated individuals.

5.3 Hybrid GPU-Multicore implementation

Hybrid GPU-Multicore implementation has been designed to exploit CPU cores and one
GPU device to accelerate the UDC phase in the FNDS-UDC algorithm (see Algorithm 1).
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This implementation is based on Pthreads and CUDA. The workload balance of the UDC
phase between GPU and CPU is essential to achieve a good performance. The goal of the
load balancing is to achieve a similar runtime in CPU and GPU.

The hybrid GPU-Multicore code launches several CPU-threads, each one running on a
CPU-core. The p iterations of UDC (i-loop of Alg. 1, line 1) are statically distributed among
CPU-threads and GPU. Each CPU-thread and GPU computes a different subset of iterations
of the loop (chunk).

One CPU-thread has additional work: to start the GPU device, to call the CUDA kernel
and to handle the communication between CPU and GPU. Memory allocation for d_V and
d_MD at GPU is done in the same way as in the GPU implementation. However, d_MD
has only |chunck| rows, since the GPU only computes the masters-dominated of a chunk of
individuals.

At the end of the UDM phase, the CPU and the GPU threads are synchronized to join the
results. Then, Phases 2 and 3 are executed by just one CPU-thread.

The number of individuals to evaluate can be distributed (partition of the i-loop) among
CPU and GPU according to their computational power [27]. This static distribution of work-
load is based on a previous estimation of the relative performance (r ) of both devices which
is estimated as follows: r = tC PU (w)/tGPU (w), where tC PU (w) and tGPU (w) represent
the runtime of the CPU and the GPU to compute a given large enough workload of size w,
respectively. In this way, the GPU computes rp/(r + 1) individuals (iterations of i-loop) and
the CPU p/(r + 1) ones. When r ≈ 1, the ratio of computational workload and size of the
problem for both computational devices is similar and the maximum relative speed-up of the
hybrid implementation over the fastest (GPU or multicore) implementation is 2.

Therefore, a benchmarking to determine a good r value has to be executed before the
FNDS-UDC algorithm.

5.4 Support routine for determining the fastest FNDS version

FNDS is included in iterative procedures for solving MOO problems by EMO algorithms.
The performance achieved by every FNDS implementation depends on the problem size
(p and v) and the resources of the computational platform. Therefore, we provide an off-
line benchmarking routine for helping users to select the fastest version, according to their
particular MOO problems and platforms. Algorithm 6 shows this benchmarking routine.
Firstly, it explores the runtime of sequential, multicore and GPU executions. Secondly, the
fastest CPU version is considered to compute the r parameter, in order to configure the
hybrid version. Then, the runtime for the hybrid version is also evaluated. Finally, the routine
identifies the fastest implementation according to the application context. Additionally, the
configuration parameter r is also returned, since it can be useful to configure the hybrid
version, when it is the fastest.

6 Experimental Results

In this section, the performance of the parallel implementations of the FNDS-UDC algorithm
(see Alg. 1) is experimentally investigated.

Parallel implementations of theFNDS-UDCalgorithmare useful forEMOalgorithmswith
large number of objectives. DTLZ2 test problem has been considered, because the number of
objective functions can be defined by the user [9,17]. DTLZ2 problemwas specially designed
for evaluating multi-objective algorithms in this context. Moreover, it can be configured to
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Algorithm 6 Routine to determine the fastest FNDS version.
Input:

P: population,
v: number of objective functions,
d: GPU device to use,
nc: number of CPU cores.

Output:
ci : configuration index

– ci ∈ [1, nc]: CPU with ci threads,
– ci = nc + 1: GPU,
– ci = nc + 2: hybrid,

r : the relative performance,
nT h: number of CPU-threads in the hybrid version.

1: t1:= time of sequential Alg. 2 �Wall-clock time
2: for c ← 2 to nc do
3: tc:= time of Alg. 3 with c threads
4: tC PU ← min

i∈[1,nc]{ti }
5: nT h ← argmin

i∈[1,nc]
{ti }

6: tGPU ← tc+1 ← time of GPU Alg. 4
7: r = tC PU /tGPU
8: Thybrid ← tc+2 ← time of hybrid with nT h CPU-Threads and GPU � See Sect. 5.3
9: ci ← argmin

i∈[1,nc+2]
{ti }

10: return ci , r and nT h

have high computational demands by establishing a large number of objectives and variables.
The formulation of the problem is as follows:

min f1(x) = (1 + g(x))
v−1∏

i=1
cos

( xiπ
2

)

min f2(x) = (1 + g(x))sin
( xv−1π

2

) v−2∏

i=1
cos

( xiπ
2

)

. . .

min fl(x) = (1 + g(x))sin
( xv−l+1π

2

) v−l∏

i=1
cos

( xiπ
2

)

. . .

min fv(x) = (1 + g(x))sin
( x1π

2

)

(2)

where g(x) = ∑n
i=v(xi −0.5)2, xi ∈ [0, 1]. The number of variables n is selected according

to the equation n = v + k − 1, with a suggested value of k = 10.
Instances have been created by generating p decision vectors randomly over the search

space. The size of p, v and n vary for every test case (see Table 1(a)). The notation for each
instance of the problem uses a, b, c or d for 5000, 10,000, 20,000 or 30,000 population sizes,
respectively, followed by _v. Additionally, Table 1(a) also includes thememory requirements
on CPU and GPU (in GBytes) for the proposed FNDS instances of the problem.

Two computational architectures have been considered in the experiments:

A1 : Bullx R424-E3 Intel Xeon E5 2650 (16 CPU-cores and 8GB RAM) with one Tesla
M2070 (Fermi) GPU.

A2 : Bullx R421-E4 Intel Xeon E5 2620v2 (12 CPU-cores and 64GB RAM) with two
NVIDIA K80 (Kepler GK210) GPUs.
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Table 1 Characteristics of the test functions and their corresponding memory requirements on CPU and GPU
(in GB) (a); and the GPU devices (b)

Test case p v n CPU GPU M2070 K80
(GB) (GB) (A1) (A2)

(a) (b)

a_05 5000 5 14 0.14 0.09 Peak performance 0.51 1.87

a_10 5000 10 19 0.14 0.09 (double prec.) (TFlops)

a_15 5000 15 24 0.14 0.09 Peak performance 1.03 5.6

b_05 10,000 5 14 0.56 0.37 (simple prec.) (TFlops)

b_10 10,000 10 19 0.56 0.37 Device memory (GB) 5.2 11.2

b_15 10,000 15 24 0.56 0.37 Clock rate (GHz) 1.2 0.82

c_05 20,000 5 14 2.24 1.49 Memory bandwidth 150 480

c_10 20,000 10 19 2.24 1.49 (GBytes/s)

c_15 20,000 15 24 2.24 1.49 Multiprocessors 14 13

d_10 30,000 10 19 5.04 3.36 CUDA cores 448 4992

d_15 30,000 15 24 5.04 3.36 Compute Capability 2.0 3.7

The characteristics of the GPU devices are given in Table 1(b). The Table shows that the
required memory for the instances of the problem on CPU and GPU fit loosely in the memory
of the probed architectures.

FNDS-UDC (see Alg. 1) has been considered for all parallel implementations (multicore,
GPU and hybrid). The use of the data structures described in Sect. 3 improves the memory
management for FNDS. In order to analyze the impact of the improvement in the performance,
two sequential versions of FNDS-BDC have been analysed: a FNDS-BDC Matlab version
without optimized data structures (SeqMatlab), which is widely used7, and a C routine to
compute FNDS-BDC procedure with the improved data structures (SeqC).

SeqMatlab has been coded and evaluated in Matlab 2016a. The other versions have been
coded C++, Pthreads and CUDA 6.5, as well as gcc and nvcc compilers with −O2 opti-
mization option. Since the decision vectors are randomly generated for each execution,
measurements have been repeated until the sample mean has a confidence level of 95%.
The average executions time is given as result.

A profiling of the SeqC FNDS-BDC (see Alg. 2) on A1 is presented in Table 2. This table
shows the runtime (in seconds) on a single CPU-thread for the phases of FNDS-BDC: “Phase
1: BDC”, “Phase 2” and “Phase 3” columns. “Phase 1: BDC” running time has been used as
the best sequential time to calculate the parallel speed-up. The percentage of runtime of Phase
1 with respect to the total runtime is shown between parentheses. “Others” column shows
the time invested by Matlab to call to the SeqC FNDS-BDC implementation. It is shown that
most of the runtime of FNDS-BDC is related to the bidirectional dominance comparison.
The results presented in Table 2 can be extrapolated to FNDS-UDC, where the sequential
UDC consumes more time than BDC. This profiling justifies the decision to parallelize only
the dominance comparison phase (Phase 1 of Algorithm 1). Table 2 also shows the strong
increment of the runtime as the size of the problem increases, in terms of the values p and v.
An analogous profiling was carried out on A2 with similar conclusions.

7 http://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4.
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Table 2 Profiling of the SeqC FNDS-BDC implementation on A1

Phase 1: BDC Phase 2 Phase 3 Others

a_05 1.21E+00 (95.17%) 6.40E−05 5.09E−02 1.02E−02

a_10 2.24E+00 (98.37%) 1.56E−04 1.91E−02 1.77E−02

a_15 3.29E+00 (98.84%) 6.62E−04 1.43E−02 2.37E−02

b_05 4.87E+00 (94.33%) 9.80E−05 2.89E−01 3.42E−03

b_10 8.96E+00 (98.32%) 2.54E−04 9.78E−02 5.50E−02

b_15 1.33E+01 (98.72%) 3.01E−04 6.34E−02 1.08E−01

c_05 1.94E+01 (92.59%) 1.96E−04 1.48E−01 7.68E−02

c_10 3.55E+01 (98.19%) 4.27E−04 4.66E−01 1.89E−01

c_15 5.25E+01 (98.85%) 4.99E−04 3.06E−01 3.06E−01

d_10 8.35E+01 (98.39%) 5.95E−04 5.12E−01 1.97E−01

d_15 1.25E+02 (98.70%) 6.98E−04 8.02E−01 8.45E−01

Wall-clock time in seconds for all implementations of FNDS procedures on A1 and A2

architectures are shown in Table 3 and represented in Figure 4. There are two sequential
versions (referred as SeqMatlab and SeqC and executed on a CPU-core), parallel versions
with 2–16 or 2–12 CPU-cores, GPU and hybrid (which exploit both CPU-cores and the
GPU). In SeqMatlab implementation on A1 (A2), executions time varies from 10s (5 s), for
p = 5000, to more than 469s (224s), for p = 30, 000. The set of execution time of SeqC
outperforms SeqMatlab in a factor which ranges from 3.4× (3.1×) to 7.9× (8.7×) on A1

(A2). The improvement is not only due to the well known better performance of C codes than
Matlab ones but also to the use of structures defined in Sect. 3.

All the multicore implementations outperform the SeqC implementation. In fact, the effi-
ciency of the multicore implementation improves when the size of the problem increases
in terms of population size and number of objectives. The runtime for SeqC and 2CPU is
very close since the BDC phase used in SeqC (FNDS-BDC) computes nearly the half of
comparisons of the UDC phase in FNDS-UDC.

In the GPU implementation, one key parameter is the occupancy of the GPU. High occu-
pancy levels are reached if an optimal value of threads Block Size (BS) is used. Thus, an
experimental investigation has been carried out to analyze the influence of the BS on the
performance of the algorithm on the GPU. The possible values of BS are powers of two, and
vary from 16 to 1024. The experimental results have shown that only for BS = 256 and 512
the GPU kernels reach values close to 100% of occupancy of the GPU. Executions time of
the GPU implementation are presented in Fig. 4 and Table 3 when the optimal BS (256 or
512) is used. Additionally, the percentage of the GPU-CPU data transfer time with respect to
the runtime of FNDS on a GPU is shown between parenthesis in the “GPU” column of Table
3. This implementation can appropriately exploit the GPUwhen the number of individuals is
large enough, according to the available number of Stream Multiprocessors and cores in the
GPU. Firstly, focusing our attention on A1 of Table 3, results point out that the performance
of the GPU version can be competitive to the multicore version if the number of objectives
is large enough (v = 10, 15) and/or the CPUs number is reduced (1–8). Secondly, focusing
our attention on A2, results point out that the performance of the GPU version is better than
the multicore version even for 12 CPU-cores. It is due to the fact that the difference between
the computational power of the GPU and the CPU is smaller on A1 than on A2. The costs
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Table 3 Wall-clock time in seconds on architectures A1 and A2 for implementations: SeqMatlab (SeqM
column), SeqC, multicore (with 2, 4, 8 and 16(12) CPUs), GPU and hybrid multicore-GPU (Hyb column)

A1

SeqM SeqC 2CPU 4CPU 8CPU 16CPU GPU Hyb r

a_05 10.02 1.27 1.12 0.58 0.31 0.18 0.25 (15.7%) 0.18 1.1

a_10 10.15 2.27 2.03 1.02 0.51 0.27 0.23 (15.4%) 0.19 1.2

a_15 11.57 3.33 3.00 1.51 0.76 0.39 0.23 (10.1%) 0.20 3.0

b_05 40.59 5.16 4.53 2.40 1.32 0.78 0.91 (28.0%) 0.67 1.1

b_10 41.66 9.12 8.18 4.12 2.11 1.10 0.77 (19.8%) 0.69 1.8

b_15 53.10 13.44 12.08 6.07 3.05 1.56 0.89 (14.6%) 0.76 4.4

c_05 167.11 20.97 18.43 9.83 5.51 3.37 3.77 (25.2%) 2.74 1.1

c_10 163.56 36.19 32.54 16.47 8.44 4.42 2.95 (21.9%) 2.55 1.8

c_15 205.25 53.14 47.97 24.10 12.20 6.25 3.34 (16.4%) 2.89 4.5

d_10 381.29 84.88 76.42 38.48 19.62 10.40 7.71 (18.9%) 5.16 2.2

d_15 469.05 127.07 114.49 57.68 29.18 14.96 7.94 (15.4%) 6.81 4.8

A2

SeqM SeqC 2CPU 4CPU 8CPU 12CPU GPU Hyb r

a_05 5.87 0.78 0.93 0.54 0.30 0.22 0.09 (31.1%) 0.07 3.0

a_10 4.78 1.41 1.48 0.90 0.51 0.33 0.08 (30.5%) 0.10 4.4

a_15 6.09 1.94 2.04 1.18 0.69 0.53 0.08 (18.4%) 0.07 16.0

b_05 24.05 2.91 3.10 1.96 1.14 0.76 0.35 (39.0%) 0.23 2.3

b_10 19.43 4.93 5.14 2.80 1.70 1.19 0.23 (32.9%) 0.19 12.0

b_15 24.39 7.04 7.38 4.64 2.30 1.50 0.23 (24.6%) 0.22 14.0

c_05 96.62 11.12 11.15 6.12 3.76 2.86 1.57 (26.3%) 0.78 2.1

c_10 78.46 18.79 20.54 11.20 6.32 4.36 1.01 (25.9%) 0.93 4.7

c_15 98.28 27.29 29.37 15.09 8.74 6.16 0.94 (23.2%) 0.88 10.0

d_10 178.07 42.52 45.04 23.55 13.42 9.61 2.20 (22.7%) 1.84 7.0

d_15 224.13 62.04 65.64 34.31 19.45 13.90 2.17 (22.4%) 1.96 10.5

The percentage of the GPU-CPU data transfer time with respect to the runtime of FNDS on a GPU is shown
between parenthesis. The value of the relative performance GPU-CPU, r , is also shown

of the data transfer between GPU and CPU (parenthesis in the “GPU” column of Table 3)
are relevant with respect to the total wall-clock time of the FNDS on a GPU. These costs
reach their maximum values when v = 5 on A1 and A2 (28% and 39%, respectively), as
the smaller the number of objective functions, the higher the possibility of few individuals
dominate large subpopulations. It means that #Dmax (see Sect. 5.2.2) has a high value for
v = 5. Therefore, the data transfer between GPU and CPU results in a longer wall-clock
time, as can be seen in Fig. 4.

The Hybrid versions on architectures A1 and A2 are shown in the Fig. 4 and the Table 3.
These implementations are based on a previous benchmarking process to determine a static
workload balancing according to the performance of 15 (11) CPU-cores on A1 (A2) and the
GPU. “r” column shows the estimation of the relative performance r for each instance. In all
the experiments of the hybrid version, the total number of CPU-threads was obtained using
the training procedure described in Alg. 6, obtaining 16 CPU-cores on A1 and 12 CPU-cores
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Fig. 4 Wall-clock time in seconds on platforms A1 and A2 for implementations: SeqMatlab, SeqC, multicore
(with 2, 4, 8 and 16(12) CPUs), GPU and hybrid multicore-GPU

on A2. Hybrid implementation in A1 (A2) can take advantage of the parallel computation of
15 (11) CPU-cores, in combination with a GPU architecture to enhance the computational
efficiency of the parallelization of Algorithm 1. According to last considerations of Sect. 5.3,
the hybrid version always obtains similar or better performance than the fastest multicore or
GPU version. The advantage of the hybrid version versus the GPU implementation decreases
as the value of v increases, since an increment in v causes a negligible variation on the
performance of the hybrid version. However, for the GPU version, when v increases the data
transfer penalties have less impact which results in a better performance. It can be observed
for instances of the problem with v = 15 (r � 1), the performance of the GPU is similar to
the hybrid version.

Summarizing, the obtained results show that the values of the runtime of FNDS algo-
rithms strongly increase with the population (p) and/or the number of objectives (v). For the
evaluated problem instances, the sequential runtime on A1 (A2) ranges from 1.3 (0.8) sec.
to 127.1 (62.0) sec. for the optimized sequential version (FNDS-BDC) coded on C. Parallel
versions of the FNDS-UDC algorithm are interesting alternatives to reduce the computa-
tional wall-clock time. The selected parallel version will depend on the available hardware
and the number of objective functions. On A1, the multicore version is better than the GPU
version only when the number of objective functions is the smallest (i.e., a_05, b_05 and
c_05 instances of the problem). On A2, the GPU version is faster than the multicore ver-
sion. If a GPU with CUDA support is available and the population and objectives are large
enough, the GPU or Hybrid versions are good options to reduce the wall-clock time of FNDS
algorithms. Results on A1 (A2) show that the runtime of the fastest version ranges from 0.18
– 6.81 s. (0.07 – 1.96 s). The best acceleration factor on A1 (A2) has been obtained for the
most computationally expensive instance of the problem (d_15), where the runtime of SeqC,
127.07 s (62.04 s), has been reduced by a factor of 18.6× (31.6×) with respect to the fastest
version, 6.8 s (1.96 s).

7 Conclusions

In this paper, several implementations of the non-dominated sorting procedure, one of the
most time consuming procedures in several state-of-the-art EMO algorithms, have been pro-
posed and experimentally evaluated: a multicore implementation based on Pthreads, a GPU
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implementation based on CUDA and a hybrid implementation as the combination of both.
Results show that the number of objectives, the size of the population and the characteristics
of the available platforms are the key parameters to establish the best implementation in
terms of performance. To ease the selection of the most suitable FNDS version a supplemen-
tary training procedure has also been developed. This way, scientists can use the versions of
FNDS algorithms described and analyzed in this work to extend their EMO algorithms for
solving multi-objective optimization problems.

The optimized FNDS implementations are available on-line8 to be called from Matlab or
C++ routines, in combination to the different considered parallel architectures.

However, further work is needed towards the evaluation of these new routines on multi-
objective optimization algorithms. Another future research line is related to the development
of the multi-GPU version and the measurement of the energy efficiency of these proposals to
select the most suitable parallel version based on performance and energy efficiency criteria.
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