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Abstract In this paper, a general optimization problem is considered to investigate the
conditions which ensure the existence of Lagrangian vectors with a norm not greater than
a fixed positive number. In addition, the nonemptiness and boundedness of the multiplier
sets together with their exact upper bounds is characterized. Moreover, three new constraint
qualifications are suggested that each of them follows a degree of boundedness for multiplier
vectors. Several examples at the end of the paper indicate that the upper bound for Lagrangian
vectors is easily computable using each of our constraint qualifications. One innovation is
introducing the so-called bounded Lagrangian constraint qualification which is stated based
on the nonemptiness and boundedness of all possible Lagrangian sets. An application of the
results for a mathematical program with equilibrium constraints is presented.
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1 Introduction

In this section, we briefly discuss the main idea of this paper. Consider the following general
optimization problem:

minimize f (x) subject to F(x) ∈ Λ, x ∈ Ω. (1)
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It is assumed that Λ ⊆ Y and Ω ⊆ X are closed subsets in Asplund spaces, and that
F : X −→ Y and f : X −→ R are Lipschitz near x̄ ∈ F−1(Λ) ∩ Ω . For each function
g : X −→ Rwhich is Lipschitz near x̄ ∈ dom g, and all (z∗, y∗) ∈ N (x̄;Ω)×N (F(x̄);Λ),
we say that (z∗, y∗) is a Lagrange multiplier vector for x̄ with respect to g iff

−z∗ ∈ ∂g(x̄)+ D∗
N F(x̄)(y∗)

where ∂g(x̄) and D∗
N F(x̄) are theMordukhovich subdifferential and the normal coderivative

of g and F at x̄ (see Sect. 2). The set of all Lagrange multipliers of x̄ with respect to g is
denoted by Λ(x̄; g). In this paper, we will answer the following two questions:

1. Under what conditions can we ensure that there exists Lagrangian vectors with a norm
not greater than a specified positive number?

2. What conditions can characterize the nonemptiness and boundedness of the multiplier
sets Λ(x̄; g) together with their exact upper bounds as well?

Gauvin in [1] considered a nonlinear program with inequality and equality constraints
where all functions are continuously differentiable onRn . He proved that the Mangasarian–
Fromowitz constraint qualification MFCQ [2] is an equivalent condition for boundedness
and nonemptiness of the set of Lagrangian multipliers. The authors in [3] investigated a
problem similar to (1), where Ω is closed and convex, Λ is a closed convex cone, f is differ-
entiable and F is continuously differentiable. They proposed a regularity assumption which
was “almost” equivalent to the existence of a non-empty and weakly compact set of Lagrange
multipliers. Shortly after that an equivalent condition was presented in [4] for nonemptiness
and boundedness of the multiplier set of a nonlinear problem with locally Lipschitz objective
and inequality constraint functions and continuously differentiable equality constraint func-
tions. The other work in this subject was done by Pappalardo [5]. He presented a nonsmooth
version of MFCQ, in the sense of Clarke, for a Lipschitz optimization problem with equality
and inequality constraints and proved that his constraint qualification is equivalent to the
nonemptiness and boundedness of the multiplier set. Then Jourani in [6] gave conditions, in
terms of the Clarke subdifferential, ensuring the nonemptiness and the boundedness of the
Lagrange multiplier sets for problem (1), assuming that Ω and Λ are proper sets and the
functions are locally Lipschitz at the point of question. In [7], the authors discussed the con-
ditions required to guarantee the non-emptiness and the boundedness of certain subsets of the
set of Lagrange multipliers for an inequality and equality constrained vector minimization
problem. Subsequently Dutta et al. [8] considered an especial extension of problem in (1)
on Rn . Instead of the constraint F(x) ∈ Λ, they added the term ρ(F(x)) to the objective
function, where ρ : Rn −→ R ∪ {+∞} was a proper lower semicontinuous function. Then
they proposed a modification of MFCQ and proved its equivalence to the nonemptiness and
boundedness of the multiplier set.

An overall review shows that, in all the papers mentioned above, a suitable form of
MFCQ has been proposed as a characterization for the nonemptiness and boundedness of the
multiplier set. However, it is clear that an exact upper bound is not provided via theMFCQ. In
this paper, we suggest three new constraint qualifications that each of them follows a degree
of boundedness for the multiplier vectors. Each constraint qualification involves a positive
modulus which, together with the Lipschitzian constant of the objective function, provides us
an upper bound for the Lagrange multipliers. Several examples indicate that the upper bound
for Lagrangian vectors is easily computable using each of our constraint qualifications. One
innovation is introducing the so-called bounded Lagrangian constraint qualification (BLCQ)
which is stated based on the nonemptiness and boundedness of all possible Lagrangian sets.
Although the concept of the Lagrange multiplier vector intrinsically depends on the objective
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function, but it will be seen that (BLCQ) is completely free from the objective function and
can be characterized only by the intrinsic features of the constraint system. Among our new
constraint qualifications, there is specifically the so-called regularity constraint qualification
(RCQ). It is worth mentioning that (RCQ) is equivalent to (MFCQ), but with a difference
that (RCQ) provides us an exact upper bound for the multiplier set. It is well known that the
bound is not provided with the classical technique to derive KKT conditions via the MFCQ.

Next let us present the approach to derive our constraint qualifications. Alongside the
constraint F(x) ∈ Λ in problem (1), the multifunction M : Y−−→−→X may be defined as

M(y) := {x ∈ X : F(x)+ y ∈ Λ}.
It will be seen that the regularity and stability properties of M plays a key role in our

work. Let us now recall some of the prominent stability properties formulated for set-valued
mappings. A set-valued mapping M : Y−−→−→X between metric spaces is said to be Lipschitz-
like (or have Aubin property [9–11]) at some point (ȳ, x̄) of its graph with constant L > 0
if there exist neighborhoods V, U of ȳ, x̄ , respectively, such that

M(y) ∩U ⊂ M(y′)+ Ld(y, y′)BX for all y, y′ ∈ V, (2)

where BX denotes the closed unit ball of X . Fixing one of the y-parameters as ȳ in the
definition of the Lipschitz-like property yields the concept of calmness [12] of M at (ȳ, x̄):

M(y) ∩U ⊂ M(ȳ)+ Ld(y, ȳ)BX for all y ∈ V . (3)

Obviously, Lipschitz-like property implies calmness, whereas the converse is not nec-
essarily true. The infimum of the values of L for which (2, 3) holds (for some associated
neighborhoods U and V ) is called the Lipschitz (calmness) modulus of M at (ȳ, x̄).

Parallel to these stability notions, two regularity concepts can be defined for mul-
tifunctions. Explicitly, the multifunction G : X−−→−→Y is metrically regular [13–15] at
(x̄, ȳ) ∈ gph G with constant L > 0 if there exist neighborhoods V, U of ȳ, x̄ , respec-
tively, such that

dG−1(y)(x) ≤ LdG(x)(y) for all (x, y) ∈ U × V . (4)

Fixing one of the y-parameters as ȳ in the above leads to the notion ofmetric subregularity
[16] of G at (x̄, ȳ):

dG−1(ȳ)(x) ≤ LdG(x)(ȳ) for all x ∈ U. (5)

Metric subregularity clearly follows from metric regularity, but the converse does not
necessarily happen.

It is well known that M : Y−−→−→X is Lipschitz-like around (ȳ, x̄) ∈ gph M if and only
if its inverse M−1 : X−−→−→Y is metrically regular around (x̄, ȳ) ∈ gph M−1 with the same
constant (see [17, Theorem 1.49]). Similar result holds for the metric subregularity and
calmness (see [18]). In our approach, we focus on providing an exact amount for the positive
scalar L in the above notions. The paper is organized as follows. Section 2 contains basic
definitions and preliminaries fromvariational analysis and generalized differentiation broadly
used in formulations and proofs of the main results in the subsequent sections. Based on a
detailed study on the nonsmooth calculus of the multifunction M in Sect. 3, we introduce
new regularity conditions each of them insuring the Lipschitz-like or calmness of M . Sect. 4
deals with problem (1) and establishes new constraint qualifications and necessary optimality
resultswith boundedLagrangemultiplier vectors for this problem. Finally in Sect. 5,we apply
the results of previous sections to a mathematical program with equilibrium constraints. We
also present several examples illustrating our results.
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2 Preliminaries

In this section, we define some basic constructions and results from variational analysis and
generalized differentiation needed in what follows. All these are taken from the book by
Mordukhovich [17], where the reader can find more details, discussions, and references.

Our notation is basically standard; cf. [17]. As usual, ‖ · ‖ stands for the norm of Banach
space X and 〈·, ·〉 signifies for the canonical pairing between X and its topological dual

X∗ with the symbol
w∗−→ indicating the convergence in the weak∗ topology of X∗ and the

symbol cl∗ standing for the weak∗ topological closure of a set. For any x ∈ X and δ > 0,
denote by B(x; δ) the closed ball centered at x with radius δ while B and B∗ stands for the
closed unit balls in X and X∗, respectively. For given function f : Rn −→ R, the function
f + : Rn −→ R is defined by f +(x) := max{ f (x), 0}. Recall that the symbol

Lim sup
x→x̄

F(x) :=
{

x∗ ∈ X∗
∣∣∣ ∃ sequences xk → x̄ and x∗k

w∗→ x∗

with x∗k ∈ F(xk) for all k ∈ N
} (6)

stands for the sequential Painlevé-Kuratowski upper/outer limit of a set-valued mapping
F : X −→ X∗ in the norm topology of X and weak∗ topology of X∗.

A Banach space X is Asplund, or it has the Asplund property, if every convex continuous
function φ : U −→ R defined on an open convex subset U of X is Fréchet differentiable
on a dense subset of U . Note that this class includes all reflexive Banach spaces. The class
of Asplund spaces possesses many useful properties and is stable under Cartesian products
and linear isomorphisms. A crucial topological property of duals to Asplund spaces is that
the dual unit ball is weak∗ sequentially compact (see [19, Theorem 3.5]).

Since all the spaces under consideration are Asplund, which is our standing assumption,
we adapt the given definitions and properties to this case referring the reader to the first two
chapters of [17] for the corresponding modifications in arbitrary Banach spaces.

First let us present some of the basic concepts of generalized differentiation. We start
with normals to sets , then proceed to coderivatives of set-valued mappings, and then to
subdifferentials of extended-real-valued functions. Given a nonempty set Ω ⊂ X , define the
Fréchet normal cone to Ω at x̄ ∈ Ω by

N̂ (x̄;Ω) :=
{

x∗ ∈ X∗ : lim sup
x

Ω→x̄

〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

}
, (7)

where the symbol x
Ω→ x̄ signifies that x → x̄ with x ∈ Ω . Letting for convenience

N̂ (x;Ω) = ∅ if x /∈ Ω and employing the outer limit (6) to N̂ (·;Ω), define theMordukhovich
normal cone to Ω at x̄ ∈ Ω as follows:

N (x̄;Ω) := Lim sup
x→x̄

N̂ (x;Ω). (8)

Both constructions (7) and (8) reduce to the classical normal cone when Ω is a convex
set.

Each set-valued mapping F−−→−→Y is uniquely associated with its graph

gph F := {
(x, y) ∈ X × Y : y ∈ F(x)

}
,

in the product space X × Y . F is said to be positively homogeneous if its graph is a cone
in X × Y . The norm of a positively homogeneous set-valued mapping F is defined by
‖F‖ := sup{‖y‖ : y ∈ F(x) and ‖x‖ ≤ 1}.

123



J Glob Optim (2017) 67:829–850 833

Now let us define the coderivative constructions for a multifunction F used in this paper.
The Fréchet coderivative of F at (x̄, ȳ) ∈ gph F is given by

D̂∗F(x̄, ȳ)(y∗) := {
x∗ ∈ X∗ : (x∗,−y∗) ∈ N̂

(
(x̄, ȳ); gph F

)}
, y∗ ∈ Y ∗, (9)

and the normal coderivative of F at the reference point is defined by

D∗
N F(x̄, ȳ)(y∗) := {

x∗ ∈ X∗ : (x∗,−y∗) ∈ N
(
(x̄, ȳ); gph F

)}
, y∗ ∈ Y ∗. (10)

We also need the following modification of the normal coderivative (10) called the mixed
coderivative of F at (x̄, ȳ) and defined by

D∗
M F(x̄, ȳ)(y∗) :=

{
x∗ ∈ X∗ : ∃ (xk, yk)

gph F→ (x̄, ȳ), x∗k
w∗→ x∗,

y∗k
‖·‖→ y∗ with (x∗k ,−y∗k ) ∈ N̂

(
(xk, yk); gph F

)}
,

(11)

where
‖·‖→ stands for the norm convergence in the dual space; we usually omit the symbol ‖ ·‖

indicating the norm convergence simply by “→” and also skip ȳ = f (x̄) in the coderivative
notation if F = f : X → Y is a single-valued mapping. It follows from the definitions for
general mappings F : X−−→−→Y that

D̂∗F(x̄, ȳ)(y∗) ⊆ D∗
M F(x̄, ȳ)(y∗) ⊆ D∗

N F(x̄, ȳ)(y∗),

for any y∗ ∈ Y ∗, and that all the three multifunctions are positively homogeneous in y∗.
Considering the function f : X −→ R which is lower semi continuous (l.s.c.) around

x̄ ∈ dom f := {x ∈ X | f (x) < ∞}, the presubdifferential or Fréchet subdifferential of f at
x̄ is defined by

∂̂ f (x̄) :=
{

x∗ ∈ X∗ : lim inf
x−→x̄

f (x)− f (x̄)− 〈x∗, x − x̄〉
‖x − x̄‖ ≥ 0

}
,

and the Mordukhovich or limiting subdifferential of f at x̄ is given by

∂ f (x̄) := Lim sup

x
f−→x̄

∂̂ f (x).

Among the most important ingredients of variational analysis and generalized differen-
tiation in infinite-dimensional spaces are the so-called “normal compactness” properties of
sets and mappings, which are automatic in finite dimensions while playing a crucial role in
infinite-dimensional variational analysis and applications. In this paper, we need the follow-
ing general versions of such properties defined in the products of Asplund spaces, which are
well known to be also Asplund. Given a setΩ ⊂ ∏m

j=1 X j and an index set J ⊂ {1, . . . , m},
we say that Ω is partially sequentially normally compact (PSNC) at x̄ ∈ Ω with respect to

{X j | j ∈ J } iff for any sequences xk
Ω→ x̄ and x∗k = (x∗1k, . . . , x∗mk) ∈ N̂ (xk;Ω) one has

x∗jk
w∗→ 0, j ∈ J,

‖x∗jk‖ → 0, j ∈ {1, . . . , m} \ J

}
�⇒ ‖x∗jk‖ → 0, j ∈ J, as k →∞.

In the extreme case of J = {1, . . . , m}, both PSNCproperties defined above do not depend
on the product structure and reduce to the so-called sequential normal compactness (SNC)
property of Ω at x̄ .

Given a set-valued mapping F : X −→ 2Y , we associate it with the graphical set gph F
that belongs to the product space X × Y . Thus the PSNC/SNC properties of the graph in the
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above senses induce the corresponding properties of F . In this vein, we say that F is PSNC
at (x̄, ȳ) ∈ gph F iff its graph is PSNC at this point with respect to X .

Let us now recall two auxiliary results of nonsmooth calculus inAsplund spaces from [17].
Let S : X−−→−→Y and x̄ ∈ dom S := {x ∈ X |S(x) �= ∅}. Given ȳ ∈ S(x̄), we say that S is inner
semicontinuous at (x̄, ȳ) iff for each sequence xk −→ x̄ with xk ∈ dom S, there is a sequence
yk ∈ S(xk) such that yk −→ ȳ as k −→ +∞. Also, S is inner semicompact at x̄ iff for any
sequence xk −→ x̄ there is a sequence yk ∈ S(xk) that contains a convergent subsequence as
k −→∞. Clearly, the inner semicontinuity of S at (x̄, ȳ) implies the inner semicompactness
of S at x̄ , which may be substantially weaker than the inner semicontinuity. The first result
explains normal and mixed coderivatives of compositions of set-valued mappings between
Asplund spaces via their corresponding coderivatives.

Theorem 2.1 [17, Theorem 3.13] (chain rules for coderivatives) Let G : X−−→−→Y , F :
Y−−→−→Z, z̄ ∈ (F ◦ G)(x̄) := {z ∈ Z |∃y ∈ G(x̄) such that z ∈ G(y)}, and

S(x, z) := G(x) ∩ F−1(z) = {y ∈ G(x)|z ∈ F(y)}.
Given ȳ ∈ S(x̄, z̄), assume that S is inner semicontinuous at (x̄, z̄, ȳ), that the graphs of

F and G−1 are locally closed around the points (ȳ, z̄) and (x̄, ȳ), respectively, that either F
is PSNC at (ȳ, z̄) or G−1 is PSNC at (ȳ, x̄), and that the mixed qualification condition

D∗
M F(ȳ, z̄)(0) ∩ (−D∗

M G−1(ȳ, x̄)(0)) = {0},
is fulfilled. Then, the following assertion holds for both coderivatives D∗ = D∗

N and D∗ =
D∗

M for all z∗ ∈ Z∗:

D∗(F ◦ G)(x̄, z̄)(z∗) ⊂ D∗
N G(x̄, ȳ) ◦ D∗F(ȳ, z̄)(z∗).

The second theorem from [17] provides conditions for the preservation of the metric
regularity of set-valued mappings under their general composition.

Theorem 2.2 Let z̄ ∈ (F ◦ G)(x̄), where G : X−−→−→Y and F : Y−−→−→Z are set-valued
mappings between Asplund spaces. Assume that the graphs of G and F−1 are locally closed
near x̄ and z̄, respectively, and that the following conditions hold:

1. The set-valued mapping (x, z) �→ G(x) ∩ F−1(z) is inner semicompact around (x̄, z̄).
2. For every ȳ ∈ G(x̄) ∩ F−1(z̄) both mappings G and F are locally metrically regular

around (x̄, ȳ) and (ȳ, z̄), respectively.

Then F ◦ G is locally metrically regular around (x̄, z̄).

3 Lipschitzian properties of a general constraint system

The focus in this section is on the stability and regularity properties of a class ofmultifunctions
between Asplund spaces of the type

M(y) := {x ∈ X : F(x)+ y ∈ Λ}, (12)

where Λ ⊆ Y is a closed subset and F : X −→ Y is locally Lipschitz near some point
x̄ ∈ F−1(Λ). As will be seen later, this multifunction plays an important role in our main
results. First, let us take a closer look at this class and carefully examine some of their
variational properties. To this end, we support the following two theorems. The first one
which is named by the Mordukhovich criterion, lists some pointbased characterizations for
Lipschitz-like property.
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Theorem 3.1 [17, Theorem4.10]Let M : Y−−→−→X be a set-valued mapping between Asplund
spaces that is assumed to be closed-graph around (ȳ, x̄) ∈ gph M. Then the following
properties are equivalent:

1. M is Lipschitz-like around (ȳ, x̄).
2. M is PSNC at (ȳ, x̄) and ‖D∗

M M(ȳ, x̄)‖ < ∞.
3. M is PSNC at (ȳ, x̄) and D∗

M M(ȳ, x̄)(0) = {0}.
Moreover, in this case one has the estimates

‖D∗
M M(ȳ, x̄)‖ ≤ lip M(ȳ, x̄) ≤ ‖D∗

N M(ȳ, x̄)‖,
where

lip M(ȳ, x̄) := inf{L > 0|(2) holds for L}.
The upper estimate holds if dim Y < ∞.

The second theorem provides us an upper estimate for the constant of metric subregularity
of M−1. Letting subregG(x̄, ȳ) := inf{L > 0|(5) holds for L}, one has,

Theorem 3.2 [20, Theorem 3.1.] Let X and Y be Asplund spaces and G : X−−→−→Y be a
closed multifunction and (x̄, ȳ) ∈ gph G. Then

subregG(x̄, ȳ) ≤ inf
ε>0

sup{‖D̂∗G−1(y, x)‖ : x ∈ B(x̄; ε) \ G−1(ȳ), y ∈ G(x) ∩B(ȳ; ε)}.

In our first result we show that there are clear relationships between the Fréchet and normal
coderivatives of M and the corresponding constructions of F and Λ.

Theorem 3.3 For each y∗ ∈ Y ∗ and any (x, y) ∈ gph M−1 the following equation holds:

D̂∗M−1(x, y)(y∗) =
{

D̂∗F(x)(−y∗) if y∗ ∈ −N̂ (F(x)+ y;Λ),

∅ otherwise.

Proof Suppose that G : Y−−→−→Y is defined by G(y) := Λ − y. It is easy to see that M =
F−1 ◦ G. On the other hand we have G = G−1, and thus, M−1 = G ◦ F . Assume that for
given spaces X and Y and a nonempty subset Ω ⊂ X the indicator mapping Δ : X−−→−→Y of
Ω relative to Y is given by

Δ(x;Ω) =
{ {0} ⊂ Y if x ∈ Ω,

∅ otherwise.

Applying now the above notion and letting A + ∅ = ∅, we define the multifunction
Φ : X × Y−−→−→Y by

Φ(x, y) := G(y)+Δ((x, y); gph F).

Let us then prove that for each (x, y) ∈ gph M−1 and all y∗ ∈ Y ∗

D̂∗M−1(x, y)(y∗) = {x∗ ∈ X∗|(x∗, 0) ∈ D̂∗Φ(x, F(x), y)(y∗)}. (13)
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Observing that (x ′, y′′, y′) ∈ gphΦ if and only if y′′ = F(x ′), (x ′, y′) ∈ gph M−1, and
the fact that the Fréchet normal cone is invariant with respect to equivalent norms we get

1

L + 1
lim sup

(x ′,y′)−→(x,y)

y′∈(G◦F)(x ′)

〈x∗, x ′ − x〉 − 〈y∗, y′ − y〉
‖(x ′, y′)− (x, y)‖

≤ lim sup
(x ′,y′′,y′)−→(x,F(x),y)

y′∈Φ(x ′,y′′)

〈(x∗, 0,−y∗), (x ′, y′′, y′)− (x, F(x), y)〉
‖(x ′, y′′, y′)− (x, F(x), y)‖

= lim sup
(x ′,y′′,y′)−→(x,F(x),y)

y′′=F(x ′),y′∈G(y′′)

〈x∗, x ′ − x〉 − 〈y∗, y′ − y〉
‖(x ′, y′′, y′)− (x, F(x), y)‖

≤ lim sup
(x ′,y′)−→(x,y)

y′∈(G◦F)(x ′)

〈x∗, x ′ − x〉 − 〈y∗, y′ − y〉
‖(x ′, y′)− (x, y)‖ ,

where L > 0 is the Lipschitz constant of F near x . The above immediately implies the
equation in (13). On the other hand, we see that

Φ(x, y) = ψ(x, y)+ Ψ (x, y),

where ψ(x, y) := −y and Ψ (x, y) := Λ+Δ((x, y); gph F). By using [17, Theorem 1.62],
we conclude that

D̂∗Φ(x, F(x), y)(y∗) = (0,−y∗)+ D̂∗Ψ ((x, F(x)), y + F(x))(y∗).

The above together with (13) yields

(x∗, y∗) ∈ D̂∗Ψ ((x, F(x)), y + F(x))(y∗).

Taking a closer look at the multifunction Ψ , we observe that

Ψ (x, y) = Λ+Δ((x, y); gph F) =
{

Λ if (x, y) ∈ gph F,

∅ otherwise.

Putting all above together,we obtain gphΨ = gph F ×Λ and also,

(x∗, y∗,−y∗) ∈ N̂ ((x, F(x)), F(x)+ y); gph F ×Λ)

= N̂ ((x, F(x)); gph F)× N̂ (F(x)+ y;Λ).

The latter inclusion means that x∗ ∈ D̂∗F(x)(−y∗) and −y∗ ∈ N̂ (F(x) + y;Λ) and
completes the proof of theorem. � ��

The following corollary is a direct consequence of Theorem 3.3 and we present it here
without proof.

Corollary 3.1 For both coderivatives D∗ = D∗
N and D∗ = D∗

M for all y∗ ∈ Y ∗ and any
(x, y) ∈ gph M−1one has

D∗M−1(x, y)(y∗) =
{

D∗F(x)(−y∗) if y∗ ∈ −N (F(x)+ y;Λ),

∅ otherwise.

In the next result we easily derive a regularity property for M that is likely to be undis-
covered.
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Theorem 3.4 If F is Lipschitz around x̄, then M is metrically regular at (0, x̄) ∈ gph M,
and particularly, D∗

M M−1(x̄, 0)(0) = {0} and M−1 is PSNC at (x̄, 0).

Proof Suppose that the multifunction G : Y−−→−→Y is defined as in the proof of Theorem 3.3
and consider the representations M = F−1◦G and M−1 = G◦F . Defining themultifunction
S : X × Y−−→−→Y by S(x, y) := G(y) ∩ {F(x)}, we can easily compute that

S(x, y) =
{ {F(x)} if F(x)+ y ∈ Λ,

∅ otherwise.

Due to the continuity of F , S is inner semicontinuous at (x̄, 0, F(x̄))(and specially inner
semicompact at (x̄, 0)).

Let us show that G = G−1 is Lipschitz-like at each point of its graph with modulus 1.
For given y, y′ ∈ Y and w ∈ G(y), one has w + y ∈ Λ and if w′ := w + y − y′, then
w′ ∈ G(y′) and ‖w−w′‖ = ‖y − y′‖. Hence we have G(y) ⊆ G(y′)+ ‖y − y′‖BY . Now
using [17, Theorem 4.10] we deduce that for any point (ȳ, w̄) ∈ gph G, G = G−1 is PSNC
and D∗

M G(ȳ, w̄)(0) = {0}. On the other hand, since F and G = G−1 are Lipschitz-like
around x̄ and (0, F(x̄)), F−1 and G = G−1 are metrically regular near corresponding points
by [17, Theorem 1.49]. Now using Theorem 2.2 together with [17, Theorems 1.49 and 4.10],
the proof is completed. ��

4 Necessary optimality conditions for a general optimization problem

In this section we focus our attention on problem (1). Our main goal is to establish new
necessary optimality results with bounded Lagrange multiplier vectors for the problem in
(1). First let us consider the following supplementary problem:

minimize φ(x, y) subject to y ∈ S(x), x ∈ Ω, (14)

where S : X−−→−→Y and φ : X × Y −→ R. To establish our main result in this section, we
need to recall the following theorem from [17].

Theorem 4.1 [21, Theorems 5.33 and 5.34] Let (x̄, ȳ) be a local optimal solution to (14).
Assume that the sets gph S and Ω are locally closed around (x̄, ȳ) and x̄, respectively. Assume
also that either S is PSNC at (x̄, ȳ) or Ω is SNC at x̄ , and that the mixed qualification
condition

D∗
M S(x̄, ȳ)(0) ∩ (−N (x̄;Ω)) = {0},

is fulfilled. Assume also that φ is locally Lipschitzian around (x̄, ȳ). Then there is (x∗, y∗) ∈
∂φ(x̄, ȳ) such that

−x∗ ∈ D∗
N S(x̄, ȳ)(y∗)+ N (x̄;Ω).

In the sequel, we turn our attention to the following specific type of multifunction M :

M̃(z, y) := {x ∈ X : (x + z, F(x)+ y) ∈ Ω ×Λ}, ∀(z, y) ∈ X × Y. (15)

The first lemma in this section shows that the calmness of M̃ at the point ((0, 0), x̄) enables
us to transform locally the general problem in (1) into an especial form of the problem in
(14).
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Lemma 4.1 Let x̄ be a local optimal solution to problem (1). Assume that f is Lipschitz
continuous around x̄ with constant l f and that the mapping M̃ in (12) is calm at ((0, 0), x̄)

with modulus l . Then there are neighborhoods V of x̄ and U of 0 ∈ Y such that (x̄, (0, 0)) ∈
X × X × Y solves the penalized problem

minimize φ(x, (z, y)) := f (x)+ ν‖(z, y)‖ subject to (z, y) ∈ M̃−1(x) ∩ [(V − x̄)×U ],
x ∈ Ω ∩ V ,

provided that ν > l f .l.

Proof Taking ε > 0 such that ν > l f (l + ε), since M̃ is calm at ((0, 0), x̄) with modulus
l, there are neighborhoods V of x̄ and U of 0 such that for some x̂ ∈ M̃(0, 0) one has the
estimate

‖x − x̂‖ ≤ (l + ε)‖(z, y)‖, whenever x ∈ M(z, y) ∩ V , (z, y) ∈ (V − x̄)×U .

Using this and the Lipschitz continuity of f with constant l f , we get

f (x̄) ≤ f (x̂) = f (x)+ ( f (x̂)− f (x))

≤ f (x)+ l f ‖x̂ − x‖ ≤ f (x)+ l f (l + ε)‖(z, y)‖
≤ f (x)+ ν‖(z, y)‖,

whenever (z, y) ∈ M̃−1(x) ∩ [(V − x̄)×U ], x ∈ Ω ∩ V . ��
We continue by the the following lemma which adapts the results of previous section to

the multifunction M̃ in (15).

Lemma 4.2 Consider the mapping F̃ : X −→ X × Y defined by

F̃(x) := (x, F(x)), ∀x ∈ X,

where F : X −→ Y is a mapping between Asplund spaces. For each x ∈ X and (x∗, z∗, y∗) ∈
X∗ × X∗ × Y ∗, the following assertions hold true:

1. If x∗ ∈ D̂∗ F̃(x)(z∗, y∗), then one has x∗ − z∗ ∈ D̂∗F(x)(y∗).
2. If x∗ ∈ D∗

N F̃(x)(z∗, y∗), then one has x∗ − z∗ ∈ D∗
N F(x)(y∗).

Proof 1. Using the definition of Fréchet coderivative, we get

lim sup
(x ′,x ′,F(x ′))−→(x,x,F(x))

〈(x∗,−z∗,−y∗), (x ′, x ′, F(x ′))− (x, x, F(x))〉
‖(x ′, x ′, F(x ′))− (x, x, F(x))‖ ≤ 0.

But the above easily implies that

lim sup
(x ′,F(x ′))−→(x,F(x))

〈(x∗ − z∗,−y∗), (x ′, F(x ′))− (x, F(x))〉
‖(x ′, F(x ′))− (x, F(x))‖ ≤ 0,

which completes the proof of part 1.
2. Using the definition of normal coderivative together with the assertion of part 1, we

can choose sequences xk ∈ X and (x∗k , z∗k , y∗k ) ∈ X∗ × X∗ × Y ∗ satisfying xk −→
x̄ , (x∗k , z∗k , y∗k )

w∗−→ (x∗, z∗, y∗) and for each k, x∗k − z∗k ∈ D̂∗F(xk)(y∗k ). The latter
immediately yields x∗ − z∗ ∈ D∗

N F(x)(y∗) and ends the proof of the lemma. ��
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Lemma 4.3 Suppose that Ω ⊂ X is a closed subset in Asplund space X. Consider the
multifunction G : X−−→−→X defined by G(z) := Ω−z for each z ∈ X and take (z̄, z̄′) ∈ gph G.
Then z̄ + z̄′ ∈ Ω and the following assertions hold true:

1. If (z∗, x∗) ∈ N̂ ((z̄, z̄′); gph G), then z∗ = x∗ ∈ N̂ (z̄ + z̄′;Ω).
2. If (z∗, x∗) ∈ N ((z̄, z̄′); gph G), then z∗ = x∗ ∈ N (z̄ + z̄′;Ω).
3. D∗

N G(z̄, z̄′)(0) = {0}.

Proof It is sufficient to prove part 1. The proof of other parts is immediate from part 1. Using
the definition of Fréchet normals, we get:

lim sup

(z,z′)gphG−→ (z̄,z̄′)

〈z∗, z − z̄〉 + 〈x∗, z′ − z̄′〉
‖(z − z̄, z′ − z̄′)‖ ≤ 0.

The definition of G immediately gives us some x, x̄ ∈ Ω satisfying x = z + z′ and
x̄ = z̄ + z̄′. Thus the above inequality can be written as

lim sup

(z,x−z)
gphG−→ (z̄,x̄−z̄)

〈z∗ − x∗, z − z̄〉 + 〈x∗, x − x̄〉
‖(z − z̄, (x − z)− (x̄ − z̄))‖ ≤ 0. (16)

Taking arbitrary sequence x
Ω−→ x̄ , one has (z̄, x − z̄) ∈ gph G, thus the limit in (16)

implies that

lim sup
x

Ω−→x̄

〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0,

hence x∗ ∈ N̂ (z̄+ z̄′;Ω). On the other hand for any given v ∈ X with ‖v‖ = 1 and ε ↓ 0, we

have (z̄+εv, x̄− z̄−εv)
gph G−→ (z̄, x̄− z̄). Using again (16), we deduce that 〈z∗ − x∗, v〉 ≤ 0.

Since v was chosen arbitrarily, we get z∗ = x∗ and the proof is completed. ��

In the followingwe present new constraint qualifications for the constraint system: “x ∈ Ω

subject to F(x) ∈ Λ.”As will be seen later, each of these constraint qualifications leads to a
certain type of Lipschitzian properties for the multifunction M̃ in (15).

Definition 4.1 Let x̄ ∈ Ω ∩ F−1(Λ). We say that

1. the regularity constraint qualification (RCQ) holds at x̄ iff, there is a positive real number
c such that the following implication holds:

y∗ ∈ N (F(x̄);Λ)

z∗ ∈ N (x̄;Ω)

x∗ − z∗ ∈ D∗
N F(x̄)(y∗)

⎫⎬
⎭ �⇒ c‖(z∗, y∗)‖ ≤ ‖x∗‖. (17)

2. the semi-regularity constraint qualification 1 (sRCQ1) holds at x̄ iff, there are positive
scalars δ, c such that for all (z, y, x) ∈ gph M̃ ∩[B((0, 0); δ)×B(x̄; δ)] \ {(0, 0, x̄)} the
following implication holds:

y∗ ∈ N̂ (F(x)+ y;Λ)

z∗ ∈ N̂ (x + z;Ω)

x∗ − z∗ ∈ D̂∗F(x)(y∗)

⎫⎬
⎭ �⇒ c‖(z∗, y∗)‖ ≤ ‖x∗‖. (18)
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3. the semi-regularity constraint qualification 2 (sRCQ2) holds at x̄ iff, there is neighborhood
U of x̄ together with the positive scalar c such that for all x ∈ U \ (Ω ∩ F−1(Λ)),

c‖x − x̄‖ ≤ dΩ(x)+ dΛ(F(x)).

The next theorem shows that each of our new constraint qualifications ensures a degree
of stability for M̃ . The important point about these constraint qualifications is that they can
also provide an exact upper bound for the constant of the Lipschitzness of M̃ . This property
makes them suitable for deriving bounded Lagrange multiplier rules.

Theorem 4.2 Let x̄ ∈ Ω ∩ F−1(Λ).

1. If Ω and Λ are SNC at x̄ and F(x̄) and (RCQ) holds at x̄ , then M̃ is Lipschitz-like at
((0, 0), x̄) with a modulus smaller than c−1.

2. If (sRCQ1) holds at x̄ , then M̃ is calm at ((0, 0), x̄) with a modulus smaller than c−1.
3. If (sRCQ2) holds at x̄ , then M̃ is calm at ((0, 0), x̄) with a modulus smaller than c−1.

Proof 1. Due to [17, Theorem 4.10], it is sufficient to prove that M̃ is PSNC at ((0, 0), x̄)

and ‖D∗
N M̃((0, 0), x̄)‖ ≤ c−1. Considering the map G̃ : X × Y−−→−→X × Y given by

G̃(z, y) := (Ω × Λ) − (z, y), it is easy to show that that M̃ = F̃−1 ◦ G̃. The SNC
property of Ω and Λ at x̄ and F(x̄) together with Lemma 4.3(1) clearly implies that G̃
is SNC at (0, 0, x̄, F(x̄)) ∈ gph G̃. Furthermore, from Lemma 4.3(3) we get for each
((x̄, ȳ), (z̄, w̄)) ∈ gph G̃,

D∗
N G̃((x̄, ȳ), (z̄, w̄))(0, 0) = {(0, 0)}.

Thus according to [17, Theorem 3.95] M̃ is PSNC at the point of question. Now taking
(z∗, y∗) ∈ D∗

N M̃((0, 0), x̄)(x∗) and using corollary 3.1, we deduce that z∗ ∈ −N (x̄;Ω),
y∗ ∈ −N (F(x̄);Λ) and −x∗ ∈ D∗ F̃(x̄)((−z∗,−y∗). Noting the definition of lim-
iting normals together with an easy application of Lemma 4.2 leads to −x∗ + z∗ ∈
D∗F(x̄)(y∗). Then the (RCQ) at x̄ implies that ‖(z∗, y∗)‖ ≤ c−1‖x∗‖ and completes
the the proof of part 1.

2. The proof of this part is immediate from Theorems 3.2 and 3.3 together with Lemma 4.2.
3. The proof of this part is easy and omitted. ��
Applying now Lemma 4.1 together with Theorems 4.1 and 4.2, we readily arrive at the

following theorem which plays a key role in our main results.

Theorem 4.3 Let x̄ be a local optimal solution to problem (1) and denote the Lipschitz
constant of f around x̄ by l f . Assume also that one of the following conditions holds:

1. Ω and Λ are SNC at x̄ and F(x̄) and (RCQ) holds at x̄ with constant c.
2. (sRCQ1) is satisfied at x̄ with constant c.
3. (sRCQ2) is satisfied at x̄ with constant c.

Then for any ν > l f .c−1 there is (z∗, y∗) ∈ N (x̄;Ω) × N (F(x̄);Λ) with ‖(z∗, y∗)‖ ≤ ν

such that

−z∗ ∈ ∂ f (x̄)+ D∗
N F(x̄)(y∗).

Proof From the viewpoint of necessary optimality conditions the penalized optimization
problem in Lemma 4.1 can be equivalently written as :

minimize f (x)+ ν‖(z, y)‖ subject to (z, y) ∈ M̃−1(x), x ∈ X,
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which is an especial form of problem (14). At the same time, we observe by Theorem 3.4
that D∗

M M̃−1(x̄, (0, 0))(0) = {0} and M̃−1 is PSNC at (x̄, 0). In addition to all this, we
know by Theorem 4.2 that M̃ is calm at ((0, 0), x̄) with modulus smaller than c−1. Thus
all the assumptions of Theorem 4.1 are satisfied. Now adapting the result of this theorem to
the above problem and then using the subdifferential sum rule of [17, Theorem 2.33(c)] for
f (x)+ ν‖(z, y)‖, we get for some (z∗, y∗) ∈ νBX∗×Y ∗ ,

0 ∈ ∂ f (x̄)+ D∗
N M̃−1(x̄, (0, 0))(−z∗,−y∗).

The coderivative representation of Corollary 3.1 follows that (z∗, y∗) ∈ N (x̄;Ω) ×
N (F(x̄);Λ), and (−∂ f (x̄)) ∩ D∗

N F̃(x̄)(z∗, y∗) �= ∅. Using now the second assertion of
Lemma 4.2, we get immediately that −z∗ ∈ ∂ f (x̄)+ D∗

N F(x̄)(y∗) and end the proof. ��
At this point of our work, we are going to introduce a general definition for the Lagrange

multiplier vectors of the constraint system of problem (1). Furthermore, we define for the
first time a new constraint qualification which is stated based on the boundedness of all
multiplier sets that may exist. As will be seen later, this constraint qualification is completely
independent from the objective function and can be characterized only by the properties of
constraint system.

Definition 4.2 We say that the bounded Lagrangian constraint qualification (BLCQ) holds
at x̄ with constant l > 0 iff, for all the functions g : X −→ R which are locally Lipschitz
near x̄ with constant lg and attain their local minimum over the feasible region of problem
(1) at x̄ , the set Λ(x̄; g) is nonempty and bounded by l.lg .

We observed above that each of our new constraint qualifications ensures the existence
of bounded Lagrange multiplier vectors. The following theorem illustrates the relationship
between (RCQ) and (sRCQ1) and (BLCQ).

Theorem 4.4 Take x̄ ∈ F−1(Λ) ∩Ω and suppose that Ω and Λ are SNC at x̄ and F(x̄).
Then the following assertions hold:

1. (RCQ) is satisfied at x̄ with constant c if and only if (BLCQ) holds at x̄ with constant
c−1.

2. If (BLCQ) holds at x̄ with constant c−1, then (sRCQ1) is satisfied at x̄ with constant c.

Proof 1. Suppose that (RCQ) holds at x̄ with constant c > 0 and consider the function
g : X −→ R which is locally Lipschitz near x̄ with constant lg . Suppose also that x̄
is a minimal point for g over F−1(Λ) ∩ Ω . Then obviously, Λ(x̄; g) �= ∅. Now take
arbitrarily (z∗, y∗) ∈ Λ(x̄; g). Then z∗ ∈ N (x̄;Ω), y∗ ∈ N (F(x̄);Λ) and clearly
we can find x∗ ∈ ∂g(x̄) such that −x∗ − z∗ ∈ D∗

N F(x̄)(y∗). The later in turn gives
us by (RCQ) and the Lipschitzness of g near x̄ that ‖(z∗, y∗)‖ ≤ c−1‖x∗‖ ≤ c−1.lg .
Conversely, assume that (BLCQ) holds at x̄ with constant c−1. Taking now z∗ ∈ N (x̄;Ω),
y∗ ∈ N (F(x̄);Λ) and x∗ ∈ D∗

N F(x̄)(y∗)+ z∗ and defining the function g : X −→ R

by g(x) := 〈x∗, x̄ − x〉 + ‖x∗‖‖x̄ − x‖, we can easily see that g is locally Lipschitz
near x̄ with constant ‖x∗‖. Clearly, x̄ is a global minimal for g on X . Further, one has
−x∗ ∈ ∂g(x̄) = {−x∗}+B(0; ‖x∗‖), and thus, (z∗, y∗) ∈ Λ(x̄; g). Using then (BLCQ)
we get ‖(z∗, y∗)‖ ≤ c−1‖x∗‖, and thus, (RCQ) is satisfied at x̄ with constant c.

2. Assume that (BLCQ) holds at x̄ with constant c−1 and suppose by contrary that we can

choose sequences xk −→ x̄ , (zk, yk)
X×Y−→ (0, 0) such that xk+ zk ∈ Ω and F(xk)+ yk ∈

Λ together with sequences z∗k ∈ N̂ (xk + zk;Ω) and y∗k ∈ N̂ (F(xk) + yk;Λ) and
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x∗k ∈ D̂∗F(xk)(y∗k ) + z∗k such that for each k ∈ N, k‖x∗k ‖ < ‖(z∗k , y∗k )‖. Defining
x̃∗k := x∗k

‖(z∗k ,y∗k )‖ , z̃∗k := z∗k
‖(z∗k ,y∗k )‖ and ỹ∗k := y∗k

‖(z∗k ,y∗k )‖ , then, z̃∗k ∈ N̂ (xk + zk;Ω), ỹ∗k ∈
N̂ (F(xk) + yk;Λ) and x̃∗k ∈ D̂∗F(xk)(ỹ∗k ) + z̃∗k and ‖x̃∗k ‖ < 1

k ‖(z̃∗k , ỹ∗k )‖ = 1
k . Since{z̃∗k } and {ỹ∗k } are bounded and X and Y are Asplund, we can assume without generality

that x̃∗k
w∗−→ x̃∗ ∈ X∗ and ỹ∗k

w∗−→ ỹ∗ ∈ Y ∗. Obviously x̃∗k
‖·‖−→ 0 and the SNC property

of Ω and Λ at x̄ and F(x̄) immediately implies that ‖(z̃∗, ỹ∗)‖ = γ > 0, , and thus,
z̃∗ ∈ N (x̄;Ω), ỹ∗ ∈ N (F(x̄); λ) and 0 ∈ D∗

N F(x̄)(ỹ∗)+ z̃∗. If we define g(x) ≡ 0, then
g is Lipschitz with constant lg = 0 which attains its global minimum at x̄ and (z̃∗, ỹ∗) ∈
Λ(x̄; g). While the latter together with (BLCQ) gives us 0 < γ = ‖(z̃∗, ỹ∗)‖ ≤ l.0 = 0
and completes the proof by contradiction. ��

The following example illustrates a situation that none of the constraint qualifications of
Theorem 4.3 holds.

Example 4.1 Consider the following problem

min f (x1, x2) := x1 − x2
s.t. F(x1, x2) := x21 + x2 ∈ Λ := (−∞, 0],

(x1, x2) ∈ Ω := R× {0}.
Obviously x̄ = (0, 0) is the unique feasible point. However there is no λ ∈ R+ satisfying

0 ∈ (1,−1)+ λ(0, 1)+ N ((0, 0);Ω).

Indeed, none of the constraint qualifications of Theorem 4.3 holds at x̄ . It is sufficient
to show that sRCQ1 and sRCQ2 are not satisfied at x̄ . If we take (x1k, x2k) := ( 1k , 0),
then {(x1k, x2k)} is a sequence of infeasible points converging to x̄ . Taking (z1k, z2k, yk) :=
(0, 0,− 1

k2
), then (z1k, z2k, yk, x1k, x2k) ∈ gph M̃ and we get for λk := 1 ∈ N (g(x1k, x2k)+

yk;Λ) and z∗k = (0, 1
k − 1) ∈ N̂ ((x1k, x2k)+ (z1k, z2k);Ω),

(x∗1k, x∗2k) :=
(
2

k
,
1

k

)
∈ λk ∂̂g(x1k, x2k)+ N̂ ((x1k, x2k)+ (z1k, z2k);Ω),

while k
3‖(x∗1k, x∗2k)‖ < ‖(λk, z∗k )‖. Thus sRCQ1 is not fulfilled at x̄ . An easy computation

for the same sequence {(x1k, x2k)}, gives us

‖(x1k, x2k)‖ >
k

2
[F+(x1k, x2k)+ dΩ(x1k, x2k)],

which implies that sRCQ2 does not hold at x̄ .

Remark 4.1 It is a well-known fact that finite dimensional spaces belong to the class of
Asplund spaces. Thus the results of this section obviously hold in finite dimensional spaces
as well. Moreover, we present for the first time conditions that provide exact upper bounds
for Lagrangian vectors. Thus it appears that our results are new even in finite dimensions.

It is also noteworthy that various types of optimization problems can be locally written
as (1). A prominent example of such a problem is a mathematical program with equilibrium
constraints (MPEC) which will be discussed in the next section. Furthermore, any standard
nonlinear problem with equality, inequality and set constraints can be formulated as problem
(1). This means that our results are applicable for standard nonlinear problems.
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As previously mentioned, the majority of work that has been done in this area has focused
on a suitable form of MFCQ as a characterization for the nonemptiness and boundedness of
the multipliers set. Here we present an adaptation of this constraint qualification for problem
(1) and compare it with our new constraint qualifications.

Definition 4.3 Let x̄ ∈ Ω ∩ F−1(Λ). We say that the Mangasarian Fromovitz constraint
qualification (MFCQ) holds at x̄ iff, the following implication holds:

y∗ ∈ N (F(x̄);Λ)

z∗ ∈ D∗
N F(x̄)(y∗) ∩ (−N (x̄;Ω))

}
�⇒ ‖(z∗, y∗)‖ = 0. (19)

Theorem 4.5 Take x̄ ∈ F−1(Λ) ∩Ω . Then the following assertions hold:

1. If Ω and Λ are SNC at x̄ and F(x̄), then (RCQ)�⇒(MFCQ)�⇒(sRCQ1).
2. If X and Y are finite dimensional, then (RCQ)⇐⇒(MFCQ).

Proof 1. The proof of (RCQ)�⇒(MFCQ) is trivial. Suppose that (sRCQ1) is not satisfied
at x̄ . Then similar to the proof of part 2. of Theorem 4.4, we can find some z̃∗ ∈ N (x̄;Ω),
ỹ∗ ∈ N (F(x̄);Λ) such that 0 ∈ D∗

N F(x̄)(ỹ∗)+ z̃∗ and ‖(z̃∗, ỹ∗)‖ �= 0. Thus (MFCQ)
does not hold at x̄ .

2. Suppose that X and Y are finite dimensional and that (RCQ) is not satisfied at x̄ . Thus
there is a sequence (x∗k , z∗k , y∗k ) ∈ X∗ × X∗ × Y ∗ such that ‖x∗k ‖ = 1, z∗k ∈ N (x̄;Ω),
y∗k ∈ N (F(x̄);Λ), x∗k − z∗k ∈ D∗

N F(x̄)(y∗k ) and ‖(z∗k , y∗k )‖ > k. Defining

x̃∗k :=
x∗k

‖(z∗k , y∗k )‖ , z̃∗k :=
z∗k

‖(z∗k , y∗k )‖ , ỹ∗k :=
y∗k

‖(z∗k , y∗k )‖ ,

we get x̃∗k −→ 0, and we can assume without loss of generality that (z̃∗k , ỹ∗k ) −→
(z̃∗, ỹ∗) �= 0. Since the limiting normal cone is closed in finite-dimensional spaces, we
directly deduce that ỹ∗ ∈ N (F(x̄);Λ) and z̃∗ ∈ (D∗

N F(x̄)(y∗) ∩ (−N (x̄;Ω)). Thus
(MFCQ) does not hold at x̄ and complete the proof of theorem. ��
It is worth mentioning that the assertion 2. of the above theorem fails to be true in infinite

dimensions, even in the case of the simplestHilbert space l2. The following example illustrates
this fact.

Example 4.2 Consider the following constraint system:

F(x) ∈ Λ, x ∈ Ω,

where F : l2 −→ l2 is defined by F(x) := −x , Λ := {x ∈ l2 : x1 ≤ 0} and
Ω := {s(e1 − kek)+ t (ke1 − em) : m > k > 1, s, t ≥ 0} ∪ {te1 : t ≥ 0},

where {e1, e2, . . .} is the sequence of orthonormal vectors in l2. In [17, Example 1.7], it is
proved that for each k > 2, e1 + 1

k ek ∈ N (0;Ω) and e1 /∈ N (0;Ω). If taking y∗k := e1 ∈
N (0;Λ), z∗k := e1 + 1

k ek ∈ N (0;Ω) and x∗k := 1
k ek , we get x∗k − z∗k ∈ D∗

N F(0)(y∗k ) and

k‖x∗k ‖ = 1 < ‖(z∗k , y∗k )‖,
which implies that (RCQ) does not hold at x̄ = 0. On the other hand since e1 /∈ N (0;Ω), it
is easy to see that for each y∗ ∈ N (0;Λ) \ {0},

D∗
N F(0)(y∗) ∩ (−N (0,Ω)) = ∅,
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and also,

D∗
N F(0)(0) ∩ (−N (0,Ω)) = {0}.

Thus (MFCQ) is satisfied at x̄ .

Remark 4.2 In the case that X and Y are finite dimensional, F is continuously differentiable
and Ω = X , (MFCQ) and (RCQ) are written as follows:

MFCQ : y∗ ∈ N (F(x̄);Λ)

0 = ∇F(x̄)T y∗
}
�⇒ y∗ = 0. (20)

RCQ : ∃c > 0 : ∀y∗ ∈ N (F(x̄);Λ) : c‖y∗‖ ≤ ‖∇F(x̄)T y∗‖. (21)

Note that condition (20) is similar to the MFCQ stated in [22] for a general mathematical
program. If Λ = Rm−, this condition reduces to the following classical MFCQ,

y∗ ∈ Rm+,

0 = F(x̄)T y∗,
0 = ∇F(x̄)T y∗,

⎫⎬
⎭ �⇒ y∗ = 0,

which by Theorem 4.5, is equivalent to the following condition:

∃c > 0 : for all y∗ ∈ Rm+ with 0 = F(x̄)T y∗ : c‖y∗‖ ≤ ‖
m∑

i=1
y∗i ∇Fi (x̄)‖.

Finally in this section, we present several examples illustrating our new constraint quali-
fications and the relationships between them. By the results of Theorems 4.4 and 4.5, under
the SNC property of Ω and Λ at x̄ and F(x̄), we can obtain the following diagram of
implications:

BLCQ⇐⇒ RCQ �⇒ MFCQ �⇒ sRCQ1.

Our first example shows that the above right implication does not hold in the opposite direc-
tion. This example also indicates that sRCQ2 generally does not imply RCQ.

Example 4.3 Consider the following nonlinear system;

F(x1, x2) := |x1| ≤ 0
(x1, x2) ∈ R2.

We show that (sRCQ1) holds at (0, 0), and at the same time, (RCQ) is not fulfilled at this
point. Since ∂ F(0, 0) = [−1, 1]×{0}, it is easy to see that for all λ > 0, (0, 0) ∈ λ∂ F(0, 0),
and thus, (RCQ) can not hold at (0, 0). On the other hand for each (x1, x2) ∈ R2 with x1 �= 0,
one has

∂̂ F(0, 0) =
{ {(−1, 0)} i f x1 < 0,
{(1, 0)} i f x1 > 0.

Thus if (x ′1, x ′2) ∈ ∂̂(λF)(x1, x2), then |λ| = ‖(x ′1, x ′2)‖ which shows that (sRCQ1) holds
at (0, 0) with c = 1. We can show also that (sRCQ2) does not hold at this point. For all
c, δ > 0, if ε := cδ

2
√
1+c2

and x := (ε, ε
c ), then ‖x‖ < δ and

F+(x) = ε < ε
√
1+ c2 = c‖x‖.
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The following three examples show, on the whole, that there is not any direct relation
between sRCQ2 and RCQ or sRCQ1.

Example 4.4 Consider the following nonlinear system:

F1(x1, x2) := |x1| ≤ 0
F2(x1, x2) := sin(‖(x1, x2)‖) ≤ 0
(x1, x2) ∈ R2.

For sufficiently small positive real numbers ε it can be proved that sin ε ≥ 1
2ε. Thus for

all (x1, x2) in a suitable neighborhood of the null vector we get:

0 ≤ 1

2
‖(x1, x2)‖ ≤ sin(‖(x1, x2)‖) = F+2 (x1, x2).

Thus it is easy to see that (sRCQ2) is satisfied at (0, 0) with c = 1
2 . Now let us show that

(RCQ) does not hold for this system at (0, 0). An easy calculation gives us

∂ F1(0, 0) = [−1, 1] × {0} and ∂ F2(0, 0) = B((0, 0); 1).
The above especially implies that for all (λ1, λ2) ∈ R2+, (0, 0) ∈ λ1∂ F1(0, 0) +

λ2∂ F2(0, 0), which violates (RCQ). (sRCQ1) is not also satisfied at this point since, for
sufficiently small δ > 0 and for all λ > 0, x = (0, δ) is an infeasible point and we have

(0, cos δ) ∈ ∂̂(λF1)(x)+ ∂̂ F2(x).

Fixing δ and taking limit as λ −→∞, we deduce that (sRCQ1) can not hold at (0, 0).

Example 4.5 Consider the following nonlinear system:

F1(x1, x2) := x1 ≤ 0
F2(x1, x2) := sin(x2)− 1

2 |x2| ≤ 0
(x1, x2) ∈ R2.

We show that for the above system (RCQ) holds at (0, 0) with c = 1
2 . Observing that

∂ F1(0, 0) = (1, 0) and ∂ F2(0, 0) =
{(
0,

1

2

)
,
(
0,

3

2

)}
,

if we take

(x1, x2) ∈ λ1∂ F1(0, 0)+ λ2∂ F2(0, 0),

then one has x1 = λ1 and x2 ∈ { λ2
2 , 3λ2

2 }, which straightly implies that

1

2
‖(λ1, λ2)‖ ≤ ‖(x1, x2)‖.

We can prove that (sRCQ1) is also satisfied at (0, 0) with c = 1
4 . It is sufficient to show

that for each infeasible point (x1, x2) near (0, 0) with x2 �= 0 the following condition holds:

(x ′1, x ′2) ∈ ∂̂(λ1F1)(x1, x2)+ ∂̂(λ2F2)(x1, x2) �⇒ 1

4
‖(λ1, λ2)‖ ≤ ‖(x ′1, x ′2)‖.

To do so, observe that the left side of the above implies that

(x ′1, x ′2) =
{

(λ1, λ2(cos(x2)− 1
2 ) i f x2 > 0

(λ1, λ2(cos(x2)+ 1
2 ) i f x2 < 0,
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thus for sufficiently small |x2|, 1
4‖(λ1, λ2)‖ ≤ ‖(x ′1, x ′2)‖. We can show also that (sRCQ2)

does not hold at (0, 0). For all c, δ > 0, if ε := cδ
2
√
1+c2

and x := (ε,− ε
c ), then ‖x‖ < δ and

F+1 (x)+ F+2 (x) = ε < ε
√
1+ c2 = c‖x‖.

Example 4.6 consider the following nonlinear system;

F(x1, x2) := x1 ≤ 0
(x1, x2) ∈ R2.

Obviously (RCQ) and (sRCQ1) hold for this system at (0, 0) with c = 1. Now let us
show that (sRCQ2) is not satisfied at (0, 0). For any given δ, c > 0, if we choose α such
that 1√

1+α2 < c, and take ε := δ

2
√
1+α2 and x := (ε, αε), then ‖x‖ ≤ δ and F+(x) = ε <

c‖x‖ = c
√
1+ α2ε.

5 Application to nonsmooth mathematical programs with equilibrium
constraints

In this section we consider a special class of optimization problems known as Mathematical
Programs with Equilibrium Constraints (MPECs) (see [23–25]). A specific feature of these
problems is the presence of “equilibrium constraints” of the type y ∈ F(x), where F(x) often
represents the solution map to a “lower-level” problem of parametric optimization. MPECs
naturally appear in various aspects of hierarchical optimization and equilibrium theory as
well as in many practical applications, especially those related to mechanical and economic
modelling. Note that most MPECs, are basically different from standard nonlinear problems
with equality and inequality constraints. For instance the Mangasarian-Fromovitz constraint
qualification is not satisfied for these problems.

The goal in this section is applying the results obtained in the previous sections to derive
bounded necessary optimality conditions for local solutions to the following case of MPECs:

min f (z)
s.t g(z) ≤ 0, h(z) = 0,

G(z) ≥ 0, H(z) ≥ 0,
G(z)T H(z) = 0,

z ∈ Ω,

(22)

where f : X −→ R, g : X −→ R
m , h : X −→ R

p , G : X −→ R
l , and H : X −→ R

l are
locally Lipschitz functions defined on the Asplund space X and Ω ⊆ X is a closed set. We
can write the program (22) in the following general form:

minimize f (z)
subject to F(z) ∈ Λ,

z ∈ Ω,

(23)

where for some n ∈ N, Λ ⊆ R
n is a nonempty closed (possibly nonconvex) set and f :

X −→ R and F : X −→ R
n are locally Lipschitz functions around z̄ ∈ F−1(Λ) ∩ Ω

defined on Asplund space X . To show this, consider a local minimizer z̄ of (22). Then from
complementarity term in (22), it is clear that either Gi (z̄), or Hi (z̄), or both must be zero. To
distinguish among these cases, we divide the indices of G and H into three sets:
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α := α(z̄) := {i : Gi (z̄) = 0, Hi (z̄) > 0},
β := β(z̄) := {i : Gi (z̄) = 0, Hi (z̄) = 0},
γ := γ (z̄) := {i : Gi (z̄) > 0, Hi (z̄) = 0}.

(24)

Also, suppose that

Ig := Ig(z̄) := {i = 1, 2, . . . , m|gi (z̄) = 0}, (25)

is the index set of active components of g at z̄. Next we define the function F in (23) utilizing
these sets:

F(z) := (gIg (z), h(z), Gα(z), Gβ(z), Hβ(z), Hγ (z)). (26)

Finally, we define the closed Λ as follows:

Λ := R
|Ig | × 0p × 0|α| × C × 0|γ |, (27)

where

C := {(a, b) ∈ R
|β| × R

|β|| a ≥ 0, b ≥ 0, aT b = 0}.

Remark 5.1 The definition of the general form (23) depends on the solution z̄ of the program
(22). Therefore, local equivalence refers to the fact that the feasible regions of the programs
(22) and (23) are equal for a whole neighborhood of the local minimizer z̄, that was used to
define (23).

We proceedwith stating some stationary and constraint qualification conditions forMPEC
(22) that are suitable for our aim.

Definition 5.1 We say that

1. z̄ is a bounded M-stationary point iff there exists a positive scalar k0 such that for all
ν ≥ k0, one can find z∗ ∈ N (z̄;Ω) together with the vector λ = (λg, λh, λG , λH ) ∈
R

m × R
p × R

l × R
l such that ‖(z∗, λ)‖ ≤ ν and

−z∗ ∈ ∂ f (z̄)+
m∑

i=1
λ

g
i ∂g(z̄)+

p∑
i=1

λh
i ∂hi (z̄)

−
l∑

i=1

[
λG

i ∂Gi (z̄)+ λH
i ∂ Hi (z̄)

]
,

λg ≥ 0, g(z̄)T λg = 0, λG
γ = 0, λH

α = 0,

(λG
i > 0 ∧ λH

i > 0) ∨ λG
i λH

i = 0,∀i ∈ β. (28)

2. the regularity constraint qualification (RCQ) holds at z̄ iff, there is a positive real number
c such that the following implication holds:

z∗ ∈ N (z̄;Ω)

x∗ − z∗ ∈ ∑m
i=1 λ

g
i ∂g(z̄)+∑p

i=1 λh
i ∂hi (z̄)

−∑l
i=1[λG

i ∂Gi (z̄)+ λH
i ∂ Hi (z̄)]

λg ≥ 0, g(z̄)T λg = 0, λG
γ = 0, λH

α = 0,
(λG

i > 0 ∧ λH
i > 0) ∨ λG

i λH
i = 0,∀i ∈ β.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
�⇒ c‖(z∗, λg, λh, λG , λH )‖ ≤ ‖x∗‖.

(29)
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3. the semi-regularity constraint qualification (sRCQ) holds at z̄ iff, there are positive scalars
δ, c such that for each infeasible point z ∈ B(z̄; δ) and for any x ∈ B(0; δ) ∩ (Ω − z)
the following implication holds:

z∗ ∈ N̂ (z + x;Ω)

x∗ − z∗ ∈ ∂̂
(∑m

i=1 λ
g
i g +∑p

i=1 λh
i hi

−∑l
i=1[λG

i Gi + λH
i Hi ]

)
(z),

λg ≥ 0, g(z)T λg = 0, λG
γ = 0, λH

α = 0,
(λG

i > 0 ∧ λH
i > 0) ∨ λG

i λH
i = 0,∀i ∈ β,

λ := (λg, λh, λG , λH ).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

�⇒ c‖(z∗, λ)‖ ≤ ‖x∗‖. (30)

Now we are ready to establish bounded necessary optimality conditions for the program
(22).

Theorem 5.1 Let z̄ be a local optimal point for MPEC (22) where X is an Asplund space
and all the functions are locally Lipschitz around z̄. Also assume that one of the following
conditions holds:

1. Ω is SNC and (RCQ) is satisfied at z̄.
2. (sRCQ) is satisfied at z̄.

Then z̄ is a bounded M-stationary point.

Proof If we define the function F and the set Λ as in (26) and (27), then it is easy to see
that z̄ is an optimal solution of the problem in (23). On the other hand, a direct calculation
shows that the constraint qualification (RCQ) or (sRCQ) for z̄ as a feasible point of MPEC
(22) implies the condition (RCQ) or (sRCQ1) for this point as a feasible point of (23). Thus
the result follows from parts 1 and 2. of Theorem 4.3. ��
Remark 5.2 In [26], necessary optimality conditionswas derived for local solutions toMPEC
(22). In this paper analogous to [26], after reformulating (22) in general form (1), the new
constraint qualifications are defined based on the stability properties of the corresponding
multifunction M in (12). Themajor advantage of the present approach over the previousworks
is to provide exact upper bounds for the Lagrange multiplier vectors. It is unprecedented in
an MPEC context to the best of our knowledge.

Example 5.1 Consider the following constraint system:

G(x) := x1 ≥ 0, H(x) := max{x1, x2} ≥ 0, G(x)H(x) = 0, x = (xi )
∞
i=1 ∈ l2.

Obviously z̄ := 0 is feasible for the above system. Let us show that (RCQ) holds at
z̄. An easy computation shows that ∂G(0) = {e1} and ∂ H(0) = conv {e1, e2}. Thus if
x∗ ∈ −λG∂G(0)− λH ∂ H(0), then for some α ∈ [0, 1],

‖x∗‖2 = | − λG − αλH |2 + |(1− α)λH |2.
Clearly if λH = 0, then ‖x∗‖ = ‖(λG , λH )‖, and if λG = 0, then

‖x∗‖2 = |λH |2[α2 + (1− α)2] >
1

4
|λH |2 = 1

4
‖(λG , λH )‖2.

Also if λG > 0 and λH > 0, then

‖x∗‖2 = |λG |2 + 2αλGλH + |λH |2[α2 + (1− α)2] > |λG |2 + 1

4
|λH |2 >

1

4
‖(λG , λH )‖2.

Hence (RCQ) holds at z̄ with constant 1
2 .

123



J Glob Optim (2017) 67:829–850 849

6 Conclusion

The paper concerns constraint qualifications that insure the existence of Lagrangian vectors
with a norm not greater than a specified positive number. Three new constraint qualifica-
tions are suggested that each of them follows a degree of boundedness for multiplier vectors.
Each constraint qualification provides us an upper bound for the Lagrange multipliers. The
several examples indicate that the upper bound is easily computable using each of our con-
straint qualifications. An interesting application to mathematical programs with equilibrium
constraints is presented.

It is notable that we state the constraint qualifications and necessary optimality conditions
within the framework of the Mordukhovich calculus. This certainly allows us to deal with
a much wider range of problems. Several examples are given to illustrate the application
of our results for nonsmooth and nonconvex mathematical problems. From the numerical
viewpoint, these examples specially show that our approach is practically calculable and
does not cause any difficulty. Consequently, it can be hoped that our results may be useful
in providing new efficient tools and methods for various types of nonsmooth constrained
optimization problems.
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