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Abstract In this paper, continuous and differentiable nonlinear programming models and
algorithms for packing ellipsoids in the n-dimensional space are introduced. Two different
models for the non-overlapping and models for the inclusion of ellipsoids within half-spaces
and ellipsoids are presented. By applying a simplemulti-start strategy combinedwith a clever
choice of starting guesses and a nonlinear programming local solver, illustrative numerical
experiments are presented.

Keywords Cutting and packing ellipsoids · Nonlinear programming · Models ·
Numerical experiments

1 Introduction

The problem of packing spheres has been the subject of intense theoretical and empirical
research. In particular, many works have tackled the problem with optimization tools. See,
for example, [7,9,17–19,23,37,50–53] and the references therein. On the other hand, the
problem of packing ellipsoids has received more attention only in the past few years. This
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problem appears in a large number of practical applications, such as the design of high-
density ceramic materials, the formation and growth of crystals [21,46], the structure of
liquids, crystals and glasses [4], the flow and compression of granular materials [25,33,34],
the thermodynamics of liquid to crystal transition [1,20,45], and, in biological sciences, in
the chromosome organization in human cell nuclei [54].

The density of three-dimensional ellipsoid packings is analysed in [24]. On the one hand,
physical experiments with up to 30,000 spheres and 23,000M&M’sMilk Chocolate Candies
(registered trademark of Mars, Inc.) are performed. On the other hand, a computer-aided
simulation technique that generalises the Lubachevsky–Stillinger compression algorithm
(LSA) [41] is proposed and applied to instances with up to 1000 ellipsoids. However, since
the main subject of the work is to analyse the density of “jammed disordered packings”,
the computer-aided simulations do not confine the ellipsoids to a compact container but to
a box with periodic boundary conditions and optimization procedures are not employed.
In the same line of research, a computer-aided simulation technique that generalises the
“force-biased” algorithm [35] is considered in [6] to statistically explore the geometrical
structure of random packings of spheroids. Simulations with up to 100,000 spheroids within
a box with periodic boundaries are considered. The collision of moving ellipsoids, that finds
applications in simulations as well as in robotics to approximately model the collision of
free-form objects, is studied in [22].

A problem related to the chromosome organization in the human cell nucleus and that
falls between ellipsoid packing and covering is considered in [54]. The problem consists
in minimizing a measure of the total overlap of a given set of ellipsoids arranged within a
given ellipsoidal container. A hard-to-solve bilevel programming model in which the lower-
level problem is a semi-definite programming problem is proposed. Up to our knowledge,
only five very recent works in the literature exploit mathematical programming formulations
and optimization to deal with the problem of packing ellipses or ellipsoids within rectan-
gular containers. The problem of packing the maximum number of identical ellipses within
a rectangle, with the ellipses’ axes parallel to the sides of the rectangle, was approached
in [27]. A set T of points is arbitrarily defined (by a grid) and the centers of the ellipses
are restricted to coincide with a point in T . In this way, a mixed integer linear program-
ming model is developed and a heuristic method is proposed. Small instances are also
solved with an exact commercial solver. Numerical experiments with up to 69 ellipses are
presented. The problem of minimizing the area of a rectangular container that can fit a
given set of (non-necessarily identical) freely-rotated ellipses is tackled in [38]. A nonlinear
programming model that addresses the non-overlapping between the ellipses by defining
separating lines is proposed. With an eye in finding global minimizers of the proposed mod-
els, symmetry-breaking constraints are introduced and an alternative mixed integer nonlinear
programming model is devised. The analysis of the numerical experiments presented in [38]
allow us to conclude that the state-of-the-art global optimization solvers BARON [48], Lin-
doGlobal [39], and GloMIQO [43] available within the GAMS platform, were unable to
find global solutions for instances with more than 4 ellipses (when restricted to a maxi-
mum of 5h of CPU time). For larger instances, a heuristic method is proposed in [38] and
numerical experiments with up to 100 ellipses are presented. The problem of placing a given
set of ellipses within a rectangular container of minimal area is considered in [49]. Non-
linear programming models are proposed by considering “quasi-phi-functions” that are an
extension of the phi-functions that were extensively used in the literature to model a large
variety of packing problems (see, for example, [50–53] and the references therein). Using
ad hoc initial guesses, instances with up to 120 ellipses are tackled by a multi-start strategy
combined with a local nonlinear programming solver. In [44], the methodology proposed
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in [49] is extended to deal with the problem of packing spheroids within a rectangular
container of minimal volume and numerical experiments with up to 12 spheroids are pre-
sented. In [36], the methodology introduced in [38] for packing ellipses within rectangles
of minimum area is extended to tackle the problem of packing ellipsoids within rectangular
containers of minimum volume. The non-overlapping constraints are based on separating
hyperplanes. Nonlinear programming models are proposed and tackled by global optimiza-
tion methods. Instances with up to 100 ellipsoids are considered, but the state-of-the-art
global optimization solvers available within GAMS are unable to find optimal solutions and
only feasible points are reported (a gap smaller than 10−4 is found for instances with only two
ellipsoids).

The problem of packing ellipsoids within spheres, ellipsoids, and polyhedrons (in the
n-dimensional space) is considered in the present work. Two different continuous and dif-
ferentiable nonlinear programming models for the non-overlapping between the ellipsoids
are proposed. When combined with fitting constraints, (continuous and differentiable) non-
linear programming models for a variety of ellipsoid packing problems are obtained. In
particular, as illustrative examples of the capabilities of the proposed models, five differ-
ent two- and three-dimensional problems are addressed: (a) packing the maximum number
of identical ellipses with given semi-axis lengths within a rectangular container with given
length and width; (b) finding the rectangular container with minimum area that can pack a
given set of ellipses; (c) finding the elliptical container with minimum area that can pack
a given set of identical ellipses; (d) finding the spherical container with minimum volume
that can pack a given set of identical ellipsoids; and (e) finding the cuboid with minimum
volume that can pack a given set of identical ellipsoids. In all cases, a simple multi-start
strategy combined with a nonlinear programming solver is employed with the aim of find-
ing good quality solutions. The models and methodologies presented in [38,49] apply to
problem (b). Numerical experiments will show that models and methodologies introduced
in the present work are able to find equivalent solutions to those obtained in [38] for small-
sized instances and improve almost all solutions of larger instances; additionally improving
almost all solutions obtained in [49] for the instances introduced in [38]. Moreover, while
the models presented in [27,38,49] deal with two-dimensional problems and rectangular
containers and the model presented in [44] deals with spheroids and rectangular containers,
the models introduced in the present work deal with n-dimensional problems with arbi-
trary ellipsoids and ellipsoidal and polyhedral containers. Models introduced in [36] (that
was published online after the submission of the present manuscript) tackle problem (e)
above and have some similarities with one of the models presented in this work. However,
in [36], global optimization techniques are employed and only feasible solutions are deliv-
ered for medium-sized instances. On the other hand, using multi-start strategies combined
with local minimization solvers, good-quality local solutions are reported in the present
work.

This paper is organized as follows. In Sect. 2, we state the problem being considered
in this work. In Sect. 3, we present a transformation that will be used to develop some of
the models. In Sect. 4, we introduce two continuous and differentiable nonlinear models
for avoiding overlapping between ellipsoids. In Sect. 5, we propose nonlinear models for
including an ellipsoid inside an ellipsoid and inside a half-space. Some illustrative numerical
experiments are presented in Sect. 6. We close the paper with some concluding remarks
in Sect. 7. The computer implementation of the models and methods introduced in the
present work, as well as the reported solutions, are freely available at http://www.ime.usp.
br/~lobato/.
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2 Problem statement

An ellipsoid in R
n is a set of the form E = {x ∈ R

n | (x − c)�M−1(x − c) ≤ 1},
where M ∈ R

n×n is a symmetric and positive definite matrix. The vector c ∈ R
n is

the center of the ellipsoid. The eigenvectors of M−1 determine the principal axes of the

ellipsoid and the eigenvalues of M
1
2 are the lengths of the semi-axes of the ellipsoid. If M

is a positive multiple of the identity matrix, then the ellipsoid is a ball. More specifically,
if M = r2 In for some r > 0, then the ellipsoid is a ball with radius r . An ellipsoid in
a two-dimensional space is also called an ellipse. We denote by ∂E the frontier of E , i.e.,
∂E = {x ∈ R

n | (x − c)�M−1(x − c) = 1}. We denote by int(E) the interior of E , i.e.,
int(E) = {x ∈ R

n | (x − c)�M−1(x − c) < 1}. We say that two ellipsoids overlap if there
exists a point that belongs to the interior of both ellipsoids. We say that two ellipsoids touch
each other if they do not overlap and there exists a point that belongs to the frontier of both
ellipsoids.

In this work, we deal with the problem of packing ellipsoids in the n-dimensional space.
We can state this problem as follows. Given ellipsoids E1, . . . , Em in R

n and a set C ⊂ R
n ,

that we call a container from now on, we want to find ellipsoids Ē1, . . . , Ēm such that

1. Ēi is obtained by rotating and translating ellipsoid Ei for all i ∈ {1, . . . ,m};
2. int(Ēi ) ∩ int(Ē j ) = ∅ for all i, j ∈ {1, . . . ,m} with i �= j ;
3. Ēi ⊆ C for each i ∈ {1, . . . ,m}.
The first constraint states that we can only rotate and translate the given ellipsoids. The
second constraint says that the ellipsoids cannot overlap. The third constraint requires that
each ellipsoid be inside the container. This is a feasibility problem whose variables are the
center and angles of rotation of each ellipsoid. If ellipsoids to be packed are all identical then,
by solving a sequence of feasibility problems with an increasing number of ellipsoids, we are
able to tackle the optimization problem of packing as many ellipsoids as possible within a
given container. In this work, we also consider the problem of, given a set of (not necessarily
identical) ellipsoids, minimizing the volume of a container of a given shape.

3 Preliminaries

Consider a rotation matrix Q ∈ R
n×n and the transformation R : R

n → R
n defined by

R(x) = Qx + c, where c ∈ R
n . In a two-dimensional space, we can represent a rotation

matrix as

Q(θ) =
(
cos θ − sin θ

sin θ cos θ

)
, (1)

which rotates a point counterclockwise through an angle θ . In a three-dimensional space, we
can represent a rotation matrix as

Q(ψ, θ, φ)=
⎛
⎝ cos θ cosψ sin φ sin θ cosψ − cosφ sinψ sin φ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sin φ sin θ sinψ cosφ sin θ sinψ − sin φ cosψ

− sin θ sin φ cos θ cosφ cos θ

⎞
⎠ ,

(2)

which rotates a point through an angle φ about the x-axis, through an angle θ about the
y-axis, and through an angle ψ about the z-axis. These rotations appear clockwise when the
axis about which they occur points toward the observer. Consider the ellipsoid E = {x ∈
R
n | x�M−1x ≤ 1}, where M ∈ R

n×n is a symmetric and positive definite matrix. After
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applying the transformation R to the elements of E (that is centered at the origin), we obtain
the set

Ē = {x ∈ R
n | x = R(z), z ∈ E}

= {x ∈ R
n | (x − c)�QM−1Q�(x − c) ≤ 1}.

The set Ē is an ellipsoid, since QM−1Q� is symmetric and positive definite. In fact, the
transformation R is an isometry, since it is a rotation followed by a translation.

Now, consider the ellipsoids

Ei = {x ∈ R
n | (x − ci )

�Qi P
−1
i Q�

i (x − ci ) ≤ 1},
E j = {x ∈ R

n | (x − c j )
�Q j P

−1
j Q�

j (x − c j ) ≤ 1}, (3)

where Pi and Pj are positive definite diagonal matrices, and Qi and Q j are rotation matrices.
Consider the linear transformation Ti : Rn → R

n defined by

Ti (x) = P
− 1

2
i Q�

i x . (4)

Let Ei i be the set obtained when the transformation Ti is applied to every element of Ei , i.e.,

Ei i = {x ∈ R
n | x = Ti (z), z ∈ Ei }

=
{
x ∈ R

n |
(
x − P

− 1
2

i Q�
i ci

)� (
x − P

− 1
2

i Q�
i ci

)
≤ 1

}
. (5)

Note that Ei i is a ball with unitary radius centered at P
− 1

2
i Q�

i ci . By applying the transfor-
mation Ti to the elements of E j , we obtain the set

Ei j = {x ∈ R
n | x = Ti (z), z ∈ E j }

=
{
x ∈ R

n |
(
x − P

− 1
2

i Q�
i c j

)�
Si j

(
x − P

− 1
2

i Q�
i c j

)
≤ 1

}
, (6)

where

Si j = P
1
2
i Q�

i Q j P
−1
j Q�

j Qi P
1
2
i . (7)

Observe that Si j can be written as Si j = V�
i j Vi j , where Vi j = P

− 1
2

j Q�
j Qi P

1
2
i . Then, Si j

is symmetric. Moreover, since Vi j is nonsingular with V−1
i j = P

− 1
2

i Q�
i Q j P

1
2
j , matrix Si j

is positive definite. Thus Ei j is an ellipsoid. Lemma 3.1 shows that the ellipsoids Ei and E j

overlap if and only if the ball Ei i and the ellipsoid Ei j overlap. This means that the problem
of verifying whether two arbitrary ellipsoids overlap can be reduced to verifying whether an
unitary radius ball and an ellipsoid overlap.

Lemma 3.1 Consider the ellipsoids Ei , E j , Ei i and Ei j defined in (3), (5) and (6). Then, the
ellipsoids Ei and E j overlap if and only if the ellipsoids Ei i and Ei j overlap.
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Proof For any x ∈ R
n , we have

(x − ci )
�Qi P

−1
i Q�

i (x − ci ) = (x − ci )
�Qi P

− 1
2

i P
− 1

2
i Q�

i (x − ci )

= (x − ci )
�
(
P

− 1
2

i Q�
i

)�
P

− 1
2

i Q�
i (x − ci )

=
(
P

− 1
2

i Q�
i x − P

− 1
2

i Q�
i ci

)� (
P

− 1
2

i Q�
i x − P

− 1
2

i Q�
i ci

)

=
(
Ti (x) − P

− 1
2

i Q�
i ci

)� (
Ti (x) − P

− 1
2

i Q�
i ci

)
.

Then, x ∈ int(Ei ) if and only if Ti (x) ∈ int(Ei i ). Moreover, for any x ∈ R
n ,

(x − c j )
�Q j P

−1
j Q�

j (x − c j )

= (x − c j )
�Qi P

− 1
2

i P
1
2
i Q�

i Q j P
−1
j Q�

j Qi P
1
2
i P

− 1
2

i Q�
i (x − c j )

= (x − c j )
�Qi P

− 1
2

i Si j P
− 1

2
i Q�

i (x − c j )

= (x − c j )
�
(
P

− 1
2

i Q�
i

)�
Si j P

− 1
2

i Q�
i (x − c j )

=
(
P

− 1
2

i Q�
i x − P

− 1
2

i Q�
i c j

)�
Si j

(
P

− 1
2

i Q�
i x − P

− 1
2

i Q�
i c j

)

=
(
Ti (x) − P

− 1
2

i Q�
i c j

)�
Si j

(
Ti (x) − P

− 1
2

i Q�
i c j

)
.

Therefore, x ∈ int(E j ) if and only if Ti (x) ∈ int(Ei j ). Hence, int(Ei ) ∩ int(E j ) �= ∅ if and
only if int(Ei i ) ∩ int(Ei j ) �= ∅. In other words, the ellipsoids Ei and E j overlap if and only if
Ei i and Ei j overlap. ��

Figure 1 illustrates this transformation. Three ellipses are shown in Fig. 1a, where the
ellipses E1 and E2 overlap. Figure 1b shows these ellipses after applying the transformation
T1, that turns the ellipse E1 into a unitary radius ball. Note that in Fig. 1b only the ellipses
E11 and E12 overlap.

4 Non-overlapping model

We shall present two nonlinear models for the non-overlapping constraints of ellipsoids. The
first one is based on the transformation Ti introduced in Sect. 3 and the secondmodel is based
on separating hyperplanes.

4.1 Transformation based model

Consider a ball B with radius r > 0 and an ellipsoid E , both in R
n . We know that B and

E overlap if and only if the distance between the center of the ball B and the ellipsoid E is
strictly less than r . Therefore, a necessary and sufficient condition for B and E not to overlap
is that the distance between the center of the ball B and the ellipsoid E must be greater than
or equal to r .
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E1 E11

E3E E13

(b)(a)

E2
E12

Fig. 1 a Three ellipses and an overlapping between ellipses E1 and E2. Ellipse E3 does not overlap the other
ellipses. b The transformation that converts E1 into a ball is applied to each ellipse

Now, consider the ellipsoids

Ei = {x ∈ R
n | (x − ci )

�Qi P
−1
i Q�

i (x − ci ) ≤ 1} and
E j = {x ∈ R

n | (x − c j )
�Q j P

−1
j Q�

j (x − c j ) ≤ 1},
where ci , c j ∈ R

n , Qi , Q j ∈ R
n×n are orthogonal matrices, and Pi , Pj ∈ R

n×n are diagonal
and positive definite matrices. As seen in Sect. 3, when transformation Ti defined in (4) is
applied to both ellipsoids, we obtain the ball

Ei i =
{
x ∈ R

n |
(
x − P

− 1
2

i Q�
i ci

)� (
x − P

− 1
2

i Q�
i ci

)
≤ 1

}

with unitary radius and the ellipsoid

Ei j =
{
x ∈ R

n |
(
x − P

− 1
2

i Q�
i c j

)�
Si j

(
x − P

− 1
2

i Q�
i c j

)
≤ 1

}
,

where Si j is given by (7). In order to guarantee that Ei i and Ei j do not overlap, it is enough to
require that the distance between the center cii of the ball Ei i and the ellipsoid Ei j be greater
than or equal to one. Notice that, according to the discussion present in Sect. 3, this is a
necessary and sufficient condition for the ellipsoids Ei and E j not to overlap. However, there
is no known analytic expression for this distance. Thus, to find it, we can solve the problem
of projecting cii onto Ei j , that can be formulated as

minimize ‖x − cii‖2
subject to x ∈ Ei j . (8)

This is a convex quadratic programming problemwhose optimal value is the squared distance
between the center of the ball Ei i and the ellipsoid Ei j . To find this distance more easily, we
can represent the center of the ball Ei i as a function of ellipsoid Ei j in a convenient way
detailed hereafter.

123



716 J Glob Optim (2016) 65:709–743

With a simple change of variables, we can rewrite problem (8) as the problem

minimize

∥∥∥∥x − (cii − P
− 1

2
i Q�

i c j )

∥∥∥∥
2

subject to x�Si j x ≤ 1.
(9)

Let Ēi j be the ellipsoid determined by matrix Si j and centered at the origin, i.e.,

Ēi j =
{
x ∈ R

n | x�Si j x ≤ 1
}

.

Problem (9) is the problem of projecting the point cii − P
− 1

2
i Q�

i c j onto ellipsoid Ēi j . Sup-
pose that cii /∈ int(Ei j ). Equivalently, we have cii − P

− 1
2

i Q�
i c j /∈ int(Ēi j ). Therefore, by

Proposition 4.1 below, problem (9) has a unique solution xi j ∈ R
n . Moreover, its solution

belongs to the frontier of ellipsoid Ēi j , namely, x�
i j Si j xi j = 1, and there exists a unique

μi j ∈ R+ such that

cii − P
− 1

2
i Q�

i c j = xi j + μi j Si j xi j .

Thus, as long as cii /∈ int(Ei j ), cii is uniquely represented as a function of a point in the
frontier of Ēi j and a non-negative scalar. In this case, the distance between the center cii of
the ball Ei i and the ellipsoid Ei j is given by∥∥∥∥xi j −

(
cii − P

− 1
2

i Q�
i c j

)∥∥∥∥ = μi j
∥∥Si j xi j∥∥ .

On the other hand, by Proposition 4.2 below, any point of the form y = x + μSi j x with
x�Si j x = 1 and μ > 0 is such that y�Si j y > 1, i.e., it is a point that does not belong to the
ellipsoid Ēi j . If μ = 0, then y = x and, therefore, y is a point on the frontier of ellipsoid
Ēi j . Thus, any point of the form y = x + μSi j x such that x�Si j x = 1 and μ ∈ R+ does not
belong to the interior of ellipsoid Ēi j .

If cii lies in the interior of Ei j , then the distance from cii to the ellipsoid Ei j is zero. So, for
the ellipsoids Ei and E j not to overlap, cii must be outside the interior of Ei j . Therefore, we
can represent the center of the ball Ei i as a function of a point xi j in the frontier of ellipsoid
Ēi j and a nonnegative number μi j without loss of generality. Using this representation, the
distance from the center of the ball Ei i to the ellipsoid Ei j is given by μi j

∥∥Si j xi j∥∥.
Proposition 4.1 Let E = {x ∈ R

n | x�Mx ≤ 1}, where M ∈ R
n×n is a positive definite

matrix. Thus, for each y ∈ R
n \ int(E), there exist unique x∗ ∈ R

n and μ∗ ∈ R such that
y = x∗ + μ∗Mx∗ and x∗ is the projection of y onto E . Moreover, x∗ ∈ ∂E and μ∗ ∈ R+.

Proof Let y ∈ R
n be such that y /∈ int(E). The problem of projecting y onto the set E can

be formulated as the problem

minimize ‖x − y‖2
subject to x�Mx ≤ 1.

Since E is convex, this problem has a unique solution x∗ (see, for example, Proposition 2.1.3
in [5]). The Lagrangian function associated with the above problem is

L(x, μ) = ‖x − y‖2 + μ(x�Mx − 1),

whose gradient with respect to x is

∇xL(x, μ) = 2(x − y) + 2μMx .
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Since the function that defines the inequality constraint is convex and the null vector strictly
satisfies this constraint, this problem fulfills the Slater constraint qualification (see, for exam-
ple, Proposition 3.3.9 in [5]). So, according to the Karush–Kuhn–Tucker first-order necessary
conditions (see, for example, Proposition 3.3.1 in [5]), there exists a unique μ∗ ∈ R such
that

∇xL(x∗, μ∗) = 0 (10)

μ∗(x∗�Mx∗ − 1) = 0 (11)

μ∗ ≥ 0. (12)

Therefore, by condition (10), we have that y = x∗ + μ∗Mx∗. If y ∈ ∂E , then we must
have x∗ = y and μ∗ = 0. On the other hand, if y /∈ E , then we must have μ∗ �= 0. So, by
condition (12), we must have μ∗ > 0. Consequently, condition (11) implies x∗�Mx∗ = 1,
i.e., x∗ ∈ ∂E . ��
Proposition 4.2 Let E = {x ∈ R

n | x�Mx ≤ 1}, where M ∈ R
n×n is a positive definite

matrix. Thus, for each x ∈ ∂E and μ > 0, we have (x + μMx)�M(x + μMx) > 1.

Proof Let x ∈ ∂E and μ > 0. Thus, x�Mx = 1 and

(x + μMx)�M(x + μMx) = x�Mx + 2μ(Mx)�Mx + μ2(Mx)�M(Mx)

= 1 + 2μ ‖Mx‖2 + μ2(Mx)�M(Mx) > 1,

where the inequality follows from the fact that Mx �= 0 and M is positive definite. ��
Based on this representation, we shall develop a model for the non-overlapping of ellip-

soids in R
n . Let I = {1, . . . ,m} be the set of indices of the ellipsoids. For each i ∈ I , it

is given a positive definite diagonal matrix P
1
2
i ∈ R

n×n whose entries are the lengths of the
semi-principal axes of ellipsoid i . In order to guarantee that all them ellipsoids do not overlap
each other, we ensure that ellipsoids i and j do not overlap for each i, j ∈ I such that i < j .

For each i ∈ I , the decision variable ci ∈ R
n will represent the center of ellipsoid i and

Qi ∈ R
n×n will represent a rotation matrix for ellipsoid i .

For each i, j ∈ I such that i < j , the decision variable xi j ∈ R
n will represent a point in

the frontier of ellipsoid Ēi j and μi j ∈ R will be a nonnegative variable. Let i, j ∈ I be such
that i < j . Since xi j will be a point in the frontier of ellipsoid Ēi j , wemust have x�

i j Si j xi j = 1.
Since μi j must be nonnegative, we must have the constraint μi j ≥ 0. Moreover, since the
distance between the center of ball Ei i and the ellipsoid Ei j must be greater than or equal to

one, we must have μi j
∥∥Si j xi j∥∥ ≥ 1 or, equivalently, μ2

i j

∥∥Si j xi j∥∥2 ≥ 1. According to the
adopted representation, the center cii of the ball Ei i as a function of ellipsoid Ei j is given by

cii = xi j + μi j Si j xi j + P
− 1

2
i Q�

i c j .

Finally, for each i ∈ I \ {m}, the center of ball Ei i is P− 1
2

i Q�
i ci . So, we obtain the following

model:

x�
i j Si j xi j = 1, ∀i, j ∈ I such that i < j (13)

μ2
i j

∥∥Si j xi j∥∥2 ≥ 1, ∀i, j ∈ I such that i < j (14)

μi j ≥ 0, ∀i, j ∈ I such that i < j (15)

P
− 1

2
i Q�

i (ci − c j ) = xi j + μi j Si j xi j , ∀i, j ∈ I such that i < j (16)
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Model (13)–(16) can be somewhat simplified. Notice that any solution to the system (13)–
(16) must strictly satisfy inequalities (15). In other words, any solution must be such that
μi j > 0 for all i, j ∈ I such that i < j . This is a consequence of constraints (14). Firstly,
we present Proposition 4.3, which offers a strictly positive lower bound for the value of μi j .
Lemma 4.1 is used in the proof of Proposition 4.3 and provides an upper bound on the norm
of the vector

∥∥Si j xi j∥∥ that depends only on the lengths of the semi-principal axes of ellipsoids
i and j .

Lemma 4.1 Let xi j ∈ R
n and Si j = P

1
2
i Q�

i Q j P
−1
j Q�

j Qi P
1
2
i ∈ R

n×n, where Qi and Q j

are orthogonal matrices and Pi and Pj are positive definite diagonal matrices. Suppose that
x�
i j Si j xi j = 1. Thus,

∥∥Si j xi j∥∥ ≤ λmax(Pi )λmax

(
P−1
j

)
λmax

(
P

1
2
j

)
λmax

(
P

− 1
2

i

)
.

Proof We have

∥∥Si j xi j∥∥ =
∥∥∥∥P

1
2
i Q�

i Q j P
−1
j Q�

j Qi P
1
2
i xi j

∥∥∥∥ ≤ λmax

(
P

1
2
i

)∥∥∥∥Q�
i Q j P

−1
j Q�

j Qi P
1
2
i xi j

∥∥∥∥
= λmax

(
P

1
2
i

)∥∥∥∥P−1
j Q�

j Qi P
1
2
i xi j

∥∥∥∥≤λmax

(
P

1
2
i

)
λmax

(
P−1
j

) ∥∥∥∥Q�
j Qi P

1
2
i xi j

∥∥∥∥
= λmax

(
P

1
2
i

)
λmax

(
P−1
j

) ∥∥∥∥P
1
2
i xi j

∥∥∥∥
≤ λmax

(
P

1
2
i

)
λmax

(
P−1
j

)
λmax

(
P

1
2
i

)∥∥xi j∥∥
= λmax(Pi )λmax

(
P−1
j

) ∥∥xi j∥∥ ,

where the second and third equalities hold since Qi and Q j are orthogonal matrices, and the

inequalities and the last equality follow from the fact that P
1
2
i and P−1

j are positive definite
diagonal matrices. Therefore,

∥∥Si j xi j∥∥ ≤ λmax(Pi )λmax

(
P−1
j

) ∥∥xi j∥∥ . (17)

Since x�
i j Si j xi j = 1, we have

∥∥xi j∥∥ > 0. Thus,

λmin(Si j ) ≤ x�
i j Si j xi j∥∥xi j∥∥2 = 1∥∥xi j∥∥2 ,

where the inequality follows from the Courant–Fischer Theorem (see, for example, Theo-
rem 8.1.2 in [28]). Since Si j is positive definite, we have λmin(Si j ) > 0. Thus,

∥∥xi j∥∥2 ≤ 1

λmin(Si j )
.

Moreover, we have

λmin(Si j ) = λmin

(
P

1
2
i Q�

i Q j P
−1
j Q�

j Qi P
1
2
i

)
≥ λmin

(
Q�

i Q j P
−1
j Q�

j Qi

)
λmin

(
P

1
2
i P

1
2
i

)

= λmin

(
Q�

i Q j P
−1
j Q�

j Qi

)
λmin(Pi ) ≥ λmin

(
P−1
j

)
λmin

(
Q�

i Q j Q
�
j Qi

)
λmin(Pi )

= λmin

(
P−1
j

)
λmin(Pi ),
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where the inequalities follow from Theorem 1.4 by Lu and Pearce [40] and the last equality
holds since Qi and Q j are orthogonal matrices. Thus,

∥∥xi j∥∥2 ≤ 1

λmin

(
P−1
j

)
λmin(Pi )

= λmax(Pj )λmax

(
P−1
i

)
,

where the equality holds since Pi and Pj are positive definite diagonal matrices. So,

∥∥xi j∥∥ ≤
(
λmax(Pj )λmax

(
P−1
i

)) 1
2 = (

λmax(Pj )
) 1
2
(
λmax

(
P−1
i

)) 1
2

= λmax

(
P

1
2
j

)
λmax

(
P

− 1
2

i

)
.

Therefore, from (17), we have

∥∥Si j xi j∥∥ ≤ λmax(Pi )λmax

(
P−1
j

)
λmax

(
P

1
2
j

)
λmax

(
P

− 1
2

i

)
.

��
Proposition 4.3 Any solution to the system (13)–(16) is such that μi j ≥ εi j for all i < j ,
where

εi j = λmin

(
P−1
i

)
λmin

(
P

1
2
i

)
λmin(Pj )λmin

(
P

− 1
2

j

)
> 0.

Proof Consider a solution to the system (13)–(16). By constraints (13),we have x�
i j Si j xi j = 1

for each i, j ∈ I such that i < j . Thus, by Lemma 4.1, we have

∥∥Si j xi j∥∥ ≤ λmax(Pi )λmax

(
P−1
j

)
λmax

(
P

1
2
j

)
λmax

(
P

− 1
2

i

)

for all i, j ∈ I such that i < j . By constraints (14) and (15), we must have
∥∥Si j xi j∥∥ > 0 and

μi j ≥ ∥∥Si j xi j∥∥−1 for all i, j ∈ I such that i < j . Therefore, we can take

εi j =
(

λmax(Pi )λmax

(
P−1
j

)
λmax

(
P

1
2
j

)
λmax

(
P

− 1
2

i

))−1

= λmin(P
−1
i )λmin

(
P

1
2
i

)
λmin(Pj )λmin

(
P

− 1
2

j

)

and the proposition holds. (Note that εi j > 0 since Pi and Pj are positive definite matrices.)
��

For each i, j ∈ I such that i < j , the term Si j xi j appears in constraints (13), (14), and
(16). From constraints (16), we have

P
− 1

2
i Q�

i (ci − c j ) = xi j + μi j Si j xi j , ∀i, j ∈ I such that i < j.

Thus, constraints (14) are equivalent to constraints∥∥∥∥P− 1
2

i Q�
i (ci − c j ) − xi j

∥∥∥∥
2

≥ 1, ∀i, j ∈ I such that i < j. (18)

Constraints (13) can be replaced by

x�
i j

(
P

− 1
2

i Q�
i (ci − c j ) − xi j

)
= μi j , ∀i, j ∈ I such that i < j, (19)

123



720 J Glob Optim (2016) 65:709–743

provided that μi j �= 0. By Proposition 4.3, there exist positive constants εi j such that con-
straints (13) and (15) are equivalent to constraints (19) and μi j ≥ εi j for all i, j ∈ I such
that i < j . By Proposition 4.3, we can take

εi j = λmin

(
P−1
i

)
λmin

(
P

1
2
i

)
λmin(Pj )λmin

(
P

− 1
2

j

)
, (20)

where λmin(M) denotes the least eigenvalue of matrix M . Therefore, we can replace con-
straints (13) and (14) with constraints (18), (19) and μi j ≥ εi j , for all i, j ∈ I such that
i < j , and obtain an equivalent model. Hence, model (13)–(16) is equivalent to the following
model:

x�
i j

(
P

− 1
2

i Q�
i (ci − c j ) − xi j

)
= μi j , ∀i, j ∈ I such that i < j (21)

∥∥∥∥P− 1
2

i Q�
i (ci − c j ) − xi j

∥∥∥∥
2

≥ 1, ∀i, j ∈ I such that i < j (22)

P
− 1

2
i Q�

i (ci − c j ) = xi j + μi j Si j xi j , ∀i, j ∈ I such that i < j (23)

μi j ≥ εi j , ∀i, j ∈ I such that i < j. (24)

The model (21)–(24) has m(m − 1)(n + 3)/2 nonlinear constraints and m(m − 1)/2
bound-constraints. If the rotation matrices are represented as in (1) and (2), this model will
have 3m(m + 1)/2 variables in the two-dimensional case and 2m(m + 2) variables in the
three-dimensional case.

4.2 Separating hyperplane based model

A hyperplane is a set of the form H = {x ∈ R
n | w�x = s}, where w ∈ R

n , w �= 0, and
s ∈ R. There are two half-spaces associated with hyperplane H, namely, H− = {x ∈ R

n |
w�x ≤ s} and H+ = {x ∈ R

n | w�x ≥ s}. We say that a hyperplane H in R
n supports a

subsetA of Rn ifA is contained in one of the half-spaces associated withH and there exists
at least one element of A that belongs to the hyperplane H. We denote the relative interior
of set A by ri(A).

Given non-empty subsets A and B of R
n , we say that a hyperplane separates sets A

and B if A is contained in one of the half-spaces associated with this hyperplane and B is
contained in the other half-space associated with this hyperplane. If A and B are convex
sets then, by Theorem 11.3 in [47], there exists a hyperplane that separates A and B if and
only if ri(A) ∩ ri(B) = ∅. Therefore, since the relative interior of an ellipsoid is the interior
of this ellipsoid, there exists a hyperplane that separates ellipsoids Ei and E j if and only
if int(Ei ) ∩ int(E j ) = ∅. In this section, we propose a non-overlapping model based on
separating hyperplanes.

Consider the ellipsoids

Ei =
{
x ∈ R

n | (x − ci )
�Qi P

−1
i Q�

i (x − ci ) ≤ 1
}
and

E j =
{
x ∈ R

n | (x − c j )
�Q j P

−1
j Q�

j (x − c j ) ≤ 1
}

,

where ci , c j ∈ R
n , Qi , Q j ∈ R

n×n are orthogonal matrices and Pi , Pj ∈ R
n×n are positive

definite anddiagonalmatrices. LetMi = Qi P
−1
i Q�

i andMj = Q j P
−1
j Q�

j . For any x ∈ ∂Ei ,
vector Mi (x − ci ) defines a hyperplane that passes through the point x and supports the
ellipsoid Ei (see Lemma 4.2 below). For the ellipsoids Ei and E j not to overlap, there must
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Mi(x̃ij − ci)

Mj(x̃ji − cj)

ci

Ei

x̃ij

cj

Ej

x̃ji

Fig. 2 Separation of two ellipsoids by hyperplanes determined by the vectors Mi (x̃i j −ci ) and Mj (x̃ j i −c j ),
and the points x̃i j and x̃ j i

be a point y ∈ ∂E j such that, for some x ∈ ∂Ei , x can be expressed as the sum of y and a
nonnegative multiple of Mj (y − c j ) and the vector Mj (y − c j ) must be a negative multiple
of Mi (x − ci ). Figure 2 illustrates this situation in R

2. In this picture, we have x̃i j ∈ ∂Ei and
x̃ j i ∈ ∂E j . So, vectors Mi (x̃i j − ci ) and Mj (x̃ j i − c j ) determine hyperplanes that support
the ellipsoids Ei and E j at the points x̃i j and x̃ j i , respectively.

We thus obtain the following model for the non-overlapping of ellipsoids, where the
variables are ci ∈ R

n , the angles that form matrix Qi ∈ R
n×n for each i ∈ I , γi j , ρi j ∈ R

for each i, j ∈ I such that i < j , and x̃i j ∈ R
n for each i, j ∈ I such that i �= j .

(x̃i j − ci )
�Mi (x̃i j − ci ) = 1 ∀i, j ∈ I such that i < j (25)

(x̃ j i − c j )
�Mj (x̃ j i − c j ) = 1 ∀i, j ∈ I such that i < j (26)

Mj (x̃ j i − c j ) = −γi j Mi (x̃i j − ci ) ∀i, j ∈ I such that i < j (27)

x̃i j = x̃ j i + ρi j M j (x̃ j i − c j ) ∀i, j ∈ I such that i < j (28)

ρi j ≥ 0 ∀i, j ∈ I such that i < j (29)

γi j ≥ 0 ∀i, j ∈ I such that i < j. (30)

This model has m(m − 1)(n + 1) nonlinear constraints and m(m − 1) bound-constraints. If
the rotation matrices are representd as in (1) and (2) then this model will have 3m2 variables
in the two-dimensional case and 4m2 + 2m in the three-dimensional case.

By Propositions 4.4 and 4.5 below, constraints (25)–(30) indeed model the non-
overlapping of ellipsoids. Lemma 4.2 is used in the proofs of Propositions 4.4 and 4.5.

Lemma 4.2 Consider the ellipsoid E = {x ∈ R
n | (x−c)�M(x−c) ≤ 1}, where M ∈ R

n×n

is positive definite. Let x∗ ∈ ∂E and define w = M(x∗ − c) and s = w�x∗. Thus, w�x ≤ s
for every x ∈ E .
Proof Let f : Rn → R be the function defined by f (x) = (x − c)�M(x − c). Since the
Hessian of f (the matrix 2M) is positive definite in every point of Rn , we have that f is
convex. Therefore, by the first-order condition of convexity, we have

f (x) ≥ f (x∗) + ∇ f (x∗)�(x − x∗) (31)
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for all x ∈ E . Since w = ∇ f (x∗)/2, s = w�x∗, f (x∗) = 1 and f (x) ≤ 1 for all x ∈ E ,
inequality (31) implies that w�x ≤ s for all x ∈ E . ��
Proposition 4.4 Any solution to the system (25)–(30) is such that int(Ei ) ∩ int(E j ) = ∅ for
all i, j ∈ I such that i �= j .

Proof Consider a solution to the system (25)–(30). Let i, j ∈ I be such that i < j . Letw j i =
Mj (x̃ j i − c j ) and s ji = w�

j i x̃ j i and consider the hyperplane H j i = {x ∈ R
n | w�

j i x = s ji }.
We shall prove that H j i separates ellipsoids Ei and E j . By Lemma 4.2, we have w�

j i x ≤ s ji
for all x ∈ E j , i.e., E j ⊆ H−

j i . Point x̃i j belongs to half-space H+
j i since

w�
j i x̃i j = w�

j i

[
x̃ j i + ρi j M j (x̃ j i − c j )

] = w�
j i (x̃ j i + ρi jw j i )

= w�
j i x̃ j i + ρi j

∥∥w j i
∥∥2 = s ji + ρi j

∥∥w j i
∥∥2 ≥ s ji , (32)

where the first equality follows from (28), the second equality follows from the definition
of w j i , the fourth equality follows from the definition of s ji and the inequality holds since
ρi j is nonnegative. Now, consider the hyperplane Hi j = {x ∈ R

n | w�
i j x = si j }, where

wi j = Mi (x̃i j − ci ) and si j = w�
i j x̃i j . For all x ∈ Ei , we have

w�
j i x = −γi jw

�
i j x ≥ −γi j si j = −γi jw

�
i j x̃i j = w�

j i x̃i j ≥ s ji ,

where the first and third equalities follow from (27), the second equality follows from the
definition of si j , the first inequality follows from Lemma 4.2 and the fact that γi j is nonneg-
ative, and the last inequality follows from (32). Therefore, x ∈ H+

j i for each x ∈ Ei . Hence,
we have E j ⊆ H−

j i and Ei ⊆ H+
j i , i.e., hyperplaneH j i separates ellipsoids Ei and E j . In other

words, ellipsoids Ei and E j do not overlap. ��
Proposition 4.5 Let I = {1, . . . ,m}. For each i ∈ I , let Ei = {x ∈ R

n | (x − ci )�Mi (x −
ci ) ≤ 1}, where ci ∈ R

n and M ∈ R
n×n is positive definite. If ellipsoids E1, . . . , Em do not

overlap each other, then the system (25)–(30) has a solution.

Proof Let i, j ∈ I be such that i < j . Suppose that Ei and E j do not overlap. Let x∗ ∈ Ei
and y∗ ∈ E j be such that the distance between ellipsoids Ei and E j is equal to ‖x∗ − y∗‖.
Thus, (x∗, y∗) is an optimal solution to the problem

minimize ‖x − y‖2
subject to (x − ci )

�Mi (x − ci ) ≤ 1

(y − c j )
�Mj (y − c j ) ≤ 1.

Since both constraints of this problem are convex in R
2n and point (ci , c j ) strictly satis-

fies both inequalities, this problem fulfills the Slater constraint qualification. Therefore, by
Proposition 3.3.9 in [5], there exist Lagrange multipliers μ∗

i ∈ R and μ∗
j ∈ R such that

2(x∗ − y∗) + 2μ∗
i Mi (x

∗ − ci ) = 0 (33)

2(y∗ − x∗) + 2μ∗
j M j (y

∗ − c j ) = 0 (34)

μ∗
i ≥ 0 (35)

μ∗
j ≥ 0. (36)

From (34), we have x∗ = y∗ + μ∗
j M j (y∗ − c j ). From (33) and (34), it follows that

μ∗
j M j (y

∗ − c j ) = −μ∗
i Mi (x

∗ − ci ).
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Since the ellipsoids do not overlap, we must have x∗ ∈ ∂Ei and y∗ ∈ ∂E j . Thus, since Mi

and Mj are nonsingular, we have Mi (x∗ − ci ) �= 0 �= Mj (y∗ − c j ). Therefore, μ∗
j �= 0 if

μ∗
i �= 0, and μ∗

j = 0 if μ∗
i = 0.

Suppose that μ∗
i = 0. Thus, equation (33) implies that x∗ = y∗. Since int(Ei )∩ int(E j ) =

∅, there exists a hyperplane H that separates ellipsoids Ei and E j . Since x∗ ∈ ∂Ei and
x∗ ∈ ∂E j , point x∗ must belong to the hyperplane H. (Suppose that x∗ /∈ H and let w ∈ R

n

and s ∈ R be such that H = {x ∈ R
n | w�x = s}. Since x∗ /∈ H, we have either w�x∗ < s

or w�x∗ > s. Suppose, without loss of generality, that w�x∗ < s. Thus, there exists a ball
B with center in x∗ and radius r > 0 such that w�x < s for all x ∈ B. Since x∗ ∈ ∂Ei ,
Theorem 6.1 in [47] implies that there exists zi �= x∗ such that zi ∈ B ∩ int(Ei ). By the
same reason, since x∗ ∈ ∂E j , there exists z j �= x∗ such that z j ∈ B ∩ int(E j ). Therefore,
zi ∈ int(Ei ) and z j ∈ int(E j ) satisfies w�zi < s and w�z j < s. But it contradicts the fact
that H separates ellipsoids Ei and E j .)

Since x∗ belongs to the hyperplane H and H separates ellipsoids Ei and E j , we have
that H supports ellipsoids Ei and E j in x∗. Let Hi j = {x ∈ R

n | w�
i j x = si j }, where

wi j = Mi (x∗ − ci ) and si j = w�
i j x

∗. By Lemma 4.2,Hi j supports Ei in x∗. By Theorem 3.1
in [29], there exists only one hyperplane that supportsEi in x∗. Therefore,Hi j = H. Similarly,
if we define H j i = {x ∈ R

n | w�
j i x = s ji }, where w j i = Mj (x∗ − c j ) and s ji = w�

j i x
∗,

we have thatH j i = H. Therefore,Hi j = H j i . Hence, wi j must be parallel to w j i , i.e., there
must exist a scalar γ �= 0 such that Mi (x∗ − ci ) = γ Mj (x∗ − c j ). Notice that w�

i j ci < si j ,
since

−w�
i j ci = −c�

i Mi (x
∗ − ci ) = (x∗ − ci − x∗)�Mi (x

∗ − ci ) = (x∗ − ci )
�Mi (x

∗ − ci )

−si j = 1 − si j .

So, ci /∈ H. Since H j i separates ellipsoids Ei and E j , Lemma 4.2 implies that w�
j i ci ≥ s ji .

Thus, since ci /∈ H, we must have w�
j i ci > s ji . In order to derive a contradiction, suppose

that γ is positive. Then,

w�
i j ci < si j = w�

i j x
∗ = γw�

j i x
∗ = γ s ji < γw�

j i ci = w�
i j ci ,

which is a contradiction. Therefore, γ must be negative.
Hence, if we take x̃i j

.= x∗, x̃ j i
.= y∗, ρi j

.= μ∗
j and

γi j
.=

⎧⎪⎨
⎪⎩

−μ∗
j

μ∗
i

if μ∗
i > 0

− (x∗−c j )�Mj Mi (x∗−ci )

‖Mj (x∗−c j )‖2 if μ∗
i = 0,

then constraints (25)–(30) are satisfied. ��
By constraints (26)–(27), any solution to the system (25)–(30) must satisfy

−γi j (x̃ j i − c j )
�Mi (x̃i j − ci ) = 1

for all i < j . Then, γi j cannot be zero. Hence, since γi j ≥ 0 by constraints (30), we must
have γi j > 0 for all i < j . The following lemma provides a positive lower bound on the
value of γi j .

Lemma 4.3 Any solution to the system (25)–(30) is such that γi j ≥ λmin(Pi ) for all i < j .

Proof Consider a solution to the system (25)–(30). By constraints (26)–(27), we must have

−γi j (x̃ j i − c j )
�Mi (x̃i j − ci ) = 1.
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Thus,

γi j = −
[
(x̃ j i − c j )

�Mi (x̃i j − ci )
]−1

.

Since Mi is positive definite, we have (x̃ j i − c j + x̃i j − ci )�Mi (x̃ j i − c j + x̃i j − ci ) ≥ 0.
Then, since

(x̃ j i − c j + x̃i j − ci )
�Mi (x̃ j i − c j + x̃i j − ci ) =

(x̃ j i − c j )
�Mi (x̃ j i − c j ) + (x̃i j − ci )

�Mi (x̃i j − ci ) + 2(x̃ j i − c j )
�Mi (x̃i j − ci ),

we must have

−(x̃ j i − c j )
�Mi (x̃i j − ci ) ≤ 1

2

[
(x̃ j i − c j )

�Mi (x̃ j i − c j ) + (x̃i j − ci )
�Mi (x̃i j − ci )

]

≤ max{(x̃ j i − c j )
�Mi (x̃ j i − c j ), (x̃i j − ci )

�Mi (x̃i j − ci )}
≤ λmax(Mi ) = λmax(Qi P

−1
i Q�

i ) = λmax(P
−1
i ),

where the last equality holds since Qi is orthogonal. Hence,

γi j ≥
[
λmax

(
P−1
i

)]−1 = λmin(Pi ).

��
According to Lemma 4.3, we can replace (in case this represents any advantage for the

solution process) γi j ≥ 0 in (30) with γi j ≥ λmin(Pi ).

5 Containment models

5.1 Ellipsoid inside an ellipsoid

In this section, we present a model for the inclusion of an ellipsoid Ei inside an ellipsoid C.
Firstly, we apply a transformation to Ei that converts this ellipsoid into a ball Ei i with unitary
radius and we apply the same transformation to C, thus obtaining an ellipsoid Ci . In this way,
we have Ei ⊆ C if and only if Ei i ⊆ Ci . In order to guarantee that Ei i be contained in Ci , we
require that the center cii of ball Ei i be in Ci and the distance between cii and the frontier of
ellipsoid Ci be at least one. Since the computation of the distance between a point and the
frontier of an ellipsoid demands the solution of a non-convex optimization problem, we will
represent the center cii with respect to Ci in a similar manner to what was done in Sect. 4.1. In
this representation, the distance between cii and the frontier of ellipsoid Ci is easily obtained.

In order to develop this model, we must first state some results. Next, we present Proposi-
tions 5.1 and 5.2 and Lemmas 5.1 and 5.2. Lemma 5.1 is used in the proof of Proposition 5.1
and Lemma 5.2 is used in the proof of Proposition 5.2. These lemmas consider particular
cases of Propositions 5.1 and 5.2.

Lemma 5.1 Consider the ellipsoid E = {z ∈ R
n | z�Dz ≤ 1}, where D ∈ R

n×n is a positive
definite diagonal matrix. For each y ∈ E , there exist x ∈ ∂E and α ∈ [−1/λmax(D), 0] such
that y = x + αDx.

Proof We shall prove the assertion by induction on the dimension of the ellipsoid. We will
denote the i-th diagonal element of matrix D by di .
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Consider the one-dimensional case, where n = 1. Then, D = d1 = λmax(D), E = {z ∈
R | d1z2 ≤ 1} = {z ∈ R | −1/

√
d1 ≤ z ≤ 1/

√
d1} and ∂E = {−1/

√
d1, 1/

√
d1}. Let y ∈ E .

We will analyse the cases where −1/
√
d1 ≤ y ≤ 0 and 0 < y ≤ 1/

√
d1 separately. Suppose

that −1/
√
d1 ≤ y ≤ 0. Take x = −1/

√
d1 and consider the point x + αDx with

α = y − x

d1x
= − y + 1/

√
d1√

d1
.

Then,

x + αDx = x + y − x

d1x
d1x = y.

Since y ≥ −1/
√
d1, we have y + 1/

√
d1 ≥ 0. Thus, α ≤ 0. In addition, since y ≤ 0, we

have

α = − y + 1/
√
d1√

d1
≥ −1/

√
d1√
d1

= − 1

d1
= − 1

λmax(D)
.

Hence, y = x + αDx with x ∈ ∂E and α ∈ [−1/λmax(D), 0]. The case where 0 < y ≤
1/

√
d1 is analogous. Simply take x = 1/

√
d1 and α = (y − x)/(d1x).

Consider n > 1 and suppose that the assertion is true for all ellipsoids lying in a dimension
strictly less than n. Consider the ellipsoid E = {z ∈ R

n | z�Dz ≤ 1} and let y ∈ E . Let
I = {1, . . . , n}, I+ = {i ∈ I | di = λmax(D)} and I− = I \ I+. Since D is diagonal, we
must find x ∈ R

n and α ∈ R such that

yi = xi + αdi xi ,∀i ∈ I, (37)

x�Dx = 1, (38)

α ∈ [−1/λmax(D), 0]. (39)

For each α ∈ [−1/λmax(D), 0] and i ∈ I−, we have 1+ αdi ∈ (0, 1]. Therefore, from (37),
for all i ∈ I− we must have

xi = yi
1 + αdi

.

Now, we consider two cases: the first one where yi �= 0 for all i ∈ I+ and the second one
where y j = 0 for some j ∈ I+.

Case 1. Suppose that yi �= 0 for all i ∈ I+. In this case, we must have α > −1/λmax(D).
Thus, from (37), we must have

xi = yi
1 + αdi

(40)

for all i ∈ I. Then,

x�Dx =
n∑

i=1

di x
2
i =

n∑
i=1

di
y2i

(1 + αdi )2
=

∑
i∈I+

di
y2i

[1 + αλmax(D)]2 +
∑
i∈I−

di
y2i

(1 + αdi )2
.

Thus, for α > −1/λmax(D), we have x�Dx = 1 if and only if

∑
i∈I+

di y
2
i = [1 + αλmax(D)]2

⎡
⎣1 −

∑
i∈I−

di
y2i

(1 + αdi )2

⎤
⎦ .
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Let f : R → R be the function defined by

f (t) =
∑
i∈I+

di y
2
i − [1 + tλmax(D)]2

⎡
⎣1 −

∑
i∈I−

di
y2i

(1 + tdi )2

⎤
⎦ .

We have

f (0) =
∑
i∈I+

di y
2
i −

⎛
⎝1 −

∑
i∈I−

di y
2
i

⎞
⎠ =

∑
i∈I

di y
2
i − 1 = y�Dy − 1 ≤ 0,

where the inequality holds since y ∈ E , i.e., y�Dy ≤ 1. We also have

f (−1/λmax(D)) =
∑
i∈I+

di y
2
i > 0.

Thus, since f is continuous in the interval [−1/λmax(D), 0] and f (0) ≤ 0 and
f (−1/λmax(D)) > 0, by the Intermediate Value Theorem, there exist t∗ ∈ (−1/λmax(D), 0]
such that f (t∗) = 0. Therefore, by taking α = t∗ and x as in (40), the system (37)–(39) is
satisfied.

Case 2. Suppose that y j = 0 for some j ∈ I+. We shall consider the cases where |I+| = 1
and |I+| > 1 individually.

Case 2.1. Suppose that |I+| = 1. Then, I− = I \ { j}. Thus, from (37), we must have
xi = yi/(1 + αdi ) for all i ∈ I \ { j}. Then, x�Dx = 1 if and only if

λmax(D)x2j = 1 −
∑
i∈I−

di
y2i

(1 + αdi )2
.

Let g : R → R be the function defined by

g(t) = 1 −
∑
i∈I−

di
y2i

(1 + tdi )2
.

If g(−1/λmax(D)) ≥ 0, then we can take α = −1/λmax(D), xi = yi/(1 + αdi ) for all
i ∈ I \ { j} and

x j =
⎡
⎣ 1

λmax(D)

⎛
⎝1 −

∑
i∈I−

di
y2i

(1 + αdi )2

⎞
⎠
⎤
⎦

1
2

,

and therefore x andα forma solution to the system (37)–(39). Suppose that g(−1/λmax(D)) <

0. Since
g(0) = 1 −

∑
i∈I−

di y
2
i = 1 − y�Dy ≥ 0

and g is continuous in the interval [−1/λmax(D), 0], by the Intermediate Value Theorem,
there exists t∗ ∈ (−1/λmax(D), 0] such that g(t∗) = 0. Then, by taking α = t∗, x j = 0 and
xi = yi/(1 + αdi ) for all i ∈ I \ { j}, we have a solution to the system (37)–(39).

Case 2.2. Suppose that |I+| > 1. Let ỹ ∈ R
n−1 be defined as

ỹi =
{
yi if i < j,
yi+1 if i ≥ j.
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Consider the diagonal matrix D̃ ∈ R
(n−1)×(n−1), where the i-th element of its diagonal is

given by

d̃i =
{
di if i < j,
di+1 if i ≥ j.

Then, since |I+| > 1, there exists i ∈ I \ { j} such that di = λmax(D). Then, λmax(D̃) =
λmax(D). By construction, we have ỹ� D̃ ỹ = y�Dy ≤ 1. Thus, by the induction hypothesis,
there exist α̃ ∈ [−1/λmax(D), 0] and x̃ ∈ R

n−1 such that ỹ = x̃ + α̃ D̃x̃ and x̃� D̃x̃ = 1.
Therefore, if we define α = α̃ and x ∈ R

n by

xi =
⎧⎨
⎩
x̃i if i < j,
0 if i = j,
x̃i−1 if i > j,

we have y = x + αDx , x�Dx = 1 and α ∈ [−1/λmax(D), 0]. In other words, x and α form
a solution to the system (37)–(39) and the proof is complete. ��

Proposition 5.1 Consider the ellipsoid E = {z ∈ R
n | z�Sz ≤ 1}, where S ∈ R

n×n is
symmetric and positive definite. For each y ∈ E , there exist x ∈ ∂E and α ∈ [−1/λmax(S), 0]
such that y = x + αSx.

Proof Let y ∈ E . Since S is symmetric, there exist an orthogonal matrix Q ∈ R
n×n and

a diagonal matrix D ∈ R
n×n formed by the eigenvalues of S such that S = QDQ� and

λmax(S) = λmax(D) (see, for example, Theorem 8.1.1 in [28]). Consider the ellipsoid E ′ =
{z ∈ R

n | z�Dz ≤ 1}. Then, y′ = Q�y ∈ E ′ and, by Lemma 5.1, there exist x ′ ∈ ∂E ′ and
α′ ∈ [−1/λmax(D), 0] such that y′ = x ′ + α′Dx ′. By left multiplying by Q both sides of
this equality, we obtain

y = Qx ′ + α′QDx ′ = Qx ′ + α′QDQ�Qx ′ = Qx ′ + α′SQx ′.

Since x ′ ∈ ∂E ′, we have Qx ′ ∈ ∂E . Define x = Qx ′ and α = α′. Therefore, y = x + αSx ,
with x ∈ ∂E and α ∈ [−1/λmax(S), 0]. ��

Lemma 5.2 Let D ∈ R
n×n be a positive definite diagonal matrix. Consider the ellipsoid

E = {z ∈ R
n | z�Dz ≤ 1}. Let x ∈ ∂E and α ∈ [−1/λmax(D), 0]. Let y = x + αDx. Then,

y ∈ E and the distance from y to the frontier of E is ‖y − x‖.

Proof If α = 0, then y = x and, therefore, y ∈ E and d(y, ∂E) = d(x, ∂E) = 0 = ‖y − x‖.
Suppose that α < 0. Consider the ball centered at y with radius ‖y − x‖. We shall prove that
this ball is contained in the ellipsoid E . Let z ∈ R

n be a point belonging to this ball. Then,

‖z − y‖2 ≤ ‖y − x‖2 = α2 ‖Dx‖2 . (41)

Since y = x + αDx , we have

‖z − y‖2 = ‖z − x − αDx‖2 = ‖z − x‖2 − 2α(z − x)�Dx + α2 ‖Dx‖2 . (42)

From (41) and (42), it follows that

‖z − x‖2 − 2α(z − x)�Dx ≤ 0.
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Notice that

‖z − x‖2 − 2α(z − x)�Dx=(z − x)�(z − x − 2αDx) = (z − x)�(z−x−αDx−αDx)

= (z − x)�(z−y − αDx) = (z − x)�(z−y)−α(z − x)�Dx

= (z − x)�(z − y) − αz�Dx + αx�Dx

= (z − x)�(z − y) − αz�Dx + α,

where the third equality holds since y = x + αDx and the last equality holds since x ∈ ∂E ,
i.e., x�Dx = 1. Thus,

(z − x)�(z − y) − αz�Dx ≤ −α.

By dividing both sides of this inequality by −α (that, by assumption, is positive), we obtain
the following inequality:

1

α
(z − x)�(y − z) + z�Dx ≤ 1.

We have

1

α
(z − x)�(y − z) + z�Dx

= 1

α
(z − x)�(y − z) + z�D(x − z + z) = 1

α
(z − x)�(y − z) − (z − x)�Dz + z�Dz

= α(z − x)�(y − z − αDz) + z�Dz = 1

α
(z − x)�(x + αDx − z − αDz) + z�Dz

= 1

α
(z − x)�[x − z+αD(x − z)]+z�Dz=− 1

α
(x − z)�[x − z+αD(x − z)]+z�Dz.

Therefore,

− 1

α
(x − z)�[x − z + αD(x − z)] + z�Dz ≤ 1.

Note that

− 1

α
(x − z)�[x − z + αD(x − z)] ≥ 0,

since −1/α > 0 and

(x − z)�[x − z + αD(x − z)]
= (x − z)�(x − z) + α(x − z)�D(x − z) ≥ ‖x − z‖2+α(x − z)�(λmax(D)In)(x − z)

= ‖x − z‖2 + αλmax(D) ‖x − z‖2 = [1 + αλmax(D)] ‖x − z‖2 ≥ 0,

where the first inequality follows from the fact that D is a diagonal matrix and α < 0, and the
second inequality holds since α ≥ −1/λmax(D). Consequently, we have z�Dz ≤ 1, i.e., z ∈
E . Thus, the ball centered at y with radius ‖y − x‖ is contained in the ellipsoid E . Therefore,
y ∈ E and since x belongs to this ball and x ∈ ∂E , we conclude that d(y, ∂E) = ‖y − x‖.
(Suppose, in order to derive a contradiction, that d(y, ∂E) < ‖y − x‖. Then, there exists
v ∈ ∂E such that ‖y − v‖ < ‖y − x‖. Then, v belongs to the interior of ball B(y, ‖y − x‖)
centered at y with radius ‖y − x‖. Since B(y, ‖y − x‖) is contained in E , we have that v is
also an interior point of E , which is a contradiction. Thus, d(y, ∂E) = ‖y − x‖.) ��
Proposition 5.2 Consider the ellipsoid E = {z ∈ R

n | z�Sz ≤ 1}, where S ∈ R
n×n

is a symmetric and positive definite matrix. Let x ∈ ∂E and α ∈ [−1/λmax(S), 0]. Let
y = x + αSx. Then, y ∈ E and the distance from y to the frontier of E is ‖y − x‖.
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Proof Since S is symmetric, there exist an orthogonalmatrix Q ∈ R
n×n and a diagonalmatrix

D ∈ R
n×n formed by the eigenvalues of S such that S = QDQ� and λmax(S) = λmax(D)

(see, for example, Theorem 8.1.1 in [28]). Consider the ellipsoid E ′ = {z ∈ R
n | z�Dz ≤ 1}.

Then, Q�x ∈ ∂E ′. Thus, by Lemma 5.2, y′ = Q�x + αDQ�x is such that y′ ∈ E ′ and the
distance from y′ to the frontier of E ′ is

∥∥y′ − Q�x
∥∥. Since y′ ∈ E ′, it follows that Qy′ ∈ E .

Moreover,

Qy′ = Q
(
Q�x + αDQ�x

)
= x + αQDQ�x = x + αSx = y.

Thus, y = Qy′ and, therefore, y ∈ E . We also have

d(y′, ∂E ′) = min
z∈∂E ′

∥∥y′ − z
∥∥ = min

z∈∂E ′
∥∥Q(y′ − z)

∥∥ = min
z∈∂E ′ ‖y − Qz‖

= min
w∈∂E

‖y − w‖ = d(y, ∂E),

where the second equality is valid since Q is orthogonal and the fourth equality holds since,
for all z ∈ ∂E ′, we have Qz ∈ ∂E and, for all w ∈ ∂E , we have w = Q(Q�w) and
Q�w ∈ ∂E ′. Thus, d(y′, ∂E ′) = d(y, ∂E). Furthermore,

d(y′, ∂E ′) =
∥∥∥y′ − Q�x

∥∥∥ =
∥∥∥Q (

y′ − Q�x
)∥∥∥ = ∥∥Qy′ − x

∥∥ = ‖y − x‖ .

Hence, y ∈ E and d(y, ∂E) = ‖y − x‖. ��

We are now able to develop the model. Consider the ellipsoid C = {x ∈ R
n | x�P−1x ≤

1}, where P is a positive definite diagonal matrix. Consider also the ellipsoid Ei = {x ∈
R
n | (x − ci )�Qi P

−1
i Q�

i (x − ci ) ≤ 1}, where ci ∈ R
n , Qi ∈ R

n×n is orthogonal and
Pi ∈ R

n×n is a positive definite diagonal matrix. By applying transformation Ti defined in
(4) to ellipsoid Ei , we obtain the ball

Ei i =
{
x ∈ R

n |
(
x − P

− 1
2

i Q�
i ci

)� (
x − P

− 1
2

i Q�
i ci

)
≤ 1

}
.

By applying the same transformation Ti to ellipsoid C, we obtain the ellipsoid

Ci = {x ∈ R
n | x�Si x ≤ 1},

where

Si = P
1
2
i Q�

i P−1Qi P
1
2
i . (43)

We have that Ei ⊆ C if and only if Ei i ⊆ Ci . In order to guarantee that Ei i ⊆ Ci , we require that
the center cii of ball Ei i be in Ci and that the distance between cii and the frontier of Ci be at
least one. By Proposition 5.1, if cii ∈ Ci then there exist x̄i ∈ ∂Ci and αi ∈ [−1/λmax(Si ), 0]
such that

cii = x̄i + αi Si x̄i . (44)

Moreover, by Proposition 5.2, any point of the form (44) belongs to ellipsoid Ci and the

distance between cii and ∂Ci is ‖cii − x̄i‖. Thus, since cii = P
− 1

2
i Q�

i ci , we obtain the
following model for the inclusion of ellipsoids into an ellipsoid.
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P
− 1

2
i Q�

i ci = x̄i + αi Si x̄i , ∀i ∈ I (45)

x̄�
i Si x̄i = 1, ∀i ∈ I (46)∥∥∥∥P− 1

2
i Q�

i ci − x̄i

∥∥∥∥
2

≥ 1, ∀i ∈ I (47)

αi ≤ 0, ∀i ∈ I (48)

αi ≥ −1/λmax(Si ), ∀i ∈ I. (49)

Consider a solution to the system (45)–(49). Notice that the value of αi must be strictly
negative for each i ∈ I . Otherwise, if αi = 0 for some i ∈ I , constraint (45) implies that
cii = x̄i and, therefore, ‖cii − x̄i‖ = 0, which violates constraint (47). Lemma 5.3 provides
a negative upper bound on the value of αi .

Lemma 5.3 Any solution to the system (45)–(49) is such that

αi ≤ −λmin

(
P−1
i

)
λmin

(
P

1
2
i

)
λmin(P)λmin

(
P− 1

2

)
< 0, for each i ∈ I.

Proof Consider a solution to the system (45)–(49). Let i ∈ I . By constraints (46), we have
x̄�
i Si x̄i = 1. Then, by Lemma 4.1 (taking xi j

.= x̄i , Pj
.= P and Q j

.= In), we have

‖Si x̄i‖ ≤ λmax(Pi )λmax
(
P−1) λmax

(
P

1
2

)
λmax

(
P

− 1
2

i

)
.

By constraints (47), we have α2
i ‖Si x̄i‖2 ≥ 1. Thus, we must have ‖Si x̄i‖ > 0 and, therefore,

α2
i ≥ 1/ ‖Si x̄i‖2. Consequently, since αi ≤ 0 by constraints (48), we must have αi ≤

−1/ ‖Si x̄i‖. Hence, αi must satisfy

αi ≤ −
(

λmax(Pi )λmax(P
−1)λmax

(
P

1
2

)
λmax

(
P

− 1
2

i

))−1

= −λmin

(
P−1
i

)
λmin

(
P

1
2
i

)
λmin(P)λmin

(
P− 1

2

)
.

(Note that−λmin(P
−1
i )λmin(P

1
2
i )λmin(P)λmin(P− 1

2 ) < 0 since Pi and P are positive definite
matrices.) ��

Thus, by Lemma 5.3, the following is a valid constraint.

αi ≤ −λmin

(
P−1
i

)
λmin

(
P

1
2
i

)
λmin(P)λmin

(
P− 1

2

)
, ∀i ∈ I. (50)

If the ellipsoidal container is fixed, then the right-hand side of (50) is a constant for each
i ∈ I . In this case, constraints (50) are bound-constraints and they might replace constraints
(48). On the other hand, if the ellipsoidal container is not fixed (for example, the volume of
the container could be minimized), then λmin(P) is not a constant and, therefore, the right-
hand side of (50) is not constant either. In any case, if global optimization techniques are
employed to solve the problem, then constraints (50) could be useful in order to reduce the
search space.
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5.1.1 Computing the largest eigenvalue of Si

The i-th constraint in (49) depends on the largest eigenvalue of matrix Si defined in (43).
Thus, we must know how to compute it. Firstly, we consider the particular two-dimensional
case. Next, we consider the problem in R

n where the container is a ball. Finally, we consider
the general case in R

n where the container is an arbitrary ellipsoid (centered at the origin).
Let i ∈ I . Consider the two-dimensional problem and suppose that ai and bi are the

eigenvalues of P
1
2
i , and a and b are the eigenvalues of P

1
2 . In this case, if we represent the

rotation matrix Qi as in (1), the largest eigenvalue of Si will be given by

λmax(Si ) = δi + √
βi

4a2b2
,

where

δi = (
a2 + b2

) (
a2i + b2i

) − (
a2 − b2

) (
a2i − b2i

)
cos (2θi )

and

βi = δ2i − (4abaibi )
2.

Constraint αi ≥ −1/λmax(Si ) is therefore equivalent to constraint

αi ≥ − 4a2b2

δi + √
βi

,

which in turn is equivalent to constraint

αi
√

βi ≥ −(4a2b2 + αiδi ). (51)

By constraints (48), αi must be nonpositive. Then, we must have αi
√

βi ≤ 0 and, therefore,
4a2b2 + αiδi ≥ 0. In this way, constraint (51) is equivalent to constraints

α2
i βi − (4a2b2 + αiδi )

2 ≥ 0 (52)

4a2b2 + αiδi ≥ 0. (53)

The function that defines constraint (51) is not everywhere differentiable in the domain
of the variables of the model, whereas the functions that define constraints (52) and (53) are
continuous and differentiable. So, for our purposes, the latter constraints are more suitable
than the former one. This is because we are interested in solving the problem of packing
ellipsoids in practice and, for this, we will use methods that make use of the derivatives of
the functions that define the problem.

Now, consider the problem inRn and suppose that the container is a ball with radius r > 0.
In this case, we have P = r2 In and thus

Si = P
1
2
i Q�

i P−1Qi P
1
2
i = r−2P

1
2
i Q�

i Qi P
1
2
i = r−2Pi .

Then, λmax(Si ) = r−2λmax(Pi ) and the largest eigenvalue of Pi is simply the largest element
of the diagonal of Pi .

Finally, consider the problem in R
n where the container is an ellipsoid centered at the

origin. Since Si is nonsingular, we have λmin(S
−1
i ) = 1/λmax(Si ). Then, the problem of
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computing the largest eigenvalue of matrix Si is reduced to the problem of computing the
least eigenvalue of matrix S−1

i . Consider the system of equations

S−1
i vi = λivi (54)

v�
i vi = 1 (55)

(S−1
i − λi In) = B�

i Bi , (56)

where the variables are λi ∈ R, vi ∈ R
n and Bi ∈ R

n×n . Equations (54) and (55) are
satisfied if and only if vi is an eigenvector of S

−1
i and λi is the eigenvalue associated with vi .

Equation (56) is satisfied if and only if matrix S−1
i − λi In is positive semidefinite. (A matrix

A is positive semidefinite if and only if there exists a matrix B such that A = B�B. See,
for example, page 566 in Meyer [42]). Since S−1

i is positive definite, matrix S−1
i − λi In is

positive semidefinite if and only if λi ∈ [0, λmin(S
−1
i )]. Since Eqs. (54) and (55) imply that

λi is an eigenvalue of S−1
i , Eq. (56) is satisfied if and only if λi = λmin(S

−1
i ). Therefore, in

the n-dimensional case, the i-th constraint in (49) of the model (45)–(49) must be replaced
by constraints

αi ≥ −λi

S−1
i vi = λivi

v�
i vi = 1

(S−1
i − λi In) = B�

i Bi , (57)

incorporating the variables λi , vi and Bi into the model.

5.2 Ellipsoid inside a half-space

In this section, we propose a model to include an ellipsoid Ei into a half-space H. A trans-
formation is applied to the ellipsoid Ei which converts it into a ball Ei i and the same
transformation is applied to the half-space H, thus obtaining a half-space Hi . Next, we
model the inclusion of Ei i into Hi and observe that Ei is contained in H if and only if Ei i is
contained in Hi .

Consider the half-spaceH = {x ∈ R
n | w�x ≤ s}, wherew ∈ R

n ,w �= 0, and s ∈ R, and
the ellipsoid Ei = {x ∈ R

n | (x − ci )�Qi P
−1
i Q�

i (x − ci ) ≤ 1}, where ci ∈ R
n , Qi ∈ R

n×n

is orthogonal and Pi ∈ R
n×n is positive definite and diagonal. Let Hi be the set obtained

when transformation Ti defined in (4) is applied to the half-space H, i.e.,

Hi = {
x ∈ R

n | x = Ti (z), z ∈ H} =
{
x ∈ R

n | x = P
− 1

2
i Q�

i z, z ∈ H
}

=
{
x ∈ R

n | z = Qi P
1
2
i x, z ∈ H

}
=

{
x ∈ R

n | w�Qi P
1
2
i x ≤ s

}
.

We have that Ei ⊆ H if and only if Ei i ⊆ Hi . Thus, in order to guarantee that ellipsoid Ei
is contained in the half-space H, we require that ball Ei i be contained in the half-space Hi ,
i.e., the center cii of ball Ei i must belong to Hi and the distance from cii to the frontier of
the half-space Hi must be at least one.
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The frontier of the half-space Hi is the hyperplane ∂Hi = {x ∈ R
n | w�Qi P

1
2
i x = s}.

Thus, the distance d(cii , ∂Hi ) from the point cii to the frontier of Hi is given by

d(cii , ∂Hi ) = |w�Qi P
1
2
i cii − s|∥∥∥∥P

1
2
i Q�

i w

∥∥∥∥
.

Therefore, the conditions
(

w�Qi P
1
2
i cii − s

)2

≥
∥∥∥∥P

1
2
i Q�

i w

∥∥∥∥
2

and w�Qi P
1
2
i cii ≤ s (58)

are satisfied if and only if Ei ⊆ H. Recalling that cii = P
− 1

2
i Q�

i ci , conditions (58) can also
be written as (

w�ci − s
)2 ≥

∥∥∥∥P
1
2
i Q�

i w

∥∥∥∥
2

and w�ci ≤ s. (59)

6 Numerical experiments

In this section, we present a variety of numerical experiments that aim to illustrate the
capabilities and limitations of the introduced models for packing ellipsoids. In a first set
of experiments, we consider the problem tackled in [27] that consists in packing as many
identical ellipses as possible within a given rectangle. In a second set of experiments, we deal
with the problem approached in [38] that consists in, given a set of (not necessarily identical)
ellipses, finding the rectangle with the smallest area within which the given set of ellipses
can be packed. Finally, in a third set of experiments, we deal with the problem of packing
three-dimensional ellipsoids within a sphere or cuboid, trying to minimize the volume of the
container.

All considered two-dimensional models were coded in AMPL [26] (Modeling Language
for Mathematical Programming), while the three-dimensional models were coded in For-
tran 90. The experiments were run on a 2.4GHz Intel Core2 Quad Q6600 machine with
4.0GB RAM memory and Ubuntu 12.10 (GNU/Linux 3.5.0-21-generic x86_64) operating
system. As the nonlinear programming (NLP) solver, we have used Algencan [2,13] version
3.0.0, which is available for downloading at the TANGO Project web page (http://www.ime.
usp.br/~egbirgin/tango/). Algencan was compiled with GNU Fortran (GCC) 4.7.2 compiler
with the -O3 optimization directive enabled.

Algencan is an augmented Lagrangian method for nonlinear programming that solves the
bound-constrained augmented Lagrangian subproblems using Gencan [3,11,12], an active-
set method for bound-constrained minimization. Gencan adopts the leaving-face criterion
described in [11], that employs spectral projected gradients defined in [15,16]. For the
internal-to-the-face minimization, Gencan uses an unconstrained algorithm that depends on
the dimension of the problem and the availability of second-order derivatives. For small prob-
lems with available Hessians, a Newtonian trust-region approach is used (see [3]); while for
medium- and large-sized problems with available Hessians a Newtonian line-search method
that combines backtracking and extrapolation is used (this is the case of the two-dimensional
problems presented in the current section that, since they were coded in AMPL, have second-
order derivatives available). When second-order derivatives are not available, each step of
Gencan computes the direction inside the face using a line-search truncated-Newton approach
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with incremental quotients to approximate thematrix-vector products andmemoryless BFGS
preconditioners (this is the case of the three-dimensional problems considered in the present
section, that were coded in Fortran 90 and for which only first-order derivatives were coded).

Although Algencan is a local nonlinear programming solver, it was designed in such a
way that global minimizers of subproblems are actively pursued, independently of the fulfill-
ment of approximate stationarity conditions in the subproblems. In other words, Algencan’s
subproblem solvers try always to find the lowest possible function values, even when this
is not necessary for obtaining approximate local minimizers. As a consequence, practical
behavior of Algencan is usually well explained by the properties of their global-optimization
counterparts [8]. The “preference for global minimizers” of Algencan has been discussed
in [2]. This has also been observed in papers devoted to numerical experiments concerning
Algencan and other solvers (see, for example, [31,32] and the references therein). This does
not mean at all that Algencan is able to find global minimizers. Moreover, in no case it would
be able to prove that a global minimizer has been found. This simply means that, although
unnecessary from the theoretical point of view, Algencan makes an effort to find good quality
local minimizers.

6.1 Two-dimensional packing

6.1.1 Packing the maximum number of ellipses within a rectangle

Given positive numbers L , W , a, and b, the problem considered in this section consists in
computing the maximum numberm∗ of identical ellipses with semi-axis lengths a and b that
can be packed within a rectangle with length L and width W . To illustrate the capabilities of
the introduced models, we have considered a very simple strategy for packing the maximum
possible number of identical ellipses into a given rectangle. The algorithm iteratively packs
an increasing amount of ellipses into the rectangle. At them-th iteration, the algorithm tries to
pack m ellipses. If it successfully packs the m ellipses inside the rectangle, then the iteration
is over and the next one begins. If it cannot pack the m ellipses, a packing with m∗ = m − 1
ellipses is returned and the algorithm terminates.

In order to pack m ellipses, a feasibility problem must be solved. This feasibility problem
consists of the non-overlapping constraints (21)–(24) or, alternatively, the non-overlapping
constraints (25)–(30), plus the fitting constraints that require the ellipses to be inside the
rectangle. In (21)–(24) or (25)–(30), we have that Pi ∈ R

2×2, for i = 1, . . . ,m, is the
diagonal matrix with diagonal entries a2 and b2; while εi j (i, j ∈ {1, . . . ,m} such that i < j)
is given by (20). The inclusion of an ellipse within the rectangle is obtained by requiring
the ellipse to be contained in four half-spaces (each one associated with a particular side
of the rectangle) as modeled in (59). Hence, considering that the rectangle with length L
and width W is centered at the origin and has sides parallel to the Cartesian axes, the fitting
constraints are given by

(
w�


 ci − s

)2 ≥

∥∥∥∥P
1
2
i Q�

i w


∥∥∥∥
2

and w�

 ci ≤ s
 for i = 1, . . . ,m, 
 = 1, . . . , 4,

(60)
where

w1 = −w2 = (1, 0)�, w3 = −w4 = (0, 1)�, s1 = s2 = L

2
and s3 = s4 = W

2
.

From now on, the feasibility problem with m ellipses and that uses the non-overlapping
constraints (21)–(24) plus the fitting constraints (60) will be named Fm

1 ; while the one
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that uses the non-overlapping constraints (25)–(30) plus the fitting constraints (60) will be
namedFm

2 . The model Fm
1 hasm(5m+11)/2 constraints and 3m(m+1)/2 variables; while

the model Fm
2 has m(3m + 5) constraints and 3m2 variables.

Since the feasibility problems Fm
1 and Fm

2 are non-convex and their numerical resolution
can be a very hard task, we apply a multi-start strategy. We define a maximum number Natt

of attempts to solve each problem launching the local NLP solver Algencan from different
initial points. If the problem is successfully solved, a packing with m ellipses is found. In
this case,m is incremented and the algorithm continues. Otherwise, if the maximum number
of attempts has been reached, then the algorithm stops, suggesting that a packing with m
ellipses is not possible, and a packing with m∗ = m − 1 ellipses is returned.

The algorithm starts with m = 1 and increases m by one at each iteration. It is important
to mention that most of the computational effort is spent when solving the problem with
m = m∗ and trying to solve the problem with m = m∗ + 1. See, for example, [10,14,17]
where exhaustive numerical experiments support this claim.

When trying to pack m ellipses, the first initial point is constructed as follows. First,
m − 1 ellipses are arranged as in the solution for the problem with m − 1 ellipses and the
m-th ellipse is randomly arranged in the rectangle (the center of the m-th ellipse is chosen
uniformly at random inside the rectangle and its rotation angle is chosen uniformly at random
in the interval [0, π]). For each subsequent attempt of packing m ellipses, the initial point is
given by a small perturbation of the solution returned by the local NLP solver in the previous
unsuccessful attempt. We have considered a maximum of Natt = 100 attempts to solve each
subproblem for a fixed value of m. Also, we have considered a total CPU time limit of 5
hours to solve all subproblems for increasing values of m.

Table 1 shows the results obtained by applying the described strategy connected with
models F1 and F2 to the six instances considered in [27], each one defined by a rectangle
with length 6 and width 3 and identical ellipses with eccentricity 0.74536. In the table, the
first column refers to the instance name and the second column shows the lengths of the
semi-axes of the identical ellipses. The third column shows the number of ellipses packed by
the method proposed in [27]. The fourth and fifth columns present, for models F1 and F2,
respectively, the number of packed ellipses and the total CPU time spent (in seconds). As
expected, the strategy of solving models Fm

1 and Fm
2 for increasing values of m was able to

find better solutions than the ones found by the method proposed in [27], since our models
do not impose constraints on the rotation angles of the ellipses (the method proposed in [27]
considers only 90-degree rotations). It is worth noting that this set of experiments suggests

Table 1 Results obtained for the instances proposed in [27]

Instance Semi-axis lengths Galiev and
Lisafina [27]

Model F1 Model F2

m∗ m∗ Time (s) m∗ Time (s)

GL1 (0.68892, 0.45928) 13 15 10.23 15 285.80

GL2 (0.61237, 0.40825) 16 19 14.49 19 393.68

GL3 (0.45928, 0.30619) 30 34 47.05 34 182.94

GL4 (0.38273, 0.25515) 45 50 1025.24 50 1120.17

GL5 (0.33681, 0.22454) 56 65 2122.40 65 2375.46

GL6 (0.30619, 0.20412) 69 79 2131.65 78 7158.56
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6LG5LG4LG

Fig. 3 Solutions found by model F1 for the instances proposed in [27]

that the usage of model F1 delivered solutions faster, even being able to deliver a better
quality solution (within the considered CPU time limit of 5 hours and the maximum number
of attempts) for instance GL6. Figure 3 shows the graphical representation of the solutions
found by considering model F1.

6.1.2 Minimizing the area of the container

In this section, we first consider the problem of packing a given set of m (identical or non-
identical) ellipses with semi-axis lengths ai and bi (for i ∈ {1, . . . ,m}) within a rectangular
container of minimum area. This problem can be modeled as the nonlinear programming
problem that consists in minimizing the product of the variable length L and width W of
the rectangular container (centered at the origin and with their sides parallel to the Cartesian
axes) subject to the non-overlapping constraints (21)–(24) plus the fitting constraints (60),
where Pi ∈ R

2×2 is the diagonal matrix with entries a2i and b2i for i ∈ {1, . . . ,m} and εi j
is given by (20) for i, j ∈ {1, . . . ,m} such that i < j . This NLP problem will be named M
from now on. The modelM has m(5m + 11)/2 constraints and 3m(m + 1)/2+ 2 variables.

Since problemM is a very hard non-convexnonlinear programmingproblem,we consider,
once again, a multi-start strategy in order to obtain the best possible local solution using the
NLP solver Algencan. The algorithm stops when either the number of attempts to solve the
problem reaches Natt = 1000 or 5 hours of CPU time are spent.

For instances with identical ellipses with semi-axis lengths a and b, the initial point is
given as follows. The centers of the ellipses are arranged in a regular lattice where the
distance between consecutive points is 2max{a, b}. The rotation angle of each ellipse is
chosen uniformly at random in the interval [0, π ]. The initial guess for the length and width
of the container are then chosen so that it contains all ellipses. In the case of instances with
non-identical ellipses, the lattice is constructed so that the ellipses do not overlap when their
centers are arranged in the lattice. Moreover, the order in which the ellipses are arranged in
the lattice is random.

In a first set of experiments, we considered the three sets of instances introduced in [38] for
the problem of packing a given set of identical or non-identical ellipses within a rectangular
container of minimum area. The first set includes 15 instances with non-identical ellipses;
the second set includes 14 instances with identical ellipses; and the third set includes 15
small instances with 3 non-identical ellipses with increasing eccentricity. Tables 2, 3 and 4
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Table 2 Instances with non-identical ellipses considered in [38]

Instance m Areas reported in Kallrath and
Rebennack [38] (left) and in
Stoyan et al. [49] (right)

Model M
Area # Local minimizations Avg. time (s)

TC02a 2 18.00000 18.00000 1 0.03

TC02b 2 22.23152 22.23159 2 0.02

TC03a 3 21.38577 21.38577 2 0.04

TC03b 3 25.22467 25.22467 39 0.07

TC04a 4 23.18708 23.18708 2 0.11

TC04b 4 28.54159 28.54074* 74 0.07

TC05a 5 25.29557 24.553679 24.55368* 43 0.15

TC05b 5 31.28873 30.84870 30.64919* 20 0.14

TC06 6 25.27463 25.47173 25.08331* 19 0.54

TC11 11 57.24034 57.1783 55.91657* 348 5.27

TC14 14 24.67185 24.25099 24.17168* 75 5.73

TC20 20 67.83459 66.13647 65.70134* 45 19.28

TC30 30 103.45212 95.36535 95.61125* 272 58.27

TC50 50 166.91505 154.470487 152.69296* 42 278.71

TC100 100 322.64663 297.73798 297.70558* 2 2790.77

Table 3 Instances with identical ellipses considered in [38]

Instance m Area reported in Kallrath
and Rebennack [38]

Model M
Area # Local minimizations Avg. time (s)

TS02 2 16.00000 16.00000 1 0.06

TS03 3 23.53351 23.51416* 3 0.08

TS04 4 31.06838 31.06838 3 0.22

TS05 5 39.01646 39.01646 40 0.58

TS06 6 46.59133 46.06018* 5 1.50

TS07 7 54.13676 54.13676 40 4.04

TS08 8 61.26671 60.62435* 32 6.82

TS09 9 69.58409 68.39704* 43 10.67

TS10 10 76.49471 75.37894* 7 23.15

TS11 11 84.61446 83.22998* 155 28.33

TS12 12 91.67122 89.69699* 61 43.09

TS13 13 99.85158 97.84148* 230 54.41

TS14 14 106.78443 105.44099* 136 65.88

TS15 15 115.13250 111.26804* 8 91.15

show the results. The first column presents the names of the instances and the second column
shows the number m of ellipses. The third column shows the area of the container found
by the method proposed in [38]. A subset of the instances in Table 2 were also considered
in [49]. Therefore, the third column in Table 2 also shows, when applicable, the area of the
container found by the method proposed in [49]. The fourth column shows the area of the
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Table 4 Instances with three non-identical ellipses considered in [38]

Instance m Area reported in Kallrath
and Rebennack [38]

Model M
Area # Local minimizations Avg. time (s)

TE1.00 3 22.17171 22.17171 2 0.13

TE0.99 3 21.84169 21.84169 95 0.18

TE0.98 3 21.50833 21.50833 56 0.14

TE0.97 3 21.17669 21.17669 22 0.10

TE0.96 3 20.84672 20.84672 43 0.07

TE0.95 3 20.51837 20.51837 14 0.07

TE0.90 3 18.89960 18.89960 2 0.06

TE0.80 3 16.09992 16.09992 2 0.03

TE0.70 3 13.79909 13.79909 2 0.05

TE0.60 3 11.65005 11.65005 2 0.06

TE0.50 3 9.74384 9.74384 4 0.06

TE0.40 3 7.91654 7.91654 2 0.05

TE0.30 3 6.16566 6.16566 14 0.11

TE0.20 3 4.15789 4.15789 12 0.21

TE0.10 3 2.08193 2.08193 179 0.98

001CT05CT03CT

Fig. 4 Illustrations of the solutions found for the instances TC30, TC50, and TC100

container found by our method. The area is rounded with 5 decimal places (results up to
the machine precision can be found in http://www.ime.usp.br/~lobato/). The fifth column
shows the number of attempts made to find the solution. The last column shows the average
CPU time (in seconds) per local minimization. As it can be seen, our method was able to
find solutions at least as good as the ones presented in [38]. Moreover, for 20 instances,
our method found better solutions (marked with * in Tables 2 and 3) than the ones reported
in [38]. In Table 2 it is also possible to see that, considering the 9 instances to which the
methodology proposed in [49] was applied, our method found better quality solutions in 7
instances (TC05b, TC06, TC11, TC14, TC20, TC50, and TC100), same quality solution in
one instance (TC05a), and a poorer quality solution in only one instance (TC30). Figure 4
illustrates the solutions obtained for the three largest instances TC30, TC50, and TC100.

To end this section, we consider the problem of packing a given set of ellipses inside
an ellipse with minimum area. This problem can be modeled as the problem of minimizing
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Fig. 5 100 ellipses with semi-axis lengths 2 and 1 inside a minimizing area ellipse with semi-axis lengths
19.136912 and 12.050124

Table 5 Results for the
three-dimensional problem of
minimizing the volume of the
container (sphere or cuboid) for
an increasing number of
ellipsoids m ∈ {10, 20, . . . , 100}

m Sphere Cuboid

Volume Time Volume Time

10 23.80673 2s 28.59202 7s

20 48.58743 46s 53.44100 33s

30 75.40218 7m49s 77.76544 7m00s

40 101.58621 9m42s 101.44566 21m28s

50 122.76153 36m14s 127.20831 2h31m40s

60 145.26059 47m27s 152.05153 1h57m10s

70 171.22144 9h04m25s 175.10514 12h48m23s

80 192.62626 9h10m18s 198.85788 5h53m54s

90 214.63923 1d17h54m36s 223.17261 1d03h15m43s

100 242.49896 19h42m23s 245.27508 2d17h27m04s

the product ab of the variable semi-axis lengths a and b of the elliptical container subject
to the non-overlapping constraints (21)–(24) plus the fitting constraints (45)–(48) and (52)–
(53). This model has m(5m + 1)/2 constraints and 3m(m + 3)/2 + 2 variables. We have
considered only one instance where the ellipses to be packed have semi-axis lengths 2 and 1.
Figure 5 illustrates the solution found by a single run of Algencan. This solution was found
in 1h56m14s. The container has semi-axis lengths 19.136912 and 12.050124.

In all the experiments described in the present and the previous subsection, the local
solver Algencan was run using its default parameters; while the optimality and feasibility
tolerances εfeas and εopt (that are parameters that must be provided by the user) were both
set to 10−8. Those tolerances, related to the stopping criteria, are used to determine whether
a solution to the optimization problem being solved has been found. See [13, pp. 116–117]
for details. For the packing problems considered in the present work, independently of the
stopping criterion satisfied by the optimizer, it is a relevant information the accuracy of the
delivered solution in terms of (a) the fitting constraints and (b) the maximum overlapping
between the ellipses being packed. Regarding the fitting constraints, once the multi-start
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Fig. 6 Illustration of the solutions obtained for the problem of packing a–b 90 and 100 ellipsoids, respectively,
within a sphere of minimum volume and c–d 90 and 100 ellipsoids, respectively, within a cuboid of minimum
volume

process determines that a solution has been found with tolerances εfeas = εopt = 10−8, the
optimization process is resumed with tighter tolerances in order to achieve a precision of
the order of 10−14 in the sup-norm of the fitting constraints (60). Regarding the overlapping
between the ellipses, in order to be able to deliver a measure that is independent of the model
being solved, the approach introduced in [30] was considered. In particular, its C/C++ imple-
mentation (freely available at https://github.com/chraibi/EEOver) was used. The method is
an exact method that is able to compute the intersection between ellipses and, for all the
solutions reported here, overlapping between every pair of ellipses is always smaller than the
machine precision 10−16.

6.2 Three-dimensional packing

In this section, we consider two problems of packing three-dimensional ellipsoids. The first
problem is to pack a given set of m ellipsoids inside a sphere with minimum volume. It
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can be modeled as the problem of minimizing the radius r of the sphere subject to the non-
overlapping constraints (21)–(24), where Pi ∈ R

3×3 is the diagonal matrix whose entries
are the squared lengths of the semi-axes of the i-th ellipsoid for i ∈ {1, . . . ,m} and εi j is
given by (20) for i, j ∈ {1, . . . ,m} such that i < j , plus the fitting constraints (45)–(49),
where Si = r−2Pi and λmax(Si ) = r−2λmax(Pi ) for each i ∈ {1, . . . ,m}. This problem has
3m2 + 3m + 1 constraints and 2m2 + 8m + 1 variables.

The second problem is to pack a given set of m ellipsoids inside a cuboid with minimum
volume. This problem can be modeled as the problem of minimizing the product of the
variable length L , width W , and height H of the cuboid subject to the non-overlapping
constraints (21)–(24) plus the fitting constraints. Assuming that the edges of the cuboid are
parallel to the Cartesian axes, the fitting constraints are given by

(
w�


 ci − s

)2 ≥

∥∥∥∥P
1
2
i Q�

i w


∥∥∥∥
2

and w�

 ci ≤ s
 for i = 1, . . . ,m, 
 = 1, . . . , 6,

(61)

where w1 = −w2 = (1, 0, 0)�, w3 = −w4 = (0, 1, 0)�, w5 = −w6 = (0, 0, 1)�, and

s1 = s2 = L

2
, s3 = s4 = W

2
, and s5 = s6 = H

2
.

This problem has 3m2 + 9m constraints and 2m2 + 4m + 3 variables.
In our experiments, we have considered identical ellipsoids with semi-axis lengths 1, 0.75,

and 0.5. Table 5 presents the results we have obtained for a single run of the local solver
Algencan applied to instanceswithm ∈ {10, 20, . . . , 100}. In the table, thefirst column shows
the number of ellipsoids. The second and third columns show the volume of the sphere found
and the CPU time, respectively. The fourth and fifth columns show the volume of the cuboid
found and the CPU time, respectively. Figure 6 illustrates a few arbitrary selected solutions.

7 Concluding remarks

We proposed two continuous and differentiable nonlinear models for avoiding overlapping
between ellipsoids. We also introduced models for including an ellipsoid inside an ellip-
soid and inside a half-space. Since the non-overlapping models have quadratic numbers of
variables and constraints on the number of ellipsoids to be packed, the numerical resolu-
tion of these models turns out to be a very hard computational task. Numerical experiments
suggest that a multi-start strategy combined with a local nonlinear programming solver can
be applied to instances with up to 100 ellipsoids in order to obtain “solutions” within an
affordable time. Two lines of future research are possible. On the one hand, simpler models
with a smaller number of variables and constraints would simplify the optimization process.
On the other hand, defining suitable bounds for all the variables of the introduced models is
a simple task and it would allow one to apply spatial branch-and-bound based global opti-
mization solvers. The development of dedicated global optimization solvers applicable to the
introduced models would allow the resolution of at least small instances of the hard packing
problems considered in the present work.
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this paper.
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