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Abstract The derivative-free global optimization algorithms developed in Part I of this
study, for linearly constrained problems, are extended to nonconvex n-dimensional problems
with convex constraints. The initial n + 1 feasible datapoints are chosen in such a way that
the volume of the simplex generated by these datapoints is maximized; as the algorithm
proceeds, additional feasible datapoints are added in such a way that the convex hull of
the available datapoints efficiently increases towards the boundaries of the feasible domain.
Similar to the algorithms developed in Part I of this study, at each step of the algorithm,
a search function is defined based on an interpolating function which passes through all
available datapoints and a synthetic uncertainty function which characterizes the distance
to the nearest datapoints. This uncertainty function, in turn, is built on the framework of a
Delaunay triangulation, which is itself based on all available datapoints together with the
(infeasible) vertices of an exterior simplex which completely contains the feasible domain.
The search function is minimized within those simplices of this Delaunay triangulation that
do not include the vertices of the exterior simplex. If the outcome of this minimization is con-
tained within the circumsphere of a simplex which includes a vertex of the exterior simplex,
this new point is projected out to the boundary of the feasible domain. For problems in which
the feasible domain includes edges (due to the intersection of multiple twice-differentiable
constraints), a modified search function is considered in the vicinity of these edges to assure
convergence.
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1 Introduction

In this paper, a newderivative-free optimization algorithm is presented tominimize a (possibly
nonconvex) function subject to convex constraints1 on a bounded feasible region in parameter
space:

minimize f (x)with x ∈ L = {x |ci (x) ≤ 0,∀i = {1, 2, . . . ,m}}, (1)

where ci (x) : R
n → R are assumed to be convex, and both f (x) and the ci (x) assumed

to be twice differentiable. Moreover, the feasible domain L is assumed to be bounded with
a nonempty interior (note that this assumption is only technical: if a given feasible domain
has an empty interior, relaxing these constraints by ε generates a feasible domain with a
nonempty interior; further related discussion on this matter is deferred to the last paragraph
of Sect. 5.2).

The algorithms developed in Part I (see [7]) of this study were restricted to problems
with linear constraints, as the domain searched was limited to the convex hull of the initial
datapoints, which in Part I was taken as all vertices of the (there, polyhedral) feasible domain.
Another potential drawback of the approach taken inPart Iwas the expense of the initialization
of the algorithm: 2n initial function evaluationswere needed in the case of box constraints, and
manymore initial function evaluations were neededwhen there weremany linear constraints.
This paper addresses both of these issues.

Constrained optimization problems have been widely considered with local optimization
algorithms in both the derivative-based and the derivative-free settings. For global optimiza-
tion algorithms, the precise nature of the constraints on the feasible region of parameter space
is a topic that has received significantly less attention, as many global optimization methods
(see for e.g., [8,27–29,40,42,44,48]) have very similar implementations in problems with
linear and nonlinear constraints.

There are three classes of approaches forNonlinear Inequality Problems (NIPs) using local
derivative-based methods. Those in the first class, called sequential quadratic programming
methods (see [21,24]), impose (and, successively, update) a local quadratic model of the
objective function f (x) and a local linearmodel of the constraints ci (x) in order to estimate the
local optimal solution at each step. These models are defined based on the local gradient and
Hessian of the objective function f (x), and the local Jacobian of the constraints ci (x), at the
datapoint considered at each step. Those in the second class, called quadratic penaltymethods
(see [10,30,31]), perform some function evaluations outside of the feasible domain, with a
quadratic term added to the cost function which penalizes violations of the feasible domain
boundary, and solves a sequence of subproblems with successively stronger penalization
terms in order to ultimately solve the problem of interest. Those in the third class, called
interior point methods (see [22]), perform all function evaluations inside the feasible domain,
with a log barrier term added to the cost function which penalizes proximity to the feasible
domain boundary (the added term goes to infinity at the domain boundary), and solves a
sequence of subproblems with successively weaker penalization terms in order to ultimately
solve the problem of interest.

NIPs are a subject of significant interest in the derivative-free setting as well. One class of
derivative-free optimization methods for NIPs is called direct methods [34], which includes
the well-known General Pattern Search (GPS) [47] methods which restrict all function evalu-

1 The representation of a convex feasible domain as stated in (1) is the standard form used, e.g., in [15],
but is not completely general. Certain convex constraints of interest, such as those implied by linear matrix
inequalities (LMIs), can not be represented in this form. The extension of the present algorithm to feasible
domains bounded by LMIs will be considered in future work.

123



J Glob Optim (2016) 66:383–415 385

ations to lie on an underlying grid which is successively refined. GPS methods were initially
designed for unconstrained problems, but have been modified to address box-constrained
problems [33], linearly-constrainted problems [34], and smooth nonlinearly-constrained
problems [35]. Mesh Adaptive Direct Search (MADS) algorithms [1–4] are modified GPS
algorithms that handle non-smooth constraints. GPS and MADS algorithms have been
extended in [9] to handle coordination with lattices (that is, non-Cartesian grids) given by
n-dimensional sphere packings, which significantly improves efficiency in high dimensional
problems.

The leading class of derivative-free optimization algorithms today is known as Response
Surface Methods. Methods of this class leverage an underlying inexpensive model, or “sur-
rogate”, of the cost function. Kriging interpolation is often used to develop this surrogate
[8]; this convenient choice provides both an interpolant and a model of the uncertainty of
this interpolant, and can easily handle extrapolation from the convex hull of the data points
out to the (curved) boundaries of a feasible domain bounded by nonlinear constraints. Part I
of this study summarized some of the numerical issues associated with the Kriging interpo-
lation method, and developed a new Response Surface Method based on any well-behaved
interpolation method, such as polyharmonic spline interpolation, together with a synthetic
model of the uncertainty of the interpolant built upon a framework provided by a Delaunay
triangulation.

Unfortunately, the uncertainty function used in Part I of this study is only definedwithin the
convex hull of the available datapoints, so the algorithms described in Part I do not extend
immediately to more general problems with convex constraints. The present paper devel-
ops the additional machinery necessary to make this extension effectively, by appropriately
increasing the domain which is covered by convex hull of the datapoints as the algorithm
proceeds. As in Part I, we consider optimization problems with expensive cost function eval-
uations but computationally inexpensive constraint function evaluations; we further assume
that the computation of the surrogate function has a low computational cost. The algorithm
developed in Part II of this study has two significant advantages over those developed in
Part I: (a) it solves a wider range of optimization problems (with more general constraints),
and (b) the number of initial function evaluations is reduced (this is significant in relatively
high-dimensional problems, and in problems with many constraints).

The paper is structured as follows. Section 2 discusses briefly how the present algorithm
is initialized. Section 3 presents the algorithm. Section 4 analyzes the convergence properties
of the algorithm. In Sect. 5, the optimization algorithm proposed is applied to a number of
test functions with various different constraints in order to quantify its behavior. Conclusions
are presented in Sect. 6.

2 Initialization

In contrast to the algorithms developed in Part I, the algorithm developed here is initialized
by performing initial function evaluations at only n + 1 feasible points. There is no need to
cover the entire feasible domain by the convex hull of the initial datapoints; however, it is
more efficient to initialize with a set of n + 1 points whose convex hull has the maximum
possible volume.

Before calculating the initial datapoints to be used, a feasible point x f which satisfies all
constraints must be identified. The feasible domain considered [see (1)] is L = {x |ci (x) ≤
0, 1 ≤ i ≤ m}, where the ci (x) are convex. The convex feasibility problem (that is, finding
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(a) (b) (c) (d)

Fig. 1 Representation of Algorithm 1 on an illustrative example. a Step 1, b Step 2, c Step 3, d Steps 4–6

a feasible point in a convex domain) is a well-known problem in convex optimization; a
number of effective methods are presented in [10,14]. In this paper, the convex feasibility
problem is solved by minimizing the following quadratic penalty function

P1(x) =
m∑

i=1

max(ci (x), 0)
2, (2)

where P1(x) is simply the quadratic penalty function used by quadratic penalty methods for
solving NIPs (see Sect. 1). Since the ci (x) are convex, P1(x) is also convex; thus, if the
feasible domain is nonempty, any local minimizer of P1(x) is feasible. Note that the feasible
domain is empty if the minimum of P1(x) is greater than 0.

Note that P1(x) is minimized via an iterative process which uses the Newton direction
at each step, together with a line search, in order to guaranty the Armijo condition. Hessian
modification [23] may be required to find the Newton’s direction, since P1(x) is not strictly
convex. An example of this procedure to find a feasible point from an initial infeasible point
is illustrated in Fig. 1a.

The point x f generated above is not necessarily an interior point of L . Note that the interior
of L is nonempty if and only if the MFCQ (Mangasarian-Fromovitz constraint qualification)
holds at x f (see Proposition 3.2.7 in [19]). Checking the MFCQ at point x f is equivalent to
solving a linear programming problem [36], which either (a) generates a direction towards
the interior of L from x f (from which a point xT on the interior of L is easily generated), or
(b) establishes that the interior is empty. The optimization algorithm developed in this paper
is valid only in case (a).

Starting from this interior feasible point xT , the next step in the initialization identifies
another feasible point that is, in a sense, far from all the boundaries of feasibility. This is
achieved by minimizing the following logarithmic barrier function:

P2(x) = −
m∑

i=1

log(−ci (x)). (3)

It is easy to verify that P2(x) is convex, and has a unique global minimum. Note that since
initial point is an interior point, P2(x) can be defined at it. This function is also minimized via
Newton’s method; the line search at each step of this minimization is confined to the interior
of the feasible domain. The outcome of this procedure, denoted X0, is illustrated in Fig. 1b.

After finding the interior point X0 from the above procedure, a regular simplex2 Δ whose
body center is X0 is constructed. Finding the coordinates of a regular simplex is well-known
problem in computational geometry (see, e.g., §8.7 of [13]). The computational cost of finding
a regular simplex is O(n2), which is insignificant compared with the rest of the algorithm.

Before continuing the initialization process, a new concept is introduced which is used a
few times in this paper.

2 A simplex is said to be regular if all of its edges are equal.
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Definition 1 The prolongation of pointM from a feasible point O onto the feasibility bound-
ary ∂L , is the unique point on the ray from O that passes through M which is on the boundary
of feasibility. In order to find the prolongation of M from O on L , first the following 1D
convex programming problem has to be solved.

max
α∈R α,

subject to ci (O + α (M − O)) ≤ 0, ∀ 1 ≤ i ≤ m. (4)

Then, N = O + α (M − O), the prolongation point. It is easy to observe that N is located
on the boundary of L . Since α = 0 is a feasible point for (4), it can be solved using the
interior point method [21]. The computational cost of this subproblem is not significant if
the computational cost of the constrained functions ci (x) are negligible.

Based on the above definition, the initialization process is continued by prolongation of
the vertices of the regular simplex from X0 onto L . As illustrated in Fig. 1c, the simplex
so generated by this prolongation has a relatively large volume, and all of its vertices are
feasible. The algorithm developed in the remainder of this paper incrementally increases the
convex hull of the available datapoints towards the edges of the feasible domain itself. This
process is generally accelerated if the volume of the initial feasible simple is maximized.

The feasible simplex generated above is not the feasible simplex of maximal volume. As
illustrated in Fig. 1d, we next perform a simple iterative adjustment to the feasible vertices
of this simplex to locally maximize its volume.3 That is, denoting V– {Δ{V1, V2, . . . , Vm+1}}
as the volume of an m-dimensional simplex with corners {V1, V2, . . . , Vm+1}, we consider
the following problem:

maximize V– {Δ{V1, V2, . . . , Vn+1}},
(5)

where{V1, V2, . . . , Vn+1} ∈ L .

The problem of finding p>2 points in a convex subset of R2 which maximizes its enclosing
area is a well-known problem in the fields of interpolation, data compression, and robotic
sensor networks. An efficient algorithm to solve this problem is presented in [46]. Note that
(5) differs from the problem considered in [46] in three primary ways:

• (5) is defined in higher dimensions (n ≥ 2);
• the boundary of the domain L is possibly nondifferenible, whereas the problem in [46]

assumed the boundary is twice differentiable;
• (5) is easier in the sense that a simplex is considered, not a general convex polyhedron.

As a result of these differences, a different strategy is applied to the present problem, as
described below.

Consider V1, V2, . . . , Vn+1 as the vertices of a simplex Δx . The volume of Δx may be
written:

V– (Δx ) = V– (Δ′
x )LVk

n
, (6)

where Δ′
x is the n − 1 dimensional simplex generated by all vertices except Vk , Hk is the

n−1 dimensional hyperplane containing Δ′
x , and LVk is the perpendicular distance from the

vertex Vk to the hyperplane Hk .

3 The problem of globally maximizing the volume of a feasible simplex inside a convex domain is, in general,
a nonconvex problem. We do not attempt to solve this global maximization, which is unnecessary in our
algorithm.
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By (6), LVk must bemaximized tomaximize the volume of the simplex if the other vertices
are fixed. Furthermore, it is easily verified that the perpendicular distance of a point p to the
hyperplane Hk , characterized by aTk x = bk , is equal to |(aTk p − bk)/(aTk ak)|; thus,

Vk = argmax
p∈L

∣∣∣aTk p − bk
∣∣∣. (7)

Solving the optimization problem (7) is equivalent to finding the maximum of two convex
optimization problems with linear objective functions. The method used to solve these two
convex problems is the primal-dual-barrier method explained in detail in [25] and [22].

Based on the tools developed above, (5) is solved via the following procedure:

Algorithm 1 1. Find a point X in L = {x |ci (x) ≤ 0, 1 ≤ i ≤ m} by minimizing P1(x)
defined in (2); then, goes to the interior of L by checking the MFCQ condition.

2. Starting from X; then, goes to another feasible point X0 which is far from the constraint
boundaries by minimizing P2(x) defined in (3).

3. Generate a uniform simplex with body center X0; denote the vertices of this simplex
X1, X2, . . . , Xn+1.

4. Determine V1, V2, . . . , Vn+1 as the prolongations of X1, X2, . . . , Xn+1 from X0 to the
boundary of L.

5. For k = 1 to n+1, modify Vk to maximize the distance from the hyperplane which passes
through the other vertices by solving (7).

6. If all modification at step 5 are small, stop the algorithm; otherwise repeat from 5.

Definition 2 The simplex Δi obtained via Algorithm 1, is referred to the initial simplex.

Definition 3 For each vertex Vk of the initial simplex, the hyperplane Hk , characterized
by aTk x = bk , passes through all vertices of the initial simplex except Vk . Without loss of
generality, the sign of the vectorak maybe chosen such that, for any point x ∈ L ,aTk x ≤ akVk .
Now define the enclosing simplex Δe as follows:

Δe =
{
x | aTi x ≤ aTi Vi , 1 ≤ i ≤ n + 1

}
;

note that the feasible domain L is a subset of the enclosing simplex Δe.

Lemma 1 Consider V1, V2, . . . , Vn+1 as the vertices of the initial simplex Δi , and
P1, P2, . . . , Pn+1, as those of the enclosing simplex Δe given in Definition 3; then

Pk =
n+1∑

j=1

Vj − nVk . (8)

Proof Define Pk according to (8). Then, for all i �= k,

aTi Pk =
n+1∑

j=1

aTi Vj − naTi Vk .

According to Definition 3, aTi Vj = bi , ∀ j �= i ; thus, above equation is simplified to:

aTi Pk = aTi Vi .

Thus, n of the independent constraints on the enclosing simplex given in Definition 3 are
binding at Pk , and thus Pk is a vertex of Δe. 	
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Fig. 2 Illustration of the initial,
enclosing and exterior simplices
for an elliptical feasible domain

Definition 4 Consider P1, P2, . . . , Pn+1 as the vertices of the enclosing simplex Δe, and O
as its body center. The vertices of the exterior simplex ΔE are defined as follows:

Ei = O + κ(Pi − O) (9)

where κ>1 is called the extending parameter.

The relative positions of the initial, enclosing, and exterior simplices are illustrated in
Fig. 2. It follows from (8) and (9) that

∑
Vi = ∑

Pi = ∑
Ei ; that is, the initial, enclosing,

and exterior simplices all have the same body center, denoted O .

Remark 1 In this paper, the following condition is imposed on the extending parameter κ:

κ ≥ 2 maxy∈L‖y − O‖
n min1≤i≤n+1‖Vi − O‖ , (10)

where O is the body center of the initial simplex, and {V1, V2, . . . , Vn+1} are the vertices of
the initial simplex. In Sect. 4, it is seen that this condition is necessary to ensure convergence
of the optimization algorithm presented in Sect. 3. In general, the value of maxy∈L{‖y−O‖}
in not known and is difficult to obtain4; however, the following upper bound is known,

max
y∈L ‖y − O‖ ≤ n max

1≤i≤n+1
‖Vi − O‖.

Thus, by choosing κ as follows, (10) is satisfied:

κ = 2 max1≤i≤n+1‖Vi − O‖
min1≤i≤n+1‖Vi − O‖ . (11)

Definition 5 The vertices of the initial simplex Δi , together with its body center O , form
the initial evaluation set S0E . The union of S0E and the vertices of the exterior simplex form
the initial triangulation set S0T .

Algorithm 2 After constructing S0E and S0T , a Delaunay triangulation Δ0 over S0T is calcu-
lated. If the body center O and a vertex E of the exterior simplex ΔE are both located in any
simplex of the triangulation Δ0; then E ′ is defined as the intersection of segment OE with
the boundary of L, and E ′ is added to both S0E and S0T , and the triangulation is updated.
After at most n + 1 modifications of this sort, the body center O is not located in the same
simplex of the triangulation as any of the vertices of the exterior simplex. As a result, the
number of points in S0E and S0T are at most 2n + 3, and 3n + 4 respectively. The sets S0E and
S0T are used to initialize the optimization algorithm presented in the following section.

4 This is a maximization problem for a convex function in a convex compact domain. This problem is studied
in [49].
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Fig. 3 Representation of the
boundary (hashed) and interior
(non-hashed) simplices in the
Delaunay triangulation of a set of
feasible evaluation points
together with the three vertices of
the exterior simplex

3 Description of the optimization algorithm

In this section, we present an algorithm to solve the optimization problem defined in (1).
We assume that calculation of the constraint functions ci (x) are computationally inexpensive
compared to the function evaluations f (x), and that the gradient and Hessian of ci (x) are
available.

Before presenting the optimization algorithm itself, some preliminary concepts are first
defined.

Definition 6 Consider Δk as a Delaunay triangulation of a set of points SkT , which includes
the vertices of the exterior simplexΔE . As illustrated in Fig. 3, there are two type of simplices:

(a) boundary simplices, which include at least one of the vertices of the exterior simplex
ΔE , and

(b) interior simplices, which do not include any vertices of the exterior simplex ΔE .

Definition 7 For any boundary simplex Δx ∈ Δk which includes only one vertex of the
exterior simplexΔE , the n−1 dimensional simplex formed by those vertices ofΔx of which
are not in common with the exterior simplex is called a face of Δx .

Definition 8 For each point x ∈ L , the constraint function g(x) is defined as follows:

g(x) = max
1≤ j≤m

{c j (x)}. (12)

For each point x in a face F ∈ Δk , the linearized constraint function with respect to the face
F , gFL (x), is defined as follows:

cFj,L(x) =
n∑

i=1

wi c j (Vi ), (13a)

gFL (x) = max
1≤ j≤m

{cFj,L(x)}, (13b)

where the weights wi ≥ 0 are defined such that

x =
r∑

i=1

wi Vi with
r∑

i=1

wi = 1.

Definition 9 Consider x as a point which is located in the circumsphere of a boundary sim-
plex inΔk . IdentifyΔk

i as that boundary simplex ofΔk which includes x in its circumesphere
and which maximizes g(zki ). The prolongation (see Footnote 1) of z

k
i from x onto the bound-

ary of feasibility is called a feasible boundary projection of the point x , as illustrated in
Fig. 4.
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Fig. 4 Illustration of a feasible
boundary projection: the solid
circle indicates the feasible
domain, x is the initial point, zki
is the circumcenter of a boundary
simplex Δk

i containing x , the
dashed circle indicates the
corresponding circumsphere, and
xp is the feasible boundary
projection

zk
i x

px

Algorithm 3 As described in Sect. 2, prepare the problem for optimization by (a) executing
Algorithm 1 to find the initial simplex Δi , (b) identifing the exterior simplexΔE as described
in Definition 4, and (c) applying the modifications described in Algorithm 2 to remove the
body center O from the boundary simplices. Then, proceed as follows:

0. Take S0E and S0T as the initial evaluation set and the initial triangulation set, respectively.
Evaluate f (x) at all points in S0E . Set k = 0.

1. Calculate (or, for k>0, update) an interpolating function pk(x) that passes through all
points in SkE .

2. Perform (or, for k>0, incrementally update) a Delaunay triangulationΔk over all points
in SkT .

3. For each simplex Δk
i of the triangulation Δk which includes at most one vertex of the

exterior simplex, define Fk
i as the corresponding face of Δk if Δk

i is a boundary simplex,
or take Fk

i = Δk
i itself otherwise. Then:

a. Calculate the circumcenter zki and the circumradius rki of the simplex Fk
i .

b. Define the local uncertainty function eki (x) as

eki (x) =
(
rki

)2 −
(
x − zki

)T (
x − zki

)
. (14)

c. Define the local search function ski (x) as follows: if Δ
i
k is an interior simplex, take

ski (x) = pk(x) − y0
eki (x)

; (15)

otherwise, take

ski (x) = pk(x) − y0

−g
Fk
i

L (x)
, (16)

where y0 is an estimate (provided by the user) for the value of the global minimum.
d. Minimize the local search function ski (x) in Fk

i .

4. If a point x at step 3 is found in which sk(x) ≤ y0, then redefine the search ski (x) = pk(x)
in all simplices, and take xk as the minimizer of this search function in L; otherwise, take
xk as the minimizer of the local minima identified in step 3d.

5. If xk is not inside the circumsphere of any of the boundary simplices, define x ′
k = xk;

otherwise, define x ′
k as the feasible boundary projection (see Definition 9) of xk . Perform

a function evaluation at x ′
k , and take Sk+1

E = SkE ∪ {x ′
k} and Sk+1

T = SkT ∪ {x ′
k}.

6. Repeat from step 1 until minx∈Sk {‖x ′
k − x‖} ≤ δdes .
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Remark 2 Algorithm 3 generalizes the adaptive K algorithm developed in Part I of this work
to convex domains. We could similarly extend the constant K algorithm developed in Part I
by modifying (15) and (16) as follows: if Δi

k is an interior simplex, take

ski (x) = pk(x) − K eki (x);
otherwise, take

ski (x) = pk(x) + K g
Fk
i

L .

Such a modification might be appropriate if an accurate estimate of the Hessian of f (x) is
available, but an accurate estimate of the lower bound y0 of f (x) is not.

Remark 3 At each step of Algorithm 3, a feasible point x ′
k is added to L . If Algorithm 3

is not terminated at finite k, since the feasible domain L is compact, the sequence of x ′
k

will have at least one convergent subsequence, by the Bolzano Weierstrass theorem. Since
this subsequence is convergent, it is also Cauchy; therefore, for any δdes>0, there are two
integers k and m<k such that ‖x ′

m − x ′
k‖ ≤ δdes . Thus, minx∈Sk {‖x ′

k − x‖} ≤ δdes ; thus, the
termination condition will be satisfied at step k. As a result, Algorithm 3 will terminate in a
finite number of iterations.

Definition 10 At each step of Algorithm 3, and for each point x ∈ L , there is a simplex
Δk

i ∈ Δk which includes x . Theglobal uncertainty function ek(x) is defined as ek(x) = eki (x).
It is shown in Part I (Lemmas 3 and 4) that ek(x) is continuous and Lipchitz with Lipchitz
constant of rkmax, the maximum circumradius ofΔk , and that the Hessian of ek(x) inside each
simplex, and over each face F of each simplex, is −2 I .

There are three principle difference between Algorithm 3 above and the corresponding
algorithm proposed in Part I for the linearly-constrained problem:

• In the initialization, instead of calculating the objective function at all of the vertices
of feasible domain (which is not possible if the constraints are nonlinear), the present
algorithm is instead initialized with between n + 2 and 2n + 3 function evaluations.

• The local search function is modified in the boundary simplices.
• The feasible boundary projections used in the present work are analogous to (but slightly

different from) Algorithm 3 of Part I, which applies one or more feasible constraint
projections.

3.1 Minimizing the search function

As with Algorithm 2 of Part 1 of this work, the most expensive part of Algorithm 3, separate
from the function evaluations themselves, is step 3 of the algorithm. The cost of this step is
proportional to the total number of simplices S in the Delaunay triangulation. As derived in
[38], a worst-case upper bound for the number of simplices in a Delaunay triangulation is
S ∼ O(N

n
2 ), where N is the number of vertices and n is the dimension of the problem. As

shown in [17,18], for vertices with a uniform random distribution, the number of simplices
is S ∼ O(N ). This fact limits the present algorithm to be applicable only for relatively
low DOF problems (say, n<10). In practice, the most limiting part of step 3 is the memory
requirement imposed by the computation of the Delaunay triangulations. Thus, the present
algorithm itself is applicable only to those problems for which Delaunay triangulations can
be performed amongst the datapoints.
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In this section, we describe some details and facts that simplifies certain other aspects of
step 3 (besides the Delaunay triangulations). In general, there are two type of simplices in
Δk whose definition of the search function is different.

In the interior simplices Δk
i , the function ski (x) = pk (x)−y0

eki (x)
has to be minimized in Δk

i .

One important property of ek(x) which makes this problem easier is ek(x) = max j∈S ekj (x)
(Lemma 2 in Part I), and as it shown in Lemma 5 of Part I, if sk(x) is minimized in L
rather than Δk

i , the position of point xk would not be changed. Another important issue is
the method of initialization for the minimization of ski (x). To accomplish this, we choose
a point x̂ ki which maximizes eki (x) as the initial point for the minimization algorithm. Note
that, if the circumcenter of this simplex is included in this simplex, the circumcenter is the
point that maximizes eki (x); otherwise, this maximization is a simple quadratic programming
problem. The computational cost of calculating x̂ ki is similar to that of calculating xkc . After the
initializations described above, the subsequent minimizations are performed using Newton’s
methodwithHessianmodification viamodifiedCholesky factorization (see [23]) tominimize
ski (x) within L . It will be shown (see Theorem 1) that performing Newton’s method is
actually not necessary to guaranty the convergence of Algorithm 3, and having a point whose
value sk(x) is less than the initial points is sufficient to guaranty the convergence; however,
performing Newton minimizations at this step can improve the speed of convergence. In
practice, we will perform Newton minimizations only in a few simplices whose initial points
have small values for sk(x).

For the boundary simplices Δk
i , the function ski (x) is defined only over the face Fk

i
of Δk

i . The minimization in each boundary simplex is initialized at the point x̃ ki which

maximizes the piecewise linear function −g
Fk
i

L (x); this maximization may be written as a
linear programming problem with the method described in §1.3, p. 7, in [11]. Similarly, it
can be seen that initialization with these points is enough to guaranty the convergence; thus,
it is not necessary to perform the Newton method after this initialization. In our numerical
implementation, the best of these initial points are considered for the simulation; however,
the implementation of Newton minimizations on these faces could further improve the speed
of convergence.

Remark 4 As in Algorithm 4 of Part I, since Newton’s method doesn’t always converge to a
global minimum, xk is not necessarily a global minimizer of sk(x). However, the following
properties are guaranteed:

if sk(x) = pk(x), then pk(xk) ≤ y0; (17a)

otherwise sk(xk) ≤ skj (x̂
k
j ) ∀Δk

j ∈ Δk, (17b)

and sk(xk) ≤ skj (x̃
k
j ) ∀Fk

j ∈ Δk . (17c)

Recall that x̂ kj is the maximizer of ekj (x) in the interior simplex Δk
j ∈ Δk , and x̃ kj is the

maximizer of −gFL (x) over the face Fk
j of the boundary simplex Δk

j ∈ Δk . These properties
are all that are required by Theorem 1 in order to establish convergence.

4 Convergence analysis

In this section, the convergence properties of Algorithm 3 are analyzed. The structure of the
convergence analysis is similar to that in Part I.
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In this section, the following conditions for the function of interest, f (x), the constraints
ci (x), and the interpolating functions pk(x) are imposed.

Assumption 1 The interpolating functions pk(x), for all k, are Lipchitz with the same Lip-
chitz constant L p .

Assumption 2 The function f (x) is Lipchitz with Lipchitz constant L f .

Assumption 3 The individual constraint functions ci (x) for 1 ≤ i ≤ m are Lipchitz with
Lipchitz constant Lc.

Assumption 4 A constant Kpf exists5 in which

Kpf >λmax

(
∇2( f (x) − pk(x))/2

)
, ∀x ∈ L and k>0.

Assumption 5 A constant K f exists in which

K f >λmax
(∇2( f (x))/2

)
, ∀x ∈ L .

Assumption 6 A constant Kg exists in which

Kg>λmax
(∇2(ci (x))/2

)
, ∀x ∈ L .

Before analyzing the convergence of Algorithm 3, some preliminary definitions and lem-
mas are needed.

Definition 11 According to the construction of the initial simplex, its body center is an
interior point in L; thus, noting (12), g(O)<0. Thus, the quantity LO = maxy∈L‖y −
O‖/(−g(O)) is a bounded positive real number.

Lemma 2 Each vertex of the boundary simplices ofΔk , for all steps of Algorithm 3, is either
a vertex of the exterior simplex or is located on a boundary of L.

Proof We will prove this lemma by induction on k. According to Algorithm 2, O is not in
any boundary simplex of Δ0, and all other points of SkE are on the boundary of L; therefore,
the lemma is true for the base case k = 0. Assuming the lemma is true for the case k − 1, we
now show that it follows that the lemma is also true for the case k.

At step k of Algorithm 3, we add a point x ′
k to the triangulation set S

k
T . As described step

5 of Algorithm 3, this point arises from one of two possible cases.
In the first case, xk is not located in the circumsphere of any boundary simplex, and a

feasible boundary projection is not performed; as a result, x ′
k = xk is an interior point of L .

In this case, the incremental update of the Delaunay triangulation at step k does not change
the boundary simplices of Δk−1 (see, e.g., section 2.1 in [12]), and thus the lemma is true in
this case.

In the other case, xk is located in the circumsphere of a boundary simplex, and a feasible
boundary projection is performed; thus, x ′

k is on the boundary of L . Consider Δx as one of
the new boundary simplices which is generated at step k. By construction, xk is a vertex of
Δx . Define F as the n − 1 dimensional face of Δx which does not include xk . Based on the
incremental construction of the Delaunay triangulation, F is a face of another simplex Δ′

x
at step k − 1. Since Δx is a boundary simplex, F includes a vertex of the exterior simplex;
thus, Δ′

x is a boundary simplex in Δk−1; thus, each vertex of F is either a boundary point or
a vertex of the exterior simplex; moreover, x ′

k is a boundary point. As a result, Δx satisfies
the lemma. For those boundary simplices which are not new, the lemma is also true, by the
induction hypothesis. Thus, the lemma is also true in this case. 	

5 The maximum eigenvalue is denoted λmax(.).
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Definition 12 For any point x ∈ L , the interior projection of x , donated by xI , is defined
as follows: If x is located inside or on the boundary of an interior simplex, put xI = x ;
otherwise, xI is taken as the point of intersection, closest to x , of the line segment Ox with
the boundary of the union of the interior simplices. Thus, xI is located on a face of the
triangulation.

Lemma 3 Consider x as a point in L which is not located in the union of the interior simplices
at step k of Algorithm 3. Define xI as the interior projection of x (see Definition 12). Then,

pk(xI ) − f (x) ≤ ek(xI ){Kpf + L f KgLO } − L f LOg
F
L (xI ), (18)

where ek(x) is the uncertainty function, gFL (x) is the linearized constraint function (see
Definition 8) with respect to a face F which includes xI , and L f , K p f , Kg, and LO are
defined in Assumptions 2, 4 and 6 and Definition 11, respectively.

Proof By Definition 12, xI is a point on the line segment Ox ; thus,

xI = x
‖O − xI ‖
‖O − x‖ + O

‖x − xI ‖
‖O − x‖ .

Define {V1, V2, . . . , Vn} as the vertices of F , and Gk
j (x) = cFj,L(x) − c j (x) − Kgek(x),

where cFj,L is the linear function defined in (13a). First we will show that Gk
j (x) is strictly

convex in F . Since cFj,L(x) is a linear function of x in F , and ∇2ek(x) = −2 I (see (14)), it
follows that

∇2Gk
j (x) = −∇2{c j (x)} + 2 Kg I. (19)

According to Assumption 6 ∇2Gk
j (x)>0 in F ; thus, it is strictly convex; therefore, its maxi-

mum in F is located at one of the vertices of F . Furthermore, by construction, Gk
j (Vi ) = 0;

thus, GF
j (xI ) ≤ 0, and

c j (xI ) ≥ cFj,L(xI ) − Kge
k(xI ) ∀1 ≤ j ≤ m,

g(xI ) ≥ gFL (xI ) − Kge
k(xI ), (20)

where g(x) is defined in Definition 8. Since the ci (x) are convex, g(x) is also convex; thus,

g(xI ) ≤ g(x)
‖O − x1‖
‖O − x‖ + g(O)

‖x − xI ‖
‖O − x‖ . (21)

Since x ∈ L , g(x) ≤ 0. Since O is in the interior of L , g(O)<0; from (20) and (21), it thus
follows that

gFL (xI ) − Kge
k(xI ) ≤ g(O)

‖x − xI ‖
‖O − x‖ ,

‖x − xI ‖ ≤ ‖x − O‖
−g(O)

{Kge
k(xI ) − gFL (xI )}.

By Definition 11, this leads to

‖x − xI ‖ ≤ LO

{
Kge

k(xI ) − gFL (xI )
}

. (22)

Now define T (x) = pk(x)− f (x)− Kpf ek(x). By Assumption 4 and Definition 10, similar
to Gk

j (x), T (x) is also strictly convex in F , and T (Vi ) = 0; thus,

pk(xI ) − Kpf e
k(xI ) ≤ f (xI ). (23)

123



396 J Glob Optim (2016) 66:383–415

Furthermore, L f is a Lipchitz constant for f (x); thus,

f (xI ) − f (x) ≤ L f ‖x − xI ‖. (24)

Using (22),(23), and (24), (18) is satisfied. 	

Remark 5 If x is a point in an interior simplex, it is easy to show [as in the derivation of
(23)] that (18) is modified to

pk(x) − f (x) ≤ Kpf e
k(x). (25)

Lemma 4 Consider F as a face of the union of the interior simplices at step k of Algorithm 3,
x as a point on F, and gLF (x) as the linearized constraint function on F as defined in
Definition (8). Then,

− gLF (x) ≤ Lc

√
ek(x). (26)

Proof By Assumption 3, the ci (x) are Lipchitz with constant Lc. Thus, by (13a), the cLi,F (x)
are Lipchitz with the same constant. Furthermore, the maximum of a finite set of Lipchitz
functions with constant Lc is Lipchitz with the same constant (see Lemma 2.1 in [26]). Define
{V1, V2, . . . , Vn} as the vertices of F ; then, by Lemma 2, Vi is on the boundary of L; thus,
gL(Vi ) = 0 for all 1 ≤ i ≤ n, and

− gLF (x) ≤ Lc min
1≤i≤n

{‖x − Vi‖}. (27)

Now define {w0, w1, . . . , wn} as the weights of x in F (that is, x = ∑n
j=0 w j V j where

wi ≥ 0 and
∑n

j=0 w j = 1), z as the circumcenter of F , and r as the circumradius of F .
Then, for each j ,

r2 = ‖Vj − z‖2 = ‖Vj − x‖2 + ‖x − z‖2 + 2 (Vj − x)T (x − z).

Multiplying the above equations by w j and taking the sum over all j , noting that∑n
j=0 w j = 1, it follows that

r2 =
n∑

j=0

w j‖Vj − x‖2 + ‖x − z‖2 + 2
n∑

j=1

w j (Vj − x)T (x − z).

Since
∑n

j=0 w j (Vj − x) = 0, this simplifies to

r2 =
n∑

j=0

w j‖Vj − x‖2 + ‖x − z‖2,

n∑

j=0

w j‖Vj − x‖2 = r2 − ‖x − z‖2,

n∑

j=0

w j‖Vj − x‖2 = ek(x), (28)

ek(x) ≥ min
0≤i≤n

{‖x − Vi‖}2. (29)

Since both side of (29) are positive numbers, we can take square root of the both sides;
moreover, Lc is a positive number.

Lc

√
ek(x) ≥ Lc min

1≤i≤r
{‖x − Vi‖}. (30)
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Using (27) and (30), (26) is satisfied. 	

Note that, by (28), the global uncertainty function ek(x) defined in (14) and Definition 10

is simply the weighted average of the squared distance of x from the vertices of the simplex
that contains x .

The other lemma which is essential for analysis the convergence of Algorithm 3, is that
the maximum circumradius of Δk is bounded.

Lemma 5 Consider Δk as a Delaunay triangulation of a set of triangulation points SkT at
step k. The maximum circumradius of Δk , rkmax, is bounded as follows:

rkmax ≤ κL1

√

1 +
(
κ

L1

2(κ − 1)δO

)2
, (31)

where L1 is the maximum edge length of the enclosing simplex Δe, κ is the extending para-
meter (Definition 4), and δO is the minimum distance from O (the body center of the exterior
simplex) to the boundary of Δe.

Proof Consider Δx as a simplex in Δk which has the maximum circumradius. Define z as
the circumcenter of Δx , and x as a vertex of Δx which is not a vertex of the exterior simplex.
If z is located inside of the exterior simplex ΔE , then,

rkmax = ‖z − x‖ ≤ L1κ, (32)

which shows lemma in this case. If z is located outside of ΔE , then define z p as the point
closest to z in the exterior simplex. That is,

z p = argminy∈ΔE
‖z − y‖

subject to aTi,E y ≤ bi,E ,∀ 1 ≤ i ≤ n + 1, (33)

where aTi,E y ≤ bi,E defines the i’th face of the exterior simplex. Define Aa(Z p) as the set of
active constraints at Z p in the constraints of (33), and v as a vertex of the exterior simplex in
which all constraints in Aa(z p) are active at z p; then, using the optimality condition at Z p ,
it follows that

(z − z p)
T (z p − v) = 0,

‖z − v‖2 = ‖z − z p‖2 + ‖v − z p‖2. (34)

Now consider p as the intersection of the line segment zx with the boundary of the exterior
simplex; then,

‖z − x‖ = ‖z − p‖ + ‖p − x‖. (35)

Furthermore, by construction,
‖z − z p‖ ≤ ‖z − p‖. (36)

Since p is on the exterior simplex ΔE , and x is inside of the enclosing simplex Δe, it follows
that

‖p − x‖ ≥ (κ − 1)δO . (37)

Note that x is a vertex of the simplex Δx , and v is a point in Sk . Since the triangulation
Δk is Delaunay, v is located outside of the interior of the circumsphere of Δx . Recall, z is
the circumcenter of Δx ; thus,

Rx = ‖x − z‖ ≤ ‖z − v‖, (38)
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where Rx is the circumcenter of L . Using (34), (35) and (38) it follows that

‖z − p‖2 + ‖p − x‖2 + 2‖z − p‖‖p − x‖ ≤ ‖z − z p‖2 + ‖v − z p‖2. (39)

By (36), (37) and (39), it follows that

2(κ − 1)δO‖z − z p‖ ≤ ‖z − z p‖2.
Note that ‖v − z p‖ ≤ κL1; thus,

‖z − z p‖ ≤ κ2 L2
1

2(κ − 1)δO
. (40)

Combining (34) and (40), noting that rkmax ≤ ‖z − v‖, (31) is satisfied. 	

The final lemma which is required to establish the convergence of Algorithm 3, given

below, establishes an important property of the feasible boundary projection.

Lemma 6 Consider Δk as a Delaunay triangulation of Algorithm 3 at step k, and x ′
k as the

feasible boundary projection of xk . If the extending parameter κ satisfies (10), then, for any
point V ∈ Sk,

‖V − x ′
k‖

‖V − xk‖ ≥ 1

2
. (41)

Proof If a feasible boundary projection is not performed at step k, x ′
k = xk , and (41) is

satisfied trivially. Otherwise, consider Δk
i in Δk as the boundary simplex, with circumcenter

Z and circumradius R, which is used in the feasible boundary projection (see Definition
9). First, we will show that, for a value of κ that satisfies (10), Z is not in L . This fact is
shown by contradiction; thus, first assume that Z is in L . Define A as a shared vertex of Δk

i
and the exterior simplex, and V1, V2, . . . , Vn+1 as the vertices of the initial simplex Δi (see
Definition 2). Since the body center of the exterior simplex O ∈ SkT , and Δk is Delaunay,

‖O − Z‖ ≥ ‖A − Z‖,
‖O − Z‖ ≥ min

y∈L {‖A − y‖},
‖O − Z‖ + ‖O − y‖ ≥ min

y∈L {‖A − y‖} + ‖O − y‖,
(42)

2 max
y∈L {‖O − y‖} ≥ ‖O − A‖,

‖O − A‖ ≥ nκ min
1≤ j≤n+1

{‖O − Vj‖},
2 max

y∈L {‖y − O‖} ≥ nκ min
1≤ j≤n+1

{‖Vj − O‖}.

However, (42) is in contradiction with (10); thus, Z is not in L; therefore, by Definition 9,
x ′
k is on the line segment Zxk .
Now we will show (41). Consider Vp as the orthogonal projection of V onto the line

through xk , x ′
k and Z ; then, we may write Vp = βxk and, by construction:

‖V − xk‖2 = ‖V − Vp‖2 + ‖Vp − xk‖2,
‖V − x ′

k‖2 = ‖V − Vp‖2 + ‖Vp − x ′
k‖2,

‖V − Z‖2 = ‖V − Vp‖2 + ‖Vp − Z‖2.
(43)
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Since Z is outside of L , xk is in L , x ′
k is on the boundary of L , and they are collinear ; then,

there is a real number 0 ≤ α ≤ 1, such that x ′
k = Z + α (xk − X), which leads to

‖Vp − xk‖2 = ‖Vp − Z‖2 + 2(Z − Vp)
T (xk − Z) + 2‖xk − Z‖2,

‖Vp − x ′
k‖2 = ‖Vp − Z‖2 + 2α(Z − Vp)

T (xk − Z) + 2α2‖xk − Z‖2.
Therefore, above equations are simplified to.

‖V − xk‖2 = ‖V − Z‖2 + 2(Z − Vp)
T (xk − Z) + 2‖xk − Z‖2,

‖V − x ′
k‖2 = ‖V − Z‖2 + 2α(Z − Vp)

T (xk − Z) + 2α2‖xk − Z‖2. (44)

By defining β = (Z−Vp)
T (xk−Z)

‖xk−Z‖‖V−Z‖ and γ = ‖xk−Z‖
‖V−Z‖ ; the above equation is simplified to:

‖V − x ′
k‖2

‖V − xk‖2 = 1 + 2αβγ + α2γ 2

1 + 2 βγ + γ 2 . (45)

By construction, xk is inside the circumsphere of Δk
i . Moreover, Δk is a Delaunay triangu-

lation for Sk , and V ∈ Sk ; thus, V is outside the interior of circumsphere of Δk
i . As a result,‖Z − xk‖ ≤ ‖Z − V ‖. Moreover, γ is trivially positive; thus, 0 ≤ γ ≤ 1. Now we identify

lower and upper bounds for β:

−‖Z − Vp‖‖xk − Z‖ ≤ (Z − Vp)
T (xk − Z) ≤ ‖Z − Vp‖‖xk − Z‖,

‖Z − Vp‖ ≤ ‖Z − V ‖,
−‖Z − V ‖‖xk − Z‖ ≤ (Z − Vp)

T (xk − Z) ≤ ‖Z − V ‖‖xk − Z‖,
−1 ≤ β ≤ 1.

The right hand side of (45) is a function of α, β, γ . Moreover, it is shown that 0 ≤ α ≤ 1,
−1 ≤ β ≤ 1, and 0 ≤ γ ≤ 1. In order to show (41), It is sufficient to prove that the minimum
of this three dimensional function, denoted by Γ (α, β, γ ), in the box that characterized its
variable is 1

4 .
The function Γ is a fractional linear function of β, thus,

Γ (α, β, γ ) ≥ min{Γ (α,−1, γ ), Γ (α, 1, γ )},
Γ (α, 1, γ ) =

(
1 + αγ

1 + γ

)2

≥ 1

(1 + γ )2
≥ 1

4
,

(46)

Γ (α,−1, γ ) =
(
1 − αγ

1 − γ

)2

≥ (
1 − γ

(1 − γ ))2
≥ 1,

Γ (α, β, γ ) ≥ 1

4
.

Using (45) and (46), (41) is verified. 	

Finally, using the above lemmas, we can prove the convergence of Algorithm 3 to the

global minimum in the feasible domain L .

Theorem 1 If Algorithm 3 is terminated at step k, and y0 ≤ f (x∗), then there are real
bounded numbers A1, A2, A3 such that

min
z∈Sk

f (z) − f (x∗) ≤ A1 δdes + A2

√
δdes + A3

4
√

δdes. (47)
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Proof Define SkE , S
k
T , r

k
max, and Lk

2 as the evaluation set, the triangulation set, the maximum
circumradius ofΔk , and the maximum edge length ofΔk , respectively, whereΔk is a Delau-
nay triangulation of SkT . Define xk as the outcome of Algorithm 3 though step 4, which at
step k satisfies (17), and x ′

k as the feasible boundary projection of xk on L .
Define y1 ∈ SkE as the point which minimizes δ = minx∈SkE ‖x − xk‖, and the parameters

{A, B,C, D, E} as follows:
A = max{K f + L f KgLO , L f LO }, (48a)

B = max{Kpf + L f KgLO , L f LO}, (48b)

C = max
{
4 A rkmax, L p + 4 B rkmax

}
, (48c)

D = 2 max

{
A Lc

√
2rkmax, B Lc

√
2 rkmax,

×
√
Lc Lk

2 L p A rkmax

}
, (48d)

E =
√
2 Lc Lk

2 L p A 4
√
2 rkmax. (48e)

We will now show that

min
z∈Sk

f (z) − f (x∗) ≤ Cδ + D
√

δ + E 4
√

δ, (49)

where x∗ is a global minimizer of f (x∗).
During the iterations of Algorithm 3, there two possible cases for sk(x). The first case is

when sk(x) = pk(x). In this case, via (17a), pk(xk) ≤ y0, and therefore pk(xk) ≤ f (x∗).
Since y1 ∈ SkE , it follows that p

k(y1) = f (y1). Moreover, L p is a Lipchitz constant for
pk(x); therefore,

pk(y1) − pk(xk) ≤ L p δ,

f (y1) − pk(xk) ≤ L p δ,

f (y1) − f (x∗) ≤ L p δ,

min
z∈Ske

f (z) − f (x∗) ≤ L p δ.

which shows that (49) is true in this case.
The other case is when sk(x) = (pk(x)− y0)/ek(x) in the interior simplices, and sk(x) =

(pk(x)− y0)/(−gFL (x)) on the faces ofΔk . For this case, we will show that (49) is true when
x∗ is not in an interior simplex. When x∗ is in an interior simplex, (49) can be shown in an
analogous manner.

Define Fk
i as a face in Δk which includes x∗

I , the interior projection (see Definition 9) of
x∗, and Δk

i as an interior simplex which includes x∗
I . Define x̂

k
i and x̃ ki as the points which

maximize eki (x) and −g
Fk
i

L (x) in Δk
i and Fk

i , respectively, where e
k
i (x) and −g

Fk
i

L (x) are the
local uncertainty function in Δk

i and the linearized constraint function (see Definition 8) in
Fk
i .
According to Lemma 3 and (48b),

pk(x∗
I ) − f (x∗) ≤ B ek(x∗

I ) − B g
Fk
i

L (x∗
I ),

(50)
pk(x∗

I ) − f (x∗) ≤ B eki (x̂
k
i ) − B g

Fk
i

L (x̃ ki ).
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Further, by replacing the linear interpolation pk(x) with the linear function Lk
i (x), in which

Lk
i (x) = f (x) at the vertices of F , and using minz∈Sk f (z) ≤ Lk(x∗

I ) and the fact that the
Hessian of Lk

i (x) is zero, and noting (48a), (50) may be modified to:

min
z∈SkE

{ f (z)} − f (x∗) ≤ A eki

(
x̂ ki

)
− A g

Fk
i

L

(
x̃ ki

)
. (51)

If the search function at xk is defined by (15), take êk = ek(xk); on the other hand, if it is

defined by (16), take êk = −g
Fk
j

L (xk) where Fk
j is the face of Δk which includes xk .

Since 2 rkmax is a Lipchitz constant for e
k(x) (see Lemma 4 in Part I), by using Lemma 4

above, it follows

êk ≤ max

{
2 rkmaxδ, Lc

√
2 rkmaxδ

}
,

êk ≤ 2 rkmaxδ + Lc

√
2 rkmaxδ (52)

If eki (x̂) − g
Fk
i

L (x̃ ki ) ≤ 2 êk , then by (51) and (52), (49) is satisfied. Otherwise, dividing
f (x∗) − y0 ≥ 0 by this expression with the opposite inequality,

2 f (x∗) − 2 y0

eki (x̂) − g
Fk
i

L (x̃ ki )
<

f (x∗) − y0
êk

. (53)

Using (17b), (17c) and (53)6

pk(xk) − y0
êk

≤ pk
(
x̂ ki

) − y0

eki

(
x̂ kj

) ,

pk(xk) − y0
êk

≤ pk
(
x̃ ki

) − y0

−g
Fk
i

L

(
x̂ kj

) ,

pk(xk) − f (x∗)
êk

≤ pk
(
x̂ ki

) + pk
(
x̃ ki

) − 2 f (x∗)

eki

(
x̂ kj

)
− g

Fk
i

L

(
x̂ kj

) .

According toAssumption 1, L p is a Lipchitz constant for pk(x); notingmax{‖x̂ ki −x∗
I ‖, ‖x̃ ki −

x∗
I ‖} ≤ Lk

2 and (50), the above equation thus simplifies to

pk(xk) − f (x∗)
êk

≤ 2 B + 2 Lk
2 L p

eki

(
x̂ kj

)
− g

Fk
i

L

(
x̂ kj

) ,

f (y1) − pk(xk) ≤ L pδ,

f (y1) − f (x∗) ≤ L pδ + êk

⎧
⎪⎨

⎪⎩
2 B + 2 Lk

2L p

eki

(
x̂ kj

)
− g

Fk
i

L

(
x̂ kj

)

⎫
⎪⎬

⎪⎭
.

6 If x ≤ a/b, x ≤ c/d, and b, d>0 then x ≤ (a + c)/(b + d).
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Using (52), (51) and f (x∗) ≤ minz∈Sk { f (z)} ≤ f (y1), it follows:

min
z∈Sk

{ f (z)} − f (x∗) ≤ L pδ + êk

{
2 B + 2 Lk

2L p A

minz∈Sk { f (z)} − f (x∗)

}
,

[
min
z∈Sk

{ f (z)} − f (x∗)
]2

≤ 2 Lk
2L p Aêk + {

L pδ + 2 B ek
} [

min
z∈Sk

{ f (z)} − f (x∗)
]

.

Perform the quadratic inequality7 on the above, and the triangular inequality8 on the square
root of (52), it follows that:

min
z∈Sk

{ f (z)} − f (x∗) ≤
√
2 Lk

2 L p A êk + [L pδ + 2 B êk],
√
êk ≤

√
2 rkmax

√
δ + √

Lc
4
√
2 rkmaxδ.

By using above equations and (52), (49) is satisfied.
According to Lemma 5, rkmax is bounded above; since L

k
2 is also bounded, since the feasible

domain is bounded, it follows that C , D and E are bounded real numbers. Furthermore,
according to Lemma 6,

min
z∈Sk

‖x ′
k − y‖ ≥ δ

2
. (54)

Since ‖x ′
k − y‖ = δdes, we have

min
z∈Sk

{ f (z)} − f (x∗) ≤ εk,

(55)
where εk = 2Cδdes + D

√
2δdes + E 4

√
2δdes

Thus, (47) is satisfied for A1 = 2C , A2 = √
2 D, and A3 = 4

√
2 D. 	


In the above theorem, it is shown that a point can be obtained whose function value
is arbitrarily close to the global minimum, as long as Algorithm 3 is terminated with a
sufficiently small value for δdes. This result establishes convergence with respect to the
function values for a finite number of steps k. In the next theorem, we present a property of
Algorithm 3 establishing its convergence to a global minimizer in the limit that k → ∞.

Theorem 2 If Algorithm 3 is not terminated at step 6, then the sequence {x ′
k} has an ω-limit

point 9 which is a global minimizer of L.

Proof Define zk as a point in Sk that has the minimum objective value. By construction,
f (zr ) ≤ f (zl), if r>l; thus, f (zk) is monotonically non-increasing. Moreover, according to
Theorem 1,

f (zk) − f (x∗) ≤ A1δk + A2
√

δk + A3
4
√

δk,

where δk = min
x∈Sk

{‖x − xk‖}, (56)

7 If A, B,C>0, and A2 ≤ C + BA then A ≤ √
C + B.

8 If x, y>0, then
√
x + y ≤ √

x + √
y.

9 The point x̂ is an ω-limit point (see [45]) of the sequence xk , if a subsequence of xk converges to x̂ .
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where f (x∗) is the global minimum. According to Remark 3, for any arbitrarily small δ>0,
there is a k such that minx∈Sk {‖x − xk‖} ≤ δ; thus,

f (zk) − f (x∗) ≤ A1δ + A2
√

δ + A3
4
√

δ. (57)

Thus, for any ε>0 ; there is a k such that 0 ≤ f (zk) − f (x∗) ≤ ε. Now consider x1 as
an omega-limit point of the sequence {zk}; thus, there is a subsequence {ai } of {zk} that
converges to x1. Since f (x) is continuous,

f (x1) = lim
i→∞ f (ai ) = f (x∗), (58)

which establishes that the x1 is a global minimizer of f (x). 	

Remark 6 Theorems 1 and 2 ensure that Algorithm 3 converges to the global minimum if
y0 ≤ f (x∗); however, if y0> f (x∗), in a manner analogous to Theorem 6 in Part I, it can be
shown that Algorithm 3 converges to a point where the function value is less than or equal
to y0.

5 Results

In this section, we apply Algorithm 3 to some representative examples in two and three
dimensions with different types of convex constraints to analyze its performance. Three
different test functions for f (x), where x = [x1, x2, . . . , xn]T , are considered:
Parabolic function:

f (x) =
n∑

i=1

x2i . (59)

Rastrigin function: Defining A = 2,

f (x) = A n +
n∑

i=1

[
x2i − A cos(2π xi )

]
. (60)

Shifted Rosenbrock function:10 Defining p = 10,

f (x) =
n−1∑

i=1

[
(xi )

2 + p (xi+1 − x2i − 2 xi )
2] . (61)

In the unconstrained setting, the global minimizer of all three test functions considered is the
origin.

Another essential part of the class of problems considered in (1) is the constraints that are
imposed; this is, in fact, a central concern of the present paper.

Note that all simulations in this section are stopped when miny∈Sk {‖y − xk‖} ≤ 0.01.

5.1 2D with circular constraints

We first consider 2D optimization problems in which the feasible domain is a circle. In
problems such as this, in which there is only one constraint (m = 1), gLF (x) = 0 for all
faces F at all steps. Thus, no searches are performed on the faces; rather, all searches

10 This is simply the classical Rosenbrock function with its unconstrained global minimizer shifted to the
origin.
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are performed in the interior simplices, with some points xk (that is, any point xk that
lands within the circumsphere of a boundary simplex) projected out to the feasible domain
boundary.

In this subsection, two distinct circular constraints are considered:

(x1 + 1.5)2 + (x2 + 1.5)2 ≤ 5.5, (62a)

(x1 + 1.5)2 + (x2 + 1.5)2 ≤ 3.8. (62b)

The constraint (62a) includes the origin (and, thus, the global minimizer of the test functions
considered), whereas the constraint (62b) does not. For the problems considered in this
subsection, we take κ = 1.4 for all simulations performed, which satisfies (10).

It is observed that, for test functions (59) and (60), the global minimizer in the domain
that satisfies (62b) is x∗ = [−0.1216;−0.1216], and the global minima are f (x∗) = 0.0301
and f (x∗) = 0.8634, respectively. For the Rosenbrock function (61), the global minimizer
is at x∗ = [−0.0870;−0.1570], and the global minimum is f (x∗) = 0.0085 [it is easy to
check that this point is KKT (see [15]), and that the problem is convex].

Algorithm 3 is implemented for six optimization problems constructed with the above test
functions and constraints. In each problem, the parameter y0 in Algorithm 3 is chosen be a
lower bound for f (x∗). Two different cases are considered: one with y0 = f (x∗), and one
with y0< f (x∗).

The first two problems consider the parabolic test function (59), first with the constraint
(62a), then with the constraint (62b). For these problems, in the case with y0 = f (x∗) (that
is, f (x∗) = 0 for constraint (62a), and f (x∗) = 0.0301 for constraint (62b)), a total of 8
and 7 function evaluations are performed by the optimization algorithm for the constraints
given by (62a) and (62b), respectively (see Fig. 5a, g). This remarkable convergence rate is,
of course, due to the facts that the global minimum is known and both the function and the
curvature of the boundary are smooth.

For the two problems related to the parabolic test function in the case with y0< f (x∗) (we
take y0 = −0.1 in both problems), slightlymore exploration is performed before termination;
a total of 15 and 13 function evaluations are performed by the optimization algorithm for the
constraints given by (62a) and (62b), respectively (see Fig. 5d, j). Another observation is that,
for the constraint given by (62b), more function evaluations on the boundary are performed;
this is related to the fact that the function value on the boundary is reduced along a portion
of the boundary.

The next two problems consider the Rastrigin test function (60), first with the constraint
(62a), thenwith the constraint (62b).With the constraint (62a), this problem has 16 local min-
ima in the interior of the feasible domain, and 10 constrained local minima on the boundary
of L; with the constraint (62b), it has 12 local minima in the interior of the feasible domain,
and 4 constrained local minima on the boundary of L . For these problems, in the case with
y0 = f (x∗) (that is, f (x∗) = 0 for constraint (62a), and f (x∗) = 0.8634 for constraint
(62b)), a total of 41 and 38 function evaluations are performed by the optimization algorithm
for the constraints given by (62a) and (62b), respectively (see Fig. 5b, h). As expected, more
exploration is needed for this test function than for a parabola. Another observation for the
problem constrained by (62b) is that two different regions are characterized by rather dense
function evaluations, one in the vicinity of the global minimizer, and the other in a neigh-
borhood of a local minima (at x1 = [−1; 0]) where the cost function value ( f (x1) = 1) is
relatively close to the global minimum f (x∗) = 0.8634.

For the two problems related to the Rastrigin test function in the case with y0< f (x∗)
(we take y0 = −0.2 for the problem constrained by (62a), and y0 = 0.5 for the problem
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Fig. 5 Location of function evaluationswhen applyingAlgorithm3 to the 2Dparabola (59), Rastrigin function
(60), and Rosenbrock function (61), when constrained by a circle (62a) containing the unconstrained global
minimum, and when constrained by a circle (62a) not containing the unconstrained global minimum. The
constrained global minimizer is marked by star in all figures. a Parabola, in (62a), y0 = f (x∗). b Rastrigin,
in (62a), y0 = f (x∗). c Rosenbrock, in (62a), y0 = f (x∗). d Parabola, in (62a), y0< f (x∗). e Rastrigin, in
(62a), y0< f (x∗). f Rosenbrock, in (62a), y0< f (x∗). g Parabola, in (62b), y0 = f (x∗). h Rastrigin, in (62b),
y0 = f (x∗). i Rosenbrock, in (62b), y0 = f (x∗). j Parabola, in (62b), y0< f (x∗). k Rastrigin, in (62b),
y0< f (x∗). l Rosenbrock, in (62b), y0< f (x∗)

constrained by (62b)), more exploration is, again, performed before termination; a total of 70
and 64 function evaluations are performed by the optimization algorithm for the constraints
given by (62a) and (62b), respectively (see Fig. 5e, k). For the problem constrained by
(62b), three different regions are characterized by rather dense function evaluations: in the
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vicinity of [−1; 0], in the vicinity of [0; −1], and in the vicinity of the global minimizer at
[−0.1216;−0.1216].

The last two problems of this subsection consider the Rosenbrock test function (61),
first with the constraint (62a), then with the constraint (62b). This challenging problem is
characterized by a narrow valley, with a relatively flat floor, in the vicinity of the curve
x2 = x21 . For these problems, in the case with y0 = f (x∗) (that is, f (x∗) = 0 for constraint
(62a), and f (x∗) = 0.0085 for constraint (62b)), a total of 29 and 31 function evaluations
are performed by the optimization algorithm for the constraints given by (62a) and (62b),
respectively (see Fig. 5c, i).

For the two problems related to the Rosenbrock test function in the case with y0< f (x∗)
(we take y0 = −0.5 in both problems), more exploration is performed before termination;
a total of 47 and 54 function evaluations are performed by the optimization algorithm for
the constraints given by (62a) and (62b), respectively (see Fig. 5f, l). As with the previous
problems considered, exact knowledge of f (x∗) significantly improves the convergence rate.
Additionally, such knowledge confines the search to a smaller region around the curve y = x2,
and fewer boundary points are considered for function evaluations.

5.2 2D with elliptical constraints

The next two constraints considered are diagonally-oriented ellipses with aspect ratios 4 and
10:

(x + y + 3)2 + 16 (x − y)2 ≤ 10, (63a)

(x + y + 3)2 + 100 (x − y)2 ≤ 10. (63b)

These constraints are somewhat more challenging to deal with than those considered in
Sect. 5.1. As in Sect. 5.1, gLF (x) = 0 for all faces F at all steps; thus, no searches are
performed on the faces.

The Rastrigin function has 4 unconstrained local minimizers inside each of these ellipses.
Additionally, there are 6 constrained local minimizers on the boundary (63a); note that there
are no constrained local minimizers on the boundary (63b).

In this subsection, Algorithm 3 is applied to the 2D Rastrigin function (60) for the two dif-
ferent elliptical constraints considered. The unconstrained globalminimizer of this function is
at x∗ = [0, 0], where the global minimum is f (x∗) = 0; this unconstrained global minimizer
is contained within the feasible domain for both (63a) and (63b). We take y0 = f (x∗) = 0
for all simulations reported in this subsection.

For the problems considered in this subsection, we take κ = 2 for all simulations per-
formed, which satisfies (10). Note that, though the aspect ratio of the feasible domain is
relatively large (especially in (63b)), the minimum distance of the body center of the initial
simplex from its vertices is relatively large; thus, a relatively small value for extending para-
meter κ may be used. As seen in Fig. 6, for the cases constrained by (63a) and (63b), the
simulations are terminated with 24 and 60 function evaluations, respectively. This indicates
that the performance of the algorithm depends strongly on the aspect ratio of the feasible
domain, as predicted by the analysis presented in Sect. 4, as the parameter Kg in Assump-
tion 6 increases with the square of the aspect ratio of the elliptical feasible domain [see the
explicit dependence on Kg in (48) and (49)]. In the case constrained by (63b), Fig. 6d shows
that the global minimizer lies outside of the smallest face of the initial simplex, and is situated
relatively far this face. In this case, the reduced uncertainty ek(x) across this small face (a
result of the fact that its vertices are close together) belies the substantially larger uncertainty
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Fig. 6 Implementation of Algorithm 3 with y0 = 0 on the 2D Rastrigin problem (60) within the ellipse (63).
a Initial simplex for (63a). b Exterior simplex for (63a). c Evaluation points for constraint (63a). d Initial
simplex for (63b). e Exterior simplex for (63b). f Evaluation points for constraint (63b)

present in the feasible domain far outside the initial simplex, in the vicinity of the global
minimizer; this, in effect, slows convergence. Note that this situation only occurs when the
curvature of the boundary is large. An alternative approach to address problems with large
aspect ratio is to eliminate the highly-constrained coordinate direction(s) altogether, solve a
lower-dimensional optimization problem, then locally optimize the original problem in the
vicinity of the lower-dimensional optimal point. Note that, through the construction of the
enclosing simplex (see Definition 3), the highly-constrained coordinate directions can easily
be identified and eliminated.

5.3 2D with multiple constraints

In this subsection, Algorithm 3 is implemented for problems characterized by the union of
multiple linear or nonlinear constraints on the feasible domain, which specifically causes
corners (that is, points at which two or more constraints are active) in the feasible domain. In
such problems, the value of gLF (x) is nonzero at some faces of the Delaunay triangulations;
Algorithm 3 thus requires searches over the faces of the triangulations. The example consid-
ered in this subsection quantifies the importance of this process of searching over the faces
of the triangulations in such problems.

The test function considered in this subsection is the 2D Rastrigin function (60), and the
feasible domain considered is as follows:

c1(x) = (x1 + 2)2 + (x2 + 2)2 ≤ 2 × 1.92, (64a)

c2(x) = x1 ≤ −0.1. (64b)

The Rastrigin function in the feasible domain characterized by (64) has 18 local minima
inside the feasible domain, and 7 constrained local minima on the boundary of the feasible
domain.
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Fig. 7 Implementation of Algorithm 3 with y0 = f (x∗) on the 2D Rastrigin function (60) with constraints
(64), with and without searching over the faces. a Location of the initial simplex. b Implementation of
Algorithm 3. c Skipping the searches over the faces

Note that the unconstraint global minimizer of (60) is not in the domain defined by the
constraints (64).

The global minimizer of (60) within the feasible domain defined by (64) is x∗ =
[−0.1;−0.1], and the global minimum is f (x∗) = 0.7839.

In order to benchmark the importance of the search over the faces of the triangulations
in Algorithm 3, two different optimizations on the problem described above (both taking
y0 = f (x∗) and κ = 1.4) are performed. In the first, we apply Algorithm 3. In the second,
the same procedure is applied; however, the search over the faces of the triangulation is
skipped.

As shown in Fig. 7b, Algorithm 3 requires only 35 function evaluations before the algo-
rithm terminates, and a point in the vicinity of the global minimizer is found. In contrast,
as shown in Fig. 7c, when the search over the faces of the triangulation is skipped in Algo-
rithm 3, 104 function evaluations are required before the algorithm terminates. In problems
of this sort, in which the constrained global minimizer is at a corner, Algorithm 3 requires
searches over the faces in order to move effectively along the faces into the corner.

Note also in Fig. 7b that, when a point in the corner is the global minimizer, Algorithm 3
converges slowly along the constraint boundary towards the corner. A potential work-around
to this problem might be to switch to a derivative-free local optimization method (e.g. [2,9,
35]) when a point in the vicinity of the solution near a corner is identified.

5.4 3D problems

To benchmark the performance of Algorithm 3 on higher-dimensional problems, it was
applied to the 3D parabolic (59), 3D Rastrigin (60) and 3D Rosenbrock (61) test functions
with a feasible domain that looks approximately like the D-shaped feasible domain illustrated
in Fig. 7 rotated about the horizontal axis:

c1(x) =
3∑

i=1

(xi + 2)2 ≤ 3 × 1.952, (65a)

c2(x) = x1 ≤ −0.05. (65b)

The constrained global minimizer x∗ for the 3D parabolic and 3D Rastrigin test func-
tions in this case is at the corner [−0.05;−0.05;−0.05], where both constraints are
active. The constrained global minimizer x∗ for the 3D Rosenbrock test functions is at
[−0.05;−0.0975;−0.1875], where one of the constraints [c2(x)] is active.
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Fig. 8 Algorithm 3 applied to the 3D parabolic (59), Rastrigin (60), and Rosenbrock (61) test functions, with
a feasible domain defined by (65). a Function values for Parabola (59). b Function values for Rastrigin (60). c
Function values for Rosenbrock (61). d c1(x) at evaluated points for parabola. e c1(x) for Rastrigin. f c1(x)
for Rosenbrock. g c2(x) at evaluated points for parabola. h c2(x) for Rastrigin. i c2(x) for Rosenbrock

Algorithm 3 with y0 = 0 and κ = 1.4 was applied to the problems described above. As
shown in Fig. 8, the parabolic, Rastrigin, and Rosenbrock test cases terminated with 15, 76
and 87 function evaluations, respectively. As mentioned in the last paragraph of Sect. 5.3,
convergence in the first two of these test cases is slowed somewhat from what would be
achieved otherwise due to the fact that the constrained global minimum lies in a corner
of the feasible domain. Note that the Rastrigin case is fairly difficult, as this function is
characterized by approximately 140 local minima inside the feasible domain, and 50 local
minima on the boundary of the feasible domain; nonetheless, Algorithm 3 identifies the
nonlinearly constrained global minimum in only 76 function evaluations.

5.5 Linearly constrained problems

In this section, Algorithm 3 is compared with Algorithm 4 in Part I of this work (the so-called
“Adaptive K ” algorithm) for a linearly constrained problem with a smooth, simple objective
function, but a large number of corners of the feasible domain.

The test function considered is the 2D parabola (59), and the set of constraints applied is
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Fig. 9 Implementation of Algorithm 3 of the present paper, and Algorithm 4 of Part I, to a parabolic test
function constrained by a decagon. aAlgorithm 4 of Part I. bAlgorithm 3 of the present paper. c Initial simplex
used in (b)

ai = [
cos(2π i/m) sin(2π i/m)

]T
,

bi = 2.5 cos(π/m) − [
1 1

]
ai , (66)

aTi x ≤ bi , 1 ≤ i ≤ m.

The feasible domain characterized by (66) is a uniformm-sided polygon withm vertices. The
feasible domain contains the unconstrained global minimum at [0, 0], and y0 = f (x∗) = 0
is used for both simulations reported.

The initialization of Algorithm 4 in Part I requires m initial function evaluations, at the
vertices of the feasible domain; the case with m = 10 (taking r = 5, as discussed in §4 of
Part I) is illustrated in Fig. 9a, and is seen to stop after 15 function evaluations (that is, 5
iterations after initialization at all corners of the feasible domain).

In contrast, as illustrated Fig. 9c, Algorithm 3 of the present paper (taking κ = 1.4),
applied to the same problem, stops after only 10 function evaluations (that is, 6 iterations
after initialization at the vertices of the initial simplex and its body center). Note that one
feasible boundary projection is performed in this simulation, as the global minimizer is not
inside the initial simplex.

These simulations show that, for linearly-constrained problems with smooth objective
functions, it is not necessary to calculate the objective function at all vertices of the feasible
domain. As the dimension of the problem and/or the number of constraints increases, the cost
of such an initialization might become large. Using the algorithm developed in the present
paper, it is enough to initialize with between n + 2 and 2n + 3 function evaluations.

5.6 Role of the extending parameter κ

The importance of the extending parameter κ is now examined by applying Algorithm 3 to
the Rastrigin function (60) within a linearly-constrained domain:

x ≤ 0.1, (67a)

−1.1 ≤ y, (67b)

y − x ≤ 0.5. (67c)

The Rastrigin function (60) has 3 local minimizers inside this triangle, and there are not any
constrained local minimizers on the boundary of this triangle.

The feasible domain includes the unconstrained global minimizer in this case; thus, the
constrained global minimizer is [0, 0]. Two different values of the extending parameter are
considered, κ = 1.1 and κ = 100. It is observed (see Fig. 10) that, for κ = 1.1, the algorithm
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Fig. 10 Implementation of Algorithm 3 with y0 = 0 on 2D Rastrigin problem (60) in a triangle characterized
by (67) with κ = 1.1 and κ = 100. a Evaluation points for κ = 1.1. b The maximum circumradius for
κ = 1.1. c Evaluation points for κ = 100. d The maximum circumradius for κ = 100

converges to the vicinity of the solution in only 12 function evaluations; for κ = 100, 16
function evaluations are required, and the feasible domain is explored more.

Themain reason for this phenomenon is related to the value of the maximum circumradius
(see Fig. 10b, d). In the κ = 100 case, Algorithm 3 performs a few unnecessary function
evaluations, close to existing evaluation points, at those iterations duringwhich themaximum
circumradius of the triangulation is large. The κ = 1.1 case better regulates the maximum
circumradius of the triangulation, thus inhibiting such redundant function evaluations from
occurring.

5.7 Comparison with other derivative-free methods

In this section, we briefly compare our new algorithm with two modern benchmark methods
among derivative free optimization algorithms. The first method considered is MADS (mesh
adaptive direction search; see [3]), as implemented in the NOMAD software package [32].
This method (NOMAD with 2n neighbors) is a local derivative-free optimization algorithm
which can handle constraints on the feasible domain. The second method considered is SMF
(surrogatemanagement framework; see [8]). This algorithm is implemented in [37] for airfoil
design.11 This method is a hybrid method that combines a generalized pattern search with a
krigining based optimization algorithm.

The test problem considered here for the purpose of this comparison is the minimization
of the 2D Rastrigin function (60), with A = 3, inside a feasible domain L characterized by
the following constraints:

c1(x) = x ≤ 2, c2(x) = (x − 2)2 + (y + 2)2 ≤ 8. (68)

11 Though this code is not available online, we have obtained a copy of it by personal communication from
Prof. Marsden.
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Fig. 11 Implementation of a Algorithm 3, b SMF, and c, d MADS on minimization of the 2D Rastrigin
function (60) inside the feasible domain characterized by (68). The feasible domain is indicated by the black
semicircle, the function evaluations performed are indicated aswhite squares, and the feasible globalminimizer
is indicated by an asterisk

In this test, for Algorithm 3, the value of y0 = f (x∗) = 0 was used, and the termination
condition, similar to the previous sections, is taken by minx∈Sk‖x − xk‖ ≤ 0.01. Results are
shown in Fig. 11.

Algorithm 3 performed 19 function evaluations (see Fig. 11a), which includes some initial
exploration of the feasible domain, and more dense function evaluations in the vicinity the
global minimizer. Note that, since Algorithm 3 uses interpolation during its minimization
process, once it discovers a point in the neighborhood of the global solution, convergence to
the global minimum is achieved rapidly.

The SMF algorithm similarly performs both global exploration and local refinement.
However, the number of function evaluations required for the same test problem increases to
66 (see Fig. 11b). The reasons for this appear to be essentially twofold. First, the numerical
performance of the polyharmonic spline interpolation together with our synthetic uncertainty
function appear to behave favorably as compared with Kriging, as also observed in Part I
of this work. Second, the search step of the SMF [37] was not designed for nonlinearly
constrained problems. In other words, the polling step is the only step of SMF that deals with
the complexity of the constraints.

Unlike Algorithm 3, MADS is not designed for global optimization; thus, there is no
guaranty of convergence to the global minimum. In this test, two different initial points were
considered to illustrate the behavior of MADS. Starting from x0 = [1.9;−π] (see Fig. 11c),
MADS converged to a local minimizer after 19 function evaluations; however, this local
minimum is not the global solution. Starting from x0 = [1;−1] (see Fig. 11d), MADS
converged to the global minimizer at [0, 0] after 59 function evaluations.
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In the above tests, we have counted those function evaluations that are performed within
L , as the constraint functions ci (x) are assumed to be computationally inexpensive. Note
that Algorithm 3 does not include any function evaluations outside of L .

Although this particular test shows a significant advantage for Algorithm 3 compared to
the SMF andMADS tests, more study is required to analyze properly the performance of this
algorithm. An important fact about this algorithm is that it’s performance is dependent on the
interpolation strategy used; this dependence will be studied in future work. A key advantage
of Algorithm 3 is that it lets the user choose the interpolation strategy to be implemented;
the best choice might well be problem dependent.

6 Conclusions

In this paper, the derivative-free global optimization algorithms developed in Part I of this
study were extended to the optimization of nonconvex functions within a feasible domain L
bounded by a set of convex constraints. The paper focused on extending Algorithm 4 of Part
I (the so-called Adaptive K algorithm) to convex domains; we noted in Remark 2 that the
extension of Algorithm 2 of Part I (the so-called Constant K algorithm) may be extended in
an analogous fashion.

We developed three algorithms:

• Algorithm 1 showed how to initialize the optimization by identifying n + 1 points in L
whichmaximize the volume of the initial simplex generated by these points. An enclosing
simplex was also identified which includes L .

• The initial simplex identified by Algorithm 1, together with its body center, were aug-
mented by Algorithm 2 with up to n + 1 additional points to better separate the interior
simplices from the boundary simplices in the Delaunay triangulations to be used.

• Algorithm 3 then presented the optimization algorithm itself, which modified the Algo-
rithms of Part I in order to extend the convex hull of the evaluation points to cover the
entire feasible domain as the iterations proceed. An important property of this algo-
rithm is that it ensures that the triangulation remains well behaved (that is, the maximum
circumradius remains bounded) as new datapoints are added.

In the algorithm developed, there are two adjustable parameters. The first parameter is
y0; this is an estimate of the global minimum, and has a similar effect on the optimization
algorithm as seen in Algorithm 4 of Part I. The second parameter is κ>1, which quantifies
the size of the exterior simplex. It is shown in our analysis (Sect. 4) that, for 1<κ<∞, the
maximum circumradius is bounded. In practice, it is most efficient to choose this parameter
as small as possible while respecting the technical condition (10) required in order to assure
convergence.

The performance of the algorithm developed is shown in our results (Sect. 5) to be good
if the aspect ratio of L of the feasible domain is not too large. Specifically, the curvature
of each constraint ci (x) is seen to be as significant to the overall rate of convergence as
the smoothness of the objective function f (x) itself. It was suggested in Sect. 5 that, in
feasible domains with large aspect ratios, those directions in parameter space that are highly
constrained can be identified and eliminated from the global optimization problem; after the
global optimization is complete, local refinement can be performed to optimize in these less
important directions.

Another challenging aspect of the algorithm developed is its reduced rate of convergence
when the globalminimizer is near a corner of the feasible domain. This issue can be addressed
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by switching to a local optimization method when it is detected that the global minimizer is
near such a corner (that is, when multiple values of ci (x) are near zero).

In future work, we extend the algorithms developed to problems in which function evalu-
ations are inexact, and can be improved with additional computational effort. Moreover, this
algorithm will be applied on a wide range of test problems. In particular, the performance of
the present algorithm depends on the particular interpolation strategy used (unlike various
other response surface methods, this method is not limited to a specific type of interpolation
strategy).
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