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Abstract In this paper, we introduce a new primal–dual prediction–correction algorithm for
solving a saddle point optimization problem, which serves as a bridge between the algorithms
proposed in Cai et al. (J Glob Optim 57:1419–1428, 2013) and He and Yuan (SIAM J
Imaging Sci 5:119–149, 2012). An interesting byproduct of the proposed method is that we
obtain an easily implementable projection-based primal–dual algorithm, when the primal and
dual variables belong to simple convex sets. Moreover, we establish the worst-case O(1/t)
convergence rate result in an ergodic sense, where t represents the number of iterations.

Keywords Saddle point problem ·Primal–dual algorithm ·Prediction–correction algorithm ·
Projection method · Convergence rate

1 Introduction

Consider the following saddle-point optimization problem:

min
y∈Y max

x∈X Φ(x, y) := 〈y, Ax〉 + ν

2
‖By − b‖2, (1.1)

where X and Y are two nonempty, closed and convex subsets of Rm and R
n , respectively;

A ∈ R
n×m and B ∈ R

n×n are two given matrices; b ∈ R
n is a given (observation) vector;

ν > 0 serves as a tuning parameter; 〈·, ·〉 denotes the standard inner product of vectors;
and ‖ · ‖ is the Euclidean norm. It is well documented in the literature that the saddle point
problem (1.1) hasmany applications in diverse areas such as constrained optimization duality,
zero-sum games, and image processing (see [4–6,8–10,13]), amongst others.
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To solve the saddle point problem (1.1), Chambolle and Pock [4] introduced the so-called
first-order primal–dual algorithm (FOPDA), which has been successfully applied to solve
many image restorationproblems. In recent years, primal–dualmethodshavebeen extensively
studied for solving convex optimization and saddle point problems arising in signal/image
processing, computer vision, and machine learning (see [12] for a recent overview on such
primal–dual algorithmic advancements). As pointed out in [4], the primal–dual hybrid gra-
dient (PDHG) method [11,15] as well as the Arrow–Hurwicz–Uzawa method [1] are special
cases of the FOPDAmethod. Although the conditions for global convergence of FOPDA are
weaker than those in [1,15], the numerical results reported in [2,10] show that FOPDA [4]
performs better in practice when its parameters are set beyond their theoretically guaranteed
limits. Motivated by these results, He and Yuan [10] introduced a new class of primal–
dual based prediction–correction algorithms where the range of the involved parameters in
[4] was extended to further augment the performance of FOPDA. Subsequently, Cai et al.
[2] presented an improved version of He and Yuan’s algorithm with a new correction step,
which further weakens the conditions assumed in [10] and also improves its computational
efficiency.

In this paper, we propose another primal–dual algorithm, which aims to bridge the gap
between the algorithms in [2,10]. As a byproduct, we also obtain a partially linearized
primal–dual algorithm, which only requires two projections during the prediction stage. This
resulting linearized version of our algorithm is relatively easier to implement as compared
to the algorithms in [2,4,10] as long as the projections of X and Y are readily available as
closed-form solutions or are simple enough to compute numerically. Recently, Chambolle
and Pock [3] established the O(1/t) convergence rate of the FOPDA method in an ergodic
sense. In a similar fashion, in the third contribution of this work, we also establish theO(1/t)
convergence rate for the proposed algorithm, which further serves to provide an interesting
complement to the methods introduced in [2,10].

The remainder of this paper is organized as follows. In Sect. 2, we begin by summarizing
some basic notations and definitions, and follow this up by deriving an equivalent variational
characterization of the saddle point problem (1.1). In Sect. 3, we propose the algorithmic
framework of the primal–dual based prediction–correction method and briefly address its
connections to existing primal–dual algorithms. More importantly, we describe a simplified
projection-based primal–dual method obtained by virtue of appropriately chosen parameters.
In Sect. 4, we establish the O(1/t) convergence rate of the proposed method in an ergodic
sense, and finally, Sect. 5 summarizes the contributions of this paper and presents extensions
for future research.

2 Preliminaries

In this section, we begin by summarizing some notations and definitions, and moreover,
we reformulate the saddle point problem (1.1) as a variational inequality, which serves to
facilitate the subsequent convergence analysis.

Let Rn be an n-dimensional Euclidean space. The symbol � represents the transpose. For
a given symmetric and positive definite matrix H , we let ‖x‖H = √〈x, Hx〉 be the H -norm
of x . Furthermore, we denote ‖N‖ to be the matrix 2-norm of an arbitrary matrix N .

LetΩ be a convex subset of Rn . We denote PΩ(·) to be the projection of (·) onto Ω under
the Euclidean norm, that is,

PΩ(v) := argmin {‖u − v‖ | u ∈ Ω} , ∀v ∈ R
n .
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Now, let (x∗, y∗) be a solution of the saddle point problem (1.1). Then, from saddle point
optimality conditions, we get,

max
x∈X

{
〈x, A�y∗〉 + ν

2
‖By∗ − b‖2

}
≤ 〈x∗, A�y∗〉 + ν

2
‖By∗ − b‖2

≤ min
y∈Y

{
〈x∗, A�y〉 + ν

2
‖By − b‖2

}
,

which reduces to the following pair of variational inequalities:
{ 〈x − x∗,−A�y∗〉 ≥ 0, ∀x ∈ X ,

〈y − y∗, Ax∗ + νB�(By∗ − b)〉 ≥ 0, ∀y ∈ Y.

The above variational characterization can be compactly rewritten as a problem of finding
u∗ ∈ Ω , such that

〈u − u∗, F(u∗)〉 ≥ 0, ∀u ∈ Ω, (2.1a)

where

u :=
(
x
y

)
, F(u) :=

(−A�y
Ax + νB�(By − b)

)
, and Ω := X × Y. (2.1b)

It is easy to verify that the underlying mapping F defined in (2.1b) is monotone, i.e.,

〈u1 − u2, F(u1) − F(u2)〉 ≥ 0, ∀u1, u2 ∈ Ω.

Throughout this paper, our convergence analysis is based on the variational characteriza-
tion (2.1) and the associated theory of variational inequalities.

3 Algorithm

To begin with, define:

M :=
( 1

τ
I A�

θ A 1
σ
I + 2ρB�B

)
and H :=

( 1
τ
I 0
0 1

σ
I + 2ρB�B

)
, (3.1)

where τ , θ , σ , ρ are given constants such that both M and H are positive definite, denoted
using standard notation as M � 0 and H � 0.

We are now ready to formally present the algorithmic framework of the primal–dual
prediction–correction algorithm where, for the sake of notational convenience, we have rep-
resented u := (x, y) and λmax(B�B) denotes the maximum eigenvalue of B�B.

Remark 3.1 When we set ρ := 0 in (3.2c), Algorithm 1 reduces to the first algorithm
proposed in [10]. Besides, if we set ρ := ν, while taking H as the identity matrix and

α∗
k := 〈uk − ũk, M̃(uk − ũk)〉

‖M(uk − ũk)‖2 , where M̃ :=
( 1

τ
I A�

θ A 1
σ
I + νB�B

)
, (3.5)

as the step size [instead of αk in (3.3)], the iterative scheme then coincides with the algorithm
introduced in [2]. Clearly, Algorithm 1 can be regarded as an extension of the respective
methods proposed in [2,10].

123



576 J Glob Optim (2016) 66:573–583

Algorithm 1 A primal-dual prediction-correction algorithm.

1: Select τ > 0, σ > 0, θ ∈ [−1, 1], and ρ > −1/(2σλmax(B�B)).
2: for k = 0, 1, 2, · · · do
3: Generate a pair of predictors ũk := (̃xk , ỹk ) via

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̃k = arg max
x∈X

{
τΦ(x, yk ) − 1

2
‖x − xk‖2

}
, (3.2a)

x̄k = x̃k + θ (̃xk − xk ), (3.2b)

ỹk = arg min
y∈Y

{
σΦ(x̄k , y) + 1

2
‖y − yk‖2 + σρ‖B(y − yk )‖2

}
. (3.2c)

4: Update the next iterate uk+1 := (xk+1, yk+1) via

uk+1 = uk − γαk H
−1M(uk − ũk ), γ ∈ (0, 2), (3.3)

where H and M are defined by (3.1) and

αk := 〈uk − ũk , M(uk − ũk )〉
‖H−1M(uk − ũk )‖2H

. (3.4)

5: end for

Note that the y-related subproblem (3.2c) is essentially a constrained minimization prob-
lem if Y is a proper subset ofRn . In this situation, Algorithm 1 fails to be easily implemented
when ρ := 0 (as is the case in [2,4,10]). Indeed, observe that, when taking ρ := −ν/2, the
iterative schemes (3.2a) and (3.2c) amount to two projection steps, given by,

⎧⎪⎨
⎪⎩

x̃ k = PX
(
xk + τ A�yk

)
, (3.6a)

ỹk = PY
(
yk − σ Ax̄k + σνB�(Byk − b)

)
. (3.6b)

Clearly, the projection steps (3.6a) and (3.6b) are computationally easier to implement than
the original projection operators introduced in [2,4,10], as long as the sets X and Y are
relatively simple. It is worthwhile to note that such a linearization strategy has appeared in a
recent work [14], where the authors only considered the case of a fixed θ = 1 in (3.2b), and
showed that this variant yields significant computational benefits.

4 Convergence results

In this section, we first prove that Algorithm 1 is globally convergent to a solution of (1.1).
Our secondary goal is to establish theworst-caseO(1/t) convergence rate result in an ergodic
sense, which is not estimated in [2,10]. In our analysis, we impose the same assumptions on
the parameters τ , σ , and δ, as stated in [10].

Lemma 4.1 Let {uk := (xk, yk)} be generated by Algorithm 1. Then, we have

〈u − ũk, F (̃uk) + M (̃uk − uk)〉 ≥ 0, ∀u ∈ Ω, (4.1)

where M is as given in (3.1).
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Proof By invoking the first-order optimality conditions of (3.2a) and (3.2c), we have
{ 〈x − x̃ k,−A�yk + 1

τ
(̃xk − xk)〉 ≥ 0, ∀x ∈ X ,

〈y − ỹk, Ax̄k + νB�(B ỹk − b) + ( 1
σ
I + 2ρB�B

)
(ỹk − yk)〉 ≥ 0, ∀y ∈ Y.

Using the notation in (2.1), together with (3.2b), yields the desired inequality (4.1). 
�
Lemma 4.2 Let u∗ := (x∗, y∗) be an arbitrary solution of (1.1). Then, the sequences {uk}
and {̃uk} generated by Algorithm 1 satisfy the following property:

〈uk − u∗, M(uk − ũk)〉 ≥ 〈uk − ũk, M(uk − ũk)〉. (4.3)

Proof Note that the inequality (4.1) holds for any u ∈ Ω . As a consequence, we have

〈u∗ − ũk, F (̃uk) + M (̃uk − uk)〉 ≥ 0, ∀u∗ ∈ Ω. (4.4)

On the other hand, it follows from (2.1) that

〈̃uk − u∗, F(u∗)〉 ≥ 0. (4.5)

Adding (4.4) and (4.5) yields

〈̃uk − u∗, F(u∗) − F (̃uk)〉 ≥ 〈u∗ − ũk, M(uk − ũk)〉,
which together with the monotonicity of F implies that

〈̃uk − u∗, M(uk − ũk)〉 ≥ 0.

Thus, we conclude that

〈uk − u∗, M(uk − ũk)〉 ≥ 〈uk − ũk, M(uk − ũk)〉,
and the assertion of this lemma is obtained. 
�
Remark 4.1 When ρ = ν, note that the matrix M can be expressed as the sum of two parts

M = M̃ + N , where N :=
(
0 0
0 ρB�B

)
,

and M̃ is as previously defined in (3.5). Consequently, the term on the right hand side of
(4.3) satisfies

〈uk − ũk, M(uk − ũk)〉 = 〈uk − ũk, M̃(uk − ũk)〉 + ρ‖B(yk − ỹk)‖2
≥ 〈uk − ũk, M̃(uk − ũk)〉,

and this validates the reasonableness of the choice of step size used in [2].

It is easy to verify that the matrix H , defined in (3.1), is always positive definite under the
condition that ρ > −1/(2σλmax(B�B)). Therefore, it follows that

〈uk − ũk, M(uk − ũk)〉 ≥ δ

1 + δ
‖uk − ũk‖2H > 0, ∀uk �= ũk . (4.6)

A formal proof of this result is presented below, following a similar line of reasoning as used
in [10,11].
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Lemma 4.3 Let H and M be defined as (3.1). If the parameters τ and σ satisfy

τσ
(1 + θ)2

4
<

1

‖A�A‖ ,

we have

〈u − ũ, M(u − ũ)〉 ≥ δ

1 + δ
‖u − ũ‖2H > 0, ∀u �= ũ,

where

δ := 2

1 + θ

√
1

τσ‖A�A‖ − 1 > 0.

Proof Under the assumed condition that δ > 0, it holds that

τ(1 + δ)‖A�A‖ (1 + θ)2

4
= 1

σ(1 + δ)
.

Using the Cauchy–Schwarz inequality yields

(1 + θ)〈y − ỹ, A(x − x̃)〉

≥ −(τ (1 + δ)‖A�A‖) (1 + θ)2

4
‖y − ỹ‖2 − 1

τ(1 + δ)‖A�A‖‖A(x − x̃)‖2

= − 1

σ(1 + δ)
‖y − ỹ‖2 − 1

τ(1 + δ)‖A�A‖‖A(x − x̃)‖2

≥ − 1

1 + δ

(
1

τ
‖x − x̃‖2 + 1

σ
‖y − ỹ‖2

)
.

On the other hand,

‖u − ũ‖2H = 1

τ
‖x − x̃‖2 + 1

σ
‖y − ỹ‖2 + 2ρ‖y − ỹ‖2B�B

≥ 1

τ
‖x − x̃‖2 + 1

σ
‖y − ỹ‖2.

Combining the above inequalities leads to

1

1 + δ
‖u − ũ‖2H + (1 + θ)〈y − ỹ, A(x − x̃)〉 ≥ 0.

For any u �= ũ, we get

〈u − ũ, M(u − ũ)〉
= ‖u − ũ‖2H + (1 + θ)〈y − ỹ, A(x − x̃)〉
= δ

1 + δ
‖u − ũ‖2H + 1

1 + δ
‖u − ũ‖2H + (1 + θ)〈y − ỹ, A(x − x̃)〉

≥ δ

1 + δ
‖u − ũ‖2H > 0.

Hence, the assertion of this lemma is proved. 
�
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Therefore, it follows from Lemma 4.3 that the inequality (4.6) holds. Then, an immediate
consequence to (4.3) and (4.6) is that,

〈H(uk − u∗), H−1M(uk − ũk)〉 ≥ δ

1 + δ
‖uk − ũk‖2H > 0, ∀uk �= ũk .

Obviously, the above inequality indicates that, at any iteration k of the algorithm,
−H−1M(uk − ũk) is a descent direction of the distance function 1

2‖u − u∗‖2H , which also
ensures that the correction step (3.3) is well defined.

Theorem 4.1 Let u∗ be an arbitrary solution of (1.1). Then, there exists a constant c > 0
such that the sequence {uk} generated by Algorithm 1 satisfies

‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − c‖uk − ũk‖2H . (4.7)

Proof Recalling the iterative scheme (3.3), we have

‖uk+1 − u∗‖2H
= ‖uk − γαk H

−1M(uk − ũk) − u∗‖2H
= ‖uk − u∗‖2H − 2γαk〈uk − u∗, M(uk − ũk)〉 + γ 2α2

k‖H−1M(uk − ũk)‖2H
≤ ‖uk − u∗‖2H − 2γαk〈uk − ũk, M(uk − ũk)〉 + γ 2α2

k‖H−1M(uk − ũk)‖2H
= ‖uk − u∗‖2H − γ (2 − γ )αk〈uk − ũk, M(uk − ũk)〉
≤ ‖uk − u∗‖2H − γ (2 − γ )αk

δ

1 + δ
‖uk − ũk‖2H . (4.8)

It follows from the definition of αk , defined by (3.4), that

αk := (uk − ũk)�M(uk − ũk)

‖H−1M(uk − ũk)‖2H
≥ δ‖uk − ũk‖2H

(1 + δ)‖M�H−1M‖‖uk − ũk‖2
≥ δλmin(H)

(1 + δ)‖M�H−1M‖
= δ · min

{ 1
τ
, 1

σ
+ 2ρλmin(B�B)

}

(1 + δ)‖M�H−1M‖
:= αmin > 0,

where λmin(•) denotes the minimum eigenvalue of a matrix (•).
Therefore, we conclude from (4.8) that

‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H −
(

γ (2 − γ )δαmin

1 + δ

)
‖uk − ũk‖2H .

Setting c := (γ (2 − γ )δαmin) /(1 + δ) completes the proof. 
�
The above theorem proves that the sequence {uk} generated by Algorithm 1 is Fejér

monotone with respect to the solution set of (2.1). Following the line of reasoning presented
in [10, Theorem 3.7] (see also [2,4]), we can also prove that Algorithm 1 enjoys global
convergence. Therefore, we only state the following theorem and refer the reader to the
aforementioned references for a detailed proof of this result.
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Theorem 4.2 The sequence {uk} generated by Algorithm 1 is globally convergent to a solu-
tion point of (1.1).

Next, we prove that Algorithm 1 has a worst-case O(1/t) convergence rate in an ergodic
sense. We begin this analysis with a fundamental inequality proved in the following lemma.

Lemma 4.4 Let the sequences {uk} and {̃uk} be generated by Algorithm 1. Then, the follow-
ing inequality

〈u − ũk, F(u)〉 + 1

2γαk

(
‖u − uk‖2H − ‖u − uk+1‖2H

)
≥ (2 − γ )δ

2(1 + δ)
‖uk − ũk‖2H ,

(4.9)

holds for all u ∈ Ω , where H is as defined in (3.1).

Proof Rearranging the terms in (4.1), we get

〈u − ũk, F (̃uk)〉 ≥ 〈u − ũk, M(uk − ũk)〉. (4.10)

It follows from the monotonicity of F that

〈u − ũk, F(u)〉 ≥ 〈u − ũk, F (̃uk)〉, ∀u ∈ Ω.

Clearly, from (4.10), we have

〈u − ũk, F(u)〉 ≥ 〈u − ũk, M(uk − ũk)〉, ∀u ∈ Ω. (4.11)

Note that the correction step (3.3) can be rewritten as

uk − ũk = 1

γαk
M−1H(uk − uk+1),

and consequently, we have

〈u − ũk, M(uk − ũk)〉 = 1

γαk
〈u − ũk, H(uk − uk+1)〉. (4.12)

An application, on the right hand side of (4.12), of the following equality

〈a − b, H(c− d)〉 = 1

2

(‖a − d‖2H − ‖a − c‖2H
) + 1

2

(‖c− b‖2H − ‖d − b‖2H
)

with settings a := u, b := ũk , c := uk , and d := uk+1, yields

〈u − ũk, H(uk − uk+1)〉
= 1

2

(
‖u − uk+1‖2H − ‖u − uk‖2H

)
+ 1

2

(
‖uk − ũk‖2H − ‖uk+1 − ũk‖2H

)
. (4.13)

The last term of (4.13) satisfies

1

2

(
‖uk − ũk‖2H − ‖uk+1 − ũk‖2H

)

= 1

2

(
‖uk − ũk‖2H − ‖uk − γαk H

−1M(uk − ũk) − ũk‖2H
)

= 1

2
γ (2 − γ )αk〈uk − ũk, M(uk − ũk)〉

≥ δγ (2 − γ )αk

2(1 + δ)
‖uk − ũk‖2H , (4.14)
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where the first equality comes from (3.3) and the second inequality follows from (4.6).
Combining (4.11), (4.12), (4.13), and (4.14) leads to

〈u − ũk, F(u)〉 ≥ 1

2γαk

(
‖u − uk+1‖2H − ‖u − uk‖2H

)
+ (2 − γ )δ

2(1 + δ)
‖uk − ũk‖2H ,

and the desired result is obtained by rearranging the terms in the above inequality. 
�

Theorem 4.3 For any integer t > 0, we denote

ūt = 1

Υt

t∑
k=0

αk ũk, with Υt =
t∑

k=0

αk, (4.15)

where ũk (k = 0, 1, · · · , t) are generated by Algorithm 1 and αk is given by (3.4). Then, we
have ūt ∈ Ω and

〈ūt − u, F(u)〉 ≤ 1

2γαmin(t + 1)
‖u − u0‖2H .

Proof First, as a direct consequence of (4.9), we have

αk〈u − ũk, F(u)〉 + 1

2γ
‖u − uk‖2H ≥ 1

2γ
‖u − uk+1‖2H , ∀u ∈ Ω.

Summing the above inequality over k = 0, 1, · · · , t results in

〈
Υtu −

t∑
k=0

αk ũk, F(u)

〉
+ 1

2γ
‖u − u0‖2H ≥ 0, ∀u ∈ Ω.

As αk ≥ αmin, we have Υt ≥ (t + 1)αmin and

1

Υt
≤ 1

(t + 1)αmin
.

Therefore,

〈
1

Υt

t∑
k=0

αk ũk − u, F(u)

〉
≤ 1

2γΥt
‖u − u0‖2H ≤ 1

2γαmin(t + 1)
‖u − u0‖2H ,

and the assertion of this theorem is obtained. 
�

The foregoing theorem shows that for a given arbitrary compact set D ⊂ Ω , after t
iterations of Algorithm 1, we obtain an approximate solution ūt , given by (4.15), for the
variational inequality (2.1) [and equivalently for the saddle point problem (1.1)] such that

sup {〈ūt − u, F(u)〉} ≤ ε,

where ε := d2
2γαmin(t+1) , with d := sup{‖u−u0‖H | u ∈ Ω}. Hence, theO(1/t) convergence

rate of Algorithm 1 is established in an ergodic sense.

123



582 J Glob Optim (2016) 66:573–583

5 Conclusion

In this paper, we introduced a primal–dual prediction–correction algorithm for solving a sad-
dle point optimization problem. The proposed algorithm enjoys an algorithmic framework
that bridges the gap between the approaches described in [2] and [10]. As a byproduct, we also
obtain a projection-based primal–dual algorithm by choosing an appropriate proximal para-
meter, which is comparatively easier to implement than the methods described in [2,4,10], as
long as the projections of both X and Y are simple enough to be computed. Furthermore, we
also established that our proposed algorithm is globally convergent with a worst-caseO(1/t)
convergence rate in an ergodic sense, which supports the numerical performance reported in
[2,10] from a theoretical perspective.

In conclusion, note that the computational experience reported in several previous works
in the literature has indicated that the speed of convergence of the PDHG method is highly
sensitive with respect to the choice of the values of τ and σ . Most recently, the authors [7]
proposed an adaptive version of PDHG to accelerate its numerical performance. Taking a cue
from this approach, we can also gainfully employ an adaptive strategy for the acceleration
of our method, and the results of this research are forthcoming.

Acknowledgments H.J. He was supported in part by National Natural Science Foundation of China (Grant
Nos. 11301123, 71471051, and 11571087) and the Zhejiang Provincial Natural Science Foundation Grant No.
LZ14A010003. J. Desai was supported in part by the Ministry of Education (Singapore) AcRF Tier 1 Grant
No. M4011083.

References

1. Arrow, K., Hurwicz, L., Uzawa, H.: With contributions by H.B. Chenery, S.M. Johnson, S. Karlin, T.
Marschak, and R.M. Solow. Studies in Linear and Non-Linear Programming. Stanford Mathematical
Studies in the Social Sciences, vol. II. Stanford Unversity Press, Stanford (1958)

2. Cai, X., Han, D., Xu, L.: An improved first-order primal-dual algorithm with a new correction step. J.
Glob. Optim. 57, 1419–1428 (2013)

3. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first order primal dual algorithm. Math.
Program. Ser. A. doi:10.1007/s10107-015-0957-3

4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

5. Chen, Y., Lan, G., Ouyang, Y.: Optimal primal dual methods for a class of saddle point problems. SIAM
J. Optim. 24, 1779–1814 (2014)

6. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first-order primal-dual algorithms for
convex optimization in imaging sciences. SIAM J. Imaging Sci. 3, 1015–1046 (2010)

7. Goldstein, T., Li, M., Yuan, X., Esser, E., Baraniuk, R.: Adaptive primal-dual hybrid gradient methods
for saddle point problems (2015). ArXiv:1305.0546v2

8. Gu, G., He, B., Yuan, X.: Customized proximal point algorithms for linearly constrained convex mini-
mization and saddle-point problems: a uniform approach. Comput. Optim. Appl. 59, 135–161 (2014)

9. Han,D.,Xu,W.,Yang,H.:An operator splittingmethod for variational inequalitieswith partially unknown
mappings. Numer. Math. 111, 207–237 (2008)

10. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from
contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012)

11. He, B.S., You, Y., Yuan, X.M.: On the convergence of primal dual hybrid gradient algorithm. SIAM J.
Imaging Sci. 7, 2526–2537 (2015)

12. Komodakis, N., Pesquet, J.C.: Playing with duality: an overview of recent primal dual approaches for
solving large scale optimization problems. IEEE Signal Process Mag. 32(6), 31–54 (2015)

13. Nemirovski, A.: Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz
continuous monotone operator and smooth convex-concave saddle point problems. SIAM J. Optim. 15,
229–251 (2004)

123

http://dx.doi.org/10.1007/s10107-015-0957-3
http://arxiv.org/abs/1305.0546v2


J Glob Optim (2016) 66:573–583 583

14. Tian, W., Yuan, X.: Linearized primal-dual methods for linear inverse problems with total variation
regularization and finite element discretization, Working Paper (2015). http://www.math.hkbu.edu.hk/
~xmyuan/Paper/LPD-TV-June19.pdf

15. Zhu,M.,Chan,T.:AnEfficient Primal-DualHybridGradientAlgorithm forTotalVariation ImageRestora-
tion. CAM Reports 08-34, UCLA (2008)

123

http://www.math.hkbu.edu.hk/~xmyuan/Paper/LPD-TV-June19.pdf
http://www.math.hkbu.edu.hk/~xmyuan/Paper/LPD-TV-June19.pdf

	A primal--dual prediction--correction algorithm for saddle point optimization
	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Convergence results
	5 Conclusion
	Acknowledgments
	References




