
J Glob Optim (2016) 66:811–845
DOI 10.1007/s10898-016-0441-5

MSO: a framework for bound-constrained black-box
global optimization algorithms

Abdullah Al-Dujaili1 · S. Suresh1 · N. Sundararajan2

Received: 28 July 2015 / Accepted: 12 May 2016 / Published online: 21 May 2016
© Springer Science+Business Media New York 2016

Abstract This paper addresses a class of algorithms for solving bound-constrained black-
box global optimization problems. These algorithms partition the objective function domain
over multiple scales in search for the global optimum. For such algorithms, we provide a
generic procedure and refer to as multi-scale optimization (MSO). Furthermore, we pro-
pose a theoretical methodology to study the convergence of MSO algorithms based on three
basic assumptions: (a) local Hölder continuity of the objective function f , (b) partitions
boundedness, and (c) partitions sphericity. Moreover, the worst-case finite-time performance
and convergence rate of several leading MSO algorithms, namely, Lipschitzian optimiza-
tion methods, multi-level coordinate search, dividing rectangles, and optimistic optimization
methods have been presented.

Keywords Global optimization · Black-box functions · Multi-scale · Space-partitioning ·
Sampling · Lipschitzian · Convergence analysis

1 Introduction

Optimization algorithms aim to find the best solution from a set of solutions for a problem
with a(n) (un)constrained objective function.Many decision-making problems for real-world
systems can be formulated as optimization problems of objective functions of a set of decision
variablesmodeling and describing such systems. These functions are oftenmulti-variate, non-
differentiable, multi-modal, and tedious to be evaluated (see, e.g., [6,17,50]), which makes

This work was supported by Ministry of Education (MoE), Singapore through tier I (No. M4011269)
funding.

B S. Suresh
ssundaram@ntu.edu.sg

1 School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore

2 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
639798, Singapore

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-016-0441-5&domain=pdf

812 J Glob Optim (2016) 66:811–845

optimizing them exceptionally difficult. Optimization problems have been a recurring topic
for centuries and many numerical techniques to solve them have been proposed and widely
discussed in the literature (see, e.g., [26,41,42]).

In some optimization problems, decision variables take values constrained in a given
range. Such problems, often referred to as bound-constrained optimization problems, play
a key role in the design of algorithms for general optimization problems because many of
these algorithms reduce their solutions to the solution of a sequence of bound-constrained
problems. Moreover, bound-constrained optimization problems are present in several prac-
tical applications as the decision variables of many real-world systems are often bounded by
physical limits [3,48].

In all these algorithms, certain assumptions are made about the objective function being
optimized (e.g., its continuity or differentiability). However, these assumptions are not nec-
essarily satisfied by real-world objective functions and often they are impossible to verify.
Sometimes, the function is only available through a black box, where one provides a point,
representing a candidate solution (a realization of the decision variables), to the black box,
which, in return, evaluates the function at that point and gives the corresponding function
value. In other words, the only source of information about the function becomes the set of
evaluations performed through the black box. Optimizing such functions is often referred to
as a black-box optimization problem. Usually, a function evaluation requires computational
resources, and hence black-box optimization seeks a trade-off between the quality of a solu-
tion found versus the evaluation budget, namely the number of function evaluations (i.e., the
amount of computational resources used). Besides, most of real-world objective functions
are multi-modal for which one might be interested in finding a global or local optimum.
Global optimization algorithms are guaranteed to find the global optimum given enough
computational resources, whereas local optimization algorithms are only guaranteed to find
a local optimum, regardless of how many computational resources are used. Therefore, it is
common to quantify the quality of the found solution as a function of the function evaluation
budget.

Consider the bound-constrained black-box global optimization problem (BCBBGOP)
stated as:1

maximize f (x)
subject to x ∈ X , X = {x ∈ R

N : l ≤ x ≤ u} (1)

using a computational budget of n function evaluations, where f : X ⊂ R
N → R is a black-

box function on which no information is available except the objective function values. Let
x∗ be the (or one) solution to (1) such that f ∗ = f (x∗); an algorithm for finding any solution
x∗, would be one of two types: passive, or sequential. A passive algorithmAp would use its
n-evaluation budget at once to evaluate a uniform grid of n points in the objective function’s
domain X (also called the search space).Ap then returns x(n), the point in the grid with the
best function value among the grid points, as a guess on x∗ (see, e.g., [13]). Alternatively,
a sequential algorithm As would start by arbitrarily guessing/selecting a point in the search
space and evaluating f at it.As then iteratively refining its next guess based on the previously
selected points and their corresponding function f values. After n evaluations, As returns
x(n): its best guess on x∗ (see, e.g., [43]). Since there is no prior knowledge on f , there is
no guarantee that x(n) of either Ap nor As is the solution to the BCBBGOP of (1). While
passive algorithms are simple and easy, sequential algorithms can achieve solutions of better

1 As the problem has been formulated as one of maximization, the words optimize, maximize and their
conjugated forms are going to be used interchangeably.

123

J Glob Optim (2016) 66:811–845 813

quality given the same computational budget. It was shown independently by Ivanov [28]
and Sukharev [63] that the evaluation budget needed to find a solution with a desired degree
of quality is the same for the best passive and sequential algorithms in the worst case for
some functions, whereas for most other functions, the required evlaution budget for a passive
algorithm is much greater than that of a sequential algorithm.

A sequential algorithm is performing an n-round sequential decision-making process
under uncertainty where a future action (selecting a candidate solution) depends on past
actions (previously selected points) and their rewards (observed function values). A principal
question is: how can A identify as quickly as possible the most rewarding action to select,
next. Intuitively,As would explore the set of possible actions it can take to know more about
f and as its knowledge improves, As should increasingly exploit its current knowledge by
selecting what it believes to be the best action. Clearly, the trade-off between exploration
and exploitation affects As’s returned solution. The quality of As’s returned solution x(n),
as a function of the number of function evaluations n, is evaluated by the following regret
(or loss) measure:

r(n) = f ∗ − f (x(n)) (2)

Such measure also serves as an indicator of As’s convergence rate with respect to n, as it
gauges how efficient As is, in capturing enough information about f to produce a solution
with a desired degree of accuracy.

The literature on sequential decision-making problems under uncertainty is rich and large
with applicability in various scientific fields (e.g., machine learning, planning, and control).
Initial investigations on such problems date back to Thompson in 1933 [64] and Robbins
in 1952 [49], where they were known as multi-armed bandit problems. Since then, much
progress have been made addressing the exploration vs. exploitation dilemma. Many strate-
gies were proposed, studied, and analyzed; such as ε-greedy [2], softmax [5], bayesian [57],
upper-confidence-bound [2], and optimistic [33] strategies. With respect to BCBBGOPs,
Piyavskii [43], Shubert [56], and Strongin [59,60] are considered to be the pioneers in apply-
ing the framework of sequential decision making to mathematical optimization. Their work
has become the basis on which a large existing body of research relies (see e.g., [25,36,42]).
A general discussion on sequential algorithms for global optimization has been presented by
Archetti and Betrò [1].

In this paper,we address a class of sequential decision-making algorithms that are designed
to solve a BCBBGOP via carrying out a hierarchical partitioning of f ’s domainX in search
for x∗. An algorithm of such a class adopts a divide-and-conquer tree search for x∗ by parti-
tioning the search spaceX in a hierarchical fashion as a part of its n-round sequential decision
making. Iteratively, it carries out a dynamic expansion of a tree whose nodes represent sub-
spaces of X ; with the root corresponding to the entire search space X . This creates a set
of partitions of X over multiple scales (nodes of a specific depth corresponds to a partition
of a specific scale). We refer to this as Multi-Scale Optimization (MSO). The motivation
behind introducing the MSO framework is of two folds: first, tree-search algorithms have
increasingly been gaining popularity (e.g., game of GO [7]); and second, while there is a
great deal of literature on tree-search algorithms in various fields (e.g., artificial agents con-
trol and planning [4]), where they have been extensively analyzed; minimal research has
been carried out in the context of optimization. Several state-of-the-art hierarchical parti-
tioning algorithms for BCBBGOPs have been proposed and analyzed independently (see,
e.g., [27,29,38,56]). Nonetheless, the theoretical analysis has been primarily concerned with
the asymptotic (limit) behavior of the algorithms and their convergence to optimal points

123

814 J Glob Optim (2016) 66:811–845

(see, e.g., [16,52,65]). Here, we study the finite-time analysis and convergence rate under the
MSO framework.

We present a theoreticalmethodology to analyzeMSO algorithms, based on three assump-
tions on the objective function structure, and the hierarchical partitioning. Such methodology
quantifies the amount of exploration conducted by an MSO algorithm over a partition of a
specific scale. Consequently, a bound on the regret (2) can be established, which reflects the
finite-time behavior of the algorithm. Using these theoretical findings, we establish finite-
time analysis for Lipschitzian optimization methods [56], DIviding RECTangles (DIRECT)
[29], and Multi-level Coordinate Search (MCS) [27]. Furthermore, we integrate the analysis
of Deterministic Optimistic Optimization (DOO) and Simultaneous Optimistic Optimization
(SOO) in [38] under the MSO framework.

This paper is organized as follows. Basic notations and terminology are introduced in
Sect. 2. In Sect. 3, a formal introduction of MSO framework to solve BCBBGOPs is pro-
vided. Towards the end of the section, some well-known MSO algorithms are discussed. In
Sect. 4, we propose a principled approach for analyzing MSO algorithms theoretically and
demonstrate it on the algorithms discussed in Sect. 3. Section 5 outlines the theoretical con-
tribution and complements it with empirical validation. Towards the end, Sect. 6 summarizes
the conclusions from this study.

2 Some preliminaries

In this section, using some of the concepts from [9], we formally define the hierarchy of
partitions and the data structure (tree), on the search spaceX employed by anMSO algorithm.

We denote by 2X the set of all subsets (subspaces, or cells) of X . The size/volume of a
subset in 2X is approximated by the function σ : 2X → R

+. Two elements Xi ,X j of 2X

are said to be disjoint if and only if

Xi ∩ X j = β(Xi) ∩ β(X j) (3)

Here, β(Xi) denotes the boundary of Xi . A subset of 2X is called a partial partition of X if
its elements are disjoint and nonempty. A union of a partial partition is called its support. A
partition of X is a partial partition whose support is X . A set G ⊆ 2X is a hierarchy on X if
any two elements of G are either disjoint or nested, i.e.:

Xi ∩ X j ∈ {β(Xi) ∩ β(X j),Xi ,X j } for any Xi ,X j ∈ G (4)

Let X and Y be two distinctive elements of a hierarchy G. We say that Y is a child of X and
X is the parent of Y if Y ⊆ X for any Z ∈ G, such that Y ⊆ Z ⊆ X , we have Z = X or
Z = Y . In other words, X is the smallest superset of Y among G elements. A partition factor
K ∈ Z

+ of a hierarchy G is the maximum number of children of a parent in G. An element
L ∈ G is called a leaf of G if it has no child.

Now, a hierarchy of partitions on X is formally defined as:

Definition 1 A hierarchy G on X is a hierarchy of partitions on X if the union of its leaves
is a partition of X and X ∈ G.

The term multi-scale in MSO is derived from the fact that a hierarchy of partitions has a
set of partitions atmultiple scales h ∈ Z

+
0 . Let G be a hierarchy of partitions on X created by

an MSO algorithm. A hierarchy of partitions G may be represented by a tree structure T (G)

whose nodes correspond to the elements of G with the root representing the whole space X ,

123

J Glob Optim (2016) 66:811–845 815

while its edges link every node corresponding to a child in G to its corresponding parent’s
node. T is referred to as a tree onX if it represents a hierarchy of partitions onX . It is possible
to index a node in T (and subsequently a cell of X) by one or more integer attribute(s). For
example, with a partition factor of K , a node can be indexed by its depth/scale h and an index
i where 0 ≤ i ≤ Kh as (h, i) which corresponds to a cell/subspace Xh,i ⊂ X and possesses
up to K children nodes {(h + 1, ik)}1≤k≤K such that:

X = ∪i∈{0,...,Kh−1}Xh,i (5)

Xh,i ∩ Xh, j = β(Xh,i) ∩ β(Xh, j), i
= j (6)

Xh,i = ∪1≤k≤KXh+1,ik , ∀h ∈ Z
+
0 (7)

Nodes can be indexed and grouped by any of their attributes such as depth, and size. For
example, S = {i ∈ T : σ(i) = s} is the set of all nodes in the tree T of size s. Note that for
any two elements i, j ∈ S, i ∩ j = β(i)∩β(j). The set of leaves in T is denoted as LT ⊆ T
and its depth is denoted by depth(T).

3 Multi-scale optimization (MSO)

In this section, a general framework for sequential decision-making algorithms that dynam-
ically expand a tree on the search space to find the optimal solution, is introduced. We refer
to this framework as the Multi-Scale Optimization MSO, as these algorithms partition the
search space over multiple scales. We formally define MSO algorithm as follows.

Definition 2 An algorithm that constructs a hierarchy of partitions on the search space X
whilst looking for f ’s global optimizer, is an MSO algorithm.

MSO algorithms differ only in their strategies of growing and using the tree further to
provide a good approximation of f ’s global maximizer point. Hence, we introduce a generic
procedure of MSO algorithms.

3.1 A generic procedure of MSO algorithms

An MSO algorithm can be regarded as a divide-and-conquer tree search algorithm. In an
iterative manner: it evaluates and assesses a set of leaf nodes of its tree on X ; and selectively
expands a subset of them.

Each node provides its approximate solution xh,i ∈ Xh,i which is referred to as (h, i)’s
representative state (or sometimes base point). Let A be an MSO algorithm with up to J
function evaluations per node, P evaluated nodes per iteration, Q subdivided/expanded nodes
per iteration, and a partition factor K . Furthermore, let us denote A’s tree T after iteration
t ≥ 1 by Tt .

Remark 1 Node expansions make the tree T grow with time. We may therefore index dif-
ferent forms of T by an index t to denote T ’s form Tt+1 after a specific event with respect
to its previous form Tt . An event could be a single/several node(s) expansion, or a function
evaluation (for which Tt+1 = Tt). Expanding Q nodes {(hq , iq)}1≤q≤Q ∈ Lt at time t , where
(hq , iq) is the qth expanded node, results in:

1. Tt+1 = Tt ∪ {(hq + 1, iqk)}1≤q≤Q,1≤k≤K

2. Lt+1 = Lt \ {(hq , iq)}1≤q≤Q ∪ {(hq + 1, iqk)}1≤q≤Q,1≤k≤K

3. |Tt+1| = |Tt | + QK

123

816 J Glob Optim (2016) 66:811–845

4. |Lt+1| = |Lt | + Q(K − 1)
5. H(Tt+1) = max(depth(Tt),max1≤q≤Q hq + 1)

At iteration t + 1, two steps take place, namely evaluation and expansion illustrated as
follows.2

1. Leaf Node(s) Evaluation In order to find xh,i , J ≥ 1 function evaluations are performed
withinXh,i as a part of the sequential decisionmaking process and out of the n-evaluation
budget. These J function evaluations of a leaf node may be independent of its ancestors’
and may not happen at the same iteration. We refer to the process of evaluating f within
Xh,i J times as evaluating the node (h, i). Leaf nodes with function evaluations less than
J are referred to as under-evaualted nodes. Otherwise, they are called evaluated nodes.
The set of evaluated nodes up to iteration t (inclusive) are denoted as Et ⊆ LTt−1 . At each
iteration, A selects P ≥ 1 under-evaluated nodes (if any) to be evaluated. Denote the

set of selected-to-be-evaluated nodes as Pt+1
def= ∪h∈{0,...,depth(Tt)}Pt+1,h ⊆ LTt \ Et

where:

Pt+1,h
def= {(h, i) : 0 ≤ i ≤ Kh − 1,

(h, i)is evaluable at t + 1 according toA} (8)

and |Pt+1| ≤ P .
2. Leaf Node(s) Expansion A inspects the evaluated leaf nodes (if any), and selects

Q ≥ 1 among them to be split/partitioned. These selected nodes represent the sub-
domain in which A thinks x∗ potentially lies and hence a finer search is favored.
We refer to the process of splitting/ partitioning a leaf node (h, i) into its K chil-
dren as expanding the node (h, i). Denote the set of selected-to-be-expanded nodes as

Qt+1
def= ∪h∈{0,...,depth(Tt)}Qt+1,h ⊆ Et+1 ⊆ LTt where:

Qt+1,h
def= {(h, i) : 0 ≤ i ≤ Kh − 1,

(h, i) is expandable at t + 1 according toA} (9)

and |Qt+1| ≤ Q.

After n function evaluations, A returns x(n):

x(n) ∈ arg max
xh,i :(h,i)∈T

f (xh,i) (10)

as an approximate of f ’s global maximizer point.3 This procedure is summarized in Algo-
rithm 1.

One can have different MSO algorithms based on the defining policies of the evaluable
set P and the expandable set Q. In fact, an MSO algorithm A seeks a balance between
two components of search [46]: exploration, and exploitation. Exploration (or global search)
refers to the process of learning more about the search space. On the other hand, exploitation
(or local search) is the process of acting optimally according to current knowledge. Given
a finite computational budget, excessive exploration (e.g., an algorithm with a broad-search
tree) leads to slow convergence, whereas excessive exploitation (e.g., an algorithm with a

2 At t = 1, the root node gets evaluated J times and partitioned into K nodes; P = Q = 1 for all MSO
algorithms, irrespective of their values at t > 1.
3 This is the same x(n) of Eq. (2).

123

J Glob Optim (2016) 66:811–845 817

Algorithm 1 Pseudocode for Multi-Scale Optimization
1: procedure MSO(f,X , evaluation budget)
2: T ← initial tree with one node (0, 0) with

X0,0 = X ;
3: while evaluation budget is not exhausted do
4: Evaluate the nodes ∈ P ;
5: Expand the nodes ∈ Q and

add their child nodes in T ;
6: end while
7: return x(n) ∈ argmaxxh,i :(h,i)∈T f (xh,i);
8: end procedure

deep-search tree) leads to pre-mature convergence to a local maximum and hence a trade-
off must be made. Accordingly, A chooses P and Q to be of leaf nodes of its tree T that
preferably possess jointly good exploration and exploitation A-defined scores.

Let l : L → R be the exploitation score function and g : L → R be the exploration
score function. The projection of a node (h, i) onto the exploitation axis is then denoted as
lh,i = l((h, i))whereas its projection onto the exploration axis is denoted as gh,i = g((h, i)).

Exploitation (Local) Score As the functionvalue at (h, i)’s base point, f (xh,i) is the best value
of f withinXh,i according toA’s current belief. It is a direct indicator of (h, i)’s exploitation
(local) score. Therefore, lh,i is taken as f (xh,i) or its approximate (if it is unavailable) with
an absolute error less than or equal to η ≥ 0 :4

|lh,i − f (xh,i)| ≤ η (11)

Exploration (Global) Score While lh,i reflects A’s guess on the best value of f within
Xh,i , (h, i)’s exploration (global) score gh,i is regarded as the likelihood of finding a better
value than f (xh,i) within Xh,i . This is correlated with the bulk of unexplored space in Xh,i

and often quantified by a rough measure of its size. For example, gh,i = depth(T) − h or
gh,i = σ(Xh,i). Hence, one can argue that nodes of the same depth have the same exploration
score or may differ up to a certain limit ζ ≥ 0:

|gh,i − gh, j | ≤ ζ ∀h ∈ Z
+
0 , i, j ∈ {0, . . . , Kh − 1}, i
= j (12)

In the exploration-exploitation plane, each node (h, i) of L is represented by the point

(gh,i , lh,i). Let Y be the set of these points. In other words, Y
def= {(g(x), l(x)) : x ∈ L}. A

defines a measure-of-optimality function b : R2 → R such that P and Q are chosen from
the set of leaf nodes whose exploration-exploitation points are the potentially optimal set

P(Y)
def= {y ∈ Y : {x ∈ Y : b(x) > b(y), x
= y} = ∅}. In other words, P(Y) is the set of

points ⊆ Y whose level set of b (b-value) corresponds to the highest value among all points
of Y . Generally, b is a weighted sum of l and g of the form:

bx = b((g(x), l(x))) = l(x) + λ · g(x), x ∈ L, λ ≥ 0 (13)

trading off between local and global searches. It is important to note that g, l, b used for P
may not be the same as for Q.

We can visualize the process of computing these scores as projecting the leaf nodes of T
(depicted in Fig. 1a) onto a 2-D Euclidean space R2, as illustrated in Fig. 1b, whose vertical

4 Bounding the approximation error could be valid with a probability of γ ≥ 0. In such case, any related
analysis holds with a probability of γ .

123

818 J Glob Optim (2016) 66:811–845

(0,0)

(1,0) (1,1)

(2,3)(2,2)(2,1)(2,0)

(3,3)(3,2)(3,1)(3,0) (3,5)(3,4)

(4,7)(4,6) (4,9)(4,8)

h = 0

h = 2

h = 1

h = 3

h = 4

Non-leaf node Y \ P(Y) P(Y)

(a)
7

7

6

6

6

5

5

5

5

5

4

4

4

4

4

4

3

3

3

3

2

2

2

1

1

(4,7)

(4,8)

(4,9)
(3,0)

(3,2)

(3,5)

(4,6)

(3,1)

(2,3)

2η

ζ

g4,6

l4,6

Exploration Score

E
xp

lo
it
at
io
n
Sc
or
e

Y \ P (Y)
P (Y)

(b)

Fig. 1 The process of computing exploration and exploitation scores for the set of leaf nodes L ⊆ T (a) of
anMSO algorithmA can be regarded as projecting them onto a 2-D Euclidean space (b) R2 via the mapping
function s : L → R

2. Y represents L’s image under s and P(Y) ⊆ Y is the potentially optimal set. Here
P(Y) lies on the level set of b(x) = lx + λ · gx that corresponds to the value 4 (the greatest among Y ’s). P
andQ are chosen from the set of leaf nodes whose image under s is P(Y)

and horizontal coordinate axes represent the domain of values for exploitation score and
exploration score, respectively. From Fig. 1b, lh,i (11) for the node (4, 6), gh,i (12) for nodes
at depth 4, and P(Y) for λ = 1 are shown.

Remark 2 One can introduce heuristics to consider, compute, and compare the b-values only
for a subset of L at a given iteration from which P and Q are chosen rather than the whole
set L.

3.2 MSO Algorithms in the literature

In the literature, several established algorithms (such as Lipschitzian Optimization (LO),
Dividing Rectangles (DIRECT), Multi-level Coordinate Search (MCS), Deterministic
Optimistic Optimization (DOO), Simultaneous Optimistic Optimization (SOO), and their
variants) satisfy the definition of MSO algorithms.

These algorithms can be grouped into two categories: one category requires the knowledge
about f ’s smoothness, with the b-values being a weighted sum of the local and global scores,
LO andDOO are examples of such a category; on the other hand,DIRECT,MCS, and SOO
still make an assumption about f ’s smoothness, but knowledge about it may not be available.
Nevertheless, these algorithms account for more than one possible setting of f ’s smoothness
by grouping nodes based on their global scores; local scores play a role in analyzing each
group separately. We describe algorithms in these two categories in accordance with the
generic procedure discussed in Sect. 3.1.

3.2.1 Lipschitzian optimization (LO)

In 1972, Piyavskii [43] and Shubert [56] independently proposed Lipschitzian optimization
(LO). It has been extended tomulti-dimensional problems in [41].LO assumes that f satisfies
the Lipschitz condition:

| f (x) − f (y)| ≤ L||x − y||, ∀x, y ∈ X (14)

123

J Glob Optim (2016) 66:811–845 819

where L , a positive real number, is the Lipschitz constant.5 For a maximization problem,
LO begins by evaluating the extreme points of the search space (e.g. vertices of l ≤ x ≤ u
for (1)) and constructs a piece-wise linear estimator f̂ upper bounding f , by employing
the Lipschitz condition (14). The maximum point of f̂ represents the current estimator’s
best guess on where x∗ lies. Furthermore, LO uses this point as a partitioning point of the
search space into multiple subspaces on which the process of constructing an upper bound
is applied recursively. In essence, LO iteratively refines a piece-wise linear estimator f̂ to
guide its hierarchical partitioning of the search space towards x∗ where the next partitioning
(sample) point is the optimum according to f̂ .

With respect to the generic procedure outlined in Sect. 3.1,LO has the following settings:
J is of O(2N); K = P = 2N , that is leaf nodes created in an iteration get evaluated in the
next iteration; and Q = 1. The two steps of LO at iteration t + 1 are summarized as the
following:

1. Leaf Node(s) Evaluation Pt+1 is LTt \Et , i.e., the set of leaf nodes that are not evaluated.
For a node (h, i) ∈ Pt+1, 2N function evaluations- at (h, i)’s vertices- are performed
(hence (h, i) is ∈ Et+1), and the b-value (f̂ (xh,i)) is computed as shown in Sect. 4.2.1.

2. Leaf Node(s) Expansion Qt+1 is simply one node among those ∈ Et+1 whose b-value is
the maximum, where ties are broken arbitrarily—that is, if there are more than one node
whose b-value is the maximum, then any node of these is selected arbitrarily to be in
Qt+1.

LO techniques are computationally complex with an exponential growth in the number
of problem dimensions [25,37]. Moreover, L is often not known and overestimated resulting
in a slow convergence performance. Such drawbacks limit the applicability of LO.

Variants of LO: Techniques from combinatorial optimization [34] can be employed in LO
constructing lower and upper bounds for f (xh,i). Such bounds are exploited to eliminate
a portion of the search space X . In other words, some leaf nodes are never considered for
expansion and only a small part of the tree on X has to be generated and processed. This
results in Branch-and-Bound (BB)-like search algorithms [12,18,25,42]. LO techniques are
only reliable if analytical knowledge about the function f is available, or an approximation
of L is used (e.g., see [51]). For performance gains, LO can be parallelized as demonstrated
in [14,55,62]. A general discussion on parallel algorithms for global optimization has been
presented in [61].

3.2.2 Deterministic optimistic optimization (DOO)

Munos [38] proposed DOO by assuming f to be locally smooth (around one of its global
optima) with respect to a semi-metric 	. This assumption in DOO offers a relaxation over
the restrictive assumption of LO.DOO estimates, based on local smoothness, the maximum
upper boud of f within a partition. Similar to LO, this upper bound is used to guide the
hierarchical partitioning of the space.

DOO constructs a tree onX whose settings with respect to the generic procedure outlined
in Sect. 3.1, are the following: J = 1; K and P are equal (as with LO) and treated as a

5 In this paper, we refer to the work of Piyavskii [43] and Shubert [56] by LO. Nevertheless, it should be
noted that Strongin [60] independently employed the Lipschitz condition for optimization problems. While
Piyavskii and Shubert used a priori given constant L , Strongin proposed to adaptively estimate the Lipschitz
constant during the search.

123

820 J Glob Optim (2016) 66:811–845

parameter by DOO with a default value of 3. The two steps of DOO at iteration t + 1 are
summarized as the following:

1. Leaf Node(s) Evaluation Pt+1 is LTt \Et , i.e., the set of leaf nodes that are not evaluated.
For a node (h, i) ∈ Pt , one function evaluations at (h, i)’s centre is performed (hence
(h, i) becomes an evaluated node), and the b-value is computed as shown in Sect. 4.2.2.

2. Leaf Node(s) Expansion Qt+1 is simply one node among those ∈ Et+1 whose b-value is
the maximum, where ties are broken arbitrarily.

DOO, similarly to LO, is not applicable in practice as it requires the knowledge about
f ’s smoothness.

3.2.3 Dividing rectangles (DIRECT)

LO limitations in computational complexity and the knowledge of the Lipschitz constant L
motivated Jones et al. to propose a search technique, DIRECT (stands for DIviding REC-
Tangles) [29]. First of all, DIRECT does not need the knowledge of the Lipschitz constant
L . Instead, it carries out the search by using all possible values of L from zero to infinity
in a simultaneous framework, thereby balancing global and local search and improving the
convergence speed significantly. This is captured by the heuristic rule (17). In addition to
that, it introduces an additional constraint—onQ—whose tightness depends on a parameter
ε ≥ 0 of a nontrivial amount. If fmax is the best current function value, then ε| fmax | is the
minimum amount by which the b-values of Q must exceed fmax as will be illustrated later.
This ε-constraint (16) helps in protecting the algorithm from excessive local search. Further-
more,DIRECT cuts down the computational complexity fromO(2N) toO(1) by evaluating
the cells’ centre points (which are their base points as well) instead of their vertices.

With respect to the generic procedure outlined in Sect. 3.1, J ≤ 1,6 K ≤ 3N , P ≤ 3N ,
and Q = O(K depth(T)). Furthermore, let σ be a measure of a node’s size such that a node
(h, i) has a size of σh,i = σ(Xh,i) = ||dh,i ||2 where dh,i is Xh,i ’s diameter. Denote the set

of evaluated-node sizes by St
def= {σh,i : (h, i) ∈ Et }; and denote the set of iteration indices

{t, . . . , t + |St | − 1} by It , where I1 is the first iteration batch, I|St |+1 is the second iteration

batch, and so on. With t́ ∈ It , σ t́
St
is the (t́ − t + 1)th element of St in a descending order.

Moreover, let f tmax be the best function value achieved before t . The two steps of DIRECT
at iteration t́ ∈ It are then summarized as the following:

1. Leaf Node(s) EvaluationPt́ isLTt́−1
\Et́−1, i.e., the set of leaf nodes that are not evaluated.

For a node (h, i) ∈ Pt́ , one function evaluation at (h, i)’s centre is performed (hence
(h, i) is ∈ Et́), and the b-value is computed as shown in Sect. 4.2.3.

2. Leaf Node(s) Expansion Let QIt
t́
be the set of evaluated nodes whose size is σ t́

St
; mathe-

matically: QIt
t́

def= {(h, i) : (h, i) ∈ Et , σh,i = σ t́
St

}, and bt́ is max
(h,i)∈QIt

t́
b(h,i), then Qt́

are set of nodes where each node (h, i) ∈ Q
It
t́
such that:

b(h,i) = bt́ (15)

and there exists L̂ ≥ 0 such that:

b(h,i) + L̂σ t́
St ≥ (1 − ε) f tmax (16)

b(h,i) + L̂σ t́
St ≥ bt̂ + L̂σ t̂

St ,∀t̂ ∈ It \ t́ (17)

6 One function evaluation may belong to one or more nodes.

123

J Glob Optim (2016) 66:811–845 821

If such node does not exist, the algorithm proceeds to the next iterationwithout expanding
any node at t́ (see [20] for more details on how (16) and (17) are tested).

One can notice that within a batch of iterations, nodes are first contested among others of the
same size, then among others of different size.

Variants of DIRECT Several interesting approaches have been proposed and inspired by
DIRECT (see, e.g., [15,19,21,31,32,35,39,40,53,54]). While DIRECT used L2-norm to
compute the global score g, Gablonsky et al. [21] used L∞-norm, thereby reducing the vari-
ations in the global score; and making the algorithm locally biased. Numerical experiments
showed that it is good for problems with few global minima as compared to the original
DIRECT algorithm. It has been shown in [15] that the ε-constraint (16) is sensitive to addi-
tive scaling and leads to a slow asymptotic convergence. Hence, in [15], a modification has
been proposed by using the threshold ε| fmax − fmedian| instead of ε| fmax | where fmedian is
the median of the observed function values. Sergeyev et al. [53] coupled DIRECT’s idea of
using several values of the Lipschitz constant L instead of a unique value, with estimating a
bound on f ; and proposed a two-phased algorithm that is suitable for multi-modal functions.
The first phase focuses on moving closer towards discovered local optima by expanding
nodes whose cells are close to the current best solution. On the other hand, the second phase
is oriented towards discovering new local optima by expanding nodes with high global scores
and far from the current best solution.

3.2.4 Multilevel coordinate search (MCS)

Huyer and Neumaier [27] addressed the slow-convergence shortcoming of DIRECT in
optimizing functions whose optimizers lie at the boundary of X ; and devised a global opti-
mization algorithm (called Multilevel Coordinate Search (MCS)). MCS partitions X into
hyperrectangles of uneven sizes whose base points are not necessarily the centre points.

For a node (h, i) ∈ its tree T , MCS assigns a rank measure sh,i ≥ h, which is used in
selecting the expandable setQ. The measure sh,i captures how many times a node (h, i) has
been part of/candidate for an expansion process. We refer to this measure as pseudo-depth
because it does not reflect the actual depth of the node. The children of node (h, i) with
pseudo-depth sh,i , can have upon creation a pseudo-depth of sh,i + 1 or min(sh,i + 2, smax)

based on its size with respect to its siblings. The expandable set Q is selected based on
pseudo-depth.

A node (h, i) has a set of numbers {n(h,i)
j }1≤ j≤N where n j denotes the number of times

Xh,i has been part of an expansion along coordinate j . T ’s depth is controlled through a
single parameter smax which forces the tree to a maximal depth of smax . Given a fixed budget
of node expansions, greater smax reduces the probability of expanding an optimal node in T ,
and hence a greater regret bound.

There are two heuristic rules employed to post-process Q. The first rule (19) is based on
{n(h,i)

j }1≤ j≤N to expand nodes which have high pseudo-depths, yet there is at least one coor-
dinate along which their corresponding hyperrectangles have not been part of an expansion
very often. The second rule (20) is to expand a node along a coordinate where the maximal
expected gain in function value is large enough; the gain ê(h,i)

j for a node (h, i) along coor-

dinate j is computed using a local quadratic model [27]. Accordingly, if max1≤ j≤N ê(h,i)
j is

large enough, (h, i) is then eligible for expansion along the coordinate argmax1≤ j≤N ê(h,i)
j .

If any of these rules does not hold for a node ∈ Q, it is removed fromQ and its pseudo-depth

123

822 J Glob Optim (2016) 66:811–845

is increased by one. Base points at depth smax are put into a shopping basket, assuming them
to be useful points. One can accelerate convergence by starting local searches from these
points before putting them into the shopping basket.

With respect to the generic procedure outlined in Sect. 3.1, the settings of MCS are the
following: J = 1; Based on the partitioning coordinate, P is Li ≥ 3 where Li is the number
of sampled points along coordinate i . Consequently, K could be 2Li , 2Li − 1, or 2Li − 2;
and Q = 1. Furthermore, let It be the set of iteration indices {t, . . . , t + smax − 1}; I1 is the
first iteration batch, Ismax is the second iteration batch, and so on. The two steps of MCS at
iteration t́ ∈ It are summarized as the following:

1. Leaf Node(s) EvaluationPt́ isLTt́−1
\Et́−1, i.e., the set of leaf nodes that are not evaluated.

For a node (h, i) ∈ Pt́ , one function evaluation is performed (hence (h, i) ∈ Et́), and the
b-value is computed as shown in Sect. 4.2.4.

2. Leaf Node(s) Expansion Let QIt
t́
be {(h, i) : (h, i) ∈ Et́ , sh,i = t́ − t} (if QIt

t́
= ∅, the

current iteration is simply skipped to t́+1), and bt́ ismax
(h,i)∈QIt

t́
b(h,i) then,Qt́ is simply

the node (h, i) ∈ Q
It
t́
such that:

b(h,i) = bt́ (18)

and fulfills the one of the two heuristics:

t́ − t > 2N

(
min

1≤ j≤N
n(h,i)
j + 1

)
(19)

or:

b(h,i) ≥ fmax − max
1≤ j≤N

ê(h,i)
j (20)

where ties are broken arbitrarily. If none of the heuristic rules holds, the node’s pseudo-
depth is set to sh,i + 1 and proceeds to the next iteration where it may be considered
again.

3.2.5 Simultaneous optimistic optimization (SOO)

SOO [38] tries to approximate DOO’s behavior when 	 is unknown. It expands simultane-
ously all the nodes (h, i) of its tree T for which there exists a semi-metric 	 such that the
corresponding upper bound would be the greatest. This is simulated by expanding at most
a leaf node per depth if such node has the greatest f (xh,i) with respect to leaf nodes of the
same or lower depths. In addition to that, the algorithm takes a function n → hmax (n), as a
parameter, which forces T to a maximal depth of hmax (n) + 1 after n node expansions (e.g.,
hmax (n) = nε where ε > 0).

With respect to the generic procedure outlined in Sect. 3.1, the settings of SOO are the
following: J = 1; K and P are equal and treated as a parameter by SOOwith a default value
of 3; and Q = 1. Furthermore, let It be the set of iteration indices {t, . . . , t + hmax (n)}; I1
is the first iteration batch, Ihmax (n) is the second iteration batch, and so on. The two steps,
according to [46], of SOO at iteration t́ ∈ It are summarized as the following:

1. Leaf Node(s) EvaluationPt́ isLTt́−1
\Et́−1, i.e., the set of leaf nodes that are not evaluated.

For a node (h, i) ∈ Pt́ , one function evaluation at (h, i)’s centre is performed (hence
(h, i) is ∈ Et́), and the b-value is computed as shown in Sect. 4.2.5.

123

J Glob Optim (2016) 66:811–845 823

2. Leaf Node(s) Expansion Let QIt
t́

be {(h, i) : (h, i) ∈ Et−1, h = t́ − t}, and bt́ is

max
(h,i)∈QIt

t́
b(h,i) then Qt́ is simply the node (h, i) ∈ Q

It
t́
such that:

b(h,i) = bt́ (21)

b(h,i) ≥ bt̂ ∀t̂ t ≤ t̂ < t́ (22)

where ties are broken arbitrarily. If no such node exists, the current iteration is simply
skipped to t́ + 1.

Variants of SOO: Two main variants of SOO have been proposed in the literature, namely
Stochastic Simultaneous Optimistic Optimization (StoSOO) [66], and BayesianMulti-Scale
Optimistic Optimization (BaMSOO) [67]. StoSOO addresses the situation where function
evaluations are perturbed independently by noise. The b-values of StoSOO’s nodes are upper
confidence bounds of f at their representative/base points. As a stochastic extension of SOO,
it expands at most one node per depth after having it evaluated at its base point several times
(i.e. J ≥ 1 function evaluations and all of them are at xh,i). Multiple evaluations per node
are to ensure that the expanded nodes are with high probability close to optimal. On the
other hand, BaMSOO was designed with the goal of cutting down the number of function
evaluations incurred by SOO. BaMSOO eliminates the need for evaluating representative
states xh,i deemed unfit by Gaussian process (GP) posterior bounds. Prior to evaluating a
node (h, i), upper and lower confidence bounds (UCB, LCB) on f (xh,i) are computed using
a GP posterior fitted on the previous evaluations. These bounds are utilized to guide the
search efficiently and possibly serve as the b-value of the corresponding node instead of
f (xh,i).

3.3 Discussion on MSO algorithms

A brief discussion on the expandable sets Q and the rules of partitioning for different MSO
algorithms are presented below.

The Expandable Set QWhile the selected-to-be-evaluated setP is almost the same for all the
algorithms (a node is evaluated upon its creation), the process of selecting Q differs among
them. Figure 2 shows a typical scenario of what Q could be in one (a batch of) iteration(s).
Similar to Fig. 1b, it shows the evaluated leaves projected into the exploration-exploitation
space. In LO, and DOO; each iteration is independent of each other; and a node is selected
if it is the first node to lie on the curve from above. In DIRECT, MCS, and SOO; the case
is different, iterations within a batch of iterations are co-dependent; a node is selected if
it is among the first nodes to lie on the corresponding curve from above. However, from
their visualizations, it can be argued that SOO and DIRECT have a greedier behaviour
than MCS as they only expand a set of Pareto-optimal nodes in the exploration-exploitation
plane.

Rules of Partitioning (Expanding) a Node MSO algorithms use different procedures for
expanding (partitioning) a node into its children. On one end, DOO, and SOO, with a
partitioning factor K , partition the cell/hyperrectangle of a node by a single coordinate
creating K cells of equal length along that coordinate; on the other end, LO partitions with
respect to all the N coordinates, which results in 2N (not necessarily equal in size) cells. For
MCS, knowledge built from sampled points is used to determine the partitioning coordinate
aswell as the position of the partitioning through the rules of golden section ratio and expected

123

824 J Glob Optim (2016) 66:811–845

(a) LO (b) DIRECT

Exploration Score

E
xp

lo
it
at
io
n
Sc
or
e

P (Y)
Y \ P (Y)

Exploration Score

E
xp

lo
it
at
io
n
Sc
or
e

Y \ P (Y)
P (Y)

(c) MCS (d) DOO

Exploration Score

E
xp

lo
it
at
io
n
Sc
or
e

Y \ P (Y)
P (Y)

Exploration Score

E
xp

lo
it
at
io
n
Sc
or
e

Y \ P (Y)
P (Y)

(e) SOO

Exploration Score

E
xp

lo
it
at
io
n
Sc
or
e

Y \ P (Y)
P (Y)

Fig. 2 Selecting expandable leaf node(s)Q (represented byblack dots) for an iteration in LO (a), for a batch
of iterations in DIRECT (b) , a batch of iterations in MCS (c), an iteration in DOO (d), and a batch of
iterations in SOO (e). The set Y , whose elements are represented by black and gray dots, is the set of projected
evaluated leaves into the exploration-exploitation space

gain [27]. DIRECT stands out in two aspects: its partitioning may go by a single coordinate
up to N coordinates in a way that creates nodes of good local and global scores; and the fact
that these partitions do not apply to the node of interest but rather to the node itself and some

123

J Glob Optim (2016) 66:811–845 825

of its descendants. In other words, if DIRECT is expanding a node (h, i) by N coordinates,
the first split takes place at that node, and themth split (m ≤ N) is applied on a node of depth
h +m − 1 which is part of the subtree rooted at (h, i) [29]. Consequently, DIRECT’s tree’s
depth may increase by N for expanding a node in Q.

A number of rules for partitioning a node has been investigated and numerically validated
[10,30,47]. For instance, numerical experiments in [30] showed that bisecting a node’s cell
into two subcells works better than partitioning it into 2N subcells using N intersecting
hyperplanes.

4 Convergence analysis of MSO algorithms

In this section, we propose a theoretical methodology for finite-time analysis of MSO algo-
rithms. It is then applied to analyze different MSO algorithms in the literature.

4.1 Theoretical framework for convergence

We derive a measure of convergence rate by analysing the complexity of the regret r(n) (2).
We upper-bound r(n) by quantifying the amount of exploration required in each of the multi-
scale partitions to achieve a near-optimal solution. In line with [38], three basic assumptions
are made; the first two assumptions assist in establishing a bounded bound on r(n), whereas
the third assumption helps in computing it in finite time.

4.1.1 Bounding the regret r(n)

To bound r(n) (2), one needs to assume the characteristics of f . In LO, f is assumed to
be Lipschitz-continuous [43], whereas DOO and SOO assume local smoothness on f [38].
Here, we impose the local smoothness assumption on f , defined formally as local Hölder
continuity. Let T be a tree on X created by an MSO algorithm and 	 : X × X → R

+ be a
semi-metric such that 	(x, y) = L||x − y||α with L and α being positive real constants.

Assumption 1 (local Hölder continuity) f isHölder-continuous with respect to (at least)
one of its global optimizer x∗, that is to say, ∀x ∈ X , it satisfies Hölder condition [58]
around x∗:

| f ∗ − f (x)| ≤ L||x∗ − x ||α = 	(x∗, x) (23)

Remark 3 The class of Hölder-continuous functions is very broad. In fact, it has been shown
in [20,42] that among the Lipschitz-continuous functions (which are Hölder-continuous with
α = 1) are convex/concave functions over a closed domain and continuously differentiable
functions.

Before applying Assumption 1, we define the following.

Definition 3 A node (h, i) ∈ T is optimal if x∗ ∈ Xh,i .

Definition 4 h∗
n ∈ Z

+
0 is the depth of the deepest optimal node that has been expanded up

to n expansions 7 and (h∗
n, i

∗
n) ∈ T is the deepest expanded optimal node.

7 We are treatingMSO as an n-round sequential decision making process. ForMSO algorithms, n may corre-
spond to the number of iterations, evaluations, or expansions. All three quantities are interrelated. Generally,
we mean by n the number of evaluations if not stated otherwise.

123

826 J Glob Optim (2016) 66:811–845

Given that (h∗
n, i

∗
n) is known, we can bound the regret as follows.

r(n) = f ∗ − f (x(n)) (24)

≤ f ∗ − f
(
xh∗

n ,i
∗
n

)
(25)

≤ 	
(
x∗, xh∗

n ,i
∗
n

)
from (23) (26)

≤ supx∈Xh∗
n ,i∗n 	(x, xh∗

n ,i
∗
n
) (27)

Presume that the evaluation of a node’s children is always coupled with its expansion.8 This
means that f (xh∗

n+1,i∗nk) for 1 ≤ k ≤ K are known. Consequently, there exists a tighter bound
on r(n) than (27) as x∗ is in one of (h∗

n, i
∗
n)’s children:

r(n) ≤ sup1≤k≤K supx∈Xh∗
n+1,i∗nk

	
(
x, xh∗

n+1,i∗nk

)
≤ supx∈Xh∗

n ,i∗n 	
(
x, xh∗

n ,i
∗
n

)
(28)

In order to have a bounded bound to on r(n), cells of T ’s nodes need to be bounded. The
next assumption implies that the bound on r(n) is bounded:

Assumption 2 (Bounded Cells) There exists a decreasing sequence δ(h) = cρh in h such
that

supx,y∈Xh,i 	(x, y) ≤ δ(h) ∀(h, i) ∈ T (29)

where c is a positive real number and ρ ∈ (0, 1).

Consequently, from (28) the regret is bounded by:

r(n) ≤ δ(h∗
n + 1) (30)

Thus, finding h∗
n is the key to bound the regret. This is discussed in the next section.

4.1.2 Finding the depth of the deepest expanded optimal node, h∗
n

MSO algorithms may inevitably expand non-optimal nodes as part of their exploration -vs.-
exploitation strategy. Hence, the relationship between the number of expansions n and h∗

n
therefore may not be straight forward. Let us take an MSO algorithm A whose T ’s deepest
expanded optimal node after n expansions is at depth h́ < depth(T)- i.e., h∗

n = h́). For
any node (h́ + 1, i) to be expanded before (h́ + 1, i∗), the optimal node at depth h́ + 1; the
following must hold for f (xh́+1,i):

b
(h́+1,i) ≥ b

(h́+1,i∗) (31)

lh́+1,i + λ · gh́+1,i ≥ lh́+1,i∗ + λ · gh́+1,i∗ (32)

from (11) and (12):

f (xh́+1,i) + 2 · η + λ · ζ ≥ f
(
xh́+1,i∗

)
(33)

from (27) and (29):

f (xh́+1,i) + 2 · η + λ · ζ + δ(h́ + 1) ≥ f ∗ (34)

Let us state three definitions to quantify and analyze nodes that satisfy (34).

8 we shall consider this presumption throughout our analysis. In other words, for n node expansions, there
are Kn node evaluations.

123

J Glob Optim (2016) 66:811–845 827

Definition 5 The set Xε
def= {x ∈ X , f (x) + ε ≥ f ∗} is the set of ε-optimal states in X .

Definition 6 The set Iε
h

def= {(h, i) ∈ T : f (xh,i) + ε ≥ f ∗} is the set of ε -optimal nodes

at depth h in T . For instance, I2·η+λ·ζ+δ(h́+1)

h́+1
is the set of nodes that satisfy (34).

Definition 7 hε
n ∈ Z

+
0 is the depth of the deepest ε-optimal node that has been expanded up

to n expansions.

Let ε(h) = 2 · η + λ · ζ + δ(h). If A allows expanding more than one node per depth,
then we are certain that the optimal node at depth h gets expanded if all the nodes in Iε(h)

h
are expanded. Hence, h∗

n is guaranteed to be greater than or equal to h. Mathematically,

h∗
n ≥ argmax

{
h : h ∈ {0, . . . ,depth(T) − 1}, x is expanded ∀x ∈ Iε(h)

h

}
(35)

Therefore, the relationship between n and h∗
n can be established by finding out how many

expansions n are required to expand, at a given depth h, all the nodes in Iε(h)
h . It depends on

two factors:

1. The number of the ε(h)-optimal nodes at depth h, |Iε(h)
h |.

2. A’s strategy in expandingIε(h)
h . IfA has nodes at depth h, where h́+1 < h < depth(T),

then such nodes are not necessarily ε(h)-optimal. In other words, only a portion of the n
expansions is dedicated ∪h<depth(T)Iε(h)

h . This depends on A’s expansion strategy.

While the second factor is A-dependent, the first depends on f, 	, and how the nodes are
shaped. The first factor is discussed in the next section. In Theorem 1 of Sect. 4.1.4, we shall
demonstrate how these two factors play a role in identifying the regret bound for a class of
MSO algorithm.

Remark 4 (Another bound for r(n)) The condition (34) gives us another bound on the regret:

r(n) ≤ 2 · η + λ · ζ + δ(h) ∀h ∈ 0, . . . , hε(h)
n (36)

≤ 2 · η + λ · ζ + δ
(
hε(h)
n

)
(37)

Note that h∗
n ≥ ĥ implies hε(h)

n ≥ ĥ.

4.1.3 Bounding |Iε(h)
h |

Consider the ε-optimal statesXε in an N -dimensional space.Assume that 	́(x∗, x) ≤ f (x∗)−
f (x)where 	́(x∗, x) = Ĺ||x∗ −x ||β, Ĺ and β are positive real constants.9 FromDefinition 5,
	́(x∗, x) ≤ ε,Xε is then an 	́-hypersphere of radius ε centered at x∗. From Definition 6, Iε

h
have their base points xh,i in Xε . Since xh,i can be anywhere in Xh,i , covering Xε by Iε

h is
regarded as a packing problem of Iε

h into Xε . Note that, in general, cells of Iε
h will not be

spheres. A bound on |Iε
h | is formulated as the ratio of Xε’s volume to the smallest volume

among the cells of Iε
h :

9 The purpose of presenting 	́ is to quantify how bigXε is, and consequently to introduce the near-optimality
dimension (presented shortly). It does not always hold. Consider a constant function (e.g., f (x) = 5), for
which 	́(x∗, x) should be 0. This violates the definition of 	́with Ĺ being a positive real constant. Nevertheless,
it implies that 	(x∗, x) = 0 ≤ ε ,∀x ∈ X and henceXε = X . In other words, all the nodes at all depths have
to be expanded to find the optimal node, yet each one of them is an optimal node. In summary, if 	́ does not
exist, the whole search space is considered as ε-optimal. Note that Assumption 1 implies β ≥ α.

123

828 J Glob Optim (2016) 66:811–845

|Iε
h | ≤ σ(Xε)

min(h,i)∈Iε
h
σ(Xh,i)

(38)

= O
(

ε
N
β

min(h,i)∈Iε
h
σ(Xh,i)

)
(39)

To simplify the bound further, we make an assumption about the cells shape in line with
Assumption 2.

Assumption 3 [Cells Sphericity] There exists 1 ≥ v > 0 such that for any h ∈ Z
+
0 , any

cell Xh,i has an 	-hypersphere of radius vδ(h).

Remark 5 The purpose of Assumption 3 is to fit a vδ(h)-radius 	-hypersphere within cells
of depth h, and hence the size of Iδ(h)

h can be bounded more accurately. This depends on
the hierarchical partitioning of the algorithm rather than the problem and holds seamlessly
if the algorithm does not skew the shape of the cells. Almost all MSO algorithms maintain
a coordinate-wise partition that does not skew the shape of their cells, and therefore, it is a
reasonable assumption.

Cells Sphericity lets us have an explicit bound on the number of δ(h)-optimal nodes at depth
h, |Iδ(h)

h |- i.e., the number of nodes that cover the 	́-hypersphere of radius δ(h) at depth h.

Subsequently, |Iδ(h)
h | has a bound of:

|Iδ(h)
h | = O

(
δ(h)

N
β

δ(h)
N
α

)
(40)

= O
(

ρ
−h

(
N (1

α
− 1

β
)
))

(41)

which comes in one of three cases:

1. α < β: At a given depth h, |Iδ(h)
h | scales exponentially with N .

2. α = β: At a given depth h, |Iδ(h)
h | is constant and independent of N .

3. α > β: This is not possible as it violates Assumption 1. Nevertheless, it tells us that
if 	 was chosen such that there is no guarantee that f (x∗) − f (x) ≤ 	(x∗, x), then it
is possible that A may expand nodes other δ(h)-optimal nodes at depth h and possibly
converges to a local optimum. In such case, r(n) is of O(1).

Let dv be N (1
α

− 1
β
). From (41), dv can be seen as a quantitative measure of how much

exploration is needed to guarantee optimality. For better understanding, Fig. 3 shows Xε for

N = 2; it can be packed with

(
ε
1
β

(vε)
1
α

)2

= v− 2
α 	-circles of radius vε. In such case, dv is 0.

In accordance with the Assumptions 1, 2, and 3, the next definition generalizes dv and
refers to it as the near-optimality dimension:

Definition 8 The v-near-optimality dimension is the smallest dv ≥ 0 such that there exists
C > 0 and c > 0 such that for any 1 ≥ ε > 0 and 1 ≥ v > 0, the maximal number of
disjoint 	-hyperspheres of radius vcε and contained in Xcε is less than Cε−dv .

The next lemma reformulates and generalizes the bound of (41) in the light of the near-
optimality definition.

Lemma 1 |Imδ(h)
h | ≤ Cρ−hdv/m , where m > 0.

123

J Glob Optim (2016) 66:811–845 829

Fig. 3 Xε in a 2-dimensional
space is an 	́-circle (Here, 	́ and 	

are the l2 norms, with α and β set
to 1) centered at x∗ with a radius
of ε

Xε

ε
x∗

Proof From Assumption 3, a cell Xh,i has an 	-hypersphere of radius v
m ·mδ(h). As a result,

if |Imδ(h)
h | exceeds Cρ−hdv/m , then there are more than Cρ−hdv/m 	-hypersphere of radius

v
m · mδ(h) in Xmδ(h) which contradicts the definition of dv/m . ��

Using the above lemma, the bound of (41) can be reformulated as |Iδ(h)
h | ≤ Cρ−hdv .

Having constructed an explicit bound on |Iδ(h)
h |, we, now, bound |Iε(h)

h |, which is addressed
in the next lemma.

Lemma 2 For h < hε, we have |Iε(h)
h | ≤ Cρ−hdv/2 such that

hε
def= min{h : δ(h) < 2 · η + λ · ζ } (42)

and dv/2 is the v/2-near-optimality dimension.

Proof Bounding |Iε(h)
h | in a similar way to |Iδ(h)

h | requires that a cell Xh,i has an 	-
hypersphere of radius v́(δ(h) + 2 · η + λ · ζ) where 1 ≥ v́ > 0. From Assumption 3,
we know that a cell Xh,i has an 	-hypersphere of radius vδ(h) where 1 ≥ v > 0. Thus, for a
cell Xh,i to have an 	-hypersphere of radius v́(δ(h) + 2 · η + λ · ζ), we need to ensure that
v́(δ(h) + 2 · η + λ · ζ) ≤ vδ(h). With respect to a v/2-near-optimality dimension, this holds
for any depth h where δ(h) ≥ 2 · η + λ · ζ because v

2 · 2 · δ(h) ≥ v́(δ(h) + 2 · η + λ · ζ)

where v́ = v
2 . Now, since δ(h) is a decreasing sequence in h, this is valid for depths less than

min{h : δ(h) < 2 · η + λ · ζ } denoted by hε.
Up to this point, we know that |Iε(h)

h | for h < hε is upper-bounded by themaximal number
of disjoint 	-hypersphere of v

2 · 2 · δ(h) packed in X2δ(h). Consequently, from Definition 8
and similar to the proof of Lemma 1, we have:

∣∣∣Iε(h)
h

∣∣∣ ≤ Cρ−hdv/2 , ∀h < hε (43)

where dv/2 is the v/2-near-optimality dimension. ��

123

830 J Glob Optim (2016) 66:811–845

4.1.4 A convergence theorem

In this section, we present a theorem on the convergence of a class of MSO algorithms that
adopt an expansion strategy of minimizing their trees’ depths by connecting r(n), h∗

n, h
ε(h)
n ,

and Iε(h)
h . Afterwards, three examples are worked out to see the effect of some parameters

on the complexity of r(n).

Theorem 1 Let the assumptions of local Hölder continuity (Assumption 1), bounded cells
(Assumption 2), and cells sphericity (Assumption 3) hold and let A be an MSO algorithm
with a partition factor of K whose local and global score functions satisfy (11) and (12),
respectively. Furthermore,A expands for each ε(h)-optimal node at most M −1 other nodes
with an expansion strategy of minimizing its tree T ’s depth depth(T).10 Then the regret of
A after n expansions is bounded as:

r(n) ≤ δ
(
max(h́(n),min(h(n), hε))

)
+ 2 · η (44)

where h́(n) is the smallest h ∈ Z
+
0 , such that:

M
h́(n)∑
l=0

Kl ≥ n (45)

and h(n) is the smallest h ∈ Z
+
0 , such that:

CM
h(n)∑
l=0

ρ−ldv/2 ≥ n (46)

and hε is the smallest h ∈ Z
+
0 that satisfies (42).

Proof Consider any h(n) ≤ hε . From the definition of h(n) (46) and Lemma 2, we have:

M
h(n)−1∑
l=0

∣∣∣Iε(l)
l

∣∣∣ ≤ CM
h(n)−1∑
l=0

ρ−ldv/2 < n (47)

Since for each ε(h)-optimal node atmostM other nodes are expanded in away thatminimizes
the tree’s depth, we deduce from (47) that the depth of deepest expanded optimal node
h∗
n ≥ h(n) − 1 and the depth of the deepest expanded ε(h)-optimal node hε(h)

n ≥ h(n). On

the other hand, for h(n) > hε , there is no valid bound on |Iε(l)
l |. Thus, h∗

n ≥ min(hε, h(n))−1

and hε(h)
n ≥ min(hε, h(n)). With h∗

n and h
ε(h)
n in hand, we have two bounds on r(n). Consider

first the bound based on h∗
n . Let (h∗, i∗) be the child node of the deepest expanded optimal

node that contains x∗, we have:

r(n) ≤ f ∗ − f (h∗, i∗) (48)

Now, since A deals with the approximate l (11) of f values at the nodes’ base points, the
regret bound, with respect to A’s solution l(x(n)), is expressed as:

r(n) ≤ f ∗ − f (x(n)) + η since |l(x(n)) − f (x(n))| ≤ η , (49)

≤ f ∗ − f (xh∗,i∗) + 2 · η since l(x(n)) ≥ l(xh∗,i∗) . (50)

10 The purpose of Theorem 1 is to provide a recipe for finite-time analysis of any proposed algorithm under
MSO framework. Nonetheless, the recipe needs to know the behavior of the algorithm. As a possible behavior,
we have just assumed that the algorithm, analyzed in Theorem 1, minimizes its depth.

123

J Glob Optim (2016) 66:811–845 831

From Assumptions 1 & 2 and since h∗ = h∗
n + 1 ≥ min(hε, h(n)), we have:

r(n) ≤ δ(min(hε, h(n))) + 2 · η (51)

On the other hand, consider the bound based on hε(h)
n ≥ min(hε, h(n)). From Remark 4,

the regret is bounded as r(n) ≤ 2 · η + λ · ζ + δ(min(hε, h(n))). Clearly, the bound (51)
is tighter. However, it relies on hε and hence can be really pessimistic (e.g. when hε = 0).
We may achieve a better bound by utilizing the fact thatA’s strategy is to minimize its tree’s
depth; and that for n expansions, there are at least � n

M � expanded ε(h)-optimal nodes. From

the definition of h́(n) and A’s strategy, we deduce that h∗
n ≥ h́(n) − 1 and hε(h)

n ≥ h́(n).
Thus:

r(n) ≤ δ
(
h́(n)

)
+ 2 · η (52)

Therefore, r(n) here has two bounds, viz. (51), (52) from which we choose the tightest as in
(44). ��

It is important to note here that not allMSO algorithms aim tominimize their trees’ depths.
Nevertheless, the aim of the theorem is to stress that there are usually two possible approaches
to obtain a regret bound: the first involves identifying the link between n and h∗

n (Sect. 4.1.2);

and the second is based on identifying the link between n and hε(h)
n (Remark 4). Furthermore,

it showed that even when the two approaches are infeasible, anMSO algorithm’s expansion
strategy may help in establishing a better bound. The following examples evaluate the regret
bound for different settings of Theorem 1’s parameters.

Example 1
(
r(n) for dv/2 = 0, h́(n) < min(h(n), hε)

)
From (46), we have:

CM
h(n)∑
l=0

ρ−ldv/2 ≥ n (53)

CM(h(n) + 1) ≥ n since dv/2 = 0 (54)

h(n) ≥ n

CM
− 1 (55)

We have two cases with respect to hε:

1. η = 0 and ζ = 0, for which hε = ∞. Therefore, r(n) decays exponentially with n:

r(n) ≤ cρ
n

CM (56)

2. η > 0 or ζ > 0, for which hε = h́ < ∞. Therefore:

r(n) ≤ cρ
min

(
n

CM ,h́
)

+ 2 · η (57)

Clearly, for 1 ≤ n ≤ CMh́, the regret decays exponentially with n towards 2 · η. For

n > CMh́, the best bound on r(n) equals cρ h́ + 2 · η.

Example 2 (r(n) for dv/2 > 0, h́(n) < min(h(n), hε)) From (46), we have:

CM
h(n)∑
l=0

ρ−ldv/2 ≥ n (58)

123

832 J Glob Optim (2016) 66:811–845

From the sum of geometric series formula:

CM
(
ρ−dv/2(h(n)+1) − 1

)
≥ n

(
ρ−dv/2 − 1

)
(59)

ρ−dv/2h(n) >
n

CM

(
1 − ρdv/2

)
(60)

ρh(n) <

(
CM

1 − ρdv/2

) 1
dv/2 · n− 1

dv/2 (61)

h(n) is logarithmic with n. We have two cases with respect to hε:

1. η = 0 and ζ = 0, for which hε = ∞. Therefore, r(n) decays polynomially with n:

r(n) < c

(
CM

1 − ρdv/2

) 1
dv/2 · n− 1

dv/2 (62)

2. η > 0 or ζ > 0, for which hε = h́ < ∞. Therefore:

r(n) ≤ c · max

(
ρ h́,

(
CM

1 − ρdv/2

) 1
dv/2 · n− 1

dv/2

)
+ 2 · η (63)

Example 3 (r(n) for h́(n) > min(h(n), hε)) From (45), we have:

M
h́(n)∑
l=0

Kl ≥ n (64)

K h́(n)+1 ≥ n

M
(K − 1) + 1 (65)

h́(n) ≥ �logK (
n

M
) + logK (K − 1) − 1� (66)

h́(n) is logarithmic with n and r(n) is bounded as:

r(n) ≤ cρ�logK (n
M)+logK (K−1)−1� + 2 ∗ η (67)

Remark 6 (MSO vs. Uniform Sampling) It is interesting to note that for an N -dimensional
functionwhere | f ∗− f (x)| = ||x∗−x ||β , a uniform grid of Kn samples exhibits a polynomi-

ally decaying regret of O(n− β
N) whereas an MSO algorithm with a partition factor K and n

expansions may have an exponentially decaying regret of O(ρ
n

CM) (Example 1) irrespective
of the problem dimensions N .

4.2 Analysis of MSO algorithms

Using the theoretical framework established in the previous section,we analyze the finite-time
behaviour of different MSO algorithms in the literature.

4.2.1 Analysis of LO

Several researchers have addressed the convergence analysis of LO techniques [24,41].
Here, we present a complimentary analysis under the framework of MSO. Let N = 1 which
implies that Xh,i is an interval [ch,i , dh,i] where ch,i and dh,i are its endpoints. Furthermore,

123

J Glob Optim (2016) 66:811–845 833

	(x, y) here is L|x − y|. Using the Lipschitz condition (14), f̂ (xh,i)- and eventually b(h,i)-
is computed as:

b(h,i) = f̂ (xh,i) = f (ch,i) + f (dh,i)

2
+ L

dh,i − ch,i

2
(68)

This can be made equivalent to the exploitation-exploration trade-off (13) where the local
score lh,i = f (ch,i)+ f (dh,i)

2 , λ = L , and the global score gh,i = dh,i−ch,i
2 . From the Lipschitz

condition (14) and Assumption 2, we have:

0 ≤ f̂ (xh,i) − f (xh,i) ≤ L(dh,i − ch,i) ≤ δ(h) . (69)

The next lemma shows that LO expands 2δ(h)-optimal nodes in search for the optimal node
at depth h.

Lemma 3 In LO and at depth h, a node (h, i) is expanded before the optimal node (h∗, i∗),
if:

f (xh,i) + 2δ(h) ≥ f ∗ . (70)

Proof In LO, expanding more than one node per depth is possible; a node (h, i) is expanded
before the optimal node (h∗, i∗) when f (xh,i) satisfies the following:

b(h,i) ≥ b(h∗,i∗) (71)

f̂ (xh,i) ≥ f̂ (xh∗,i∗) (72)

From (69):

f (xh,i) + δ(h) ≥ f (xh∗,i∗) (73)

From the Lipschitz condition (14) which is in line with Assumption 1 and Assumption 2, we
have f ∗ − f (xh∗,i∗) ≤ supx∈Xh,i

	(xh,i , x) ≤ δ(h); from which (70) follows. ��
Therefore, we are certain that h∗

n ≥ h if all the 2δ(h)-optimal nodes at depth h are
expanded. The following theorem establishes the regret bound for LO algorithms.

Theorem 2 (Convergence of LO) Let T be LO’s tree onX and h(n) be the smallest h ∈ Z
+
0 ,

such that:

C
h(n)∑
l=0

ρ−ldv/2 ≥ n (74)

where dv/2 is the v/2-near-optimality dimension and n is the number of expansions. Then
the regret of LO is bounded as r(n) ≤ 2δ(h(n)).

Proof From Lemma 3, LO expands only nodes that are 2δ(h)-optimal for 0 ≤ h ≤
depth(T). As a result, the depth of deepest expanded 2δ(h)-optimal node h2δ(h)

n is
depth(T) − 1, and hence bounding the regret in the light of Remark 4 as follows:

r(n) ≤ 2δ(depth(T) − 1) (75)

Clearly, the bound depends on depth(T). Let us try to make this bound more explicit by
finding out the minimum depth(T) with n expansions. In line with Lemma 1, we have
|I2δ(h)

h | ≤ Cρ−hdv/2 . This implies along with the definition of h(n):

h(n)−1∑
l=0

∣∣∣I2δ(l)
l

∣∣∣ ≤ C
h(n)−1∑
l=0

ρ−ldv/2 < n (76)

123

834 J Glob Optim (2016) 66:811–845

that h2δ(h)
n ≥ h(n). Therefore, r(n) ≤ 2δ(h(n)). ��

Similar analysis can be applied when N > 1. Here, Xh,i is a hyperrectangle and δ(h)

bounds a norm L||x − y|| rather than an interval.

4.2.2 Analysis of DOO

With respect to the theoretical framework, [38] provides the analysis of DOO for δ(h) < 1.
Here, we provide a generalized analysis (including δ(h) ≥ 1) by modifying [38, Theorem
1]. Let us start with the b-value of a node (h, i):

b(h,i) = f (xh,i) + δ(h) (77)

With reference to (13), lh,i = f (xh,i), λ = 1, and gh,i = δ(h).
The next lemma shows that DOO expands δ(h)-optimal nodes in search for the optimal

node at depth h.

Lemma 4 InDOO and at depth h, a node (h, i) is expanded before the optimal node (h∗, i∗),
if:

f (xh,i) + δ(h) ≥ f ∗ . (78)

Proof InDOO, expandingmore than one node per depth is possible; a node (h, i) is expanded
before the optimal node (h∗, i∗) when f (xh,i) satisfies the following:

b(h,i) ≥ b(h∗,i∗) (79)

f (xh,i) ≥ f (xh∗,i∗) (80)

From Assumptions 1 & 2, we have f ∗ − f (xh∗,i∗) ≤ supx∈Xh,i
	(xh,i , x) ≤ δ(h); from

which (78) follows. ��
Therefore, we are certain that h∗

n ≥ h if all the δ(h)-optimal nodes at depth h are expanded.
The following theorem establishes the regret bound for DOO.

Theorem 3 (Convergence for DOO) Let us write h(n) the smallest h ∈ Z
+
0 such that

C
h(n)∑
l=0

ρ−ldv ≥ n (81)

where dv is the v-near-optimality dimension and n is the number of expansions. Then the
regret of DOO is bounded as r(n) ≤ δ(h(n)).

Proof From Lemma 4, DOO expands only nodes that are δ(h)-optimal for 0 ≤ h ≤
depth(T). As a result, the depth of deepest expanded δ(h)-optimal node hδ(h)

n is
depth(T) − 1, and hence bounding the regret in the light of Remark 4 as follows:

r(n) ≤ δ(depth(T) − 1) (82)

Clearly, the bound depends on depth(T). Let us try to make this bound more explicit by
finding out the minimum depth(T) with n expansions. In line with Lemma 1, we have
|Iδ(h)

h | ≤ Cρ−hdv . This implies along with the definition of h(n):

h(n)−1∑
l=0

∣∣∣Iδ(l)
l

∣∣∣ ≤ C
h(n)−1∑
l=0

ρ−ldv < n (83)

that hδ(h)
n ≥ h(n). Therefore, r(n) ≤ δ(h(n)). ��

123

J Glob Optim (2016) 66:811–845 835

4.2.3 Analysis of DIRECT

The b-value of a node in DIRECT is its local score l, with lh,i = f (xh,i), λ = 0, and
gh,i = σh,i = ||dh,i ||2 where dh,i is Xh,i ’s diameter. As λ = 0, DIRECT may seem to be
an exploitative MSO algorithm, which is not the case. The global score is employed in a
heuristic (represented by (16) and (17)) for selectingQ within a batch of iterations, balances
the exploration-vs.-exploitation trade-off. Given that the optimal node at depth h́−1 has been
expanded, for any node (h́, i) to be expanded before the optimal node (h́, i∗), the following
must hold (assuming (16) and (17) hold):

b
(h́,i) ≥ b

(h́,i∗) (84)

f (xh́,i) + δ(h́) ≥ f ∗ (85)

For such depths, DIRECT expands δ(h)-optimal nodes at depth h if the heuristic rules hold.
However, there is no guarantee that the heuristic rules hold [15]. In [15, Theorem2], it has
been shown that DIRECT may behave as an exhaustive grid search expanding nodes based
solely on their sizes. In Theorem 4, we provide a finite-time11 regret bound on DIRECT by
exploiting [15]’s findings that within a batch of iteration It , there exists at least one node
∈ Et−1 that satisfies (16) and (17) and hence gets expanded within It . Such node is simply
the node (h∗, i∗) ∈ Et−1 such that b(h∗,i∗) = bt .

Theorem 4 (Convergence of DIRECT) Let us define h(n) as is the smallest h ∈ Z
+
0 such

that:

h(n)∑
l=0

3l ≥ nI (86)

where nI is the greatest positive integer number such that:

nI (nI − 1) ≤ 2

N 2 (n − N) (87)

where n is the number of expansions. Then the regret of DIRECT with Q = 1 is bounded
as:

r(n) ≤ δ(h(n)) (88)

Proof DIRECT expands at least one node per batch of iterations; and this node is one among
those of the largest size among the leaf nodes. Thus, as DIRECT has a partitioning factor of
3; given a number of batches nI ; and from the definition of h(n), at depth h(n) − 1, all the
nodes (optimal and non-optimal) are expanded. Hence, r(n) ≤ δ(h(n)).

Since we are interested in bounding the regret as a function of the number of expansions
n, we need to find what is the maximum number of expansions for nI iteration batches. In a
given batch It , the maximum number of expansions with Q = 1 is N · depth(Tt−1), with
depth(T) growing at most by N per iteration batch. Thus, with 3 iteration batches, for
instance, we can have at most N +1 · N · N +2 · N · N expansions. Form batch of iterations,
there are at most N + N 2 ∑m−1

i=0 i = N + 1
2 · N 2 · m(m − 1) expansions. Therefore, for

11 To the best of our knowledge, there is no finite-time analysis of DIRECT (only the consistency property
limn→∞ r(n) = 0 given by Jones et al. [29]whichwas proven again in [16] by Finkel andKelley. Furthermore,
they showed, based on nonsmooth analysis, that certain samples of DIRECT may converge to points that
satisfy the necessary conditions for optimality defined by Clarke [8]).

123

836 J Glob Optim (2016) 66:811–845

n expansions, the minimum possible number of completed iteration batches is the greatest
positive integer nI iteration such that:

N + 1

2
· N 2 · nI (nI − 1) ≤ n

from which (87) follows. ��

4.2.4 Analysis of MCS

The following factors influence the analysis of MCS. First, the set of nodes to be considered
for expansion are not of the same scale, and hence, no statement can be made about the
optimality of the expanded nodes. Second, even if MCS is considering near-optimal nodes
for expansion, the heuristics (19) and (20) may not hold which results in moving such nodes
into groups of different pseudo-depth. Third, the fact that two nodes of consecutive depths
h and h + 1 may have the same size makes Assumption 2 more associated with the node’s
first pseudo-depth value rather than its depth h (i.e. for a node (h, i) whose s upon creation
is sh,i , then supx,y∈Xh,i 	(x, y) ≤ δ(sh,i) rather than δ(h)).

The b-value of a node in MCS is its local score, with lh,i = f (xh,i), λ = 0, and gh,i =
−sh,i . The global score is used to group the nodes considered for expansion at an iteration.
Assume that all the nodes keep their initial pseudo-depth; given that the optimal node at a
pseudo-depth s − 1 has been expanded, its optimal child node (h́, i∗) may have a pseudo-
depth of s+1 for which no statement can be made about the nodes with a pseudo-depth of s.
Nonetheless, if (h́, i∗) is at pseudo-depth s, then for any node (h, i) of the same pseudo-depth
to be expanded before (h́, i∗), the following must hold (assuming either of the heuristics (19)
or (20) holds as well):

b(h,i) ≥ b
(h́,i∗) (89)

f (xh,i) + δ(s) ≥ f ∗ (90)

For such case, MCS expands δ(s)-optimal nodes (with regards to MCS, we refer to a node
that satisfies (90), where s is the node’s initial pseudo-depth as a δ(s)-optimal node, and
denote the set of such nodes by Iδ(s)) and may expand non-δ(s)-optimal nodes, otherwise.
Clearly, the analysis is complicated. However, we can simplify it with an assumption about
the structure of the maximal expected gain max1≤ j≤N ê(h,i)

j for δ(s)-optimal nodes. With
this assumption, the relationship between h∗

n and n can be established. This is demonstrated
in the next lemma.

Lemma 5 InMCS, for any depth 0 ≤ h < smax , whenever n ≥ ∑s
l=0 |Iδ(l)| (smax −1) and

max1≤ j≤N ê(h,i)
j ≥ δ(s),∀δ(s)-optimal node ∈ T where 0 ≤ s ≤ smax −1, we have h∗

n ≥ s,
where n is the number of expansions.

Proof We know that h∗
n ≥ 0 and hence the above statement holds for s = 0. For s ≥ 1, we

are going to prove it by induction.
Assume that the statement holds for 0 ≤ s ≤ ŝ. We prove it for s ≥ ŝ + 1. Let n ≥∑ŝ+1
l=0 |Iδ(l)|(smax − 1). Consequently, we know that n ≥ ∑ŝ

l=0 |Iδ(l)|(smax − 1) for which
h∗
n ≥ ŝ. Here, we have two cases: h∗

n ≥ ŝ + 1, for which the proof is done; or h∗
n = ŝ. In the

second case, any node (h, i) at pseudo-depth ŝ + 1 that is expanded before the optimal node
of the same pseudo-depth has to be δ(ŝ + 1)-optimal. However, the heuristics of MCS may
possibly cause the expansion of such nodes to be skipped and expanding at the same time
non-δ(s)-optimal nodes at higher pseudo-depths. Nonetheless, if the computed expected gain

123

J Glob Optim (2016) 66:811–845 837

for a δ(ŝ + 1)-optimal node (h, i) satisfies max1≤ j≤N ê(h,i)
j ≥ δ(ŝ + 1), then we are certain

that heuristic (20) will always hold for such nodes. This can be proved as follows. Let (h, i)
be a δ(ŝ + 1)-optimal node, we have:

f (xh,i) + δ(ŝ + 1) ≥ f ∗ (91)

f (xh,i) + max
1≤ j≤N

ê(h,i)
j ≥ fmax (92)

Thus, (20) holds for δ(ŝ + 1)-optimal nodes and they will always get expanded. Since there
are |Iδ(ŝ+1)| of such nodes, we are certain that the optimal node at pseudo-depth ŝ + 1 is
expanded after at most |Iδ(ŝ+1)|(smax − 1) expansions. Thus, h∗

n ≥ ŝ + 1. ��
The next theorem builds on Lemma 5 to present a finite-time analysis of MCS with

an assumption on the structure of a node’s gain. To the best of our knowledge there is
no finite-time analysis of MCS with/without local search (only the consistency property
limn→∞ r(n) = 0 for MCS without local search in [27]).

Theorem 5 (Convergence of MCS) Assuming max1≤ j≤N ê(h,i)
j ≥ δ(s),∀δ(s)-optimal

node ∈ T where 0 ≤ s ≤ smax − 1, let us write s(n) the smallest s ∈ Z
+
0 such that

C(smax − 1)
s(n)∑
l=0

ρ−ldv ≥ n (93)

where dv is the v-near-optimality dimension. Then the regret ofMCS without local search is
bounded as

r(n) ≤ δ(min(s(n), smax))

Proof From Lemma 1, and the definition of s(n) (93), we have |Iδ(s)| ≤ Cρ−sdv and:

s(n)−1∑
l=0

|Iδ(l)|(smax − 1) ≤ C(smax − 1)
s(n)−1∑
l=0

ρ−ldv < n (94)

which implies from Lemma 5 and depth(T) ≤ smax that h∗
n ≥ min(s(n) − 1, smax − 1)).

Thus, from (30), we have r(n) ≤ δ(min(s(n), smax)). ��

4.2.5 Analysis of SOO

The b-value of a node in SOO is its local score, with lh,i = f (xh,i), λ = 0, and gh,i = −h.
Similar to MCS, the global score is used as a heuristic to filter the nodes considered for
expansion at an iteration. Given that the optimal node at depth h́ − 1 has been expanded, for
any node (h́, i) to be expanded before the optimal node (h́, i∗), the following must hold:

b
(h́,i) ≥ b

(h́,i∗) (95)

f (xh́,i) + δ(h́) ≥ f ∗ (96)

For such depths, SOO may expand δ(h)-optimal nodes . However, in contrary to DOO,
SOOmay expand non-δ(h)-optimal nodes at depths h́ < h ≤ depth(T). Nevertheless, the
relationship between h∗

n and n can be established due to SOO’s strategy in sweeping T . This
is demonstrated in [38, Lemma2]. With respect to the theoretical framework, [38] provides
the analysis of SOO for δ(h) < 1. We provide a generalized analysis (including δ(h) ≥ 1)
by modifying [38, Theorem 2]:

123

838 J Glob Optim (2016) 66:811–845

Theorem 6 (Convergence of SOO) Let us write h(n) the smallest h ∈ Z
+
0 such that

Chmax (n)

h(n)∑
l=0

ρ−ldv ≥ n (97)

where dv is the v-near-optimality dimension and n is the number of expansions. Then the
regret of SOO is bounded as

r(n) ≤ δ(min(h(n), hmax + 1))

Proof In linewithLemma1,wehave |Iδ(h)
h | ≤ Cρ−hdv . Thus, from the definition ofh(n) (97)

and [38, Lemma 2], the following:

hmax

h(n)−1∑
l=0

|Iδ(l)
l | ≤ Chmax (n)

h(n)−1∑
l=0

ρ−ldv < n

implies that h∗
n ≥ min(h(n) − 1, hmax (n)). Thus, from (30), we have r(n) ≤ δ(min(h(n),

hmax + 1)). ��

Effect of hmax (n) SOO controls T ’s exploration behavior (deep vs. broad) through a single
parameter, namely hmax (n). Given a fixed budget of node expansions, greater hmax reduces
the likelihood of expanding an optimal node in T , and hence a greater regret bound. It is
interesting to consider SOO’s behaviour when hmax (n) is set to ∞. Although Theorem 6
may imply that, for any n, the regret is bounded as r(n) ≤ δ(0)—i.e., by a constant—when
hmax (n) = ∞, this is not really the case for SOO. When hmax (n) is set to ∞, the regret
of SOO is related to number of iteration batches the algorithm may have for a number of
expansions n. The next corollary establishes a regret bound for SOO with hmax (n) = ∞. It
exploits the fact that for an iteration batch It , the number of expansions is less than or equal
depth(Tt−1); and after each batch of iterations, T ’s depth is increased at most by one.

Corollary 1 (Convergence of SOO with hmax = ∞) Let us define h(n) as is the smallest
h ∈ Z

+
0 such that:

C
h(n)∑
l=0

ρ−ldv ≥ nI (98)

where nI is the greatest positive integer number such that:

nI (nI + 1) ≤ 2 · n (99)

where n is the number of expansions. Then the regret of SOO with hmax = ∞ is bounded
as:

r(n) ≤ δ(h(n)) (100)

Proof Let h∗
n = h́ after ń complete batches of iteration. Then, each of the next batches

expands a δ(h́ + 1)-optimal node (if any). Since there are |Iδ(h́+1)
h | ≤ Cρ−(h́+1)dv of such

nodes, we know, after at most ń +Cρ−(h́+1)dv batches, that h∗
n ≥ h́ + 1. Now, for m batches

of iterations, SOO can have at most m(m+1)
2 expansions. Thus, from the definition of h(n)

and (30), we have h∗
n ≥ h(n) − 1 and r(n) ≤ δ(h(n)), respectively. ��

123

J Glob Optim (2016) 66:811–845 839

Table 1 Convergence rate of different MSO algorithms. These rates hold provided that Assumptions 1, 2, &
3 are satisfied

Algorithm Convergence rate Condition

LO r(n) ≤ 2δ(h(n)) C
∑h(n)

l=0 ρ
−ldv/2 ≥ n

DOO r(n) ≤ δ(h(n)) C
∑h(n)

l=0 ρ−ldv ≥ n

DIRECT r(n) ≤ δ(h(n))
h(n)∑
l=0

3l ≥ nI ,

nI (nI − 1) ≤ 2
N2 (n − N), Q = 1

SOO r(n) ≤ δ(min(h(n), hmax (n) + 1)) Chmax (n)
∑h(n)

l=0 ρ−ldv ≥ n

MCS r(n) ≤ δ(min(s(n), smax)) C(smax − 1)
∑s(n)

l=0 ρ−ldv ≥ n,

max1≤ j≤N êxj ≥ δ(s), ∀x ∈ Iδ(s) 0 ≤ s < smax

The Condition column provides the relation between the number of expansions n and the depth h(n)/s(n)

besides other algorithm-specific conditions. hmax + 1/smax define the maximum depth for the trees of SOO
and MCS, respectively

5 Discussion

This section presents an outline of the theoretical findings and complements it with optimiza-
tion problems in practice. Table 1 summarizes the convergence rate in terms of the regret
bound for the algorithms discussed. These bounds do not imply a comparative performance,
but rather report their worst-case behavior. Each algorithm employs different partitioning
rules for which δ(h) can be different. Nevertheless, since LO and DOO are theoretical
propositions, one could comment on their comparative performance. Based on Table 1, we
can conclude the following:

1. While LO and DOO assumes the knowledge about f ’s smoothness; for a Lipschitz-
continuous function, DOO is more preferable than LO as the latter’s regret bound is
double the former’s for the same number of expansions, provided that dv = dv/2, not to
mention that DOO comes with a less restrictive assumption of the function smoothness.
In practice, both algorithms are inapplicable unless some approximations on the function
smoothness are made.

2. If smax = hmax + 1, then SOO and MCS without local search, following the same
partitioning rule, share the same regret bound, under the assumption max1≤ j≤N ê(h,i)

j ≥
δ(s),∀δ(s)-optimal node ∈ T .

3. DIRECT has the most over-pessimistic regret bound requiring a number of expansions
n that grows quadratically in the number of problem dimensions N .

5.1 A worked example

This section presents a worked example, where the loss measure bounds are computed
using Symbolic Maths and compared with respect to the empirical results of the algorithms:
DIRECT, SOO, and MCS.12 Consider the function to be minimized f (x) : RN → R =
||x − x∗||α∞ over the decision space X = [−1, 1]N . As these algorithms evaluate their cells

12 LO and DOO are hypothetical propositions for which only practical/adapted implementation exists.

123

840 J Glob Optim (2016) 66:811–845

SOODIRECT

100 101 102 103

0

0.2

0.4

0.6

0.8

1

#f-evals

re
gr
et

rDIRECT δDIRECT

100 101 102 103

0

0.2

0.4

0.6

0.8

1

#f-evals

re
gr
et

rSOO δSOO

MCS

100 101 102 103

0

0.2

0.4

0.6

0.8

1

#f-evals

re
gr
et

rMCS δMCS

Fig. 4 The empirical convergence rate and its theoretical bound with respect to the number of function
evaluations #f-evals for the algorithms DIRECT, SOO, and MCS in minimizing ||x − x∗||α∞

at the center, the decreasing sequence δ(h) can be defined as K−3α�h/N� with a partitioning
factor of K = 3 and v = 1/2. As shown in Fig. 4, the bounds of SOO and MCS are tightly
following their empirical regrets. On the other hand, DIRECT’s pessimistic behavior makes
the loss bound lagging behind.

5.2 Empirical validation on real-world problems

Several studies have been conducted to evaluate the performance of MSO algorithms in the
literature. To complement the theoretical perspective of the paper, a compilation of numer-
ical assessment of the algorithms DIRECT, SOO, and MCS is presented in Figs. 5 and 6;
based on the experiments in [11,44,45], using theComparingContinuousOptimizer (COCO)
methodology [22],which comeswith a testbed of 24 scalable noiseless functions [23] address-
ing such real-world difficulties as ill-conditioning, multi-modality, and dimensionality. A set
of target function values is specified per function. The algorithms are evaluated based on
the number of function evalutions required to reach a target. The Expected Running Time
(ERT)—used for the assessment in Figs. 5 and 6— depends on a given target function value,

123

J Glob Optim (2016) 66:811–845 841

stcfetaredomstcfelbarapes

stcfladom-itlumstcfdenoitidnoc-lli

snoitcnufllastcfladom-itlumderutcurtsylkaew

Fig. 5 Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided
by dimension (FEvals/DIM) for all functions and subgroups in 5-D. The targets ftarget = f ∗+� f are defined
with � f ∈ 10[−8..2] such that the bestGECCO2009 artificial algorithm just not reached them within a given
budget of k · DIM , with k ∈ {0.5, 1.2, 3, 10, 50}. The “best 2009” line corresponds to the best ERT observed
during BBOB 2009 for each selected target. The cross indicates the maximum number of function evaluations
used by the corresponding algorithm

ftarget = f ∗ + � f , and is computed over all relevant trials as the number of function eval-
uations #f-evals executed during each trial while the best function value did not reach
ftarget (see [22], for more details).
One can see how the pessimistic regret bound of DIRECT is in line with its performance

as dimensionality increases: solving around 70% (20%) of the problems for N = 5 (N =

123

842 J Glob Optim (2016) 66:811–845

stcfetaredomstcfelbarapes

stcfladom-itlumstcfdenoitidnoc-lli

snoitcnufllastcfladom-itlumderutcurtsylkaew

Fig. 6 Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided
by dimension (FEvals/DIM) for all functions and subgroups in 20-D. The targets ftarget = f ∗ + � f are
defined with � f ∈ 10[−8..2] such that the bestGECCO2009 artificial algorithm just not reached them within
a given budget of k · DIM , with k ∈ {0.5, 1.2, 3, 10, 50}. The “best 2009” line corresponds to the best ERT
observed during BBOB 2009 for each selected target. The cross indicates the maximum number of function
evaluations used by the corresponding algorithm

20). Sharing similar regret bound under certain assumptions, MCS and SOO seem to have
comparable performance. However, asMCS employs heuristic rules for expansion, it enjoys
faster convergence rate, especially with higher dimensions.

123

J Glob Optim (2016) 66:811–845 843

6 Conclusions

This paper has consolidated a broad category of algorithms that search for the (or one)
optimal solution x∗ by partitioning the search space X over multiple scales for solving
bound-constrained black-box global optimization problems, under the multi-scale optimiza-
tion (MSO) framework. Inline with MSO, we present a theoretical methodology to analyze
these algorithms based on three basic assumptions: a) local Hölder continuity of the objec-
tive function f , b) partitions boundedness, and c) partitions sphericity. As a result, we are
able to provide a theoretical bound on the regret of several state-of-the-art MSO algorithms,
including LO, DOO, DIRECT, MCS and SOO.

Acknowledgments Theauthorswould like to thank the reviewers for their valuable comments and suggestions
that had improved the paper substantially.

References

1. Archetti, F., Betrò, B.: A priori analysis of deterministic strategies for global optimization problems.
Towards Global Optim. 2, 31 (1978)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach.
Learn. 47(2–3), 235–256 (2002)

3. Bertsekas, D.P.: Constrained Optimization and LagrangeMultiplier Methods. Athena Scientific, Belmont
(1996)

4. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S.,
Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree search methods. IEEE Trans. Acoust.
Speech Signal Process. Comput. Intell. AI Games 4(1), 1–43 (2012)

5. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge
(2006)

6. Chaput, J.C., Szostak, J.W.: Evolutionary optimization of a nonbiological atp binding protein for improved
folding stability. Chem. Biol. 11(6), 865–874 (2004)

7. Chaslot, G., Saito, J.T., Bouzy, B., Uiterwijk, J., Van Den Herik, H.J.: Monte-carlo strategies for computer
go. In: Proceedings of the 18th BeNeLux Conference on Artificial Intelligence, Namur, Belgium, pp. 83–
91. Citeseer (2006)

8. Clarke, F.H.: Nonsmooth analysis and optimization. In: Proceedings of the International Congress of
Mathematicians (Helsinki, 1978), pp. 847–853 (1983)

9. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-
weighted graphs. In: Mathematical Morphology and Its Applications to Signal and Image Processing, pp.
86–97. Springer (2013)

10. Csendes, T., Ratz, D.: Subdivision direction selection in interval methods for global optimization. SIAM
J. Numer. Anal. 34(3), 922–938 (1997)

11. Derbel, B., Preux, P.: Simultaneous optimistic optimization on the noiseless bbob testbed. In: IEEE
Congress on Evolutionary Computation (CEC), pp. 2010–2017 (2015). doi:10.1109/CEC.2015.7257132

12. Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optim.
Lett. 7(4), 819–829 (2013)

13. Evtushenko, Y.G.: Numerical methods for finding global extrema (case of a non-uniform mesh). USSR
Comput. Math. Math. Phys. 11(6), 38–54 (1971)

14. Evtushenko, Y.G., Malkova, V., Stanevichyus, A.: Parallel global optimization of functions of several
variables. Comput. Math. Math. Phys. 49(2), 246–260 (2009)

15. Finkel, D., Kelley, C.: Additive scaling and the direct algorithm. J.Global Optim. 36(4), 597–608 (2006)
16. Finkel, D.E., Kelley, C.T.: Convergence analysis of the direct algorithm. NCSUMathematics Department,

Raleigh, NC (2004)
17. Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L.,

Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization, vol. 33.
Springer Science & Business Media, Berlin (2013)

18. Fowkes, J.M., Gould, N.I., Farmer, C.L.: A branch and bound algorithm for the global optimization of
hessian lipschitz continuous functions. J. Global Optim. 56(4), 1791–1815 (2013)

123

http://dx.doi.org/10.1109/CEC.2015.7257132

844 J Glob Optim (2016) 66:811–845

19. Gablonsky, J.: An implementation of the direct algorithm. Centre for Research in Scientific Computing,
North Carolina State University, Tech. Rep. CRSC-TR98-29 (1998)

20. Gablonsky, J.: Modifications of the direct algorithm. Ph.D. thesis, North Carolina State University,
Raleigh, North Carolina (2001)

21. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the direct algorithm. J. Global Optim. 21(1),
27–37 (2001)

22. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2012:
Experimental setup. Tech. rep., INRIA (2012). http://coco.gforge.inria.fr/bbob2012-downloads

23. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009:
Noiseless functions definitions. Tech. Rep. RR-6829, INRIA (2009). http://hal.inria.fr/inria-00362633/
en/

24. Hansen, P., Jaumard,B., Lu, S.H.:On the number of iterations of piyavskii’s global optimization algorithm.
Math. Oper. Res. 16(2), 334–350 (1991). doi:10.1287/moor.16.2.334

25. Horst, R., Tuy, H.: On the convergence of global methods in multiextremal optimization. J. Optim. Theory
Appl. 54(2), 253–271 (1987)

26. Hu, J., Wang, Y., Zhou, E., Fu, M.C., Marcus, S.I.: A survey of some model-based methods for global
optimization. In: Optimization, Control, and Applications of Stochastic Systems, pp. 157–179. Springer
(2012)

27. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Global Optim. 14(4),
331–355 (1999)

28. Ivanov, V.: On optimal algorithms of minimization in the class of functions with the lipschitz condition.
Inf. Process. 71, 1324–1327 (1972)

29. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant.
J. Optim. Theory Appl. 79(1), 157–181 (1993)

30. Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal go methods.
Numer. Math. 94(1), 93–106 (2003)

31. Kvasov,D.E., Sergeyev,Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning
scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012)

32. Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box global optimiza-
tion problems. Adv. Eng. Softw. 80, 58–66 (2015)

33. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6(1), 4–22
(1985)

34. Laurence, A., Wolsey, G.L.N.: Integer and Combinatorial Optimization. Wiley, New York (1988)
35. Liu, Q., Cheng, W.: A modified direct algorithm with bilevel partition. J. Global Optim. 60(3), 483–499

(2014). doi:10.1007/s10898-013-0119-1
36. Mayne, D., Polak, E.: Outer approximation algorithm for nondifferentiable optimization problems. J.

Optim. Theory Appl. 42(1), 19–30 (1984). doi:10.1007/BF00934131
37. Mladineo, F.H.: An algorithm for finding the global maximum of a multimodal, multivariate function.

Math. Prog. 34(2), 188–200 (1986). doi:10.1007/BF01580583
38. Munos, R.: Optimistic optimization of a deterministic function without the knowledge of its

smoothness. In: Advances in Neural Information Processing Systems, vol. 24, pp. 783–
791.CurranAssociates, Inc. (2011). http://papers.nips.cc/paper/4304-optimistic-optimization-of-a-deter
ministic-function-without-the-knowledge-of-its-smoothness.pdf

39. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased DISIMPL algorithm for
expensive global optimization. J. Global Optim. 59(2–3), 545–567 (2014)

40. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014)
41. Pintér, J.: Globally convergent methods for n-dimensional multiextremal optimization. Optimization

17(2), 187–202 (1986)
42. Pintér, J.: Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Imple-

mentations and Applications, vol. 6. Springer Science & Business Media, Berlin (1995)
43. Piyavskii, S.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math. Math.

Phys. 12(4), 57–67 (1972)
44. Pošík, P.: Bbob-benchmarking the direct global optimization algorithm. In: GECCO ’09: Proceedings of

the 11th annual conference companion on Genetic and evolutionary computation conference, pp. 2315–
2320. ACM, New York, NY, USA (2009). doi:10.1145/1570256.1570323

45. Pošík, P., Huyer, W., Pál, L.: A comparison of global search algorithms for continuous black box opti-
mization. Evolut. Comput. 20(4), 509–541 (2012)

46. Preux, P., Munos, R., Valko,M.: Bandits attack function optimization. In: IEEECongress on Evolutionary
Computation (CEC), pp. 2245–2252 (2014)

123

http://coco.gforge.inria.fr/bbob2012-downloads
http://hal.inria.fr/inria-00362633/en/
http://hal.inria.fr/inria-00362633/en/
http://dx.doi.org/10.1287/moor.16.2.334
http://dx.doi.org/10.1007/s10898-013-0119-1
http://dx.doi.org/10.1007/BF00934131
http://dx.doi.org/10.1007/BF01580583
http://papers.nips.cc/paper/4304-optimistic-optimization-of-a-deterministic-function-without-the-knowledge-of-its-smoothness.pdf
http://papers.nips.cc/paper/4304-optimistic-optimization-of-a-deterministic-function-without-the-knowledge-of-its-smoothness.pdf
http://dx.doi.org/10.1145/1570256.1570323

J Glob Optim (2016) 66:811–845 845

47. Ratz, D., Csendes, T.: On the selection of subdivision directions in interval branch-and-bound methods
for global optimization. J. Global Optim. 7(2), 183–207 (1995). doi:10.1007/BF01097060

48. TheMorgridge Institute for Research, I.M.: Bound constrained optimization. http://www.neos-guide.org/
content/bound-constrained-optimization

49. Robbins, H., et al.: Some aspects of the sequential design of experiments. Bull. Am. Math. Soc. 58(5),
527–535 (1952)

50. Roslund, J., Shir, O.M., Bäck, T., Rabitz, H.: Accelerated optimization and automated discovery with
covariance matrix adaptation for experimental quantum control. Phys. Rev. A 80(4), 043–415 (2009)

51. Sergeyev, Y.D.: A one-dimensional deterministic global minimization algorithm. Comput. Math. Math.
Phys. 35(5), 705–717 (1995)

52. Sergeyev, Y.D.: On convergence of divide the best global optimization algorithms. Optimization 44(3),
303–325 (1998)

53. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of lipschitz
constants. SIAM J. Optim. 16(3), 910–937 (2006)

54. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary func-
tions. Commun. Nonlinear Scie. Numer. Simul. 21(1), 99–111 (2015)

55. Sergeyev, Y.D., Strongin, R.G.: A global minimization algorithm with parallel iterations. USSR Comput.
Math. Math. Phys. 29(2), 7–15 (1990)

56. Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal.
9(3), 379–388 (1972)

57. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting:
no regret and experimental design. In: 27th International Conference on Machine Learning (2010)

58. Stover, C., Weisstein, E.W.: Hölder condition. MathWorld–AWolframWeb Resource. http://mathworld.
wolfram.com/HoelderCondition.html

59. Strongin, R.G.: Numerical methods in multi-extremal problems (information-statistical algorithms)
(1978)

60. Strongin, R.G.: On the convergence of an algorithm for finding a global extremum. Eng. Cybernet. 11,
549–555 (1973)

61. Strongin, R.G., Sergeyev, Y.: Global Optimization and Non-Convex Constraints: Sequential and Parallel
Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

62. Strongin, R.G., Sergeyev, Y.D.: Global multidimensional optimization on parallel computer. Parallel
Comput. 18(11), 1259–1273 (1992)

63. Sukharev, A.G.: Optimal strategies of the search for an extremum. USSR Comput. Math. Math. Phys.
11(4), 119–137 (1971)

64. Thompson,W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence
of two samples. Biometrika, pp. 285–294 (1933)

65. Torn, A., Zilinskas, A.: Global Optimization. Springer, New York (1989)
66. Valko, M., Carpentier, A., Munos, R.: Stochastic simultaneous optimistic optimization. In: Proceedings

of the 30th International Conference on Machine Learning (ICML-13), pp. 19–27 (2013)
67. Wang, Z., Shakibi, B., Jin, L., de Freitas, N.: Bayesianmulti-scale optimistic optimization. In: Proceedings

of International Conference on Artificial Intelligence and Statistics (AISTATS 2014), pp. 1005–1014
(2014)

123

http://dx.doi.org/10.1007/BF01097060
http://www.neos-guide.org/content/bound-constrained-optimization
http://www.neos-guide.org/content/bound-constrained-optimization
http://mathworld.wolfram.com/HoelderCondition.html
http://mathworld.wolfram.com/HoelderCondition.html

	MSO: a framework for bound-constrained black-box global optimization algorithms
	Abstract
	1 Introduction
	2 Some preliminaries
	3 Multi-scale optimization (MSO)
	3.1 A generic procedure of MSO algorithms
	3.2 MSO Algorithms in the literature
	3.2.1 Lipschitzian optimization (LO)
	3.2.2 Deterministic optimistic optimization (DOO)
	3.2.3 Dividing rectangles (DIRECT)
	3.2.4 Multilevel coordinate search (MCS)
	3.2.5 Simultaneous optimistic optimization (SOO)

	3.3 Discussion on MSO algorithms

	4 Convergence analysis of MSO algorithms
	4.1 Theoretical framework for convergence
	4.1.1 Bounding the regret r(n)
	4.1.2 Finding the depth of the deepest expanded optimal node, h*n
	4.1.3 Bounding |mathcalIε(h)h|
	4.1.4 A convergence theorem

	4.2 Analysis of MSO algorithms
	4.2.1 Analysis of LO
	4.2.2 Analysis of DOO
	4.2.3 Analysis of DIRECT
	4.2.4 Analysis of MCS
	4.2.5 Analysis of SOO

	5 Discussion
	5.1 A worked example
	5.2 Empirical validation on real-world problems

	6 Conclusions
	Acknowledgments
	References

