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Abstract The cycle cover problem is a combinatorial optimization problem, which is to find
a minimum cost cover of a given weighted digraph by a family of vertex-disjoint cycles. We
consider a special case of this problem, where, for a fixed number k, all feasible cycle covers
are restricted to be of the size k. We call this case the minimum weight k-size cycle cover
problem (Min-k-SCCP). Since each cycle in a cover can be treated as a tour of some vehicle
visiting an appropriate set of clients, the problem in question is closely related to the vehicle
routing problem.Moreover, the studied problem is a natural generalization of the well-known
traveling salesman problem (TSP), since the Min-1-SCCP is equivalent to the TSP. We show
that, for any fixed k > 1, the Min-k-SCCP is strongly NP-hard in the general setting. The
Metric and Euclidean special cases of the problem are intractable as well. Also, we prove that
the Metric Min-k-SCCP belongs to APX class and has a 2-approximation polynomial-time
algorithm, even if k is not fixed. For the Euclidean Min-2-SCCP in the plane, we present a
polynomial-time approximation scheme extending the famous result obtained by S. Arora for
the Euclidean TSP. Actually, for any fixed c > 1, the scheme finds a (1+ 1/c)-approximate
solution of the Euclidean Min-2-SCCP in O(n3(log n)O(c)) time.

Keywords Cycle cover problem (CCP) · Traveling salesman problem (TSP) · NP-hard
problem · Polynomial-time approximation scheme (PTAS)

1 Introduction

The cycle cover problem (CCP) is a combinatorial optimization problem, which is to find
an optimal cover of a given graph by a set of vertex-disjoint cycles. To the best of our
knowledge, for the first time, this problem was introduced in the seminal paper by Sahni
and Gonzales [22]. Since that time, the CCP and its various modifications were extensively
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studied in numerous publications (see, e.g. [4–7,19,20,23]). Since each cycle in a cover can
be considered as a tour of some vehicle visiting an appropriate set of clients, the CCP is
closely related to the vehicle routing problem (VRP). Moreover, the studied problem is a
natural generalization of the well-known traveling salesman problem (TSP), since the Min-
1-SCCP is equivalent to the TSP. Below, we propose a brief overview of the related problems
and previous work.

The traveling salesman problem (TSP) [13] is a classic combinatorial optimization prob-
lem, which deals with finding the minimum-cost salesman tour (Hamiltonian cycle) in a
given complete weighted graph. There are several special cases of the problem, and some of
them, such as the Metric TSP and the Euclidean TSP, are of particular interest. An instance
of theMetric TSP is defined by an undirected weighted graph so that edge weights satisfy the
triangle inequality. Furthermore, in Euclidean TSP the nodes of the given graph are points in
d-dimensional space (for some d > 1), and edge weights are Euclidean distances between
the incident nodes. It is known [21] that the TSP is NP-hard even in the Euclidean case; i.e.,
the optimal solution can not be found in polynomial time unless P = NP. Although the TSP
is hardly approximable [22] in the general setting, there are polynomial-time approximation
algorithms for some special cases. For instance, the Metric TSP [8] can be approximated in
polynomial time with a ratio of 3/2, and, for the Euclidean TSP, a polynomial-time approxi-
mation scheme [1] and a randomized asymptotically correct algorithm [14] are developed.

The vehicle routing problem (VRP) [10] deals with servicing a number of clients (cus-
tomers) with a fleet of vehicles. In the simplest case (which is also known as the Multiple
Traveling Salesmen Problem or the mTSP [3]), an instance of the VRP is defined by n client
locations and one dedicated location (depot). The goal is to find aminimum-cost set of vehicle
routes visiting every client only once so that any route starts and finishes at the depot. Surveys
of the recent results concerning polynomial-time approximation algorithms and heuristics
for several modifications of this problem can be found in [15,18,24].

The m-peripatetic salesmen problem (m-PSP) [11,17] is related to searching for several
edge-disjoint salesmen routes optimizing a given objective function (e.g. the total weight
of routes, maximum weight, etc.) As for the TSP, so the m-PSP is intractable and hardly
approximable in the general case, but, for theEuclidean case, polynomial-time asymptotically
correct algorithms are known [2,14].

Cycle covers of graphs are spanning subgraphs consisting of vertex-disjoint simple cycles
andmaybe isolated vertices. In [5,7], it is shown that cycle covers provide an efficient tool for
approximating the TSP, the VRP, and their modifications. Among others, L-cycle covers are
mostly discovered [4–7,20]. For a given subset L ⊂ N, a cycle cover is called L-cycle cover
if every containing cycle has the number of edges, which belongs to L . While computing
L-covers of the minimum (or maximum) weight is NP-hard [19], approximation results
for multiple restricted cases of the problem are known. For instance, the Min-k-UCC(1, 2)
problemwhere L = {k, k+1, . . .} and edgeweights restricted to 1 and 2, can be approximated
polynomially within a factor 7/6 for any k [6]. Further, in [20] it is shown that the Metric
Min-L-UCC problem, for any fixed L , is polynomial-time approximable within a constant
factor (depending on L).

We introduce the minimum-weight k-size cycle cover problem (Min-k-SCCP), which is
closely related to the Traveling Salesman, the Vehicle Routing, and the minimum L-cycle
cover problems. In contrast to the Min-L-UCC problem, we restrict not the length of cycles
covering the graph but the number of cycles (size of the cover) itself. Actually, for a fixed
natural number k and a given complete weighted digraph (with loops) G = (V, E, w), it is
required to find a minimum-weight cover of the set V by k vertex-disjoint cycles.
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We show that the Min-k-SCCP is strongly NP-hard and hardly approximable in general
case and remains intractable in the metric and Euclidean special cases. For the Metric Min-
k-SCCP, we propose a 2-approximation polynomial-time algorithm, whose approximation
ratio and running time do not depend on k. For the Euclidean Min-2-SCCP in the plane, we
present a polynomial-time approximation scheme, extending the result of Arora [1] obtained
for the Euclidean TSP.

2 Problem statement

We consider the following combinatorial optimization problem. For a fixed natural number
k and a given complete weighted digraph (with loops) G = (V, E, w), it is required to find
a minimum-weight cover of the set V by k vertex-disjoint cycles.

Let C be an arbitrary directed cycle in the digraph G. We denote sets of its nodes and
arcs by V (C) and E(C), respectively. The arcs of G are weighted by some weighting (cost)
functionw : E → R. Since the set E is finite, the weight functionw is defined by the matrix

W = (wi j ), (1 � i, j � n)

uniquely, so w(e) = wi j for any arc e = (i, j). The weight (cost) of a cycle C is defined by
the equation W (C) = ∑

e∈E(C) w(e).

Definition 1 Let C1, . . . ,Ck be vertex-disjoint simple (with no repeated vertices) directed
cycles in the graph G such that V (C1) ∪ · · · ∪ V (Ck) = V . The family C = {C1, . . . ,Ck}
is called a k-Size Cycle Cover (k-SCC) of the graph G. The weight W(C) of the cover C is
defined by equality W(C) = ∑k

i=1 W (Ci ).

The Minimum-weight k-size cycle cover problem (Min-k-SCCP) For a given complete
weighted digraph G = (V, E, w) with loops, it is required to find a cycle cover of the
graph G consisting of k cycles and having the minimum possible weight.

The Min-k-SCCP can be stated in the optimization form

W(C) = min
k∑

i=1

∑

e∈E(Ci )

w(e)

s.t.
k⋃

i=1
V (Ci ) = V,

V (Ci ) ∩ V (C j ) = ∅, ({i, j} ⊂ {1, . . . , k} = Nk).

Similarly to the Metric and Euclidean TSP, we consider special cases of the minimum-
weight k-size cycle cover problem, namely, the Metric Min-k-SCCP and the Euclidean Min-
k-SCCP.

In the Metric Min-k-SCCP, a weight function w satisfies the following constraints for any
1 ≤ i, j, l ≤ n:

(i) wi j ≥ 0,
(ii) wi j = w j i ,
(iii) wi i = 0,
(iv) wil + wl j ≥ wi j .

Further, we denote by Ḡ the undirected graph induced by G. It should be noted that the
weight of an arbitrary cycle cover does not depend on the orientation of the constituent
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cycles. Therefore, in the following sections, we carry out all the reasonings related to the
graph G in terms of cycle covers for the corresponding undirected graph Ḡ.

The Euclidean Min-k-SCCP is just a subclass of the Metric Min-k-SCCP, in which nodes
of the given graph G are points in d-dimensional space (for some d > 1), and edge weights
are Euclidean distances between the incident nodes.

3 Computational complexity of the Min-k-SCCP

This section contains the intractability results for both the general case of the Min-k-SCCP
and the the Metric and Euclidean special cases of the problem in question.

Theorem 1 The Min-k-SCCP, the Metric Min-k-SCCP and Euclidean Min-k-SCCP (in d-
dimensional space for some d > 1) are strongly NP-hard for any fixed k � 1.

Proof Obviously, Theorem 1 is valid for k = 1, since the Min-1-SCCP is equivalent to the
TSP, which is strongly NP-hard.

For an arbitrary k > 1, the main idea of the proof is as follows. We reduce the TSP to the
Min-k-SCCP by cloning the given TSP instance k times and spreading the obtained clones
apart. For the constructed instance of the Min-k-SCCP, we show that any its optimal solution
consists of copies of optimal solutions (minimum-weight Hamiltonian cycles) of the initial
TSP instance.

Indeed, let the TSP instance be given by a complete weighted undirected graph G =
(V, E, w), |V | = n, and

q =
∑

1�i< j�n

wi j + 1.

Consider the Min-k-SCCP instance defined by the complete weighted undirected graph
G ′ = (V ′, E ′, w′), which satisfies the following conditions

V ′ = V1 ∪ · · · ∪ Vk, Vl = {n(l − 1) + 1, n(l − 1) + 2, . . . , nl}, (1 � l � k).

For an arbitrary x ∈ Vk1 , y ∈ Vk2 and i ≡ x( mod n), j ≡ y( mod n), we define the
weight w′(e) of the edge e = {x, y} by the equation

w′(e) = wi j + q sign |k1 − k2|.
Hence, if k1 = k2, w′(e) = wi j ; otherwise, w′(e) > wi j . The reduction can be made in

polynomial time.
Let C∗ = {C∗

1 , . . . ,C
∗
k } be an optimal solution of the Min-k-SCCP (i.e., the minimum-

weight k-size cycle cover of the graph G). Each number l ∈ Nk corresponds to a number
k(l) ∈ Nk so that VC∗

i
= Vk(l). Since the criterion of the Min-k-SCCP is additive, cycle

Cl is the minimum-weight Hamiltonian cycle of the subgraph G ′(Vk(l)). Each subgraph of
this kind is isomorphic to the graph G according to the construction of the graph G ′. So an
arbitrary cycle Cl corresponds to an optimal solution of the initial TSP.

In order to reduce the Metric TSP to the Metric Min-k-SCCP or the Euclidean TSP to
the Euclidean Min-k-SCCP in polynomial time, one can easily modify the argument above.
Therefore, the metric and Euclidean special cases of the Min-k-SCCP are intractable as well.

�
Adapting the technique of [22] to the case of k-size cycle covers, it is easy to show that

the Min-k-SCCP has no polynomial approximation algorithms with any ratio of O(2n). In
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subsequent sections, we show that the Metric Min-k-SCCP and the Euclidean Min-k-SCCP
can be approximated with much higher accuracy.

4 Minimum spanning forest

We need the following standard definitions.

Definition 2 An acyclic graph consisting of k connected components is called a k-forest.

Definition 3 Any spanning subgraph F of the graphG, being a k-forest, is called a spanning
k-forest of the graph G. A spanning k-forest having the minimum weight is called a k-
minimum spanning forest (k-MSF) of the graph G.

Using a modification of Kruskal’s algorithm [9], we construct a k-minimum spanning
forest of the graph G.

Algorithm 1Modification of Kruskal’s algorithm
1: Start from the n-forest F consisting of isolated nodes;
2: For each i ∈ Nn−k the edge

ei = argmin{w(e) : F ∪ {e} is a forest}
add to F ;

3: The output is the constructed k-forest F∗ = F .

Assertion 1 Algorithm 1 is correct, and the resulting k-forest F∗ is a k-minimum spanning
forest (of the graph G)

Proof To prove that Algorithm 1 is valid, we need to show that the forest F∗ is k-MSF.
Evidently, F∗ is a k-forest by construction. To complete the proof, it is necessary to show
that the weight W (F∗) takes the minimum value among weights of k-forests.

Assume the contrary. Then, let (e1, . . . , en−k) be a sequence of the edges of F∗ ordered
according to their addition to the forest by Algorithm 1. For any k-MSF F , we denote by
h(F) the largest index such that e1, . . . , eh ∈ F . By construction,

w(eh+1) ≤ w( f ) ( f ∈ F\F∗). (1)

Suppose
F ′ = argmax{h(F) : F is a k-MSF}. (2)

By our assumption, h(F ′) < n − k. Consider the graph F ′ ∪ {eh+1}. There are two options.
Either this graph is acyclic or it has one simple cycle. We prove the second option, the first
one can be treated by analogy.

Let C be a simple cycle in the graph F ′ ∪ {eh+1}. Since F∗ is a forest, C has an edge
f ∈ F ′\F∗. Consider the graph F̃ = F ′ ∪ {eh+1}\{ f }. By construction, F̃ is a k-forest, and

W (F̃) = W (F ′) + w(eh+1) − w( f ) ≤ W (F ′),

by Eq. (1). Therefore, F̃ is a k-MSF. Further, h(F̃) > h(F ′) that violates the optimality of
F ′, see (2). Consequently, our initial assumption that F∗ is not a k-MSF is not valid. The
contradiction obtained completes the proof. �
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5 2-approximation algorithm for the Metric Min-k-SCCP

Definition 4 An r -approximation algorithm for an optimization problem is a polynomial-
time algorithm producing, for any instance I of the problem, a solution of value APP, which
is at most r times the optimum value OPT . The parameter r is called an approximation
guarantee and it is defined by the formula

r = sup
I

APP(I )

OPT(I )
,

where I is an instance of the optimization problem.

For the Metric Min-k-SCCP, we propose algorithm, which extends the 2-approximation
algorithm for the Metric TSP based on the preliminary construction of minimum spanning
tree for the given graph. W.o.l.g., we assume that n > k.

Algorithm 2 Polynomial-time 2-approximation algorithm
1: For the given graph G, construct a k-minimum spanning forest F applying algorithm 1;
2: Take all edges in F twice to transform all nonempty trees of F into Eulerian subgraphs;
3: For any obtained Eulerian subgraph, find a Eulerian cycle; then, transform all of them into Hamiltonian

cycles (using the standard procedure);
4: Output the constructed set of cycles augmented by the necessary number of loops.

Assertion 2 Algorithm 2 has a running time of O(n2 log n) and an approximation guarantee
r satisfying the inequality

2(1 − 2/n) ≤ r ≤ 2(1 − 1/n). (3)

Proof The running time of Algorithm 1 is upper-bounded by the running time of Kruskal’s
algorithm, which is O(|E | log |E |) [9]. In Algorithm 2, the running time of steps 2 and 3 is
O(|E |). Hence, the running time of Algorithm 2 is upper-bounded by O(n2 log n) for any
given complete graph G.

To prove the inequality in the right-hand side of (3), we consider an arbitrary minimum-
weight k-size cycle cover C of the graph G. Since k < n, C contains at least one nonempty
cycle1. We transform C into a spanning k-forest F by removing the most heavy edge from
any nonempty cycle. In what follows, we denote the weights of F and k-minimum spanning
forest by SF and byMSF, respectively. Then,

MSF � SF � OPT(1 − 1/n),

consequently,

APP � 2MSF � 2(1 − 1/n)OPT

and

r ≤ 2(1 − 1/n).

To prove the inequality in the left-hand side of (3), we consider the following instance of
theMin-2-SCCP (Fig. 1). LetG be a complete weighted graph without loops and n = 4p+2

1 We call a cycle C empty if C is a loop.
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Fig. 1 The instance of the Min-k-SCCP and 2-minimum spanning forest

Fig. 2 2-Approximation constructed by Algorithm 2 and the better approximation of the Min-2-SCCP

(for some p > 1). Among n vertices of the graph, there are two distinguished vertices s and
t . For any 1 ≤ i, l ≤ 2p and 2p + 1 ≤ j,m ≤ 4p such that i �= l and j �= m, the weighting
(cost) function w is defined by the equations:

(i) wsi = wt j = 1,
(ii) ws j = wti = 2 + ε,

(iii) wi j = 1 + ε,

(iv) wil = w jm = 2,
(v) wst = 3,

where ε ∈ (0, 1).
For this instance, the weight of any 2-minimum spanning forest F equals 4p (Fig. 1);

therefore, APP = 8p (Fig. 2). It is easy to verify that there are better ways to approximate
the given instance. One of such approximate solutions of weight 4 + 2(1 + ε)(2p − 1) is
presented in Fig. 2. Therefore,
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OPT ≤ 2 + 4p + 2ε(2p − 1).

Hence,

r ≥ sup
ε∈(0,1)

8p

2 + 4p + 2ε(2p − 1)
= 4p

1 + 2p
,

and, finally,

r ≥ 2(1 − 2/n).

�
It should be noted that approximation ratio bounds (3) and the running time of Algorithm 2

are independent of k. Therefore, Algorithm 2 can be considered as a 2-approximation algo-
rithm for the case of the Min-k-SCCP for which parameter k is given as a part of the input.

6 Polynomial-time approximation scheme

It is generally believed that a combinatorial optimization problem has a polynomial-time
approximation scheme (PTAS) if, for any fixed c > 1, there exists an algorithm finding a
(1 + 1/c)-approximate solution of the problem in time bounded by some polynomial of the
instance length. Generally speaking, the order and coefficients of this polynomial can depend
on c.

Further, we present a polynomial-time approximation scheme for the Euclidean Min-2-
SCCP in the plane.

6.1 Preliminary preprocessing of the instance considered

We start from the claim that, for any instance of the Euclidean Min-2-SCCP in the plane, one
of the following alternatives is valid; their verification can be conducted in polynomial time:

(i) the instance in question is decomposable into a pair of independent smaller instances of
the Euclidean TSP;

(ii) the maximum inter-node distance (diameter) of the instance has an upper bound depend-
ing on OPT linearly.

Our considerations are based on the well-known geometric Jung’s inequality [16] estab-
lishing the dependence between the diameter D of a bounded set in R

d and the radius R of
its circumscribed sphere:

1

2
D � R �

(
d

2d + 2

) 1
2

D.

Consequently, in the plane we have:

1

2
D � R �

√
3

3
D. (4)

For the instance given by the graph Ḡ (Fig. 3), we construct a 2-minimum spanning forest
F = {T1, T2}. We denote the weight of the forest F by MSF; the diameters of the trees T1
and T2 by D1 and D2. Also, we denote the radii of the circumscribed circles and the distance
between their centers by R1, R2, and ρ(T1, T2), respectively. Let D = max{D1, D2} and
R = max{R1, R2}.
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Fig. 3 Minimum spanning forest
{T1, T2} and circumscribed
circles

Assertion 3 For the given graph Ḡ, suppose that the lower bound

ρ(T1, T2) > 5R (5)

is valid. Then, an arbitrary minimum-weight 2-size cycle cover of the graph consists of the
minimum-weight Hamiltonian cycles for the subgraphs G(T1) and G(T2) induced by the trees
T1 and T2. Otherwise, the internode distances of the given instance can be upper-bounded
by

7
√
3

3
MSF �

7
√
3

3
OPT . (6)

Proof Let inequality (5) be valid for the given instance. Suppose C = {C1,C2} is aminimum-
weight 2-size cycle cover of the graph G. By contradiction, assume that some cycle contains
nodes from the both trees T1 and T2. W.l.o.g., we suppose that the equations

C1 ∩ T1 �= ∅, C1 ∩ T2 �= ∅, C2 ∩ T2 �= ∅, and C2 ∩ T1 = ∅

are valid2 (Fig. 4).
By assumption, the cycle C1 contains at least two edges e1 and e2 spanning T1 and T2. By

(5), the weights w(e1) and w(e2) are greater than 3R, simultaneously. Let us remove these
edges and close the cycles inside the circumscribed circles (for T1 and T2) (Fig. 4) To make
such a transformation, we should add three new edges (and remove one). Summarizing, the
total weight of the removed edges is greater than 6R and the total weight of the added edges
is at most 6R. Therefore, we construct a lighter 2-size cycle cover than C, which contradicts
the optimality of C.

Suppose the given instance violates (5). Then, the distance between any two nodes in the
graph G is at most 7R due to the triangle inequality. Applying the right-hand side of (4) and
taking into account the straightforward bound D � MSF � OPT , we have

R �
√
3

3
D �

√
3

3
OPT .

Therefore, the maximum internode distance of the graph G is upper-bounded by (6). �
As it follows from Assertion 3, for any instance of the Euclidean Min-2-SCCP satisfying

(5), a PTAS can be composed of PTASes for two smaller instances of the Euclidean TSP
defined by the subgraphs G(T1) and G(T2). Hereafter, we consider the special case of the
Euclidean Min-2-SCCP, which violates (5).

2 Other cases can be considered similarly.

123



74 J Glob Optim (2016) 66:65–82

Fig. 4 Cycle C1 has a nonempty intersection with both T1 and T2 and transformation of cycles

6.2 Main idea of the algorithm

The main idea of the proposed approximation scheme, similarly to Arora’s PTAS [1], is
based on randomized recursive partitioning of the bounding box of the given instance into
smaller squares and successive searching for the pair of closed tours satisfying the following
conditions:

(i) any node of the given graph is visited by some route and only once;
(ii) segments of the routes are continuous piece-wise linear curves and can cross the borders

of all squares only in predefined points called portals;
(iii) locations of the portals and the maximum count of crossings for each border-line of

the squares depend on parameter c;
(iv) the required pair of routes has the minimum weight among other pairs satisfying con-

ditions (i)–(iii).

Our proof of the polynomial-time approximation scheme for the Euclidean Min-2-SCCP
problem in the plane consists of the following stages.

1. First, in Sect. 6.3, we prove that, for any instance of the Euclidean Min-2-SCCP in the
plane and for any value of c > 1, an instance of a special kind (we call such an instance
well-rounded) can be assigned in such a way that any (1 + 1/c)-approximate solution
of the well-rounded instance induces an (1 + c1/c)-approximate solution of the initial
instance (for some independent constant c1 > 1); all these transformations can be carried
out in polynomial time.

2. Then, we describe (in Sect. 6.4) a randomized recursive partitioning procedure for the
axis-aligned square that contains the well-rounded instance of the Min-2-SCCP (we call
this square a bounding box).

3. Further, we prove (in Sect. 6.5) that, for the well-rounded instance, there exists an
(1+ 1/c)-approximate 2-size cycle cover satisfying the above conditions (i)–(iv) with a
probability at least 1/2.

4. Finally, using the dynamic programming approach and standard derandomization proce-
dure, we construct (in Sect. 6.6) the approximate solution mentioned above.
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6.3 Well-rounded problem

To approximate well the Euclidean Min-2-SCCP in the plane, it is sufficient to design an
efficient approximation algorithm for the special case of this problem, which is called a well-
rounded Euclidean Min-2-SCCP. In particular, any PTAS for the well-rounded Euclidean
Min-2-SCCP induces the corresponding PTAS for the general case with the same running-
time bound.

Definition 5 An instance of the Euclidean Min-2-SCCP in the plane is called well-rounded,
if the following conditions are valid:

(i) any node i of the input graph Ḡ has integral coordinates xi , yi ∈ N
0
O(n);

(ii) for each edge e ∈ E , w(e) � 4.

Lemma 1 Any PTAS for the well-rounded Euclidean Min-2-SCCP induces the appropriate
PTAS for the Euclidean Min-2-SCCP.

Proof Suppose some value c > 1 is fixed. To any instance of the Euclidean Min-2-SCCP in
the plane, we assign the appropriate well-rounded instance.

Let us take an arbitrary instance of the Min-2-SCCP [violating condition (5)]. We denote
the weights of a minimum-weight 2-size cycle cover and a 2-minimum spanning forest by
OPT andMSF, respectively. According to Assertion 3, there is an axis-aligned bounding box
for this instance with side-length

L = 7
√
3

3
MSF �

7
√
3

3
OPT .

We place an axis-aligned grid of granularity L/(2nc) and move any node to the nearest
grid-point. It should be noted that it is possible to map several nodes into the same grid-point,
and, therefore, to have a well-rounded instance with a smaller number of nodes. After this
transformation, every internode distance is changed at most by L/(nc). Also, the weight of
any 2-size cycle cover can be changed at most by L/c.

To obtain the grid of granularity 4, we scale the instance multiplying all the coordinates
by 8nc/L . We shift the origin to the left-bottom corner of the scaled bounding box. As a
result, the side-length of the bounding box becomes equal to O(nc) = O(n) for any fixed c.

By construction, the instance obtained is well-rounded. Further, consider an arbitrary 2-
size cycle cover C in the initial instance and the corresponding cover C′ in the well-rounded
one. We denote the weights of C and C′ by W and W ′, respectively. Then, the bound

8nc

L

(

W − L

c

)

� W ′ �
8nc

L

(

W + L

c

)

is valid.
Hereafter, OPT and OPT ′ stand for the weights of optimal solutions (minimum-weight

2-size cycle covers) of the appropriate instances. Let C′ be the approximate solution obtained
by PTAS for the well-rounded instance, i.e.

OPT ′ � W ′ �
(

1 + 1

c

)

OPT ′.

Taking into account that

OPT ′ �
8nc

L

(

OPT + L

c

)

,
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we have

8nc

L

(

W − L

c

)

� W ′ �
(

1 + 1

c

)

OPT ′ �
(

1 + 1

c

)
8nc

L

(

OPT + L

c

)

;
therefore,

W − L

c
�

(

1 + 1

c

)(

OPT + L

c

)

and, finally,

OPT � W �
(
7
√
3

3c2
+ 17

√
3

3c
+ 1

)

OPT .

�
6.4 Quadtree

We construct a geometric partition of the well-rounded Min-2-SCCP following the approach
introduced in [1].

Definition 6 For an instance of the Euclidean Min-2-SCCP given by a graph Ḡ, a bounding
box S is the smallest axis-aligned square containing Ḡ. The side-length L of S is some power
of two.

We construct a dissection of S into smaller squares using vertical and horizontal lines.
These lines are crossing the coordinate axes in integer-coordinate points with a step of length
1. By construction, every smallest-size square contains atmost one node of the given instance.

Further, we proceed with using of a 4-regular tree of a special kind known as a quadtree
[12]. In our case, the root of the tree is the bounding box S. Each non-leaf square in the
tree is partitioned into four equal child squares. This recursive partitioning stops on a square
containing at most one node (Fig. 5).

We define the levels of the squares of the constructed quadtree as follows. The bounding
box S is the unique square of the first level, its four children belong to the second level, and
so on. By construction, the quadtree contains O(n) leaves, O(log L) = O(log n) levels and
thus O(n log n) squares in all.

We refer to the point (L/2, L/2) as the centre point. This is the point of crossing of the
inner edges of the first level squares. We consider a quadtree with a centre point picked at
random in S.
Definition 7 Let a, b ∈ NL be constants. The quadtree with the centre point ((L/2 + a)

mod L , (L/2 + b) mod L), is called a shifted quadtree T (a, b).

For any level greater than 1, the corresponding squares of T (a, b) are considered modulo
L (Fig. 5). These squares are called wrapped-around.

In the next section, we show that, if the stochastic variables a and b defining the quadtree
T (a, b) are distributed uniformly in NL , then there exists a (1 + 1/c)-approximation of the
Euclidean Min-2-SCCP in the plane with a probability at least 1/2.

6.5 Structure theorem

To some parameter values m, r ∈ N, and any square S [a node in the quadtree T (a, b)], we
assign a regular partition of the border ∂S consisting of 4(m + 1) points including all the
corners of S (Fig. 6). We call this partition m-regular; its points are referred to portals.
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Fig. 5 The quadtree and the shifted quadtree

Fig. 6 Example of the 2-regular
partition

Definition 8 The union of m-regular partitions of borders for all nodes of the quadtree
T (a, b) (excluding the root) is called the m-regular portal set and is denoted by P(a, b,m).

Definition 9 Let C be an arbitrary simple cycle in the graph Ḡ in the plane. The closed
continuous piecewise linear route l(C) is called an (m, r)-approximation of the cycle C if

(i) l(C) bends only at points of V (C) ∪ P(a, b,m);
(ii) the nodes of V (C) are visited by l(C) in the same order as by C ;
(iii) for any side of anynode of T (a, b), the route l(C) crosses this side at points of P(a, b,m)

and at most r times.

We use a result of Arora [1], which for our purposes can be phrased as follows.

Theorem 2 (Structure Theorem) Let an instance of the well-rounded TSP in the plane be
given by the graph G, let L be the side-length of the bounding box S, and let constants c > 1
and η ∈ (0, 1) be fixed. If the stochastic variables a and b are distributed uniformly in NL

and the parameters m and r are defined by the formulas

m = �2s log L� , r = s + 4, and s = �36c/η � ,

then, for an arbitrary simple cycle C of weight W (C), there exists an (m, r)-approximation
l(C) of weight W (l(C)) � (1 + 1/c)W (C) with a probability at least 1 − η.

Following the seminal Arora’s idea to approximate Hamiltonian tours by portal-respecting
(m, r)-approximations, we define a similar construction for our problem.
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Fig. 7 Example of a cycle (m, r, 2)-cover

Definition 10 Let C = {C1, . . . ,Ck} be an arbitrary k-size cycle cover in the graph Ḡ,
and let l(Ci ) be some (m, r)-approximation of the cycle Ci . Then, the family L(C) =
{l(C1), . . . , l(Ck)} is called a cycle (m, r, k)-cover in the graph Ḡ.

Obviously, an arbitrary cycle (m, r, 1)-cover consists of the only bent Hamiltonian cycle.
We are interested in (m, r, 2)-covers (Fig. 7).

Theorem 3 Let a constant c > 1 be fixed, let L be the side-length of the bounding box S for
the given instance of the well-rounded Min-2-SCCP in the plane. If the discrete stochastic
variables a and b are distributed uniformly in NL and

m = O(c log L), r = O(c),

then, for the graph Ḡ, there exists a cycle (m, r, 2)-cover of weight at most (1 + 1/c)OPT
with a probability at least 1/2.

Proof Let C∗ = {C∗
1 ,C

∗
2 } be an optimal solution of the given instance of the well-rounded

Min-2-SCCP, for whichW (C∗
1 )+W (C∗

2 ) = OPT . By Theorem 2, for η = 1/4, an arbitrary
number i ∈ {1, 2} and parameter values

m = �2s log L� , r = s + 4, and s = �144c� ,

there exists an (m, r)-approximation l(C∗
i ) of weight

W (l(C∗
i )) � (1 + 1/c)W (C∗

i ) (7)

with a probability at least 1 − η = 3/4.
Then, due to the uniform distribution of variables a and b, (m, r)-approximations l(C∗

1 )

and l(C∗
2 ) satisfying inequality (7) exist simultaneously with a probability at least 1/2. This

implies that there exists a cycle (2,m, 2r)-cover L(C) = {l(C∗
1 ), l(C

∗
2 ))} such that
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Fig. 8 Example of an
(m, r, 2, S)-segment, κ = 2.
Lines of different styles represent
the parts of l1 and l2

W (l(C∗
1 )) + W (l(C∗

2 )) �
(

1 + 1

c

)

(W (C∗
1 ) + W (C∗

2 )) =
(

1 + 1

c

)

OPT

with a probability at least 1/2. �
6.6 Dynamic programming

For parameter valuesm = O(c log n) and r = O(c), we describe the dynamic programming
procedure for searching a cycle (m, r, 2)-cover L = {l1, l2} of minimum weight, with time
complexity of O(n(log n)O(c)).

Definition 11 A part of a cycle (m, r, 2)-cover belonging to some square S (a node of the
quadtree T (a, b)) and visiting all the nodes of the given graph Ḡ located inside the square S
is called an (m, r, 2, S)-segment of this cover.

The example of an (m, r, 2, S)-segment is represented in Fig. 8.
To describe the Bellman equation, we define the inner task, which is solved recursively

for each entry of the dynamic programming lookup table.

Inner Task (S, R1, R2, κ).
Input The square S is a node of the quadtree T (a, b). The cortege Ri : Nqi → (P(a, b,m)∩
∂S)2 defines a sequence of ordered pairs (sij , t

i
j ) of portals; i.e., the crossing-points of the

(m, r)-approximation li and the border ∂S. The number κ defines the number of (m, r)-
approximations that intersect the square S. If q1q2 > 0, then κ = 2; otherwise, κ ∈ {1, 2}.
OutputA (m, r, 2, S)-segment defined by the values of the input parameters of the minimum
weight W (S, R1, R2, κ).

Depending on the values of the input parameters, there are several cases of this Inner Task
listed below.

(i) The case of q1q2 > 0 seems to be regular. In this case, the resulting segment consists
of parts of both (m, r)-approximations l1 and l2.

(ii) The case of q1 �= 0, q2 = 0 (or q1 = 0, q2 �= 0) and κ = 1 is similar to the previous
one, except that all subroutes in the square S belong to the only (m, r)-approximation
(either l1, or l2).

(iii) In the case of q1 �= 0, q2 = 0 (or q1 = 0, q2 �= 0) and κ = 2, one of the generated
(m, r)-approximations is supposed to belong entirely to the square S. In this case, the
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resulting segment is constructed by augmenting the output of case (ii) by a closed
(m, r)-approximation located inside the square S.

(iv) If q1 = q2 = 0 and κ = 2, then l1 and l2 are supposed to belong to the square S, and
the output is a cycle (m, r, 2)-cover, which is located in the square S.

(v) Finally, if q1 = q2 = 0 and κ = 1, then it is necessary to find a (m, r)-approximation
of the minimum weight, which belongs entirely to the square S. This case is the same
as the TSP.

The Bellman equation Similarly to the Arora’s PTAS for the Euclidean TSP, our dynamic
programming procedure starts with leaves of the quadtree T (a, b). Let S be an arbitrary leaf
in the tree T (a, b). By construction, S contains at most one node of the graph Ḡ and, for any
input values of R1, R2, and the number κ , the Inner Task (S, R1, R2, κ) can be solved by
brute force in time of O(r).

Any other node (not a leaf) of the quadtree T (a, b) has four child nodes; denote them
by SI , . . . , SIV . According to the recursive assumption, for any entry of the lookup table
related to the square S, all possible instances of the Inner Task for squares SI –SIV should
be solved. The appropriate entries should be also filled.

Let us explain the recursive solution of the inner task (S, R1, R2, κ) for fixed values of
corteges R1, R2, and the parameter κ . LetP be a family ofmultisets P consisting of atmost 4r
portals (with their multiplicities) located at the inner sides of the child squares SI , . . . , SIV .

By the choice ofm and r , any such side hasm+2 portals, at which the side can be crossed
at most r times. Therefore, |P| = O((m + 2)4r ). To any multiset P ∈ P, we assign the set
ΣP of maps σ : P → Nq1+q2 . To each inner portal p ∈ P , each map σ assigns the ordered
pair

(s1σ(p), t
1
σ(p)), if σ(p) � q1,

(s2σ(p)−q1
, t2σ(p)−q1

), otherwise .

Consequently, the route-segment l1(s1σ (p), t1σ (p)) or l2(s2σ(p)−q1
, t2σ(p)−q1

) crossing one
of sides of the child squares at the portal p. In this case, we call such a portal p matched to
this route-segment. Since |P| � 4r and q1 + q2 � 4r the bound |ΣP | = O((2r)4r ), is valid.

To any route-segment li (si j , ti j ), we assign the set Λi j (σ ) consisting of permutations α

of the preimage multiset σ−1( j + (i − 1)q1) ⊂ P of the map σ . It is easy to show that
|Λi j (σ )| = O((4r)!).

Each triple τ = (P, σ, α) induces the instance quadruple of the inner tasks
(
(SI , RI

1 (τ ), RI
2 (τ ), κ I (τ )), . . . , (SIV , RIV

1 (τ ), RIV
2 (τ ), κ I V (τ ))

)

in such a way that

W (S, R1, R2, κ) = min
τ

∑I V

i=I
W (Si , Ri

1(τ ), Ri
2(τ ), κ i (τ )).

The solving time-complexity for the task (S, R1, R2, κ) has the upper bound

O((m + 2)4r (2r)4r (4r)!).
Finally, to construct a minimum-weight cycle (m, r, 2)-cover, we should find a solution

of the task (S, R0
1, R

0
2, 2), for empty corteges R0

1 and R0
2 .

To estimate the total running time of the constructed dynamic programming procedure,
we need an upper bound for the number of entries in the lookup table. It can be easily verified
that any node S of the quadtree T (a, b) is related to O(m+2)4r ways to choose a multiset of
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portals located at ∂S; any such multiset can be partitioned into pairs at most O((4r)!) times,
and any such partition can be assigned to routes l1 and l2 at most by O(22r ) ways. Taking
into account the total number O(L log L) of nodes (for the quadtree T (a, b)), we obtain an
upper time complexity bound for the pair (a, b)

O
(
L log L × (m + 2)8r ((4r)!)2(2r)4r × 22r

)
. (8)

Derandomization The dynamic programming procedure described above finds an approx-
imate solution of the well-rounded Min-2-SCCP for each pair a, b, which is related to the
quadtree T (a, b). We denote the weight of this solution by APP(a, b). It follows from The-
orem 3 that

P

(

APP(a, b) � (1 + 1

c
)OPT

)

� 1/2

for the probability measure induced by the distribution of a and b. Therefore, there exists a
pair (a∗, b∗) ∈ NL , for which the inequality

OPT � APP(a∗, b∗) � (1 + 1/c)OPT

is valid. Such a pair can be found by the exhaustive search in time O(L2). Taking into account
that m = O(c log n), r = O(c), and L = O(n), we have proved Theorem 4.

Theorem 4 The well-rounded Min-2-SCCP in the plane has a PTAS with time complexity of

O(n3(log n)O(c)). (9)

Using Lemma 1, we obtain our main result.

Theorem 5 The Euclidean Min-2-SCCP in the plane has a PTAS with a time complexity of
(9).

Remark 1 It follows from (8) that the time complexity of the proposedPTAS for theEuclidean
Min-2-SCCP coincides with the complexity of the PTAS from [1] for the Euclidean TSP up
to the constant factor 2O(c).

7 Conclusion

For any fixed k � 1, we proved the intractability of the Min-k-SCCP and its two special
cases, the Metric Min-k-SCCP and the Euclidean Min-k-SCCP.

For theMetricMin-k-SCCP, the 2-approximation polynomial-time algorithm is proposed.
For the Euclidean Min-2-SCCP in the plane, the polynomial-time approximation scheme is
developed.

While the obtained results imply that the Metric Min-k-SCCP belongs to APX, and the
Euclidean Min-2-SCCP belongs to PTAS complexity classes, several issues remain open. In
particular, we are interested in constructing approximation algorithms for the Metric Min-k-
SCCP with improved approximation ratios. Also, we hope that the presented PTAS can be
extended to the Euclidean Min-k-SCCP for any k > 2 and any dimension d > 2.

Acknowledgments This work was supported by the Russian Science Foundation under Grant No. 14-11-
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