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Abstract A number of recent works have emphasized the prominent role played by the
Kurdyka-Łojasiewicz inequality for proving the convergence of iterative algorithms solving
possibly nonsmooth/nonconvex optimization problems. In this work, we consider the mini-
mization of an objective function satisfying this property, which is a sum of two terms: (i) a
differentiable, but not necessarily convex, function and (ii) a function that is not necessarily
convex, nor necessarily differentiable. The latter function is expressed as a separable sum of
functions of blocks of variables. Such an optimization problem can be addressed with the
Forward–Backward algorithm which can be accelerated thanks to the use of variable metrics
derived from theMajorize–Minimize principle.We propose to combine the latter acceleration
technique with an alternating minimization strategy which relies upon a flexible update rule.
We give conditions under which the sequence generated by the resulting Block Coordinate
Variable Metric Forward–Backward algorithm converges to a critical point of the objective
function. An application example to a nonconvex phase retrieval problem encountered in
signal/image processing shows the efficiency of the proposed optimization method.
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1 Introduction

In this work, we are interested in the following optimization problem:

Find x̂ ∈ Argmin (G := F + R), (1)

where G : R
N → (−∞,+∞] is a coercive function (i.e. lim‖x‖→+∞ G(x) = +∞), F is

a differentiable function, R is a proper lower semicontinuous function which is additively
block separable, and Argmin G �= ∅ denotes the set of minimizers of G. More precisely,

let (J j )1≤ j≤J be a partition of {1, . . . , N } into J ≥ 2 subsets, and for every j ∈ {1, . . . , J },
let N j �= 0 be the cardinality of J j . Any vector x ∈ R

N with elements (x (n))1≤n≤N is
block-decomposed into

(

x( j)
)

1≤ j≤J ∈ R
N1 × . . . × R

NJ , where, for every j ∈ {1, . . . , J },
x( j) = (

x (n)
)

n∈J j
∈ R

N j . With this notation, we assume that

(∀x ∈ R
N ) R(x) :=

J
∑

j=1

R j (x
( j)), (2)

where for every j ∈ {1, . . . , J }, R j : R
N j → (−∞,+∞].

A standard approach for solving (1) in this context consists of using a Block Coordinate
Descent (BCD) algorithm, where, at each iteration � ∈ N, G is minimized with respect to
the j� block coordinates with j� ∈ {1, . . . , J }, while the others remain fixed, leading to the
following iterations:

Let x0 ∈ R
N ,

For � = 0, 1, . . .
⎢

⎢

⎢

⎢

⎢

⎢

⎣

Let j� ∈ {1, . . . , J },
x

( j�)
�+1 ∈ Argmin

y∈RN j�

(

Fj� (y,x
(j�)

� ) + R j� (y)
)

,

x
(j�)

�+1 = x
(j�)

� .

(3)

In the above algorithm, for every j ∈ {1, . . . , J }, j denotes the complementary set
of j on {1, . . . , J }, i.e. j := {1, . . . , J }\{ j}, and for every x ∈ R

N , x(j) :=
(

x(1), . . . ,x( j−1),x( j+1), . . . ,x(J )
)

. Moreover, for a given x(j) ∈ ×i∈j R
Ni , function

Fj (·,x(j)) : R
N j → R is the partial function defined as

(∀y ∈ R
N j ) Fj (y,x(j)) := F(x(1), . . . ,x( j−1),y,x( j+1), . . . ,x(J )). (4)

The BCDmethod (3) is described in various reference books [9,35,43,62] assuming a cyclic
rule, i.e.

(∀� ∈ N) j� − 1 = � mod (J ). (5)

In this case, since Algorithm (3) can be viewed as a generalization of the Gauss-Seidel
strategy for solving linear systems [29], it is sometimes also referred to as a nonlinear
Gauss-Seidel method ([9, Chap.2], [43, Chap.7]). Up to the best of our knowledge, one of
the most general convergence results for the BCD algorithm (3) has been established in [58]
under the assumptions that (i) G is quasi-convex and hemivariate regular in each block, (ii)
( j�)�∈N follows an essentially cyclic rule (i.e. blocks can be updated in an arbitrary manner
as far as each of them is updated at least once within a given number of iterations) and (iii)
either G is pseudoconvex in every pair of blocks or has at most one minimizer with respect to
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each block. As pointed out in [58], the last assumption is sharp in the sense that the algorithm
may not converge if we only assume that G is convex w.r.t. each block (see an illustration in
[45]). The proximal version of the BCD algorithm, introduced in [5], allows this limitation
to be overcome. It is defined as follows:

Let x0 ∈ R
N ,

For � = 0, 1, . . .
⎢

⎢

⎢

⎢

⎢

⎣

Let j� ∈ {1, . . . , J },
x

( j�)
�+1 ∈ prox

A j� (x�)/γ�

Fj� (·,x(j�)

� )+R j�

(

x
( j�)
�

)

,

x
(j�)

�+1 = x
(j�)

� ,

(6)

where for every � ∈ N, γ� ∈ (0,+∞) and A j� (x�) ∈ R
N j�×N j� is a symmetric positive

definite matrix. Hereabove, proxUψ denotes the so-called proximity operator of a proper lower

semicontinuous functionψ : R
M → R relative to the metric induced by a symmetric positive

definite matrix U ∈ R
M×M (see Sect. 2.1). Note that Algorithm (6) has been extended in

[8] for Bregman projection operators, in the case when J = 2, F is a Bregman distance and
R1, R2 are convex functions. Note also that, when F ≡ 0 and, for every j ∈ {1, . . . , J }, R j

is the indicator function of a convex set, Algorithm (6) allows us to recover the celebrated
POCS (Projection Onto Convex Sets) algorithm [14].

The convergence of the sequence (x�)�∈N generated by Algorithm (6) to a solution to
(1) has been established in [5] for a convex Lipschitz differentiable function F and proper
lower semicontinous convex functions (R j )1≤ j≤J , in the case when ( j�)�∈N follows a cyclic
rule, and (A j� (x�))�∈N are identity matrices. Recently, the convergence of the proximal BCD
iterates to a critical point of G in the case of nonconvex functions F and (R j )1≤ j≤J , has
been proved in [3] when (A j� (x�))�∈N are identity matrices, and then generalized in [4] for
general symmetric positive definite matrices (A j� (x�))�∈N, again assuming a cyclic rule.
The convergence studies in [3,4] mainly rely on the assumption that the objective function
G satisfies the Kurdyka-Łojasiewicz (KL) inequality [34]. The interesting point is that this
inequality holds for a wide class of functions such as real analytic functions, semi-algebraic
functions and many others [10,11,33,34]. Since the proximal step in (6) is not explicit in
general, an inexact version of the proximal BCDmethod is also considered in [4], with similar
convergence guarantees.

Another strategy to circumvent the difficulty of solving the block subproblems in (6) is to
replace, at each iteration, the proximal step by a Forward–Backward step, thus leading to the
so-called Block Coordinate Variable Metric Forward–Backward (BC-VMFB) algorithm:

Let x0 ∈ R
N ,

For � = 0, 1, . . .
⎢

⎢

⎢

⎢

⎣

Let j� ∈ {1, . . . , J },
x

( j�)
�+1 ∈ prox

A j� (x�)/γ�

R j�

(

x
( j�)
� − γ�

(

A j� (x�)
)−1 ∇ j� F(x�)

)

,

x
(j�)

�+1 = x
(j�)

� ,

(7)

where for every x ∈ R
N and j ∈ {1, . . . , J }, ∇ j F(x) ∈ R

N j is the partial gradient of
F with respect to x( j) computed at x. Algorithm (7) was firstly introduced in [16] for the
minimization of the Burg entropy function under linear constraints, and then extended to
the more general case of a smooth function F [36,37]. Recently, the convergence of this
algorithm has been studied in the case of an arbitrary nonsmooth function R under the
assumptions that G satisfies the KL inequality and F is Lipschitz differentiable [13,27,60].
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The convergence of the sequence (x�)�∈N generated by (7) to a critical point of (1) has been
proved in [60] in the case when F and R are respectively convex and convex w.r.t. each
block variable, and generalized in [13] when neither F nor R is necessarily convex. Note that
the aforementioned works considered actually a simplified version of Algorithm (7) where
(A j� (x�))�∈N are identity matrices and the sequence ( j�)�∈N follows a cyclic rule. The BC-
VMFB algorithm is then referred to as the Proximal Alternating Linearized Minimization
(PALM) algorithm [13]. A variant of PALM algorithm with similar convergence guarantees
has been recently proposed in [30], alternating between Forward–Backward and proximal
steps. Another related work is [61], where the convergence properties of PALM in the case
of an essentially cyclic rule are studied.

An exact (resp. inexact) version of Algorithm (7) with general symmetric positive definite
matrices (A j� (x�))�∈N is studied in [51] (resp. [57]), in the context of a random rule, i.e., for
every � ∈ N, j� is a realization of a uniform random variable. Assuming that F and R j are
convex, the authors establish the convergence of the sequence (G(x�))�∈N in the sense that, for
all δ ≥ 0 and ε ≥ 0, there exists �0 ∈ N such that the probability of havingG(x�0)−G(x̂) ≤ ε

is greater than 1 − δ (see also [20] for almost sure convergence results). Finally, let us
emphasize that, as already noticed in [47], for carefully chosen matrices (A j� (x�))�∈N, the
BC-VMFB algorithm can be viewed as a particular form of the block alternating majorize–
minimize (MM) approach proposed in [25,53,56] in the context of image reconstruction.
Therefore, some convergence properties of Algorithm (7) can be deduced from those derived
in [32] in the case when R j are indicator functions of closed convex subsets of R

N j , and
in [47] for arbitrary nonsmooth convex functions R j . However, it should be noticed that
the convergence of (x�)�∈N to a solution to (1) is only proved in [32,47] under specific
assumptions, in particular the uniqueness of solutions to each block subproblem and to the
initial problem (1) is required.

In this paper, we consider an inexact version of (7) where the preconditioning matrices
(A j� (x�))�∈N are chosen according to MM arguments. The convergence of the proposed
algorithm is established for blocks following an essentially cyclic rule, under weak assump-
tions on the involved functions (G is mainly assumed to satisfy the KL inequality similarly
to [4]). Note that this convergence study generalizes our previous work [18] (see also [42] for
a related approach, and [22] for the case when the functions are convex) which was restricted
to an inexact Variable Metric Forward–Backward algorithm without block alternation (i.e.
J = 1 and N1 = N ).

In a recent work [27], other authors have independently and concurrently established the
convergence of the iterates generated by a version of Algorithm (7) for a class of nonconvex
problems that encompasses the one we consider here. Themain difference with respect to our
work is that their approach is restricted to the use of a cyclic updating rule for the sequence
( j�)�∈N. By contrast, our analysis allows more flexibility in the choice of the blocks, since
the essentially cyclic rule assumption we adopt makes it possible to update some of the target
variables more frequently than others. Such a strategy appears to be of major interest in terms
of numerical performance in some applications (see, for instance, [48]). Due to this fact, our
convergence study significantly differs from the one conducted in [27]. The application to
phase reconstruction provided in Sect. 4, which deals with an important problem in signal
processing, is also completely novel. Table 1 hereafter summarizes the differences/similarities
between our work and existing works, by precising whether convergence results are available
for the sequence of iterates, or only for the sequence of objective function values.

The rest of the paper is organized as follows: Sect. 2 introduces the assumptions made
in the paper and presents the proposed inexact BC-VMFB strategy. Section 3 investigates
the convergence properties. In particular, the convergence rate of the proposed algorithm
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Table 1 List of existing convergence results for the BC-VMFB algorithm. Last line summarizes the paper’s
contribution

Variable metric Block update rule Convergence

[13] Scalar Cyclic Iterates
[61] Scalar Essentially cyclic Iterates
[27] Matrix Cyclic Iterates
[57] Matrix random Objective function
Here Matrix Essentially cyclic Iterates

is studied. Finally, Sect. 4 provides some numerical results and a discussion of the algo-
rithm performance by means of experiments concerning a large-size image reconstruction
problem.

2 Proposed optimization method

2.1 Analysis background

Let us first recall some definitions and the notation that will be used throughout the paper.
We define the weighted norm:

(∀x ∈ R
N ) ‖x‖U := 〈x,Ux〉1/2 , (8)

where 〈·, ·〉 is the standard scalar product of R
N andU ∈ R

N×N is some symmetric positive
definite matrix. Moreover, for every U1 ∈ R

N×N and U2 ∈ R
N×N , we define the Loewner

partial order on R
N×N as

U1 � U2 ⇔ (∀x ∈ R
N ) 〈x,U1x〉 ≤ 〈x,U2x〉 .

Definition 2.1 Let ψ be a function from R
N to (−∞,+∞]. The domain of ψ is domψ :=

{x ∈ R
N : ψ(x) < +∞}. Function ψ is proper iff domψ is nonempty. The level set of ψ

at height δ ∈ R is lev≤δ ψ := {x ∈ R
N : ψ(x) ≤ δ}.

Definition 2.2 [52, Def. 8.3],[39, Sec.1.3] Let ψ : R
N → (−∞,+∞] be a proper function

and let x ∈ domψ . The Fréchet sub-differential of ψ at x is the following set:

̂∂ψ(x) :=
⎧

⎨

⎩

̂t ∈ R
N : lim inf

y→x
y �=x

1

‖x − y‖
(

ψ(y) − ψ(x) − 〈

y − x,̂t
〉) ≥ 0

⎫

⎬

⎭

.

If x /∈ domψ , then̂∂ψ(x) = ∅.
The sub-differential of ψ at x is defined as

∂ψ(x) :=
{

t ∈ R
N : ∃yk → x, ψ(yk) → ψ(x), ̂tk ∈̂∂ψ(yk) → t

}

.

Remark 2.1

(i) A necessary condition for x ∈ R
N to be a minimizer of ψ is that x is a critical point of

ψ , i.e. 0 ∈ ∂ψ(x). Moreover, if ψ is convex, this condition is also sufficient.
(ii) Definition 2.2 implies that ∂ψ is closed [4], that is:

Let (yk, tk)k∈N be a sequence of Graph ∂ψ := {

(x, t) ∈ R
N × R

N : t ∈ ∂ψ(x)
}

. If
(yk, tk) converges to (x, t) and ψ(yk) converges to ψ(x), then (x, t) ∈ Graph ∂ψ .
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The proximity operator ([31, Sec. XV.4], [21] and [4]) is defined as follows:

Definition 2.3 Let ψ : R
N → (−∞,+∞] be a proper, lower semicontinuous function, let

U ∈ R
N×N be a symmetric positive definite matrix, and let x ∈ R

N . The proximity operator
of ψ at x relative to the metric induced by U is defined as

proxUψ (x) := Argmin
y∈RN

ψ(y) + 1

2
‖y − x‖2U . (9)

Remark 2.2

(i) In the above definition, since ‖·‖2U is coercice andψ is proper and lower semicontinuous,
if ψ is bounded from below by an affine function, then proxUψ is a nonempty set.

(ii) If U is equal to IN , the identity matrix of R
N×N , then proxψ ≡ proxIN

ψ is the proximity
operator employed in [4]. In addition, if ψ is a convex function, then the minimizer of
ψ + 1

2‖ · −x‖2U is unique and proxψ ≡ proxIN
ψ is the proximity operator originally

defined in [40].

2.2 Assumptions

In the remainder of this paper, we will focus on functions F and R satisfying the following
assumptions:

Assumption 2.1

(i) For every j ∈ {1, . . . , J }, R j : R
N j → (−∞,+∞] is proper, lower semicontinuous,

bounded from below by an affine function and its restriction to its domain is continuous.
(ii) F : R

N → R is differentiable. Moreover, F has an L-Lipschitzian gradient on dom R
where L > 0, i.e.,

(∀(x,y) ∈ (dom R)2
) ‖∇F(x) − ∇F(y)‖ ≤ L‖x − y‖.

(iii) G is coercive.

Some comments on these assumptions which will be useful in the rest of the paper are
made below.

Remark 2.3

(i) Assumption 2.1(ii) is weaker than the assumption of Lipschitz differentiability of F
usually adopted to prove the convergence of the FB algorithm [4,23]. In particular, if
dom R is compact and F is twice continuously differentiable, Assumption 2.1(ii) holds.

(ii) According to Assumption 2.1(ii), dom R ⊂ dom F = R
N . Thus, as a consequence of

Assumption 2.1(i), dom G = dom R is nonempty.
(iii) Under Assumption 2.1, G is proper and lower semicontinuous, and its restriction to its

domain is continuous. In particular, due to the coercivity of G, for every x ∈ dom R,
lev≤G(x) G is a compact set. Moreover, the set of minimizers of G is nonempty and
compact.

(iv) If, for every j ∈ {1, . . . , J }, R j is proper, lower semicontinuous and convex, then R j

is bounded from below by an affine function.
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Assumption 2.2 Function G satisfies the Kurdyka-Łojasiewicz (KL) inequality i.e., for
every ξ ∈ R, and, for every bounded subset E ofR

N , there exist three constants κ ∈ (0,+∞),
ζ ∈ (0,+∞) and θ ∈ [0, 1) such that

(∀t ∈ ∂G(x)
) ‖t‖ ≥ κ|G(x) − ξ |θ , (10)

for every x ∈ E such that |G(x) − ξ | ≤ ζ (with the convention 00 = 0).

Remark 2.4 Note that a more general local version of Assumption 2.2 can be found in the
literature [11,12]. Nonetheless, as emphasized in [2], Assumption 2.2 is satisfied for a very
wide class of functions, such as, in particular, real analytic and semi-algebraic functions.

Some matrices serving to define some appropriate variable metric will play a central role
in the algorithm proposed in this work. More specifically, let j� ∈ {1, . . . , J } be the index
of the block selected at iteration � ∈ N of Algorithm (7), let x� ∈ dom R be the associated
iterate and let A j� (x�) ∈ R

N j�×N j� be a symmetric positive definite matrix that fulfills the
following so-called majorization condition:

Assumption 2.3

(i) The quadratic function defined as

(∀y ∈ R
N j� ) Q j� (y | x�) := F(x�) +

〈

y − x
( j�)
� ,∇ j� F(x�)

〉

+1

2

〈

y − x
( j�)
� ,A j� (x�)(y − x

( j�)
� )

〉

,

is a majorant function of Fj� (·,x(j�)

� ) at x( j�)
� on dom R j� , i.e.,

(∀y ∈ dom R j� ) Fj� (y,x
(j�)

� ) ≤ Q j� (y | x�).

(ii) There exists (ν, ν) ∈ (0,+∞)2 such that

(∀� ∈ N) νIN j�
� A j� (x�) � νIN j�

.

Remark 2.5

(i) Note that it is not necessary to build a quadratic majorant of Fj (·,x(j)) on dom R j , for
every j ∈ {1, . . . , J } and for every x(j) ∈ ×i∈j dom Ri .

(ii) Suppose that, for every x′ ∈ dom R, a quadratic majorant function of F on dom R is
given by

(∀x ∈ R
N ) Q(x | x′) := F(x′) + 〈

x − x′,∇F(x′)
〉+ 1

2

〈

x − x′,B(x′)(x − x′)
〉

,

(11)

where B(x′) ∈ R
N×N is a symmetric positive definite matrix. Then, Assump-

tion 2.3(i) is satisfied for A j� (x�) = (B(x�)
(n,n′))(n,n′)∈J2j�

, where, for every (n, n′) ∈
{1, . . . , N }2, B(x�)

(n,n′) denotes the (n, n′) element of matrix B(x�). Moreover, if
there exists (ν, ν) ∈ (0,+∞)2 such that, for every x′ ∈ dom R, νIN � B(x′) � νIN ,
then Assumption 2.3(ii) is also satisfied.

(iii) If dom R is convex, the existence of the majorant function (11) is ensured when F
satisfies Assumption 2.1(ii) (see [18, Lem. 3.1]).

Moreover, in order to ensure that each block is updated an infinite number of times, we
make the following assumption, which is equivalent to the essentially cyclic rule from [58]:
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Assumption 2.4 Let ( j�)�∈N be the sequence of updated block indices. There exists a con-
stant K ≥ J such that, for every � ∈ N, {1, . . . , J } ⊂ { j�, . . . , j�+K−1}.

Note that the blocks do not need to be updated in any specific order.
Finally, we suppose that, for every � ∈ N, the stepsize γ� involved in Algorithm (7)

satisfies the following assumption:

Assumption 2.5 There exists (γ , γ ) ∈ (0,+∞)2 such that, for every � ∈ N, one of the
following statements holds:

(i) γ ≤ γ� ≤ 1 − γ ,
(ii) R j� is a convex function and γ ≤ γ� ≤ 2(1 − γ ).

Remark 2.6 Assumption 2.5 can be interpreted as the fact that, for every j ∈ {1, . . . , J },
larger stepsizes can be used when R j is convex. More precisely, if R j is nonconvex, the
stepsize is restricted to (0, 1), whereas it can belong to (0, 2) if R j is convex.

2.3 Inexact BC-VMFB algorithm

In general, the proximity operator relative to an arbitrary metric does not have a closed form
expression. To circumvent this difficulty, we propose to solve Problem (1) by introducing the
following inexact version of Algorithm (7):

Let α ∈ (1/2,+∞), β ∈ (0,+∞), and x0 ∈ dom R,

For � = 0, 1, . . .
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Let j� ∈ {1, . . . , J },
Find x

( j�)
�+1 ∈ R

N j� and r
( j�)
�+1 ∈ ∂ R j� (x

( j�)
�+1) such that

R j� (x
( j�)
�+1) +

〈

x
( j�)
�+1 − x

( j�)
� ,∇ j� F(x�)

〉

+ α

∥

∥

∥x
( j�)
�+1 − x

( j�)
�

∥

∥

∥

2

A j� (x�)

≤ R j� (x
( j�)
� ),

∥

∥

∥∇ j� F(x�) + r
( j�)
�+1

∥

∥

∥ ≤ β

∥

∥

∥x
( j�)
�+1 − x

( j�)
�

∥

∥

∥

A j� (x�)
,

x
(j�)

�+1 = x
(j�)

� .

(12a)

(12b)

(12c)

Remark 2.7 As already mentioned, under our working assumptions, Algorithm (12) can be
viewed as an inexact version of Algorithm (7). To see this, let us consider sequences (x�)�∈N
and ( j�)�∈N generated by Algorithm (7). Let � ∈ N.

(i) Suppose that Assumption 2.5(i) holds. Due to the definition of the proximity operator,
we have,

R j�

(

x
( j�)
�+1

)+
〈

x
( j�)
�+1 − x

( j�)
� ,∇ j� F(x�)

〉

+ γ −1
�

2

∥

∥

∥x
( j�)
�+1 − x

( j�)
�

∥

∥

∥

2

A j� (x�)
≤ R j�

(

x
( j�)
�

)

,

so that the sufficient-decrease condition (12a) holds with α = (1 − γ )−1/2 (as γ −1
� ≥

(1 − γ )−1 > 1).
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(ii) Suppose now that Assumption 2.5(ii) holds. Due to the variational characterization of
the proximity operator and the convexity of R j� , there exists r

( j�)
�+1 ∈ ∂ R j� (x

( j�)
�+1) such

that
{

r
( j�)
�+1 = −∇ j� F(x�) + γ −1

� A j� (x�)(x
( j�)
� − x

( j�)
�+1)

〈

x
( j�)
�+1 − x

( j�)
� , r

( j�)
�+1

〉

≥ R j� (x
( j�)
�+1) − R j� (x

( j�)
� ),

which yields

R j� (x
( j�)
�+1) +

〈

x
( j�)
�+1 − x

( j�)
� ,∇ j� F(x�)

〉

+ γ −1
�

∥

∥

∥x
( j�)
�+1 − x

( j�)
�

∥

∥

∥

2

A j� (x�)
≤ R j� (x

( j�)
� ),

so that the sufficient-decrease condition (12a) holdswith the same value ofα as in case (i)
(since γ −1

� ≥ (2 − 2γ )−1 > 1/2).

Secondly, according to the variational characterization of the proximity operator, there
exists r( j�)

�+1 ∈ ∂ R j� (x
( j�)
�+1) such that

r
( j�)
�+1 = −∇ j� F(x�) + γ −1

� A j� (x�)
(

x
( j�)
� − x

( j�)
�+1

)

.

Using Assumptions 2.3(ii) and 2.5, we obtain

∥

∥

∥r
( j�)
�+1 + ∇ j� F(x�)

∥

∥

∥ = γ −1
�

∥

∥

∥A j� (x�)
(

x
( j�)
� − x

( j�)
�+1

)∥

∥

∥ ≤ γ −1
√

ν

∥

∥

∥x
( j�)
� − x

( j�)
�+1

∥

∥

∥

A j� (x�)
,

which is the inexact optimality condition (12b) with β = γ −1
√

ν.

3 Convergence analysis

3.1 Descent properties

In this section, we provide some technical results concerning the behavior of the sequence
(

G(x�)
)

�∈N generated by Algorithm (12), which will be useful in proving the convergence
of the proposed algorithm.

Lemma 3.1 Let (x�)�∈N be a sequence generated by Algorithm (12). Under Assumptions 2.1
and 2.3, there exists μ ∈ (0,+∞) such that, for every � ∈ N,

G(x�+1) ≤ G(x�) − μ

2

∥

∥

∥x
( j�)
�+1 − x

( j�)
�

∥

∥

∥

2 = G(x�) − μ

2
‖x�+1 − x�‖2. (13)

Proof Let � ∈ N. We have

G(x�+1) = F(x�+1) + R(x�+1).

On the one hand, according to Assumption 2.3(i),

F(x�+1) ≤ F(x�) +
〈

x
( j�)
�+1 − x

( j�)
� ,∇ j� F(x�)

〉

+ 1

2

∥

∥

∥x
( j�)
�+1 − x

( j�)
�

∥

∥

∥

2

A j� (x�)
. (14)
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On the other hand, using (12c),

R(x�+1) = R j�

(

x
( j�)
�+1

)+
∑

j∈j�

R j
(

x
( j)
�+1

)

= R j�

(

x
( j�)
�+1

)+
∑

j∈j�

R j
(

x
( j)
�

)

= R(x�) + (

R j�

(

x
( j�)
�+1

)− R j�

(

x
( j�)
�

))

.

Then, using (12a), we obtain

R(x�+1) ≤ R(x�) −
〈

x
( j�)
�+1 − x

( j�)
� ,∇ j� F(x�)

〉

− α

∥

∥

∥x
( j�)
�+1 − x

( j�)
�

∥

∥

∥

2

A j� (x�)
. (15)

Therefore, combining (14) and (15) yields

G(x�+1) ≤ G(x�) −
(

α − 1

2

)

∥

∥

∥x
( j�)
�+1 − x

( j�)
�

∥

∥

∥

2

A j� (x�)
. (16)

Finally, (13) is deduced from Assumption 2.3(ii) and the fact that α ∈ (1/2,+∞), by setting
μ = ν(2α − 1), and using (12c). ��

Let the sequence (χ�)�∈N be defined as

(∀� ∈ N) χ� = (x�+k+1 − x�+k)0≤k≤K−1 ∈ (RN )K , (17)

where (x�)�∈N is a sequence generated by Algorithm (12) and K is the integer constant from
Assumption 2.4. Then,

‖χ�‖2 =
K−1
∑

k=0

‖x�+k+1 − x�+k‖2,

and the following property holds.

Lemma 3.2 Let (x�)�∈N be a sequence generated by Algorithm (12). Under Assumptions 2.1,
2.3 and 2.4, for every � ∈ N,

G(x�+K ) ≤ G(x�) − μ

2
‖χ�‖2,

where μ ∈ (0,+∞) is the same constant as in Lemma 3.1.

Proof Let � ∈ N. According to Lemma 3.1, we have

G(x�+K ) ≤ G(x�+K−1) − μ

2
‖x�+K − x�+K−1‖2

≤ G(x�+K−2) − μ

2

(‖x�+K−1 − x�+K−2‖2 + ‖x�+K − x�+K−1‖2
)

...

≤ G(x�) − μ

2

K−1
∑

k=0

‖x�+k+1 − x�+k‖2.

��
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3.2 Convergence theorem

We first state the following two lemmas which will be useful to handle the essentially cyclic
rule:

Lemma 3.3 Let (x�)�∈N be a sequence of iterates generated by Algorithm (12). Let �0 ∈ N

and let J�0 be a subset of {1, . . . , J } containing j�0 . Then, under Assumptions 2.1 and 2.3,
we have

∑

j∈J�0

∥

∥

∥∇ j F(x�0+1) + r
( j)
�0+1

∥

∥

∥

2 ≤ 2
(

L2 + β2ν
)‖x�0+1 − x�0‖2

+ 2
∑

j∈J�0\{ j�0 }

∥

∥

∥∇ j F(x�0) + r
( j)
�0

∥

∥

∥

2
, (18)

where r
( j�0 )

�0+1 is defined by Algorithm (12) and, for every j ∈ J�0\{ j�0}, r( j)
�0+1 ∈ ∂ R j (x

( j)
�0+1)

and r
( j)
�0

∈ ∂ R j (x
( j)
�0

).

Proof Let �0 ∈ N. According to Jensen’s inequality,

∑

j∈J�0

∥

∥

∥∇ j F(x�0+1) + r
( j)
�0+1

∥

∥

∥

2 ≤ 2
∑

j∈J�0

‖∇ j F(x�0+1) − ∇ j F(x�0)‖2

+ 2
∑

j∈J�0

∥

∥

∥∇ j F(x�0) + r
( j)
�0+1

∥

∥

∥

2
. (19)

On the one hand, since
J
∑

j=1
‖∇ j F(x�0+1) − ∇ j F(x�0)‖2 = ‖∇F(x�0+1) − ∇F(x�0)‖2,

Assumption 2.1(ii) leads to
∑

j∈J�0

‖∇ j F(x�0+1) − ∇ j F(x�0)‖2 ≤ L2‖x�0+1 − x�0‖2. (20)

On the other hand, since j�0 ∈ J�0

∑

j∈J�0

∥

∥

∥∇ j F(x�0) + r
( j)
�0+1

∥

∥

∥

2 =
∥

∥

∥∇ j�0
F(x�0) + r

( j�0 )

�0+1

∥

∥

∥

2

+
∑

j∈J�0\{ j�0 }

∥

∥

∥∇ j F(x�0) + r
( j)
�0+1

∥

∥

∥

2
.

Moreover, using (12b) and Assumption 2.3(ii), and since, for every j ∈ J�0\{ j�0}, x( j)
�0+1 =

x
( j)
�0

,

∑

j∈J�0

∥

∥

∥∇ j F(x�0) + r
( j)
�0+1

∥

∥

∥

2 ≤ β2ν‖x�0+1 − x�0‖2 +
∑

j∈J�0\{ j�0 }

∥

∥

∥∇ j F(x�0) + r
( j)
�0

∥

∥

∥

2
.

(21)

Finally, (18) results from (19), (20) and (21). ��
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Lemma 3.4 Let (x�)�∈N be a sequence of iterates generated by Algorithm (12). Let (�0, �′
0) ∈

N
2 be such that �0 ≤ �′

0 and let J�0,�
′
0

⊂ {1, . . . , J } be such that, for every � ∈ {�0, . . . , �′
0},

j� ∈ J�0,�
′
0
. Then, under Assumptions 2.1 and 2.3, we have

∑

j∈J�0,�′0

∥

∥

∥∇ j F(x�′
0+1) + r

( j)
�′
0+1

∥

∥

∥

2

≤ (

L2 + β2ν
)

�′
0

∑

�=�0

2�′
0+1−�‖x�+1 − x�‖2 + 2�′

0+1−�0
∑

j∈J�0,�′0\{ j�0 }

∥

∥

∥∇ j F(x�0) + r
( j)
�0

∥

∥

∥

2
,

where r
( j�′0 )

�′
0+1 is defined by Algorithm (12), for every j ∈ J�0,�

′
0
\{ j�′

0
}, r( j)

�′
0+1 ∈ ∂ R j (x

( j)
�′
0+1)

and, for every j ∈ J�0,�
′
0
\{ j�0}, r( j)

�0
∈ ∂ R j (x

( j)
�0

).

Proof Let (�0, �′
0) ∈ N

2 be such that �0 ≤ �′
0.Under the considered assumptions, by applying

successively Lemma 3.3 for �′
0, �

′
0 − 1, . . . , �0, we have

∑

j∈J�0,�′0

∥

∥

∥∇ j F(x�′
0+1) + r

( j)
�′
0+1

∥

∥

∥

2

≤ (

L2 + β2ν
)

2‖x�′
0+1 − x�′

0
‖2 + 2

∑

j∈J�0,�′0\{ j�′0 }

∥

∥

∥∇ j F(x�′
0
) + r

( j)
�′
0

∥

∥

∥

2

≤ (

L2 + β2ν
)

2‖x�′
0+1 − x�′

0
‖2 + 2

∑

j∈J�0,�′0

∥

∥

∥∇ j F(x�′
0
) + r

( j)
�′
0

∥

∥

∥

2

≤ (

L2 + β2ν
)(

2‖x�′
0+1 − x�′

0
‖2 + 22‖x�′

0
− x�′

0−1‖2
)

+ 22
∑

j∈J�0,�′0\{ j�′0−1}

∥

∥

∥∇ j F(x�′
0−1) + r

( j)
�′
0−1

∥

∥

∥

2

≤ (

L2 + β2ν
)(

2‖x�′
0+1 − x�′

0
‖2 + 22‖x�′

0
− x�′

0−1‖2 + 23‖x�′
0−1 − x�′

0−2‖2
)

+ 23
∑

j∈J�0,�′0\{ j�′0−2}

∥

∥

∥∇ j F(x�′
0−2) + r

( j)
�′
0−2

∥

∥

∥

2

...

≤ (

L2 + β2ν
)

�′
0

∑

�=�0

2�′
0+1−�‖x�+1 − x�‖2

+ 2�′
0+1−�0

∑

j∈J�0,�′0\{ j�0 }

∥

∥

∥∇ j F(x�0) + r
( j)
�0

∥

∥

∥

2
.

��
Some notation will be needed in the remainder. Let j ∈ {1, . . . , J }, let � ∈ N, and let

K > 0 be defined by Assumption 2.4. We denote by

k�, j = min
{

k ∈ {0, . . . , K − 1} : j�+k = j}, (22)
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the first time the j-th block is updated after the �-th iteration of Algorithm (12). Moreover,
we define the permutation σ� : {1, . . . , J } → {1, . . . , J } ensuring that (k�,σ�(i))1≤i≤J is
increasing.

Our main result concerning the asymptotic behavior of Algorithm (12) is given below:

Theorem 3.1 Let (x�)�∈N be defined by (12). Under Assumptions 2.1–2.4, the following
hold.

(i) The sequence (x�)�∈N converges to a critical point x̂ of G.
(ii) This sequence has a finite length in the sense that

+∞
∑

�=0

‖x�+1 − x�‖ < +∞.

(iii)
(

G(x�)
)

�∈N is a nonincreasing sequence converging to G(x̂).

Proof According to Lemma 3.1, we have

(∀� ∈ N) G(x�+1) ≤ G(x�),

thus, (G(x�))�∈N is a nonincreasing sequence. In addition, since x0 ∈ dom R, by
Remark 2.3(iii), the sequence

(

x�

)

�∈N belongs to the compact subset E = lev≤G(x0) G ⊂
dom R and G is lower bounded. Thus,

(

G(x�)
)

�∈N converges to a real ξ , and
(

G(x�)−ξ
)

�∈N
is a nonnegative sequence converging to 0.

Moreover, by invoking Lemma 3.2, we have

(∀� ∈ N)
μ

2
‖χ�‖2 ≤ (G(x�) − ξ) − (G(x�+K ) − ξ), (23)

where K > 0 is defined in Assumption 2.4. Let us apply to the convex function

ψ : [0,+∞) → [0,+∞) : u �→ u
1

1−θ , with θ ∈ [0, 1), the gradient inequality
(∀(u, v) ∈ [0,+∞)2) ψ(u) − ψ(v) ≤ ψ̇(u)(u − v),

which, after a change of variables, can be rewritten as

(∀(u, v) ∈ [0,+∞)2) u − v ≤ (1 − θ)−1uθ (u1−θ − v1−θ ).

Using the latter inequality with u = G(x�) − ξ and v = G(x�+K ) − ξ leads to

(∀� ∈ N)
(

G(x�) − ξ
)− (

G(x�+K ) − ξ
) ≤ (1 − θ)−1(G(x�) − ξ

)θ
Δ�,

where

(∀� ∈ N) Δ� = (

G(x�) − ξ
)1−θ − (

G(x�+K ) − ξ
)1−θ

.

Thus, combining the above inequality with (23) yields

(∀� ∈ N) ‖χ�‖2 ≤ 2μ−1(1 − θ)−1(G(x�) − ξ
)θ

Δ�. (24)

Let us define

(∀� ∈ N) t� =
(

∇ j F(x�) + r
( j)
�

)

1≤ j≤J
∈ R

N1 × . . . × R
NJ ,

where for every j ∈ {1, . . . , J }, r( j)
� ∈ ∂ R j (x

( j)
� ). Using the differentiation rule for separable

functions, we have r� = (

r
( j)
�

)

1≤ j≤J ∈ ∂ R(x�). Thus, for every � ∈ N,

t� ∈ ∂G(x�). (25)
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Since E is bounded and Assumption 2.2 holds, there exist constants κ > 0, ζ > 0 and
θ ∈ [0, 1) such that (10) holds for every x ∈ E for which the inequality |G(x) − ξ | ≤ ζ is
satisfied. Since

(

G(x�)
)

�∈N converges to ξ , there exists �∗ ∈ N, such that, for every � ≥ �∗,
|G(x�) − ξ | < ζ . Hence, we have

(∀� ≥ �∗) κ|G(x�) − ξ |θ ≤ ‖t�‖. (26)

Let K be defined by Assumption 2.4. For every � ∈ N,

‖t�+K ‖2 = ∥

∥

(

∇ j F(x�+K ) + r
( j)
�+K

)

1≤ j≤J

∥

∥

2 =
J
∑

j=1

∥

∥∇ j F(x�+K ) + r
( j)
�+K

∥

∥

2
.

For every k ∈ {� + k�,σ�(J ), . . . , � + K − 1}, let r( jk )
k+1 ∈ ∂ R jk (x

( jk )
k+1) be defined as in

Algorithm (12). Thus, Lemma 3.4 with �0 = � + k�,σ�(J ), �′
0 = � + K − 1 and J�0,�

′
0

=
{1, . . . , J } leads to

‖t�+K ‖2 ≤ (L2 + β2ν)

�+K−1
∑

k=�+k�,σ�(J )

2�+K−k‖xk+1 − xk‖2

+ 2K−k�,σ�(J )

J
∑

j=1
j �=σ�(J )

∥

∥

∥∇ j F(x�+k�,σ�(J )
) + r

( j)
�+k�,σ�(J )

∥

∥

∥

2
.

Using again Lemma 3.4 on
J
∑

j=1
j �=σ�(J )

‖∇ j F(x�+k�,σ�(J )
)+r

( j)
�+k�,σ�(J )

‖2 with �0 = �+k�,σ�(J−1),

�′
0 = � + k�,σ�(J ) − 1 and J�0,�

′
0

= {1, . . . , J }\{σ�(J )}, we obtain

‖t�+K ‖2 ≤ (L2 + β2ν)

�+K−1
∑

k=�+k�,σ�(J )

2�+K−k
∥

∥xk+1 − xk
∥

∥

2

+ (L2 + β2ν)

�+k�,σ�(J )−1
∑

k=�+k�,σ�(J−1)

2�+K−k
∥

∥xk+1 − xk
∥

∥

2

+ 2K−k�,σ�(J−1)

J
∑

j=1
j �=σ�(i),i∈{J−1,J }

∥

∥∇ j F(x�+k�,σ�(J−1) ) + r
( j)
�+k�,σ�(J−1)

∥

∥

2
.

Proceeding similarly for i ∈ {1, . . . , J − 2}, we get

‖t�+K ‖2 ≤ (L2 + β2ν)

�+K−1
∑

k=�+k�,σ�(J )

2�+K−k
∥

∥xk+1 − xk
∥

∥

2

+ (L2 + β2ν)

J−1
∑

i=1

�+k�,σ�( j+1)−1
∑

k=�+k�,σ�( j)

2�+K−k
∥

∥xk+1 − xk
∥

∥

2
, (27)
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where we have used the fact that {1, . . . , J }\{σ�(1), . . . , σ�(J )} = ∅, thus

J
∑

j=1
j �=σ�(i),i∈{1,...,J }

∥

∥∇ j F(x�) + r
( j)
�

∥

∥

2 = 0.

Since k�,σ�(1) = 0 and, for every k ∈ {�, . . . , �+ K −1}, 2�+K−k ≤ 2K , it follows from (17)
and (27) that

‖t�+K ‖2 ≤ 2K (L2 + β2ν)

�+K−1
∑

k=�

∥

∥xk+1 − xk
∥

∥

2 = 2K (L2 + β2ν)‖χ�‖2. (28)

Combining (24), (26) and (28) yields

(∀� ≥ max{�∗, K }) ‖χ�‖2 ≤ 2μ−1(1 − θ)−1κ−12K/2(L2 + β2ν)1/2‖χ�−K ‖Δ�.

By using the fact that

(∀(u, v) ∈ [0,+∞)2) (uv)1/2 ≤ 1

2
(u + v),

and by setting u = ‖χ�−K ‖ and v = 2μ−1(1 − θ)−1κ−12K/2(L2 + β2ν)1/2Δ�, we obtain

(∀� ≥ max{�∗, K }) ‖χ�‖ ≤ 1

2
‖χ�−K ‖ + μ−1(1 − θ)−1κ−12K/2(L2 + β2ν)1/2Δ�.

(29)

Furthermore, it can be noticed that

+∞
∑

�=�∗
Δ� =

+∞
∑

�=�∗

(

G(x�) − ξ
)1−θ − (

G(x�+K ) − ξ
)1−θ

=
�∗+K−1
∑

�=�∗

(

G(x�) − ξ
)1−θ

,

which shows that (Δ�)�∈N is a summable sequence. As (‖χ�‖)�≥max{�∗,K } satisfies inequal-
ity (29), (‖χ�‖)�∈N is also a summable sequence. According to (17),

(∀� ∈ N) ‖x�+1 − x�‖ ≤ ‖χ�‖,
and (‖x�+1 − x�‖)�∈N is a summable sequence.

Hence, the sequence (x�)�∈N satisfies the finite length property. In addition, since this
latter condition implies that (x�)�∈N is a Cauchy sequence, it converges towards a point x̂.

It remains us to show that the limit x̂ is a critical point of G. According to (25), we have,
for every � ∈ N,

(x�, t�) ∈ Graph ∂G.

In addition, since the sequence
(‖χ�‖

)

�∈N is summable, it converges to 0. Moreover, accord-
ing to (28), we have

‖t�‖ ≤ 2K/2(L2 + β2ν)1/2‖χ�−K ‖,
hence (x�, t�)�∈N converges to (x̂, 0). Furthermore, according to Remark 2.3(iii), the restric-
tion of G to its domain is continuous. Thus, as, for every � ∈ N, x� ∈ dom G, the sequence
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(G(x�))�∈N converges to G(x̂). Finally, according to the closedness property of ∂G (see
Remark 2.1), (x̂, 0) ∈ Graph ∂G i.e., x̂ is a critical point of G. ��
Remark 3.1 In the case when the blocks are updated according to a cyclic rule and the
proximity operator is computed exactly, one can obtain similar convergence results without
assuming the continuity of functions (R j )1≤ j≤J , by using similar arguments to those in the
proof of [13, Lem. 5 (i)].

As a consequence of the previous theorem, the proposed algorithm can be shown to locally
converge to a global minimizer of G:

Corollary 3.1 Suppose that (x�)�∈N is a sequence generated by Algorithm (12), and suppose
that Assumptions 2.1–2.4 hold. There exists υ ∈ (0,+∞) such that, if

G(x0) ≤ inf
x∈RN

G(x) + υ,

then (x�)�∈N converges to a solution to Problem (1).

Proof Same proof as in [18, Cor. 3.2]. ��
3.3 Convergence rate

According to Theorem 3.1, the limit x̂ of a sequence (x�)�∈N generated by Algorithm (12) is
a critical point of G, under Assumptions 2.1–2.4. Thus, proceeding similarly to the derivation
of (26), there exists ζ ∈ (0,+∞) such that for every x ∈ R

N with G(x) ≤ G(x̂) + ζ , (10)
is satisfied for some κ ∈ (0,+∞) and θ ∈ [0, 1). The number θ is then called a Łojasiewicz
exponent of G at x̂. Similarly to other algorithms based on Kurdyka-Łojasiewicz inequality
[2,3], the local convergence rate of the BC-VMFB algorithm depends on this exponent.

The following lemma, which can be deduced from [2, Thm. 2], is instrumental to establish
the convergence rate:

Lemma 3.5 Let (Λm)m∈N be a nonnegative sequence of reals decreasing to 0. Assume that
there exist m∗ ∈ N\ {0} and C ∈ (0,+∞) such that, for every m ≥ m∗,

Λm ≤ (Λm−1 − Λm) + C(Λm−1 − Λm)
1−θ
θ , (30)

where θ ∈ (0, 1).
If θ ∈ ( 12 , 1

)

, then there exists λ ∈ (0,+∞) such that

(∀m ≥ 1) Λm ≤ λm− 1−θ
2θ−1 .

If θ ∈ (0, 1
2

]

, then there exist λ ∈ (0,+∞) and τ ∈ [0, 1) such that

(∀m ∈ N) Λm ≤ λτm .

Theorem 3.2 Let (x�)�∈N be a sequence generated by Algorithm (12) and suppose that
Assumptions 2.1–2.4 hold. Let θ be a Łojasiewicz exponent of G at the limit point x̂ of
(x�)�∈N. The following properties hold:

(i) If θ ∈ ( 12 , 1), then there exists (λ′, λ′′) ∈ (0,+∞)2 such that

(∀� > K ) ‖x� − x̂‖ ≤ λ′( �

K
− 1

)− 1−θ
2θ−1

, (31)

(∀� > 2K ) G(x�) − G(x̂) ≤ λ′′( �

K
− 2

)− 1−θ
θ(2θ−1)

. (32)
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(ii) If θ ∈ (0, 1
2 ], then there exist (λ′, λ′′) ∈ (0,+∞)2 and τ ′ ∈ [0, 1) such that

(∀� ∈ N) ‖x� − x̂‖ ≤ λ′(τ ′)�, (33)

G(x�) − G(x̂) ≤ λ′′(τ ′)
�
θ . (34)

(iii) If θ = 0, then the sequence (x�)�∈N converges in a finite number of steps.

Proof We use the same notation as in the proof of Theorem 3.1. Let K be given by Assump-
tion 2.4. For every � ∈ N, there exist m ∈ N and k ∈ {0, . . . , K − 1} such that � = mK + k.
Then, according to the triangle inequality,

‖x� − x̂‖ ≤ ‖xmK − x̂‖ + ‖x� − xmK ‖. (35)

Moreover, using again the triangle inequality, we have

‖xmK − x̂‖ =
∥

∥

∥

∥

∥

+∞
∑

p=m

(

x(p+1)K − xpK
)

∥

∥

∥

∥

∥

=
∥

∥

∥

∥

∥

+∞
∑

p=m

K−1
∑

k′=0

(

xpK+k′+1 − xpK+k′
)

∥

∥

∥

∥

∥

≤
+∞
∑

p=m

∥

∥

∥

∥

∥

K−1
∑

k′=0

(

xpK+k′+1 − xpK+k′
)

∥

∥

∥

∥

∥

, (36)

and according to Jensen’s inequality and (17),

(∀p ≥ m)
∥

∥

K−1
∑

k′=0

(

xpK+k′+1 − xpK+k′
) ∥

∥

2 ≤ K‖χ pK ‖2. (37)

For every m′ ∈ N, let Λm′ =
+∞
∑

p=m′
‖χ pK ‖ which is finite by Theorem 3.1. Hence, the last

two inequalities yield

‖xmK − x̂‖ ≤ √
KΛm . (38)

Involving again Jensen’s inequality, we have

‖xmK − x�‖2 =
∥

∥

∥

∥

∥

k−1
∑

k′=0

(

xmK+k′+1 − xmK+k′
)

∥

∥

∥

∥

∥

2

≤ k
k−1
∑

k′=0

∥

∥xmK+k′+1 − xmK+k′
∥

∥

2 ≤ (K − 1)‖χmK ‖2. (39)

Altogether, (35), (38), and (39) lead to

(∀� ∈ N) ‖x� − x̂‖ ≤ √
KΛm + √

K − 1‖χmK ‖ ≤ 2
√

KΛm . (40)

Using (29), we have, for every m ≥ max{�∗/K , 1},

‖χmK ‖ ≤ 1

2
‖χ (m−1)K ‖ + μ−1(1 − θ)−1κ−12K/2(L2 + β2ν)1/2ΔmK ,
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where ΔmK = (

G(xmK ) − G(x̂)
)1−θ − (

G(x(m+1)K ) − G(x̂)
)1−θ . Thus, since

(

G(x�) −
G(x̂)

)

�∈N is a nonnegative sequence converging to 0, we obtain

Λm ≤ (Λm−1 − Λm) + 2μ−1(1 − θ)−1κ−12K/2(L2 + β2ν)1/2
(

G(xmK ) − G(x̂)
)1−θ

.

Let us now assume that θ �= 0. According to (26) and (28), we have

κ (G(xmK ) − G(x̂))θ ≤
(

2K (L2 + β2ν)
)1/2 ‖χ (m−1)K ‖,

so that

(

G(xmK ) − G(x̂)
)1−θ ≤ κ− 1−θ

θ

(

2K (L2 + β2ν)
) 1−θ

2θ ‖χ (m−1)K ‖ 1−θ
θ . (41)

Thus, by defining

C = 2μ−1(1 − θ)−1κ− 1
θ

(

2K (L2 + β2ν)
) 1

2θ
, (42)

we get, for every m ≥ max{�∗/K , 1},
Λm ≤ (Λm−1 − Λm) + C‖χ (m−1)K ‖ 1−θ

θ ,

and (30) is satisfied.
Thus, according to Lemma 3.5 and (40), if θ ∈ ( 1

2 , 1
)

, there exists λ ∈ (0,+∞) such
that

(∀� > K ) ‖x� − x̂‖ ≤ 2
√

Kλm− 1−θ
2θ−1 ≤ 2

√
Kλ
( �

K
− 1

)− 1−θ
2θ−1

,

where m is the lower integer part of �/K . Inequality (31) is thus obtained by setting λ′ =
2
√

Kλ. Similarly, if θ ∈ (0, 1
2 ], then there exist λ ∈ (0,+∞) and τ ∈ [0, 1) such that

(∀� > K ) ‖x� − x̂‖ ≤ 2
√

Kλτm ≤ 2
√

Kλτ�/K−1.

Hence, if τ �= 0, (33) is satisfied by setting λ′ = 2
√

Kλ/τ and τ ′ = τ 1/K , while (33) also
holds trivially when τ = 0.

In addition, since
(

G(x�) − G(x̂)
)

�∈N is a decreasing sequence, for every � ∈ N,

G(x�) − G(x̂) ≤ G(xmK ) − G(x̂),

where m still denotes the lower integer part of �/K . Using (41), if m ≥ max{�∗/K , 1}, then

G(x�) − G(x̂) ≤ κ−1/θ
(

2K (L2 + β2ν)
) 1

2θ ‖χ (m−1)K ‖1/θ

≤ κ−1/θ
(

2K (L2 + β2ν)
) 1

2θ
Λ

1/θ
m−1.

So, if θ ∈ ( 12 , 1), using again Lemma 3.5, there exists λ ∈ (0,+∞) such that, when m > 2,

G(x�) − G(x̂) ≤ κ−1/θ
(

2K (L2 + β2ν)
) 1

2θ
λ(m − 1)−

1−θ
θ(2θ−1)

≤ κ−1/θ
(

2K (L2 + β2ν)
) 1

2θ
λ
( �

K
− 2

)− 1−θ
θ(2θ−1)

.
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Hence, one can find λ′′ ∈ (0,+∞) such that (32) holds for every � > 2K . If θ ∈ (0, 1
2 ],

there exist λ ∈ (0,+∞) and τ ∈ [0, 1) such that

G(x�) − G(x̂) ≤ κ−1/θ
(

2K (L2 + β2ν)
) 1

2θ
λτ

m−1
θ

≤ κ−1/θ
(

2K (L2 + β2ν)
) 1

2θ
λτ

�/K−2
θ .

Therefore, one can find λ′′ ∈ (0,+∞) such that (34) holds for every � ∈ N.
Let us now prove Property (iii) by assuming that θ = 0. Set L = {� ∈ N : x� �= x̂}, and

let � ≥ max{�∗, K } be in L. According to Lemmas 3.1 and 3.2,

G(x�+1) ≤ G(x�) − μ

2
‖x�+1 − x�‖2 ≤ G(x�−K ) − μ

2
‖χ�−K ‖2.

Using (28), we obtain

G(x�) − G(x̂) − μ

2
‖x�+1 − x�‖2 ≤ G(x�−K ) − G(x̂) − μ′

2
‖t�‖2,

where μ′ ∈ (0,+∞). Combined with (26), and since θ = 0, this yields

G(x�) − G(x̂) − μ

2
‖x�+1 − x�‖2 ≤ G(x�−K ) − G(x̂) − μ′

2
κ2|G(x�) − G(x̂)|0,

that is,

G(x�) − G(x̂) − μ

2
‖x�+1 − x�‖2 ≤ G(x�−K ) − G(x̂) − μ′

2
κ2.

Since lim
�→+∞ G(x�) = G(x̂), the above inequality implies that L is finite, and (iii) follows. ��

Remark 3.2

(i) Note that, when G is strongly convex, the Łojasiewicz exponent θ of G is equal to
1/2. In this case, x̂ is a global minimizer of G and sequences (‖x� − x̂‖)�∈N and
(G(x�) − G(x̂))�∈N converge linearly.

(ii) Note that, if θ ∈ (0, 1/2], then, for m large enough, (30) yields

Λm ≤ (1 + C)(Λm−1 − Λm),

so that the constant τ ′ in (33)–(34) can be chosen equal to ((1 + C)/(2 + C))1/K where
C is given by (42).

4 Application

4.1 Optimization problem

In this section, we consider a phase retrieval inverse problem which consists of estimating
the phase of a complex-valued signal from measurements of its modulus and additional a
priori information.

Let z = (

z(s)
)

1≤s≤S ∈ [0,+∞)S be a degraded signal related to an original unknown

signal v ∈ R
M through the model

z = |Hv| + w,
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where H ∈ C
S×M is an observation matrix with complex elements, | · | denotes the com-

ponentwise modulus operator, and w ∈ [0,+∞)S is a realization of an additive noise. The
objective is then to find an estimate v̂ ∈ R

M of the target image v from the observed data z
and the observation operator H .

Such a problem is of paramount importance in numerous areas of applied physics and
engineering [7,15,24,54,59]. Note that unlike many existing works [6,15,26,28], it is not
assumed that H is a Fourier transform matrix.

Set v̂ = Wx̂ where W ∈ R
M×N , N ≥ M , is a given frame synthesis operator (e.g. a

possibly redundant wavelet synthesis operator) [38]. Then, following a synthesis approach,
the frame coefficient vector x̂ can be estimated by solving Problem (1) where F is the so-
called data fidelity term of the form:

(∀x ∈ R
N ) F(x) :=

S
∑

s=1

ϕ(s)(|[HWx](s)|). (43)

Hereabove, for every s ∈ {1, . . . , S}, ϕ(s) : [0,+∞) → R, and [HWx](s) is the s-th
component of HWx ∈ C

S . Moreover, in (1), a penalty function R is employed serving to
incorporate a priori information on the frame coefficients.

We propose to choose, for every s ∈ {1, . . . , S}, ϕ(s) := ϕ
(s)
1 + ϕ

(s)
2 , where

(∀ω ∈ [0,+∞)
)

ϕ
(s)
1 (ω) := 1

2

(

ω2 + (z(s))2
)

, (44)

ϕ
(s)
2 (ω) := −z(s) (ω2 + δ2

)1/2
, (45)

with δ > 0 and z(s), the s-th component of z. Thus, the data fidelity term (43) is split as
F = F1 + F2 where

(∀x ∈ R
N ) F1(x) :=

S
∑

s=1
ϕ

(s)
1 (|[HWx](s)|),

F2(x) :=
S
∑

s=1
ϕ

(s)
2 (|[HWx](s)|).

(46)

For every s ∈ {1, . . . , S}, the first and second order derivatives of ϕ
(s)
1 and ϕ

(s)
2 with respect

to ω are, respectively, 1

(∀ω ∈ [0,+∞)) ϕ̇
(s)
1 (ω) = ω, (47)

ϕ̇
(s)
2 (ω) = −z(s)ω

(

ω2 + δ2
)−1/2

, (48)

and

(∀ω ∈ [0,+∞)) ϕ̈
(s)
1 (ω) = 1, (49)

ϕ̈
(s)
2 (ω) = −z(s)δ2(ω2 + δ2)−3/2. (50)

Thus, ϕ(s)
2 is concave on [0,+∞), while ϕ(s) is nonconvex. Moreover, ϕ(s) is Lipschitz

differentiable, and Assumption 2.1(ii) is satisfied. Note that, in the limit case when δ = 0,
the usual nonconvex nonsmooth least squares data fidelity term [26] is recovered (i.e. F =
1
2‖|HW · | − z‖2), which shows that the proposed function can be viewed as a smoothed
version of it.

1 We consider right derivatives at ω = 0.
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In addition, following [17,46], the following penalization term is employed on the wavelet
coefficients:

(∀x = (x (n))1≤n≤N ∈ R
N ) R(x) :=

N
∑

n=1

ρ(n)(x (n)), (51)

where, for every n ∈ {1, . . . , N },

(∀ω ∈ R) ρ(n)(ω) :=
{

ϑn |ω − ωn |πn if η
n

≤ ω ≤ ηn,

+∞ otherwise,
(52)

and, for every n ∈ {1, . . . , N }, ϑn ∈ (0,+∞), πn ∈ N\ {0}, η
n

∈ [−∞,+∞),
ηn ∈ [η

n
,+∞], and ωn ∈ R. Assumption 2.1 is thus satisfied. Moreover, since for every

n ∈ {1, . . . , N }, ρ(n) is a semi-algebraic function, F is also a semi-algebraic function, and
Assumption 2.2 holds.

In the following, in order to simplify the notation, we introduce the linear operator T :=
HW = (T (s,n))1≤s≤S,1≤n≤N ∈ C

S×N .

4.2 Construction of the preconditioning matrices

The numerical efficiency of the proposed method relies on the use of quadratic majorants

providing good approximations of Fj� (·,x(j�)

� ) at iteration � ∈ N, and whose curvature
matrices (A j� (x�))�∈N are simple to compute.

Similarly to (4), let us define, for every � ∈ N, functions F1, j� (·,xj�

� ) and F2, j� (·,xj�

� )

associated with F1 and F2, respectively. It has already been noticed that, for every s ∈
{1, . . . , S}, ϕ(s)

2 is concave. Hence, for every � ∈ N, F2, j� (·,xj�

� ) is majorized by

(∀y ∈ R
N j� ) Q2, j� (y | x�) := F2(x�) +

〈

y − x
( j�)
� ,∇ j� F2(x�)

〉

. (53)

Thus, there remains to find a family of symmetric positive definite matrices (A j� (x�))�∈N
such that, for every � ∈ N,

(∀y ∈ R
N j� ) Q1, j� (y | x�) := F1(x�) +

〈

y − x
( j�)
� ,∇ j� F1(x�)

〉

+1

2

〈

y − x
( j�)
� ,A j� (x�)(y − x

( j�)
� )

〉

, (54)

is a majorant function of F1, j� (·,xj�

� ). The following proposition allows us to propose a
symmetric positive definite matrix B ∈ R

N×N for building majorizing approximations of
F1 at x� for every � ∈ N. Hereafter, Re{·} (resp. Im{·}) designates the real (resp. imaginary)
part of its argument.

Proposition 4.1 Let u ∈ R
N . A quadratic majorant of F1 at u is

(∀x ∈ R
N ) Q1(x | u) := F1(u) + 〈x − u,∇F1(u)〉 + 1

2
〈x − u,B(x − u)〉 , (55)

where B := Diag
(

Ω�1S
) + εIN , where 1S is the unit vector on R

S, ε ≥ 0, and
Ω = (

Ω(s,n)
)

1≤s≤S,1≤n≤N ∈ R
S×N is given by
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(∀s ∈ {1, . . . , S})(∀n ∈ {1, . . . , N })

Ω(s,n) := |Re{T (s,n)}|
N
∑

n′=1

|Re{T (s,n′)}| + |Im{T (s,n)}|
N
∑

n′=1

|Im{T (s,n′)}|. (56)

Proof Let u ∈ R
N . For every s ∈ {1, . . . , S}, we have, for every x ∈ R

N ,

ϕ
(s)
1

(

|T (s)x|
)

= ϕ
(s)
1

(

|T (s)u|
)

+
〈

x − u,Re{(T (s))∗T (s)}u
〉

+ 1

2
|T (s)(x − u)|2,

where T (s) denotes row s of matrix T and (·)∗ is the matrix trans-conjugate operation. Then,
summing over s ∈ {1, . . . , S}, we obtain

(∀x ∈ R
N ) F1(x) = F1(u) + 〈x − u,∇F1(u)〉 + 1

2
|||T (x − u)|||2, (57)

where ||| · ||| is the Hermitian norm of C
S .

Let (V (s,n)
R )1≤s≤S,1≤n≤N ∈ [0,+∞)S×N and (V (s,n)

I )1≤s≤S,1≤n≤N ∈ [0,+∞)S×N be

such that, for every s ∈ {1, . . . , S},∑
n∈S(s)

R
V (s,n)
R ≤ 1,

∑

n∈S(s)
I

V (s,n)
I ≤ 1 where

S(s)
R :=

{

n ∈ {1, . . . , N } : V (s,n)
R �= 0

}

=
{

n ∈ {1, . . . , N } : Re{T (s,n)} �= 0
}

,

S(s)
I :=

{

n ∈ {1, . . . , N } : V (s,n)
I �= 0

}

=
{

n ∈ {1, . . . , N } : Im{T (s,n)} �= 0
}

.

Jensen’s inequality yields, for every s ∈ {1, . . . , S},
∣

∣

∣

∣

∣

N
∑

n=1

T (s,n)(x (n) − u(n))

∣

∣

∣

∣

∣

2

=
(

N
∑

n=1

Re{T (s,n)}(x (n) − u(n))

)2

+
(

N
∑

n=1

Im{T (s,n)}(x (n) − u(n))

)2

=
⎛

⎜

⎝

∑

n∈S(s)
R

V (s,n)
R

(

Re{T (s,n)}
V (s,n)
R

(x (n) − u(n))

)

⎞

⎟

⎠

2

+
⎛

⎜

⎝

∑

n∈S(s)
I

V (s,n)
I

(

Im{T (s,n)}
V (s,n)
I

(x (n) − u(n))

)

⎞

⎟

⎠

2

≤
∑

n∈S(s)
R

(Re{T (s,n)})2
V (s,n)
R

(x (n) − u(n))2

+
∑

n∈S(s)
I

(Im{T (s,n)})2
V (s,n)
I

(x (n) − u(n))2. (58)
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Let us now choose

(∀(s, n) ∈ {1, . . . , S} × {1, . . . , N })

V (s,n)
R =

⎧

⎨

⎩

0, if Re{T (s,n)} = 0,
|Re{T (s,n)}|

∑N
n′=1 |Re{T (s,n′)}| , otherwise,

V (s,n)
I =

⎧

⎨

⎩

0, if Im{T (s,n)} = 0,
|Im{T (s,n)}|

∑N
n′=1 |Im{T (s,n′)}| , otherwise.

It follows from (58) that, for every s ∈ {1, . . . , S},
∣

∣

∣

∣

∣

N
∑

n=1

T (s,n)(x (n) − u(n))

∣

∣

∣

∣

∣

2

≤
N
∑

n=1

(

|Re{T (s,n)}|
N
∑

n′=1

|Re{T (s,n′)}|
)

(x (n) − u(n))2

+
N
∑

n=1

(

|Im{T (s,n)}|
N
∑

n′=1

|Im{T (s,n′)}|
)

(x (n) − u(n))2.

It can be deduced that

|||T (x − u)|||2 ≤
〈

x − u,Diag
(

Ω�1S

)

(x − u)
〉

, (59)

where Ω is defined by (56). Altogether, (57) and (59) lead to the desired majorization. ��
Combining the above lemma with Remark 2.5(ii) leads to the construction, for every

� ∈ N, of a quadratic majorant of F1, j� (·,xj�

� ) at x� of the form (54) with

(∀� ∈ N) A j� (x�) := Diag
(

Ω�
j�1S

)

+ εIN j�
, (60)

where Ω j� ∈ R
S×N j� is the matrix obtained by extracting the columns with indices in J j�

from the matrix Ω given by (56). Note that Assumption 2.3(ii) is satisfied for matrices (60)
with

⎧

⎪

⎨

⎪

⎩

ν = ε + min
n∈J j�

∑S
s=1 Ω(s,n),

ν = ε + max
n∈J j�

∑S
s=1 Ω(s,n).

(61)

If each column of T is nonzero, then one can choose ε = 0 in (61). Otherwise, we must
choose ε > 0.

4.3 Implementation of the proximity operator of R

Let � ∈ N, let x� be the �-th iterate in Algorithm (12) and let j� ∈ {1, . . . , J } be the
block selected at iteration �. Since R j� is an additive separable function, and A j� (x�) reads

Diag(a(1)
j�

, . . . , a
(N j� )

j�
), we have

(

∀y = (y(n))n∈J j�
∈ R

N j�

)

prox
A j� (x�)/γ�

R j�
(y) =

(

prox
γ�ρ

(n)/a(n)
j�

(y(n))

)

n∈J j�

. (62)
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For every n ∈ J j� , let ς
(n)
j�

:= γ�ϑn

(

a(n)
j�

)−1
> 0. According to (52), we have then

(∀υ ∈ R) prox
γ�ρ

(n)/a(n)
j�

(υ) = argmin
η

n
≤ω≤ηn

{

ς
(n)
j�

|ω − ωn |πn + 1

2
(ω − υ)2

}

= min

{

ηn,max

{

η
n
, prox

ς
(n)
j�

|·−ωn |πn (υ)

}}

= min

{

ηn,max

{

η
n
, ωn + prox

ς
(n)
j�

|·|πn (υ − ωn)

}}

. (63)

Hence, provided that the proximity operator prox
ς

(n)
j�

|·|πn has an explicit form, the exact

version (7) of Algorithm (12) can be used.

4.4 Simulation results

We now demonstrate the practical performance of our algorithm on an image reconstruction
problem. In our experiments,W is an overcomplete Haar synthesis operator performed on a
single resolution level. Thus, N = 4M , and, for every x = (x (n))1≤n≤N ∈ R

N , (x (n))1≤n≤M

correspond to the approximation frame coefficients, whereas (x (n))pM+1≤n≤(p+1)M with p ∈
{1, 2, 3} correspond to the horizontal, vertical and diagonal detail coefficients, respectively.
We take, for every n ∈ {1, . . . , M}, (πn, ϑn) = (2, ϑa) and, for every n ∈ {M + 1, . . . , N },
(πn, ϑn) = (1, ϑd), with (ϑa, ϑd) ∈ (0,+∞)2. Note that, for these choices of (πn)1≤n≤N

and (ϑn)1≤n≤N , the proximity operator (63) has an explicit form [19]. The original image
v, with size M = 256 × 256, is shown in Fig. 1a. Although the Haar coefficient vector x
is not uniquely defined, an example is displayed in Fig. 1b. The observation matrix is here
H = HR + iHI where [H�

R,H�
I ]� ∈ R

2S×M models 2S = 92160 distinct projections
from 256 parallel acquisition lines and 360 angles. The magnitude measurement vector |Hv|
is then corrupted with an additive real-valued white zero-mean Gaussian noise with variance
equals to 0.1 which is truncated so as to guarantee the nonnegativity of the observed data.
For every n ∈ {1, . . . , N }, (η

n
, ηn, ωn) are minimal, maximal and mean values, imposed

on the sought frame coefficients. In order to set to zero the coefficients located in a subset
E ⊂ {1, . . . , N } corresponding to the object background, we choose, for every n ∈ E,
η

n
= ηn = 0, as illustrated in Fig. 1c, and for coefficient indices n ∈ {1, . . . , N }\E, we do

not introduce specific range assumption by setting η
n

= −∞ and ηn = +∞. Moreover, we

(c)(b)(a)

Fig. 1 Original image v (a), example of frame coefficient x with approximation coefficients in top-left (b),
and index set E in black (c)
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Fig. 2 An example of index set J j ′ (black), for P = 4096 (left) and P = 64 (right), the frame coefficients
being structured as depicted in Fig. 1b

take ωn = 0.8, for every n ∈ {1, . . . , M}\E, ωn = 0 otherwise. Parameters ϑa, ϑd and δ are
adjusted so as to maximize the signal-to-noise ratio (SNR) between the original image v and
the reconstructed one v̂, expressed as

SNR := 20 log10

( ‖v‖
‖v̂ − v‖

)

.

We adopt the essentially cyclic rule described in Assumption 2.4 to update the (K = J )

blocks. Let � ∈ N be an iterate of the BC-VMFB algorithm, and (m, j ′) ∈ N × {1, . . . , J }
be such that � = m J + j ′ − 1. Then the block index j� is defined as j� = σm( j ′), where σm

is a random permutation from {1, . . . , J } to {1, . . . , J }, and

(∀ j ′ ∈ {1, . . . , J }) J j ′ =
3
⋃

p=0

{Mp + ( j ′ − 1)P + 1, . . . , Mp + j ′ P}, (64)

with (J, P) ∈ (N\ {0})2 such that M = J P . Thus, at each iteration � ∈ N, the updated j�
block is of constant size N j� = 4P . Figure 2 illustrates two examples of a resulting block
index set J j ′ for two different values of P .

Figure 3 (left) shows the reconstructed image with Algorithm (7), using the majorant
curvature (60) where ε = 0, P = 64 and γ� ≡ 1.9. We also present in Fig. 3 (right) the varia-
tions of the reconstruction time with respect to the block-size parameter P , when performing
tests on an Intel(R) Core(TM) i7-3520M @ 2.9GHz using a Matlab 7 implementation. The
reconstruction time corresponds to the computation time necessary to fulfill the following
condition:

‖x� − x̂‖ ≤ 10−3‖x̂‖, (65)

where x̂ is precomputed by running the algorithm, for each block size, until full stabilization
of the iterates (up to the machine precision). The image x̂ is a critical point of the criterion,
since the convergence of the iterates of BC-VMFB to such a point is guaranteed, so that (65)
aims at evaluating the computation time necessary to allow an iterate to be close enough to
this limit point. Note that (65) is not led to be a practical stopping criterion for the method,
since it requires two runs of the algorithm. A practical termination test could consist of
controling the relative difference in norms between two consecutive iterates. One can observe
on Fig. 3 (right) that the best compromise in terms of convergence speed is obtained for an
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Fig. 3 Reconstructed image v̂ = Wx̂ with SNR = 27.64 dB (left) and reconstruction time for different
block-sizes (right)
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Fig. 4 Convergence profile of BC-VMFB algorithm (solid line), PALM algorithm (dashed line) and BC-FB
algorithm (dotted line)

intermediate block-size, namely P = 64. Moreover, even if different values of P may result
in different limit points x̂ for the algorithm, we did not observe any significant variation
in terms of reconstruction quality between these vectors. Figure 4 illustrates the variations
of
(

G(x�) − ̂G
)

�
and

(‖x� − x̂‖/‖x̂‖)
�
with respect to the computation time, using either

the proposed BC-VMFB algorithm, BC-FB algorithm or PALM algorithm for the previous
optimal block-size. Hereabove, ̂G denotes the minimum of the (possibly) different values
G(x̂) resulting from each simulation. Note that BC-FB (resp. PALM) algorithm can be
viewed as a special instance of Algorithm (7) where the cyclic rule (5) is adopted and the
preconditioning matrix is proportional to identity matrices, i.e.

(∀� ∈ N) A j� (x�) = LIN j�
(66)

(resp. (∀� ∈ N) A j� (x�) = L j�IN j�
), (67)

where L is a Lipschitz modulus of ∇F (resp., for every j ∈ {1, . . . , J }, L j a Lipschitz
modulus of∇ j F(x(1), . . . ,x( j−1), ·,x( j+1), . . . ,x(J )) [13]). All the algorithms lead asymp-
totically to solutions of similar quality in terms of SNR. Furthermore, one can observe on
Fig. 4 that BC-VMFB algorithm requires less time than BC-FB and PALM algorithms to
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reach small values of
(

G(x�) − ̂G
)

�
, and

(‖x� − x̂‖/‖x̂‖)
�
. This illustrates the fact that

the metric strategy given by (60) leads to a significant acceleration in terms of decay of
both the objective function and the error on the iterates. Note that the benefits of BC-VMFB
over its non preconditioned versions have also been observed in the context of blind video
deconvolution [1], spectral unmixing [49] and gene regulatory network inference [44].

Although the phase retrieval reconstruction problem has led to a large amount of works
in the litterature [6,7,15,28,41,55,59], comparisons with the competing techniques were
difficult to perform. Actually, the aforementioned methods tend to be sensitive to noise
and/or to be less effective in the under-determined case and/or to be difficult to apply in a
large scale non-Fourier context. On the one hand,when applied to our problem, the alternating
projection algorithm from [28] and the regularized version [41] were extremely demanding
in computational time and available memory. Moreover, they led to unsatisfactory results in
terms of image quality. On the other hand, due to the large size of the data, and the complicated
structure of T , it appeared impossible to run the semidefinite programming phase retrieval
technique from [59] or the greedy sparse technique from [55]. Similar conclusionswere drawn
when applying our method to a phase retrieval problem involving complex-valued images
[50]. Finally, we would like to emphasize that, while this paper was under revision, we have
been made aware of [15] where a nonconvex variational approach for phase reconstruction
was developed in an independent manner. The advantage of our approach is to easily deal
with a constraint or a regularization term so as to model prior knowledge on the sought
solution, which is of major importance when the inverse problem is under-determined, as it
is the case here.
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