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Abstract Due to the growing interest in approximation for multiobjective optimization
problems (MOPs), a theoretical framework for defining and classifying sets representing
or approximating solution sets for MOPs is developed. The concept of tolerance function is
proposed as a tool for modeling representation quality. This notion leads to the extension of
the traditional dominance relation to t-dominance. Two types of sets representing the solu-
tion sets are defined: covers and approximations. Their properties are examined in a broader
context of multiple solution sets, multiple cones, andmultiple quality measures. Applications
to complex MOPs are included.

Keywords Multiobjective optimization · Nondominated set · Pareto set · Approximation ·
Cones · Tolerance function

1 Introduction

In multiobjective optimization problems (MOPs), which occur frequently inmany real-world
applications, an optimal solution set, also known as the nondominated set, is implied by a
partial order or a convex cone associated with the objective space of the MOP [59]. Tradi-
tionally, the partial order is based on the Pareto preference which, in case of minimization, is
equivalent to the cone being the first quadrant of the objective space [12]. It has been shown
in the literature that general convex cones are also beneficial since they provide a tool for
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modeling decision maker’s preferences. Refer to Noghin [43], Klimova and Noghin [33],
Wiecek [58], Hunt et al. [30] for algebraic models of such polyhedral cones, and to Hunt et
al. [29] for their applications in engineering design.

The success of applying multiobjective optimization in practice depends, among others,
on the ability to compute the elements of the nondominated set. This set is typically large
and it is often difficult or even impossible to obtain its exact description. For MOPs with
continuous objective and constraint functions defined over a continuous feasible set, the
nondominated set is usually infinite. It can be derived analytically only for certain classes of
problems [18,53], and otherwise it has to be approximated. ForMOPswith a discrete feasible
set, the nondominated set may have a finite number of elements. However, their computation
may involve solving NP hard problems. In particular, for most multiobjective combinatorial
optimization problems the solution set is exponential in the size of the instance in the worst
case [10]. In conclusion, even if it is theoretically possible to find the nondominated set, it is
often computationally challenging and expensive to do so.

Because of the difficulties related to the structure of the nondominated set and the com-
pounding computational challenges, a large variety of methods have been proposed for
computing its elements, and numerous approaches have been developed to representing or
approximating this set. All these methods and approaches rely on guaranteed or heuristic
algorithms.

The former typically compute actual elements of the solution sets by means of algorithms
which provide theoretical proofs for their correctness (refer to Ruzika and Wiecek [49] for
a review of such methods for continuous MOPs in the period 1975–2003). Recent methods
include the works of Martin et al. [40], Goel et al. [17], Efremov and Kamenev [9], Har-
tikainen et al. [23,24]. The quality of discrete representations is discussed in Faulkenberg
and Wiecek [15] who define the representation as a subset of the solution set.

Many methods have been proposed for generating approximations of the nondominated
set which may contain dominated points but have an a priori guarantee on the approximation
quality; some of these are referenced in Sect. 2.3. Heuristic andmeta-heuristic methods (such
as evolutionary and genetic algorithms) provide approximations of the nondominated set with
points that are not necessarily in this set but that are feasible for the MOP and considered
acceptable according to a principle or a quality criterion used for the approximation. These
methods usually find approximating points quickly but have no proofs of correctness and,
thus, are theoretically unsupported (see Coello Coello et al. [6], and many others).

Rules or criteria for evaluating approximation quality evolved from the concept of
ε-nondominance that was introduced by Kutateladze [35] to relax additively the original
efficiency of the solutions. Other concepts of additive ε-nondominance followed [38,57].
They were introduced and investigated originally as types of efficiency (refer to Helbig and
Pateva [25] for a survey) before they were used for approximation. The general idea behind
ε-approximations is that the elements in the solution set are approximately dominated by the
elements of the approximating set and the approximation quality is a function of ε.

Discrete ε-approximations of the nondominated set of the MOP have been proposed by
various authors. Motivation for those approaches and an overview focusing on defining and
measuring approximation quality is discussed in Sayin [51].

Due to the growing interest in approximation for MOPs and many different notions of
approximations in the literature, a theoretical framework for defining and classifying sets
representing or approximating solution sets for MOPs is proposed in this paper. The notion
of representation is understood in a broad sense as any set being representative of the set to be
represented, which is more general than the same notion defined by Sayin [51] who requires
representations to be subsets of the set being represented. In this paper, the representation is
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not necessarily a subset of the represented set and its quality can be evaluated with different
measures. Two types of sets serving as representations are defined: covers and approxima-
tions. A cover is a set so that any element of the set being represented is covered by at least
one element in the covering set. Covering is defined here by a relaxed dominance relation
using a tolerance function that determines the error or quality of the cover. An approximation
set is defined as an inherently nondominated cover [23].

Covers and approximations are studied in a broader context of multiple solutions sets,
multiple (constant) cones, and multiple quality measures. Multiple solution sets may result
from a decomposition of the original MOP into smaller problems [16]; multiple cones may
account for different decision makers having different preferences; while multiple quality
measures may result from using different algorithms on the same problem. Properties of
covers and approximations are derived for a variety of these cases representing different real-
life circumstances. While the notions of ε-dominance had led researchers to the development
of various types of approximations, the proposed tolerance function extends the traditional
dominance to t-dominance in which the dominating element is replaced by its proxy or
surrogate that is yield by the tolerance function.

The paper is organized in the following manner. In Sect. 2, common terminology and
basic definitions are given, and the definitions of cover and approximation are presented.
Their properties are studied in Sect. 3. Relevance of the results is illustrated in the context of
decomposable systems in Sect. 4, while Sect. 5 concludes the paper.

2 Definitions and preliminary results

We begin with well established notations and definitions. We then introduce the central
concepts of tolerance functions, covers and approximations. Finally, we give examples of
tolerance functions and their application to derive covers or approximations.

2.1 Preliminaries

Throughout this paper let Rp be a Euclidean vector space, Y be a nonempty subset in Rp ,
and C be a nonempty cone in Rp . A set C in Rp is called a cone if d ∈ C implies λd ∈ C
for λ ≥ 0. The set Y represents the set of outcomes resulting from an MOP but not explicitly
available to the user, while the cone models the decision maker’s preferences.

For y1, y2 in Y , we use the notation y1 � y2 if and only if y1k ≤ y2k for all
k = 1, 2, . . . , p; y1 ≤ y2 if and only if y1k ≤ y2k for all k = 1, 2, . . . , p and y1 �= y2; y1 < y2

if and only if y1k < y2k for all k = 1, 2, . . . , p.With the relations�,≥, and> defined accord-
ingly, we also define the cone Rp

� := {y ∈ Rp : y � 0}.
Cones are used to define cone-relations between the elements of the set Y , and dominated

and nondominated elements in Y [59].

Definition 1 Let y1, y2 ∈ Y and C be a cone in Rp . A relation �C on Y is defined by
y1 �C y2 if and only if y2 − y1 ∈ C , or equivalently, there exists d ∈ C such that
d = y2 − y1 ∈ C . Furthermore a relation ≤C on Y is defined by y1 ≤C y2 if and only if
y2 − y1 ∈ C \ {0}, or equivalently, there exists d ∈ C, d �= 0 such that d = y2 − y1 ∈ C .

When C = Rp
� is the Pareto cone, �C and ≤C reduce to � and ≤, respectively.
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Definition 2 A point y′ ∈ Y is called a nondominated point of the set Y with respect to the
cone C if there does not exist y ∈ Y such that y ≤C y′. The set of all nondominated points
of Y with respect to the cone C is denoted by N (Y,C).

The set N (Y,C) is the solution set of an MOP and our aim in this paper is to represent or
approximate this solution set.

We assume the standard conditions guaranteeing both the existence of N (Y,C) [50] and
its external stability. This latter property, also called domination property (e.g., Henig [26]),
states that any dominated point is dominated by a point in N (Y,C). Standard sufficient
conditions for ensuring both properties are C is a pointed closed convex cone and Y ⊆ Rp

is a non-empty compact set (see Sawaragi et al. [50]).
If the cone C is the Pareto cone (C = Rp

�), the set N (Y,C) reduces to the well-known

Pareto set and is denoted as N (Y,Rp
�).

A polyhedral cone is defined as follows:

Definition 3 A polyhedral cone is a cone C in Rp for which there exists a q × p matrix
A ∈ Rq×p such that C = {d ∈: Ad � 0}.
The imageof any subset R ⊆ Y under the linearmapping representedby thematrix A ∈ Rq×p

is denoted by A[R] := {z ∈ Rq : z = Ay , y ∈ R}.
2.2 Tolerance function, covers, and approximations

We now present the concepts newly introduced in this paper. We begin with a tolerance
function that associates to each element in the set Y its image t (y) representing the largest
tolerable deterioration that is acceptable on each component of y. To be well-defined a
tolerance must satisfy two conditions as indicated in the following definition.

Definition 4 Let Y be a set in Rp and C be a cone in Rp . A vector-valued function t :
Rp �→ Rp such that

(1) for all y ∈ Y, y �C t (y), and
(2) for all y1, y2 ∈ Y if y1 �C y2 then t (y1) �C t (y2), is called a tolerance function.

Example 1 For Y ⊂ Rp
� and C = Rp

�, the tolerance function t (y) = αy, with α ≥ 1 is well

defined. However, for Y ⊂ Rp
� and C = −Rp

�, or Y ⊂ Rp
� and C = Rp

�, it is not.

The following property of the tolerance function will be useful.

Definition 5 Let Y be a set in Rp . A vector-valued function t : Rp �→ Rp is called an
A-invariant function on Y if t (Ay) = At (y) for all y ∈ Y , where A is a p × p matrix.

Example 2 Let Y ⊂ R2 such that Y = {(2, 3)T , (1, 1)T }, t1, t2 : R2 �→ R2 be two functions

defined as t1(y) = 2y and t2(y) = 2y + (1, 1)T for y ∈ Y , and A =
(
2 3
1 2

)
. We obtain that

t1(Ay) = At1(y) for all y ∈ Y . Thus t1 is an A-invariant function on Y . Let ȳ = (2, 3)T .
We note that t2(Aȳ) = (27, 17)T , At2(ȳ) = (31, 19)T , and hence t2 is not an A-invariant
function on Y .

We can then relax the definition of a dominance relation, using a tolerance function,
leading to the following definition of t-dominance relations.
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Definition 6 Let y1, y2 ∈ Y,C be a cone inRp , and t : Rp �→ Rp be a tolerance function.
A relation �t

C on Y is defined by y1 �t
C y2 if and only if y1 �C t (y2). Similarly, a relation

≤t
C on Y is defined by y1 ≤t

C y2 if and only if y1 ≤C t (y2).

As indicated in the following proposition, the tolerance function may be used to construct
subsets of points, called indifference blocks, such that any two points within a same block
t-dominate each other.

Proposition 1 Let B be a set inRp defined as B = (l +C) ∩ (t (l) −C), where l is a point
inRp,C is a convex cone inRp, and t : Rp �→ Rp is a tolerance function distinct from the
identity function. Then for any two points y, y′ ∈ B, we have y �t

C y′.

Proof Since y ∈ B, we have y �C t (l) which, by Definition 4(1), transitivity of �C due to
C being convex, and Definition 6, gives y �t

C t (l). Moreover, since y′ ∈ B, using similar
arguments we have l �C y′ and thus l �t

C y′. Since �C is reflexive we have t (l) �C t (l)
and thus t (l) �t

C l by Definition 6. Since �C is transitive, so is the relation �t
C , which gives

the result. �
Given a set of attainable outcomes Y ⊂ Rp , it is of interest to represent an arbitrary subset

R ⊆ Y . We use the concept of t-dominance to define representations called t-covers.

Definition 7 Let Y be a set inRp, R be a subset of Y,C be a cone inRp , and t : Rp �→ Rp

be a tolerance function. A subset S of Y is called a t-cover of R with respect to C if for all
y ∈ R there exists s ∈ S such that s �t

C y.

In other words, any element y of R is covered by at least one element in the cover which
is at least as good as y up to a given tolerance. Observe that the cover may contain elements
which do not belong to R. While the set R to be represented can be any subset of Y , the set
N (Y,C) is typically chosen as R.

Example 3 Let Y ⊂ R2 such that Y = {y1 = (1, 3)T , y2 = (2, 2)T , y3 = (3, 3)T , y4 =
(4, 1)T }, and t : R2 �→ R2 be a tolerance function such that t (y) = 1.6y for y ∈ Y . Assume
N (Y,C) is the set R to be represented.

1. Let C = R2
� and note that N (Y,C) = {y1, y2, y4}. This set is obviously a t-cover of R,

but {y1, y4} is also a t-cover of R, whereas {y1}, {y2} and {y4} are not (see Fig. 1a).
2. Let C = {d ∈ R2 : 3d1 + 2d2 ≥ 0, d1 + 2d2 ≥ 0}. Set {y1, y2, y4} is, here again,

a t-cover of R. Note, however, that y2 ≤C y4 and that the resulting nondominated
set N (Y,C) = {y1, y2} is also a t-cover of R. Such t-covers that do not contain any
dominated point will be called t-approximations (see Definition 8). It should also be
observed that {y1} or {y2}, or even {y4} which is dominated, are also t-covers (and
t-approximations) of R (see Fig. 1b).

For the given cone and tolerance function, there may exist many t-covers. The collection
of all t-covers of R with respect to a cone C is denoted by Ct (R,C). This collection is
not empty because it contains R itself, and also any superset of N (Y,C) under a convexity
assumption.

Proposition 2 Let Y be a set in Rp, R be a subset of Y,C be a convex cone in Rp, and
t : Rp �→ Rp be a tolerance function. Then, for any set S ⊇ N (Y,C), S ∈ Ct (R,C).
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Fig. 1 t-covers a C = R2
�, b C = {d ∈ R2 : 3d1 + 2d2 ≥ 0, d1 + 2d2 ≥ 0}

Proof Let S = N (Y,C), then for any y ∈ Y , and thus for any y ∈ R, there exists s ∈ S such
that s �C y. Since t is a tolerance function, we have y �C t (y). Since C is convex, relation
�C is transitive. Thus we get s �t

C y, and N (Y,C) is a cover of R. Since any superset of a
cover is a cover, the result follows. �

From the previous result, both N (Y,C) and Y are covers of R, whenC is convex. Actually,
under the same assumption, we prove that covering N (Y,C) is equivalent to covering Y .

Proposition 3 Let Y be a set in Rp, C be a convex cone in Rp, and t : Rp �→ Rp be a
tolerance function. Then S ∈ Ct (N (Y,C),C) if and only if S ∈ Ct (Y,C).
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Proof (⇒) Let S ∈ Ct (N (Y,C),C). Then, by Definition 7, there exists s ∈ S such that
s �t

C y, for any y ∈ N (Y,C). Let z ∈ Y \N (Y,C). Then, there exists y ∈ N (Y,C) such that
y �C z, which, by Definition 4(2), implies t (y) �C t (z). Thus, we have s �C t (y) �C t (z),
which, by transitivity of �C , due to C being convex, implies s �t

C z.
(⇐) Let S ∈ Ct (Y,C). Then, by Definition 7, there exists s ∈ S such that s �t

C y, for any
y ∈ Y and thus for y ∈ N (Y,C), since N (Y,C) ⊆ Y . �

Some covers in the collection may contain a large number of points while other covers
have small cardinality. It should be noticed that any compact subset of Y , and in particular
any infinite subset R, admits covers of finite cardinality.

Proposition 4 Let Y be a set inRp, R be a compact subset of Y,C be a convex cone inRp,
and t : Rp �→ Rp be a tolerance function. Then there exist finite covers in Ct (R,C).

Proof Since R is compact, there exists a finite union of indifference blocks Bj , as defined
by Proposition 1, such that

⋃k
j=1 Bj ⊇ R. Then, selecting from each block one point in Y ,

when it exists, defines a finite cover. �
The previous result can be made more explicit for the Pareto cone, C = Rp

�. In

this case, the compact subset R to be represented can be embedded in a hyperrectangle∏p
k=1[li , ui ] where li and ui are lower and upper bounds on values of the i th objec-

tive, i = 1, . . . , p. It is then possible to partition the interval [li , ui ] into �i subintervals
[li , ti (li )), [ti (li ), t2i (l(i)), . . . , [t�i−1

i (li ), t
�i
i (li )) with t�i−1

i (li ) ≤ ui < t�ii (li ), for each
i = 1, . . . , p where t = [t1, . . . , tp]. This defines a hypergrid whose cells correspond to
indifference blocks. Then, selecting from each cell of this grid one point in R, when it exists,
defines a finite cover.

Also, inside a cover, some points may dominate other points. The points making up the
cover can be classified into two groups, dominated points and nondominated points. As it
is shown in Proposition 7, by removing all dominated points from a cover, the reduced set
remains a cover, which motivates the following definition. If a cover does not contain any
dominated points then this set is referred to as an approximation. In Hartikainen et al. [23],
a set S satisfying N (S,C) = S is called an inherently nondominated set.

Definition 8 Let Y be a set in Rp, R be a subset of Y,C be a cone in Rp , and t : Rp �→
Rp be a tolerance function. A t-cover S ∈ Ct (R,C) such that N (S,C) = S is called a
t-approximation of R with respect to C .

Given the cone and tolerance function, a t-approximation in general is not unique. The set
of all t-approximations of R with respect to a cone C is denoted by At (R,C).

In the following sections, for brevity we refer to t-covers and t-approximations simply as
covers and approximations.

2.3 Examples of tolerance functions

While many tolerance functions can be defined, most of the functions used in the literature
are of the following general form:

t (y) = αT Ip y + β

where α ≥ 1p, β ≥ 0p , and Ip is the identity matrix, with Y ⊂ Rp
� and C = Rp

�.
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Tolerance functions have been used according to two main perspectives, algorithmic and
preference modeling. Even if these perspectives are quite compatible, they reflect different
viewpoints and were advocated by different scientific communities.

The algorithmic perspective emphasizes the accuracy of the approximations and the pos-
sibility to compute such approximations in polynomial time. In this context, two types of
tolerance functions have been studied, multiplicative and additive.

A widely studied multiplicative tolerance function assumes the form

t (y) = (1 + ε)y

where ε ≥ 0 represents the accuracy of the description and can be chosen by a user as
small as desired. The reason for considering this type of tolerance functions is a result
by Papadimitriou and Yannakakis [45] which establishes, under very general conditions
and for Pareto cones, the existence of ε-approximations whose cardinality is bounded by
a polynomial in the size of the instance and 1/ε. They also provide general techniques for
constructing such approximations in time polynomial in the size of the instance and 1/ε. The
generation of ε-approximations ofminimal cardinality is also investigated inVassilvitskii and
Yannakakis [55], Koltun and Papadimitriou [34], Diakonikolas and Yannakakis [8], Bazgan
et al. [5]. Specific algorithms, providing ε-approximations with polynomial time guarantee,
have been devised for specific problems such as the shortest path problem [22,54,56], the
spanning tree problem [27], the knapsack problem [4,14], specific scheduling problems [3].

Another multiplicative tolerance function is defined as

t (y) = αy

where α is a constant depending on the problem. Polynomial time constant approximation
algorithms with this type of tolerance function have been proposed for the traveling salesman
problem [1,39], the max-cut problem [2], specific scheduling problems [52].

The additive tolerance function assumes the form

t (y) = y + ε

where ε ≥ 0 is again selected by the user. Random search algorithms for obtaining
ε-approximations based on this function have been proposed [36,37].

Fromapreferencemodelingviewpoint, a tolerance function represents indifference thresh-
olds [47,48]. An indifference threshold q j is defined as the largest performance difference
on criterion j the decision maker is indifferent about , j = 1, . . . , p. Let q be the vector of
indifference thresholds, a tolerance function t can thus be defined as

t (y) = y + q(y)

for all y ∈ Y . Depending on the nature of the criterion, indifference thresholds are chosen
either constant or variable. As indicated in Roy et al. [47], in practical situations, variable
thresholds can often be modeled as affine functions, which corresponds to the general form
given at the beginning of this subsection. In this context, any t-cover or t-approximation of
a subset R ⊆ Y can be indifferently proposed as a representation of R.

3 Properties of covers and approximations

In this section properties of covers and approximations are studied with respect to general
cones with multiple solution sets and multiple tolerance functions. Results for the special
case of polyhedral cones are also included.
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3.1 Properties of covers

We consider covers of multiple sets in Y to be represented with respect to multiple cones and
multiple tolerance functions. Multiple cones may model changing or different preferences
of the decision makers engaged in the decision making process. Multiple tolerance functions
may result from multiple sets and/or multiple cones, or simply from more or less effective
algorithms.

We first give a result involving two sets, two cones, and one tolerance function, which
shows the conditions under which a cover remains valid.

Proposition 5 Let Y be a set in Rp, and R1, R2 be subsets of Y such that R2 ⊆ R1. Let
C1,C2 be cones in Rp such that C1 ⊆ C2. Let t : Rp �→ Rp be a tolerance function. If
S ∈ Ct (R1,C1) then S ∈ Ct (R2,C2).

Proof Let S ∈ Ct (R1,C1). Then, by Definition 7, for all y ∈ R1 there exists s ∈ S such that
s �t

C1
y. Since R2 ⊆ R1, this is also true for all y ∈ R2. Moreover, since C1 ⊆ C2, s �t

C1
y

implies s �t
C2

y, which proves S ∈ Ct (R2,C2). �
Proposition 5 shows that a cover of a set R with respect to a cone C remains a cover of

any subset of R with respect to any cone containing C . Special cases of Proposition 5 can
be derived directly when considering one set or one cone. In the following we just state the
most general results without mentioning all subcases (with only one set, or one cone, or one
tolerance function).

Another direct consequence of Proposition 5 follows.

Corollary 1 Let Y be a set in Rp and R1, R2 be subsets of Y . Let C1,C2 be cones in Rp

and t : Rp �→ Rp be a tolerance function. If S ∈ Ct (R1 ∪ R2,C1 ∩C2) then S ∈ Ct (Ri ,C j )
for i = 1, 2 and j = 1, 2.

Extending Proposition 5 to the case of two tolerance functions requires an additional
convexity assumption.

Proposition 6 Let Y be a set inRp, and R1, R2 be subsets of Y such that R2 ⊆ R1. LetC1,C2

be cones inRp such that C1 ⊆ C2 and C2 is convex. Let t1 : Rp �→ Rp and t2 : Rp �→ Rp

be tolerance functions such that t1(y) �C2 t2(y) for all y ∈ Rp. If S ∈ Ct1(R1,C1) then
S ∈ Ct2(R2,C2).

Proof From Proposition 5, if S ∈ Ct1(R1,C1) then S ∈ Ct1(R2,C2), that is, for every y ∈ R2

there exists s ∈ S such that s �t1
C2

y. Since �C2 is transitive because C2 is a convex cone,

t1(y) �C2 t2(y) implies s �t2
C2

y, which proves S ∈ Ct2(R2,C2). �
Basically the previous result shows that a cover for a given tolerance function also remains

a cover when the tolerance function is relaxed. A particular interesting case of Proposition 6
is when tolerance functions are composed.

Corollary 2 Let Y be a set inRp, and R1, R2 be subsets of Y such that R2 ⊆ R1. Let C1,C2

be cones inRp such that C1 ⊆ C2, and C2 is convex. Let t1 : Rp �→ Rp and t2 : Rp �→ Rp

be tolerance functions. If S ∈ Ct1(R1,C1) then S ∈ Ct2(t1)(R2,C2).

Proof Since t2 is a tolerance function, by Definition 4(1), we get t1(y) �C2 t2(t1(y)). �
Another direct consequence of Proposition 6 follows.
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Corollary 3 Let Y be a set inRp, and R1, R2 be subsets of Y . Let C1,C2 be convex cones in
Rp, and t1 : Rp �→ Rp and t2 : Rp �→ Rp be tolerance functions such that t1(y) �C j t2(y)
for j = 1, 2, for all y ∈ Rp. If S ∈ Ct1(R1 ∪ R2,C1 ∩ C2) then S ∈ Ctk (Ri ,C j ) for
i = 1, 2, j = 1, 2, and k = 1, 2.

We show now that nondominated sets play an important role as covers.

Proposition 7 Let Y be a set in Rp, R be a subset of Y,C be a convex cone in Rp, and
t : Rp �→ Rp be a tolerance function. If S ∈ Ct (R,C) then N (S,C) ∈ Ct (R,C).

Proof We have N (S,C) ⊆ S. If S = N (S,C) then the proof is complete. If S ⊃ N (S,C),
let s ∈ S \ N (S,C). Then there exists s′ ∈ N (S,C) such that s′ �C s. Consider all y ∈ R
such that s �t

C y. Since C is convex, �C is transitive and we get s′ �t
C y. Therefore, S \ {s}

is still a cover of R. Removing this way all elements from S \ N (S,C), we obtain N (S,C)

as a cover of R. �
Using the previous results, this result is now extended to the case of multiple sets, multiple

tolerance functions, andmultiple cones. The following corollary shows the impact of filtering
out dominated elements in this extended context. While Corollary 4(i) shows how to obtain
a reduced cover with respect to a larger cone, Corollary 4(ii) addresses obtaining a reduced
cover with respect to the same cone. Note that the reduction can be performed with respect
to either cone.

Corollary 4 Let Y be a set inRp, and R1, R2 be subsets of Y such that R2 ⊆ R1. Let C1,C2

be cones inRp such that C1 ⊆ C2 and C2 is convex. Let t1 : Rp �→ Rp and t2 : Rp �→ Rp

be tolerance functions such that t1(y) �C2 t2(y) for all y ∈ Rp.

(i) If S ∈ Ct1(R1,C1) then N (S,Ci ) ∈ Ct2(R2,C2) for i = 1, 2.
(ii) If S ∈ Ct1(R1,C2) then N (S,Ci ) ∈ Ct2(R2,C2) for i = 1, 2.

Proof (i) By Proposition 7 we have N (S,C1) ∈ Ct1(R1,C1), and using Proposition 6 we
obtain the result for i = 1. By Proposition 6, S ∈ Ct1(R1,C1) implies S ∈ Ct2(R2,C2).
Then the result for i = 2 is obtained from Proposition 7.

(ii) By Proposition 6 we get S ∈ Ct2(R2,C2), which, due to Proposition 7, yields the result
for i = 2. Since C1 ⊆ C2 implies N (S,C2) ⊆ N (S,C1) [50], and considering that any
superset of a cover is also a cover, we obtain the result for i = 1.

�
3.2 Properties of covers for polyhedral cones

Since the relationship between the nondominated setwith respect to a general polyhedral cone
and the Pareto cone is well established [50], we examine covers with respect to polyhedral
cones and sets. Polyhedral cones containing the Pareto cone model relative importance of
criteria [30,43] and also reduce the nondominated set [50], which facilitates the resulting
decision making process [29].

The following two propositions show the behavior of covers in the presence of linear
transformation represented by the matrix of the cone.

Proposition 8 Let Y be a set in Rp, R be a subset of Y , and C be a polyhedral cone in
Rp,C = {d ∈ Rp : Ad � 0} where A is a p × p matrix. Let t : Rp �→ Rp be an
A-invariant tolerance function. Then S ∈ Ct (R,C) if and only if A[S] ∈ Ct (A[R],Rp

�).
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Proof (⇒) Let S ∈ Ct (R,C). Then by Definition 7, for all y ∈ R there exists s ∈ S such
that s �C t (y). By Definition 1, there exists d ∈ C such that d = t (y) − s. Since d ∈ C ,
we have Ad = A(t (y) − s) � 0, or equivalently As �Rp

�
At (y). Since t is an A-invariant

function, we obtain As �Rp
�

t (Ay). Thus, for all Ay ∈ A[R] there exists As ∈ A[S] such
that As �t

Rp
�

Ay. Therefore, A[S] ∈ Ct (A[R],Rp
�).

(⇐) Let A[S] ∈ Ct (A[R],Rp
�). Then by Definition 7, for all u ∈ A[R], with u = Ay for

some y ∈ R, there exists ū ∈ A[S], with ū = As for some s ∈ S, such that As �Rp
�
t (Ay).

Since t is an A-invariant function, we obtain A(t (y) − s) � 0, and thus t (y) − s ∈ C .
Therefore, for all y ∈ R there exists s ∈ S such that s �t

C y, which completes the proof. �
Proposition 9 Let Y be a set in Rp and R be a subset of Y . Let C,C1,C2 be cones in Rp

such that C is a polyhedral cone, C = {d ∈ Rp : Ad � 0} where A is a p × p matrix
and Rp

� ⊆ C, and C1 ⊆ C2 and C2 is convex. Let t1 : Rp �→ Rp and t2 : Rp �→ Rp be

tolerance functions such that t1(y) �C t2(y) for all y ∈ Rp. If S ∈ Ct1(N (A[R],Rp
�),C1)

then S ∈ Ct2(A[N (R,C)],C2).

Proof Since C is a polyhedral cone, N (A[R],Rp
�) ⊇ A[N (R,C)] [58], and the result

follows from Proposition 6. �
Propositions 8 and 9 can be extended to two other propositions by replacing the polyhedral

cone C with a polyhedral set C,C = C(A, b) = {d ∈ Rp : Ad � b}, where A is a p × p
matrix and b ∈ Rp , and the Pareto cone Rp

� with the translated Pareto cone Rp
�b

:=
Rp

� + b = {d ∈ Rp : d � b}. Such translated cones model approximate nondominated

solutions that are of practical relevance [13]. The new proofs making use of the replacement
exactly follow the two proofs above.

3.3 Properties of approximations

We established conditions under which a cover remains a cover when changing the set
to be represented, the cone and/or the tolerance function (see Propositions 5, 6, and their
corollaries). This can be extended to approximations with a notable exception regarding
change of cones.

Proposition 10 Let Y be a set in Rp and R1, R2 be subsets of Y such that R2 ⊆ R1. Let C
be a convex cone inRp, and t1 : Rp �→ Rp and t2 : Rp �→ Rp be tolerance functions such
that t1(y) �C t2(y) for all y ∈ Rp. If S ∈ At1(R1,C) then S ∈ At2(R2,C).

Proof If S ∈ At1(R1,C) we have N (S,C) = S and, from Proposition 6 for C = C1 = C2

we obtain S ∈ Ct2(R2,C), which implies S ∈ At2(R2,C). �
The next result shows how an approximation can be obtained from a cover.

Proposition 11 Let Y be a set in Rp and R1, R2 be subsets of Y such that R2 ⊆ R1. Let C
be a convex cone inRp, and t1 : Rp �→ Rp and t2 : Rp �→ Rp be tolerance functions such
that t1(y) �C t2(y) for all y ∈ Rp. If S ∈ Ct1(R1,C) then N (S,C) ∈ At2(R2,C).

Proof Using Corollary 4 (i) or (ii) for C1 = C2 = C . �
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Observe that the results in both propositions above are obtained for the same cone and
do not hold when changing cones. Indeed, a result of the type ‘S ∈ At (R1,C1) implies
S ∈ At (R2,C2)’ would require C1 ⊆ C2 to ensure that S remains a cover of R for C2

(see Proposition 5). But C1 ⊆ C2 implies N (S,C2) ⊆ N (S,C1). Since S ∈ At (R,C1),
we have S = N (S,C1) and thus S ⊇ N (S,C2), whereas equality is required to establish
S ∈ At (R,C2). However, the two propositions reveal the influence of changing sets and/or
tolerance functions on approximations. Given a cover or an approximation, one can always
use it to approximate a subset, and if desired, with relaxed tolerance.

The approximation is considered perfect when it does not allow any tolerance, which is
modeled with the identity function. In this case, the set of all approximations reduces to the
nondominated set provided that the set R to be approximated lies between N (Y,C) and Y .

Proposition 12 Let Y be a set in Rp, R be a subset such that N (Y,C) ⊆ R ⊆ Y , and C
be a cone in Rp. Let id : Rp �→ Rp be a tolerance function such that id(y) = y for all
y ∈ Rp. Then Aid(R,C) = {N (Y,C)}.
Proof Let S ∈ Aid(R,C).

We show that S ⊇ N (Y,C). Assume, by contradiction, that there exists y ∈ N (Y,C) \ S.
Then, since R ⊇ N (Y,C), we have y ∈ R. Moreover, since y ∈ N (Y,C), there is no s ∈ S
such that s ≤C y, and even such that s �C y since y /∈ S. In that case, S would not be a
cover of R, which contradicts S ∈ Aid(R,C).

We show now that S ⊆ N (Y,C). Assume, by contradiction, that there exists y ∈ S \
N (Y,C). Then, there exists y′ ∈ N (Y,C) such that y′ ≤C y. We just proved that S ⊇
N (Y,C), which implies that y′ ∈ S. In that case S would contain a dominated element y,
which contradicts S ∈ Aid(R,C). �
3.4 Properties of approximations for polyhedral cones

Analogous to covers, specific results are available for approximations in the presence of the
linear transformation represented by the matrix of a polyhedral cone.

Proposition 13 Let Y be a set in Rp, R be a subset of Y , and C be a pointed polyhedral
cone in Rp,C = {d ∈ Rp : Ad � 0} where A is a p × p matrix. Let t : Rp �→ Rp be an
A-invariant tolerance function. Then S ∈ At (R,C) if and only if A[S] ∈ At (A[R],Rp

�).

Proof (⇒) Let S ∈ At (R,C). Then by Definition 8, S ∈ Ct (R,C) and S = N (S,C). The
latter implies A[S] = A[N (S,C)]. Since C is a pointed polyhedral cone, N (A[S],Rp

�) =
A[N (S,C)] [58], which gives A[S] = N (A[S],Rp

�). Since S ∈ Ct (R,C), by Proposition 8

we have A[S] ∈ Ct (A[R],Rp
�), which proves the result.

(⇐) Let A[S] ∈ At (A[R],Rp
�). Then by Definition 8 we have A[S] ∈ Ct (A[R],Rp

�)

and A[S] = N (A[S],Rp
�)]. Due to Proposition 8 the former implies S ∈ Ct (R,C). Since

N (A[S],Rp
�) = A[N (S,C)], the latter implies A[N (S,C)] = A[S], and thus N (S,C) = S

owing to the pointedness of C , which proves the result. �
Corollary 5 Let Y be a set in Rp, R be a subset of Y , and C,C1 be cones in Rp such
that C is a polyhedral cone, C = {d ∈ Rp : Ad � 0} where A is a p × p matrix. Let
t1 : Rp �→ Rp and t2 : Rp �→ Rp be tolerance functions such that t1(y) �C1 t2(y) for all
y ∈ Rp. If S ∈ At1(N (A[R],Rp

�),C1) then S ∈ At2(A[N (R,C)],C1).
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Proof By Proposition 10 and recognizing the inclusion N (A[R],Rp
�) ⊇ A[N (R,C)]

because C is a polyhedral cone. �
Notice, that in contrast to Proposition 9, Corollary 5 does not allow the change of cones

in agreement with the observation that properties of approximations do not hold in that case.
Proposition 13 and Corollary 5 can easily be extended to the polyhedral sets in a similar
manner that is mentioned in Sect. 3.2 for Propositions 8 and 9 addressing the behavior of
covers.

Having presented the properties of covers and approximations, in the next section we turn
our attention to applied aspects of these results.

4 Decomposable systems

Certain real-life applications require the formulation of MOPs as a collection of coupled
multiobjective subproblems. For example, in engineering design MOPs typically model
the design process that requires specialization of design teams along distinct disciplines
or decomposition of the object being designed into subsystems and components (e.g., Peri
and Campana [46], Jilla and Miller [31]). In business applications, an overall MOP being a
collection of multiobjective subproblems may model the management of business activities
within a large international corporation, where decisions under multiple objectives are made
locally in each country (e.g., Gomez et al. [19]). In military applications, a collection of
coupled MOPs may model multi-team, multi-mission military planning and execution under
partial information due to constraints in the communication bandwidth or due to required
communication latencies [44]. Combinations of coupled MOPs rather than a single MOP are
encounteredwhenmultiobjectivemodeling and optimization are applied to complex decision
making problems [16]. Due to the complexity reflected in different feasible spaces, different
software requirements, different decision makers, it is not possible to find the Pareto set for
the overall MOP but it is desirable to decompose the overall problem into multiobjective
subproblems, which are more easily optimized, and then construct the nondominated set of
the original problem.

However, as explained in Sect. 1, even for a decomposed problem, it is often hard to
obtain exact solutions to the subproblems and so the solution sets have to be represented
separately before the overall representation can be constructed. The goal is then to represent
the nondominated set of the overall system by representing the nondominated sets of the
subproblems.

In this section we first extend the properties of covers and approximations to address the
representation of the nondominated set of complex but decomposable MOPs, and then relate
these properties to specially structured MOPs.

4.1 Covers and approximations for combined subsets

We present properties of covers and approximations for sets composed of subsets that are
combined using the set operations such as the Cartesian product, algebraic sum, and union.
Each result involves two sets, two cones, and two tolerance functions and can be generalized
to a larger number of these items.

Proposition 14 Let Yi be a set in Rpi , Ri be a subset of Yi ,Ci be a cone in Rpi , and
ti : Rpi �→ Rpi be a tolerance function for i = 1, 2. Let t : Rp �→ Rp be defined as
t (y1, y2) = (t1(y1), t2(y2)) for y1 ∈ Rp1 and y2 ∈ Rp2 , and p = p1 + p2. Then
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(i) S1 ∈ Ct1(R1,C1) and S2 ∈ Ct2(R2,C2) if and only if S1 × S2 ∈ Ct (R1 × R2,C1 × C2),
(ii) N (S1,C1) ∈ At1(R1,C1) and N (S2,C2) ∈ At2(R2,C2) if and only if N (S1 × S2,C1 ×

C2) ∈ At (R1 × R2,C1 × C2).

Proof (i) Let Si ∈ Ct1(Ri ,Ci ) for i = 1, 2. Then, by Definition 7, for all yi ∈ Ri there
exists si ∈ Si such that si �ti

Ci
yi , for i = 1, 2. These relations hold if and only if for

all (y1, y2) ∈ R1 × R2 there exists (s1, s2) ∈ S1 × S2 such that t1(y1) − s1 ∈ C1 and
t2(y2) − s2 ∈ C2 or, equivalently, (t1(y1), t2(y2)) − (s1, s2) ∈ C1 × C2. That is, for all
(y1, y1) ∈ R1 × R2, there exists (s1, s2) ∈ S1 × S2 such that (s1, s2) �t

C1×C2
(y1, y2)

with t = (t1(y1), t2(y2)).
(ii) GeneralizingProposition 3.9 ofGardenghi et al. [16] to the following set equality, N (S1×

S2,C1 × C2) = N (S1,C1) × N (S2,C2), the desired result is obtained.
�

The next proposition requires that the emerging tolerance function be additively separable.

Proposition 15 Let Yi be a set in Rp, Ri be a subset of Yi ,Ci be a cone in Rp, and ti :
Rp �→ Rp be a tolerance function for i = 1, 2. Let t : Rp �→ Rp be defined as t (y1+ y2) =
t1(y1) + t2(y2) for y1 ∈ R1 and y2 ∈ R2.

(i) If S1 ∈ Ct1(R1,C1) and S2 ∈ Ct2(R2,C2) then S1 + S2 ∈ Ct (R1 + R2,C1 + C2).
(ii) Let Ci be a convex cone for i = 1, 2. If S1 ∈ Ct1(R1,C1) and S2 ∈ Ct2(R2,C2) then

N (N (S1,C1) + N (S2,C2),C1 + C2) ∈ At (R1 + R2,C1 + C2).

Proof (i) Let Si ∈ Ct1(Ri ,Ci ) for i = 1, 2. Then, by Definition 7, for all yi ∈ Ri there
exists si ∈ Si such that si �ti

Ci
yi , for i = 1, 2. This implies that for y1 + y2 ∈ R1 + R2

there exists s1 + s2 ∈ S1 + S2 such that t1(y1) − s1 ∈ C1 and t2(y2) − s2 ∈ C2. Thus
we have t1(y1) − s1 + t2(y2) − s2 ∈ C1 + C2. That is, s1 + s2 �t

C1+C2
y1 + y2, where

t (y1 + y2) = t1(y1) + t2(y2).
(ii) SinceC1,C2 are convex cones,C1+C2 is a convex cone. By Proposition 7, N (Si ,Ci ) ∈

Cti (Ri ,Ci ) for i = 1, 2. By part (i), we have N (S1,C1)+N (S2,C2) ∈ Ct (R1+R2,C1+
C2),where t (y1+y2) = t1(y1)+t2(y2) for y1 ∈ R1 and y2 ∈ R2. Thus, byProposition11,
we obtain the desired result.

�
The final proposition of this section deals with the union operator.

Proposition 16 Let Yi be a set in Rp, Ri be a subset of Yi ,Ci be a cone in Rp for i = 1, 2
such that C1 is convex. Let t1, t2 : Rp �→ Rp be tolerance functions such that t1(y1) �C1

t2(y1) for all y1 ∈ Rp.

(i) If S1 ∈ Ct1(R1,C1) and S2 ∈ Ct2(R2,C2) then S1 ∪ S2 ∈ Ct2(R1 ∪ R2,C1 ∪ C2).
(ii) Let C1 ∪ C2 be a convex cone. If S1 ∈ Ct1(R1,C1) and S2 ∈ Ct2(R2,C2) then N (S1 ∪

S2,C1 ∪ C2) ∈ At2(R1 ∪ R2,C1 ∪ C2).
(iii) If S1 ∈ Ct1(R1,C1) and S2 ∈ Ct2(R2,C1) then N (S1 ∪ S2,C1) ∈ At2(R1 ∪ R2,C1).

Proof (i) Let S1 ∈ Ct1(R1,C1) and S2 ∈ Ct2(R2,C2). Then by Definition 7, for all y1 ∈ R1

there exists s1 ∈ S1 such that s1 �C1 t1(y1). Since t1(y1) �C1 t2(y1) and�C1 is transitive
due to C1 being convex, we obtain s1 �t2

C1
y1. Moreover, for all y2 ∈ R2 there exists

s2 ∈ S2 such that s2 �t2
C2

y2. Therefore, for all y ∈ R1 ∪ R2 there exists s ∈ S1 ∪ S2
such that s �t2

C1
y or s �t2

C2
y, which is equivalent to t2(y) − s ∈ C1 ∪ C2, and thus to

s �t2
C1∪C2

y.
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(ii) By part (i), we have S1 ∪ S2 ∈ Ct2(R1 ∪ R2,C1 ∪ C2). Since C1 ∪ C2 is convex, by
Proposition 11, we have the desired result.

(iii) Directly follows from part (ii).
�

In the next section we discuss the applicability of these results in the context of specific
decomposable MOPs and the Pareto optimality.

4.2 Applications

Consider the overall MOP, that is referred to as the all-in-one (AiO) problem, and assume
that it is decomposable into two multiobjective subproblems. Let the Pareto set of this AiO
MOP be denoted as N (Y,Rp

�), where the set Y ⊆ Rp, Y = f (X), is the image of the set

of feasible decisions X ⊆ Rn with the vector-valued objective function f : Rn → Rp , and
C = Rp

� is the Pareto cone.

Assume that N (Y,Rp
�) is chosen as a subset R of Y to be represented. Assume also

that N (Y,Rp
�) is computationally intractable while representations of the Pareto sets of the

subproblems are computationally achievable. The goal is to construct a representation of
N (Y,Rp

�) using the available representations.

Depending upon the properties of the feasible set X and the function f , three types
of decomposition of the AiO problem into subproblems are presented which lead to three
different scenarios of exact calculations of N (Y,Rp

�). Each scenario is matched with a

proposition in Sect. 4.1, which allows the construction of a desired cover or approximation
of the AiO Pareto set N (Y,Rp

�), and is related to real-life applications from the literature.

1. Let the feasible set X be partitioned into two subsets, X = X1× X2, Xi ⊆ Rni , i = 1, 2,
and n1 + n2 = n. In other words, the AiO problem is decomposed into two MOPs, each
with a distinct feasible set. Additionally, properties of the two vector-valued objective
functions imply two types of decomposition that are given below. These models are used
by abig class of engineeringdesignproblemsmodeled asmultiobjectivemultidisciplinary
optimization problems for which decomposition is indispensable for the computation of
the AiO Pareto set (e.g., Huang et al. [28], Zhang et al. [60], Kang et al. [32]).

(a) Assume that the function f (x) = ( f1(x1), f2(x2)) is composed of functions fi : Rni →
Rpi , i = 1, 2, where p1 + p2 = p. Then Y = Y1 × Y2, where Yi = fi (Xi ), i = 1, 2.
Applying Proposition 3.9 of Gardenghi et al. [16], we obtain

N (Y,Rp
�) = N (Y1 × Y2,Rp1

� × Rp2
� ) = N (Y1,Rp1

� ) × N (Y2,Rp2
� ).

Given a cover or approximation for N (Yi ,Rpi
� ), i = 1, 2, using Proposition 14, a cover

or approximation of N (Y1 × Y2,Rp1
� × Rp2

� ) for the AiO problem can be constructed.

Example 4 This model is used in Danduarand et al. [7] where an automotive design problem
is presented as two coupled multiobjective subproblems. The layout of components in the
underhood of the vehicle is optimized at the system level, while optimizing the design of one
of these components, a battery, at the component level. The battery must not only be designed
under demanding thermal criteria, but must itself be optimally placed within the underhood
of the vehicle. Since the subproblems correspond to two distinct but coupled design processes
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that are carried out by distinct teams, they require different solution approaches to computing
the Pareto set on each level and then construct the AiO Pareto set.

(b) Under the assumption that the function f is additively separable, ( f (x) = f1(x1) +
f2(x2), where fi : Rni → Rp, i = 1, 2), we have Y = Y1+Y2, where Yi = fi (Xi ), i =
1, 2. Applying Proposition 3.3 of Gardenghi et al. [16], we obtain

N (Y,Rp
�) = N (Y1 + Y2,Rp

�) = N (N (Y1,Rp
�) + N (Y2,Rp

�),Rp
�).

Given a cover or approximation of N (Yi ,Rp
�), i = 1, 2, applying Proposition 15, a

cover or approximation of N (Y1 + Y2,Rp
�) for the AiO problem can be constructed.

Note that additive separability is a property commonly found in engineering applications
[21].

Example 5 For a specific example refer to Guarneri and Wiecek [20] where an automotive
design problem involves the design of the suspension in order to optimize the comfort and the
road-holding of the vehicle. These objectives depend upon the design of two components, the
spring and the damper, that provide adequate levels of stiffness and damping for filtering the
road unevenness. The overall problem consists of three coupled subproblems modeling the
design of the suspension, spring, and damper. Again, the subproblems correspond to three
different but coupled design processes that are carried out by different teams and require very
different solution approaches.

2. Let the feasible set X be partitioned into two subsets, X = X1∪ X2, Xi ⊆ Rni , i = 1, 2,
and the function f be defined as f : Rn1+n2 → Rp. Then Y = Y1 ∪ Y2, where
Yi = fi (Xi ), i = 1, 2. Extending Proposition 3.1 of Gardenghi et al. [16], we obtain the
following result

N (Y,Rp
�) = N

(
Y1 ∪ Y2,Rp

�
) = N

(
N (Y1,Rp

�) ∪ N (Y2,Rp
�),Rp

�
)
.

Given a cover or approximation for N ((Yi ,Rp
�),Rp

�), i = 1, 2 and applying Proposition

16, a cover or approximation of N
(
Y1∪Y2,Rp

�
)
for the AiO problem can be constructed.

Example 6 This case is applicable to mixed-integer MOPs which find applications in facility
location [41], radiation therapy planning [11], scheduling [42], and many others. Their feasi-
ble region can be decomposed into the union of subsets by fixing the integer variables to their
feasible values. Let the feasible regionU = U1×U2, whereU1 ⊆ Rq andU2 ⊆ Zn−q be the
feasible sets for q continuous and n−q integer decision variables in the mixed-integer MOP
with the objective function of the form f : Rn → Rp,where f (u) = f (u1, u2) for u1 ∈ U1

and u2 ∈ U2. Since U2 is a discrete set, U can be decomposed as U = ⋃
ū2∈U2

U (ū2),
where U (ū2) = {u ∈ U : u = (u1, u2), u2 = ū2}. The image set V = f (U ) can then be
decomposed as V = ⋃

ū2∈U2
V (ū2), where V (ū2) = {v ∈ V : v = f (u), u ∈ U (ū2)}. We

obtain

N (V,Rp
�) = N

( ⋃
ū2∈U2

V (ū2),Rp
�

) = N
( ⋃
ū2∈U2

(
N (V (ū2),Rp

�),Rp
�

)
.

The results presented above can obviously be generalized for more than two subproblems
and for general convex cones C in place of the Pareto cone Rp

�.
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5 Conclusions

In this paper we have proposed a unified approach to representing solution sets in multiobjec-
tive optimization.We have defined covers and approximations, and collected and proved their
properties. The approach makes use of a tolerance function and cones. The former quantifies
the representation quality while the latter model decision maker’s preferences.

Covers and approximations maintain their properties for subsets of the sets being rep-
resented with the same or higher tolerance. Covers allow one to enlarge cones; a cover
representing a solution set with respect to a cone can be easily modified to become a cover
of a subset with respect to an enlarged cone. Approximations do not have this flexibility and
are permanently associated with a cone. We have shown the applicability of the results to the
representation of the Pareto sets of complex but decomposable MOPs.

This papermotivates further research in two directions.Additional properties of covers and
approximations can be studied in the context of specific MOPs they refer to. Algorithms for
computing covers or approximations for complex and decomposable multiobjective decision
making problems may be designed.
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