
J Glob Optim (2016) 66:331–382
DOI 10.1007/s10898-015-0384-2

Delaunay-based derivative-free optimization via global
surrogates, part I: linear constraints

Pooriya Beyhaghi1 · Daniele Cavaglieri1 ·
Thomas Bewley1

Received: 31 March 2015 / Accepted: 4 November 2015 / Published online: 13 November 2015
© Springer Science+Business Media New York 2015

Abstract A new derivative-free optimization algorithm is introduced for nonconvex func-
tions within a feasible domain bounded by linear constraints. Global convergence is
guaranteed for twice differentiable functions with bounded Hessian, and is found to be
remarkably efficient even for many functions which are not differentiable. Like other
Response Surface Methods, at each optimization step, the algorithm minimizes a metric
combining an interpolation of existing function evaluations and a model of the uncertainty
of this interpolation. By adjusting the respective weighting of these two terms, the algorithm
incorporates a tunable balance between global exploration and local refinement; a rule to
adjust this balance automatically is also presented. Unlike other methods, any well-behaved
interpolation strategy may be used. The uncertainty model is built upon the framework of a
Delaunay triangulation of existing datapoints in parameter space. A quadratic function which
goes to zero at each datapoint is formed within each simplex of this triangulation; the union
of each of these quadratics forms the desired uncertainty model. Care is taken to ensure
that function evaluations are performed at points that are well situated in parameter space;
that is, such that the simplices of the resulting triangulation have circumradii with a known
bound. This facilitates well-behaved local refinement as additional function evaluations are
performed.

Keywords Derivative-free optimization · Surrogate functions · Delaunay triangulation ·
Linear constraints

B Pooriya Beyhaghi
pbeyhagh@ucsd.edu

Daniele Cavaglieri
dcavagli@ucsd.edu

Thomas Bewley
bewley@ucsd.edu

1 Flow Control Lab, University of California, San Diego, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-015-0384-2&domain=pdf

332 J Glob Optim (2016) 66:331–382

1 Introduction

In this paper, a newderivative-free optimization algorithm is presented tominimize a (possibly
nonconvex) function subject to linear constraints on a bounded feasible region in parameter
space1:

minimize f (x)with x ∈ L = {x |Ax ≤ b}, (1a)

where x ∈ R
n , f : R

n → R, A ∈ R
m×n , b ∈ R

m , and L is assumed to be bounded. A special
case of this problem, with simpler “box” constraints, is also considered:

minimize f (x)with x ∈ L box = {x |a ≤ x ≤ b}, (1b)

where a, b ∈ R
n . The algorithm developed here is extended in Part II of this study to handle

more general convex constraints on the feasible region of parameter space. Derivative-free
algorithms are well suited for such problems even if neither the derivative of f (x) nor its
accurate numerical approximation is readily available, as is the casewhen f (x) is nonsmooth.
This is common in situations in which the function f (x) is derived either from an experiment
or from many types of numerical simulations.

An important class of derivative-free algorithms, dating back to the 1960s, is Direct Search
Methods, as reviewed in [19]. An early and famous algorithm in this class is the Nelder–Mead
simplex algorithm, variations of which are implemented in several numerical optimization
packages. Thismethod is examined in, e.g., [33]. Another category ofDirect SearchMethods,
called Adaptive Direction Search Algorithms, includes the Rosenbrock [29] and Powell
[28] methods. More modern methods in this class, dubbed Pattern Search Methods, are
characterized by a series of exploratory moves on a regular pattern of points in parameter
space called a lattice (often, the Cartesian grid is used); the Generalized Pattern Search (GPS)
is a typical example. The efficiency and convergence of such algorithms is examined in [34]
and [37].

In general, Direct Search Methods identify a local minimum of a function from some
initial guess in parameter space. The harder problem of attempting to identify accurately the
global minimum of a nonconvex function f (x), with as few function evaluations as possible,
is an issue of significant interest.

Response Surface Methods employ an underlying (inexpensive-to-compute, differen-
tiable) model of the actual (expensive-to-compute, possibly nondifferentiable) function of
interest in order to summarize the trends evident in the available datapoints, at which the
function has already been evaluated, over the entire feasible region in parameter space as
the iteration proceeds. The Trust Region method is one of the first optimization algorithms
appearing in the literature which uses such a model; however, the model used by this method
does not use all of the available datapoints at each step. Other Response Surface Methods,
such as the Expected Improvement algorithm [31], typically use all available datapoints to
build an inexpensive and useful model (often called a “surrogate”) of the actual function
of interest. An insightful review of global optimization methods based on such surrogate
functions is given by [17].

The most popular surrogate function used in such global optimization schemes is the
Kriging method [18,24,30], which inherently builds both an estimate of the function itself,
p(x), as well as a model of the uncertainty of this estimate, e(x), over the entire feasible
domain of parameter space. With this interpolation strategy, the function is modeled as a
Gaussian random variable at every point within the feasible domain of parameter space. This

1 Taking a and b as vectors, a ≤ b implies that ai ≤ bi ∀i .

123

J Glob Optim (2016) 66:331–382 333

stochasticmodel is constructed carefully, such that the variance of the randomvariable is zero,
and the expected value of the random variable is equal to the (known) function value at each
datapoint available in parameter space. Away from the datapoints, the expected value of the
random variable in the Kriging model effectively interpolates the known function values, and
the variance of the random variable is greater than zero, effectively quantifying the distance
in parameter space to the nearest available datapoints. As eloquently described in [17], the
estimate p(x) and the uncertainty of the estimate, e(x), provided by this model may be used
together to identify a point in the feasible domainwith a high probability of a reduced function
value. A particularly efficient algorithm for global optimization is the SurrogateManagement
Framework (SMF; see [4]), which combines the Expected Improvement algorithm with a
Generalized Pattern Search. This algorithm was significantly extended in [3], in which the
search is coordinated by a lattice derived from a dense sphere packing, with significantly
improved uniformity of grid points over parameter space as compared with the Cartesian
grid, in order to accelerate convergence.

TheKriging interpolation strategy has various shortcomings, themost significant of which
is the numerical stiffness of the computational problem of fitting the Kriging model to the
datapoints, and the subsequent inaccuracy of this fit. This problem is exacerbated when there
are many datapoints available, some of which are clustered in a small region of parame-
ter space, as illustrated in “Appendix”. Furthermore, both the computation of the Kriging
interpolant itself, as well as the minimization over the feasible region of parameter space of
the search function based on this interpolant, are nonconvex optimization problems; both of
these problems must be solved with another global optimization algorithm, which represents
a sometimes significant computational expense.

As discussed above, modern Response Surface Methods need both an estimate of the
function itself as well as a model of the uncertainty of this estimate over the entire feasible
domain of parameter space. Most interpolation methods, other than Kriging, don’t provide
this. For the specific case of interpolation with radial basis functions, an uncertainty function
has been proposed and used by [14].

The Response Surface Method proposed in this work is innovative in the way it facilitates
the use of any well behaved interpolation strategy that the user might favor for the particular
problemunder consideration. [In the presentwork, our numerical examples use polyharmonic
spline interpolation, which is reasonably well behaved even when the available datapoints are
clustered in various regions of parameter space; this interpolation strategy is fairly standard,
though other interpolation schemes could easily be used in its place.] To accomplish this,
the present work proposes an artificially-generated function modeling the “uncertainty” of
the interpolant based on the distance to the nearest datapoints. This uncertainty model is
built directly on the framework of a Delaunay triangulation of the available datapoints in
parameter space.

The structure of the paper is as follows. Section 2 discusses how the present algorithmmay
be initialized. Section 3 then proposes a simple strawman form of the algorithm based on the
present ideas, laying out the essential elements of the final algorithm and analyzing its various
properties, including a proof of convergence under the conditions that (a) the underlying
function of interest f (x) has bounded Lipschitz norm, and (b) the maximum circumradii
of the simplicies in the triangulations are bounded as the algorithm proceeds. This simple
strawman form of the optimization algorithm, however, fails to ensure condition (b). Section
4 modifies the strawman form of the optimization algorithm proposed previously by, when
necessary, adjusting the points in parameter space at which new function evaluations are
performed, thereby ensuring condition (b). Section 5 presents a rule to adjust the parameter
which tunes the balance between global exploration and local refinement as the iteration

123

334 J Glob Optim (2016) 66:331–382

proceeds. Section 6 addresses how the algorithm may be modified to run efficiently using
parallel computations. In Sect. 7, the algorithm proposed is applied to a select number of test
functions in order to illustrate its behavior. Some conclusions are presented in Sect. 8.

2 Initialization

The optimization algorithm developed in this paper is initialized as follows:

Algorithm 1 (A) perform function evaluations at all of the vertices of the feasible domain
L,

(B) remove all redundant constraints from the rows of Ax ≤ b, and
(C) project out any equality constraints implied by multiple rows of Ax ≤ b; in other

words, we project the feasible domain onto the lower dimensional space that satisfies
the equality constraints.

This algorithm will be described in detail in the remainder of Sect. 2. The optimiza-
tion algorithm developed in later sections then builds a Delaunay triangulation within
the convex hull of the available function evaluations, which coincides with the feasible
domain itself, and incrementally updates this Delaunay triangulation at each new dat-
apoint (that is, at each new feasible point x ∈ L at which f (x) is computed as the
iteration proceeds). This approach is justified by the following result, which is proved in
[1]:

Theorem 1 The convex hull of the vertices of a bounded domain L constrained such that
Ax ≤ b is equivalent to the domain L itself.

Due to the simplicity of step (A) of Algorithm 1, this step is recommended for most low-
dimensional problems. In high-dimensional problems bounded by many linear constraints,
however, the feasible domain might have a lot of vertices, and it might be unnecessarily
expensive to follow such an approach; in such cases, Part II of this work demonstrates how
this initialization step may be cleverly sidestepped.

In the case of box constraints, (1b), step (A) of Algorithm 1 corresponds to 2n function
evaluations which are trivial to enumerate.

In the more general case of linear constraints, (1a), identifying the vertices of the feasible
domain is slightly more involved. We proceed as follows:

Definition 1 The active set of the constraints Ax ≤ b at a given point x̂ ∈ Rn in parameter
space, denoted Aa(x̂) x̂ = ba(x̂), is given by those constraints (that is, by those rows of Ax ≤ b)
that hold with equality at x̂ . A feasible point x̂ (satisfying Ax̂ ≤ b) is called a vertex of the
feasible domain (that is, the set of all x ∈ R

n such that Ax ≤ b) if rank(Aa(x̂)) = n.

A simple brute-force method to find all of the vertices of the feasible domain then follows:

(1) Check the rank of all
(m
n

)
n× n linear systems that may be chosen from the m > n rows

of Ax ≤ b.
(2) For those linear systems in step 1 that have rank n, solve Aa(x̂) x̂ = ba(x̂).
(3) For each solution found in step 2, check to see if Ax̂ ≤ b; if this condition holds, it is a

vertex.

The set of points thus generated is then scrutinized to eliminate duplicates. This brute-force
method is tractable only in relatively low-dimensional problems (note thatmost problems that

123

J Glob Optim (2016) 66:331–382 335

are viable candidates for derivative-free optimization are, in fact, fairly low-dimensional).
The number of vertices is typicallymuch less than the number of linear systems considered by
this method; for example, m = 20 constraints in n = 10 dimensions requires us to examine
184, 756 n × n matrices in step 1, and would typically result in roughly M ∼ O(103)
vertices.

Finding the M vertices of an n-dimensional polyhedron is a well-known problem in
convex analysis; see, e.g., [2,22] and [23]. These papers suggest a somewhat more involved
yet significantly more computationally efficient iterative procedure, based on the simplex
method, to find the vertices of the feasible domain in problems that are high-dimensional
and/or have many linear constraints. With this approach, a pivot operation is used to move
from one vertex of the feasible domain to its neighbors (the vertex v1 and v2 are called
neighbors if their active sets differ in exactly one row). The number of linear solves required
by this approach is O(nM).

Step (B) of Algorithm 1 then removes all redundant constraints given by the redundant
rows of Ax ≤ b. Each row of Ax ≤ b is checked at each vertex of the feasible domain.
Those rows that are not satisfied as equalities at at least n distinct vertices are eliminated, as
they do not play a role in defining an (n−1)-dimensional face of the feasible domain. Of the
rows that remain, the rows of the augmented matrix

[
A b
]
that are multiples of other rows

are also eliminated, as they define identical faces.
Finally, step (C) of Algorithm 1 projects out all equality constraints in the problem for-

mulation, as algorithms for the construction of an n-dimensional Delaunay triangulation will
encounter various problems if the feasible domain actually has dimension less than n. In
the case of (1a), equality constraints may easily be found and projected out, resulting in a
lower-dimensional optimization problem. To illustrate, consider {x1, x2, . . . , xM } as the set
of vertices of the feasible domain of x , computed as described above. Define the n× (M −1)
matrix C as follows:

C = [(x1 − x2) (x1 − x3) · · · (x1 − xM)
]
. (2)

The rank r of the matrix C is the rank of the optimization problem at hand. If r < n, there
are one or more equality constraints to contend with. In this case, taking the reduced QR
decomposition C = QR, the r linearly-independent columns of Q provide a new basis in
which the optimization problemmay bewritten. Defining x = x1+Q x , a new r -dimensional
optimization problem is posed in the space of x ∈ Rr , and the feasible domain of x is defined
by (AQ)x ≤ b − Ax1.

3 Strawman form of algorithm

Algorithm 2 Prepare the problem for optimization by executing Algorithm 1, as described
in Sect. 2. Assume that the resulting optimization problem is n dimensional, and that the
feasible domain L has M vertices. Then, proceed as follows:

0. Take the set of initialization points S0 as all M of the vertices of the feasible domain L
together with one or more user-specified points of interest on the interior of L. Evaluate
the function f (x) at each of these initialization points. Set k = 0.

1. Calculate (or, for k > 0, update) an appropriate interpolating function pk(x) through
all points in Sk .

123

336 J Glob Optim (2016) 66:331–382

2. Calculate (or, for k > 0, update) a Delaunay triangulation Δk over all of the points in
Sk .2

3. For each simplex Δk
i of the triangulation Δk:

a. Calculate the circumcenter zki and the circumradius rki of the simplex Δk
i .

b. Define the local uncertainty function

eki (x) = (rki)2 − ‖x − zki ‖2. (3)

c. Define the local search function

ski (x) = pk(x) − K eki (x). (4)

d. Minimize the local search function ski (x) within Δk
i .

4. Find the smallest of all of the local minima identified in step 3d. Evaluate f (x) at this
new datapoint xk , and set Sk+1 = Sk ∪ {xk}. Increment k and repeat from step 1 until
convergence.

The local uncertainty functions eki (x)model the uncertainty in the unexplored regions within
each simplex of the triangulation Δk at step k. As discussed in Sect. 3.1, the union of
these simplices coincides precisely with feasible domain of parameter space. The global
uncertainty function ek(x) and the global search function sk(x) are defined over the
feasible domain as eki (x) and ski (x), respectively, within each simplex Δk

i . Note that e
k(x)

reaches zero by construction at each datapoint, and ek(x) reaches a maximum within each
simplex as far from all of the available datapoints as possible; it is shown in Sect. 3.2 that
ek(x) is Lipschitz. In Sect. 3.3, a method of simplifying the searches performed in step 3d
of Algorithm 2 is discussed.

The (single, constant) tuning parameter K specifies the trade-off in Algorithm 2 between
global exploration (which is emphasized for large K) and local refinement (which is empha-
sized for small K). In Sect. 3.4, global convergence of Algorithm 2 is proved for functions
f (x) with bounded Lipschitz norm, assuming sufficiently large K and boundedness of the
circumradii of the triangulation generated by Algorithm 2. In Sect. 4, a small but technically
important modification of the Algorithm 2 is introduced which guarantees boundedness of
the circumradii of the triangulation generated as the iteration proceeds.

3.1 Characterizing the triangulation

The uncertainty function in Algorithm 2 is built on the framework of a Delaunay triangulation
of the feasible domain with, in a certain sense, maximally regular simplices, which we now
characterize.

Definition 2 Consider the (n + 1) vertices V0, V1, . . . , Vn ∈ R
n such that the vectors

(V0−V1), (V0−V2), . . . , (V0−Vn) are linearly independent. The convex hull of these vertices
is called a simplex (see, e.g., [5, p. 32]). Associated with this simplex, the circumcenter z
is the point that is equidistant from all n + 1 vertices, the circumradius r is the distance
between z and any of the vertices Vi , and the circumsphere is the set of all points within a
distance r from z.

Lemma 1 For any simplex, the circumcenter is unique.

2 Delaunay triangulations always exist, but are not necessarily unique. This algorithm builds on a Delaunay
triangulation at each step, even if it is not unique. If a different Delaunay triangulation is used at a given step
k, a different point xk will be found, but the convergence properties are unaffected.

123

J Glob Optim (2016) 66:331–382 337

Proof Assume z is equidistant from V0, . . . , Vn , i.e.

‖V0 − z‖ = ‖V1 − z‖ = · · · = ‖Vn − z‖
For i = 1, . . . , n, simplification leads to:

V 2
0 − 2V T

0 z = V 2
i − 2V T

i z

⇒ 2 (V0 − Vi)
T z = V 2

0 − V 2
i .

Thus, z is equidistant from all vertices if

2

⎡

⎢
⎣

(V0 − V1)T

...

(V0 − Vn)T

⎤

⎥
⎦ z =

⎡

⎢
⎣

V 2
0 − V 2

1
...

V 2
0 − V 2

n

⎤

⎥
⎦ . (5)

This system has a unique solution if the matrix on the LHS is nonsingular; which follows
from the linear independence of (V0 − V1), (V0 − V2), . . . , (V0 − Vn) in Definition 2.
�
The two following definitions are taken from [12].

Definition 3 If S is a set of points in R
n , a triangulation of S is a set of simplices whose

vertices are elements of S such that the following conditions hold:

– Every point in S is a vertex of at least one simplex in the triangulation. The union of all
of these simplices fully covers the convex hull of S.

– The intersection of two different simplices in the triangulation is either empty or a k-
simplex such that k = 0, 1, . . . , n− 1. For example, in the case of n = 3 dimensions, the
intersection of two simplices (in this case, tetrahedra) must be an empty set, a vertex, an
edge, or a triangle.

Definition 4 A Delaunay triangulation is a triangulation (see Definition 3) such that the
intersection of the open circumsphere around each simplex with S is empty. This special
class of triangulation, as compared with other triangulations, has the following properties:

– The maximum circumradius among the simplices is minimized.
– The sum of the squares of the edge lengths weighted by the sum of the volumes of the

elements sharing these edges is minimized.

Delaunay triangulations exhibit an additional property which makes them essential in Algo-
rithm 2. By the definitions of eki (x) and ek(x) above, it follows that eki (x) = ek(x) within
the simplex Δk

i . The following may be established if the triangulation Δk is Delaunay:

Lemma 2 Assume the triangulationΔk is Delaunay. For any i and any feasible point x ∈ L,
ek(x) ≥ eki (x).

Proof By Theorem 1 and Definition 3, since x ∈ L , a simplex Δk
j exists which contains

x (that is, x ∈ Δk
j). We must show that, for all i
= j , eki (x) ≤ ekj (x). By construction,

ekj (x) = 0 at the vertices of simplex Δk
j ; since the triangulation is Delaunay (see Definition

4), these vertices are not inside the circumsphere of the simplex Δk
i . Thus, e

k
i (x) ≤ 0 at the

vertices of simplex Δk
j . It follows simply from the definition of eki (x) that, for all x ∈ L ,

eki (x) − ekj (x) = (rki)2 − (rkj)
2 − |zki |2 + |zkj |2 + 2(zki − zkj)

T x;
that is, eki (x) − ekj (x) is a linear function of x . Since eki (x) − ekj (x) ≤ 0 at the vertices of

simplex Δk
j , it follows that e

k
i (x) − ekj (x) ≤ 0 everywhere within simplex Δk

j .
�

123

338 J Glob Optim (2016) 66:331–382

Remark 1 Lemma 2 holds only for Delaunay triangulations, not arbitrary triangulations.
Lemma 2 is used in Sect. 3.3 to simplify the searches performed in step 3d of Algorithm 2.

Remark 2 In step 3a of Algorithm 2, linear systems of the form given in (5) must be solved in
order to find the circumcenter of each simplex. The use of Delauney triangulations improves
the accuracy of these numerical solutions. If the ratio between the circumradius and the
maximum distance between two edges of a simplex is large, this system is ill conditioned.
Delaunay triangulations (see Definition 4) minimize the maximum circumradius of the sim-
plices in the triangulation, thereby minimizing the worst-case ill conditioning of the linear
systems of the form given in (5) that need to be solved.

The determination of Delaunay triangulations is a benchmark problem in computational
geometry, and a large number of algorithms have been proposed; extensive reviews are given
in [9] and [12].Qhull (used byMatlab andMathematica, see [39]),Hull (see [40]), andCGAL-
DT (see [41]) are among themost commonly-used approaches today for computingDelaunay
triangulations in moderate dimensions. In the present work, a Delaunay triangulation must
be performed over a set of initial evaluation points, then updated at each iteration when
a new datapoint is added. Hence, the incremental method originally proposed in [36] is
particularly appealing. The New-DT and Del-graph algorithms (see [6] and [7]) are the
leading, memory-efficient implementations of this incremental approach; the present work
implements the Del-graph algorithm.

The most expensive step of Algorithm 2, apart from the function evaluations, is the mini-
mization of skj (x) (in step 3d) in each simplex Δk

j . The cost of this step is proportional to the
total number of simplices S in the Delaunay triangulation. As derived in [25], a worst-case
upper bound for the number of simplices in a Delaunay triangulation is S ∼ O(N

n
2), where

N is the number of vertices and n is the dimension of the problem. As shown in [10] and
[11], for vertices with a uniform random distribution, the number of simplices is S ∼ O(N).

3.2 Smoothness of the uncertainty

We now characterize precisely the smoothness of the uncertainty function proposed in Algo-
rithm 2.

Lemma 3 The function ek(x) is C0 continuous.

Proof Consider a point x on the boundary between two different simplices Δk
i and Δk

j with

circumcenters zki and zkj and local uncertainty functions eki (x) and ekj (x). By Definition 3,

the intersection of Δk
i and Δk

j , when it is nonempty, is another simplex of lower dimension,

denoted here simply as Δ. The projection of zki and zkj on the lower-dimensional hyperplane
that contains Δ is by construction its circumcenter, denoted here as z. Thus, the lines from
zki to z and from zkj to z are perpendicular to the simplex Δ. Now consider xΔ as one of the

vertices of the simplex Δ. Some trivial analysis of the triangles zki − x − z and zki − xΔ − z
give:

eki (x) = ‖zki − xΔ‖2 − ‖zki − x‖2,
‖zki − xΔ‖2 = ‖zki − z‖2 + ‖z − xΔ‖2,
‖zki − x‖2 = ‖zki − z‖2 + ‖z − x‖2.

Combining these three equations gives

eki (x) = ‖z − xΔ‖2 − ‖z − x‖2.

123

J Glob Optim (2016) 66:331–382 339

0
0.2

0.4
0.6

0.8
1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

Fig. 1 The uncertainty function ek (x) over two neighboring simplices in two dimensions

By similar reasoning, we obtain

ekj (x) = ‖z − xΔ‖2 − ‖z − x‖2.
Hence, eki (x) = ekj (x) for all x ∈ Δ (that is, at the interface of simplices Δk

i and Δk
j).
�

The continuity of ek(x) is illustrated in 2D in Fig. 1, where two neighboring simplices
(triangles) with vertices {(0.2, 0), (0, 1), (1, 1)} and {(0, 1), (1, 1), (0.5, 2)} are repre-
sented.

We now establish a stronger property, that the uncertainty function is Lipschitz.

Lemma 4 The function ek(x) generated byAlgorithm2 at the kth iteration is Lipschitz within
the convex polyhedron L, with a Lipschitz constant of rkmax , where rkmax is the maximum
circumradius of the triangulation Δk .

Proof We first show that ek(x) is Lipschitz inside each simplex; we then show that ek(x) is
Lipschitz everywhere.

Assume first that x1 and x2 are inside the simplex Δk
i , with circumcenter zki and circum-

radius rki . By (3), we have

ek(x1) − ek(x2) = ‖x2 − zki ‖2 − ‖x1 − zki ‖2.
Now, assume that z∗ is a projection of zki along the line from x1 to x2, and that xM is the
midpoint between x1 and x2. It follows that

| ‖x2 − zki ‖2 − ‖x1 − zki ‖2 | = | ‖x2 − z∗‖2 − ‖x1 − z∗‖2 |
= 2 ‖z∗ − xM‖‖x1 − x2‖.

Since

‖z∗ − xM‖ ≤ max
(‖z∗ − x1‖, ‖z∗ − x2‖

) ≤ rki ,

we have

|ek(x1) − ek(x2)| ≤ 2 rki ‖x1 − x2‖. (6)

Thus, the uncertainty function ek(x) is Lipschitz inside each simplex.

123

340 J Glob Optim (2016) 66:331–382

In order to prove that ek(x) is Lipschitz over the entire feasible domain L , consider now
x1 and x2 as two arbitrary points inside L , and define a series of points t1, t2, . . . , tm on the
line segment between x1 to x2 such that t1 = x1 and tm = x2, and such that each couple
(ti , ti+1) lies within the same simplex, with circumradius ri . In other words, each point ti for
1 < i < m must be at the interface between two neighboring simplices along the line from
t1 = x1 to tm = x2. In this framework, we have

|ek(x1) − ek(x2)| ≤
m−1∑

i=1

|ek(ti) − ek(ti+1)|.

Since ti and ti+1 are in the same simplex, (6) gives

|ek(ti) − ek(ti+1)| ≤ 2 rki ‖ti − ti+1‖.
Since t1, t2, . . . , tm lie along the same line, we have

‖t1 − tm‖ =
m−1∑

i=1

‖ti − ti+1‖.

Combining these three equations, we have

|ek(x1) − ek(x2)| ≤ 2 max
1≤i≤m−1

(rki) ‖x1 − x2‖
≤ 2 rkmax ‖x1 − x2‖.

�
3.3 Minimizing the search function

At iteration k ofAlgorithm2, the search function sk(x) = pk(x)−Kek(x)must beminimized
over x ∈ L . Recall that, within each simplexΔk

i in the triangulation, the uncertainty function
ek(x) is defined by ski (x) = pk(x) − Keki (x) for x ∈ Δk

i . In order to minimize sk(x) over
the entire feasible domain L , the minima xkmin,i must first be found within each simplex Δk

i
as follows:

xkmin,i = argminx∈Δk
i
ski (x); (7a)

the global minimum xkmin = argminx∈Lsk(x) is then given by xkmin = xkmin,imin
where

imin = argmini∈{1,...,Sk }
[
ski

(
xkmin,i

)]
, (7b)

where Sk is the number of simplices in the triangulation Δk . In other words, in order to
find xkmin, we must first solve Sk nonconvex optimization problems with linear constraints
x ∈ Δk

i . This computational task is significantly simplified by following result.

Lemma 5 If the linear constraints x ∈ Δk
i in the optimization problems defined in (7a) are

relaxed to the entire feasible domain, x ∈ L, the resulting value of xkmin remains unchanged.

Proof By Lemma 2, for any feasible point x ∈ L and for any i such that 1 ≤ i ≤ Sk ,
ek(x) ≥ eki (x). More precisely,

ek(x) = max
i∈{1,...,Sk }

[
eki (x)

]
.

123

J Glob Optim (2016) 66:331–382 341

Since K is a positive real number,

sk(x) = pk(x) − K ek(x) = min
i∈{1,...,Sk }

[
pk(x) − K eki (x)

]
.

By the definition of xkmin

sk(xkmin) = min
x∈L

[
sk(x)

]
.

Combining the above equations and swapping the order of the minimization gives

sk(xkmin) = min
x∈L min

i∈{1,...,Sk }

[
p(x) − K eki (x)

]

= min
i∈{1,...,Sk }

min
x∈L

[
p(x) − K eki (x)

]
.

It can be observed that minx∈L [p(x) − K eki (x)] is just the optimization problem (7a) with
the linear constraint x ∈ Δk

i relaxed to x ∈ L; thus, when this constraint is relaxed in this
manner in (7), the resulting value of sk(xkmin) remains unchanged.
�

At each iteration k, we thus seek to minimize the local search function ski (x) for x ∈ L for
each i ∈ {1, . . . , Sk}; if for a given i the minimizer of ski (x) lies outside ofΔ

k
i , that minimizer

is not the global minimum of sk(x). Hence, we may terminate and reject any such search as
soon as it is seen that the minimizer of ski (x) lies outside of Δk

i .
Using a local optimization method with a good initial guess within each simplex, the

local minimum of ski (x) within the simplex Δk
i , if it exists, can be found relatively quickly.

For the smooth local search functions ski (x) we use in the present work, we have analytic
expressions for both the gradient and the Hessian; these expressions play a valuable role in
the local minimization of these functions.

Recall that the local search functions ski (x) considered in Algorithm 2 are linear com-
binations of the local uncertainty functions eki (x) and the user’s interpolation function of
choice, pk(x). The local uncertainty function eki (x) is a quadratic function whose gradient
and Hessian are

∇eki (x) = −2 (x − xsi), ∇2eki (x) = −2 I.

For the polyharmonic spline interpolation method used in the present numerical implemen-
tation, analytical expressions for the gradient and Hessian of the interpolation function are
derived in the appendix. If a different interpolation strategy is used, for the purpose of the
following discussion, we assume that analytical expressions for the gradient and the Hessian
of the interpolation function are similarly available.

In order to locally minimize the function ski (x)within each simplex, a good initial guess of
the solution is valuable. To generate such an initial guess analytically, consider the result of a
simplified optimization problem obtained by implementing piecewise linear interpolation of
the datapoints at the vertices of the simplex Δk

i , together with the local uncertainty function
eki (x). Following this approach, we rewrite the coordinates of a point inside the simplex Δk

i
as a linear combination of its vertices:

x = Xi w,

where Xi is an n × (n + 1) matrix whose columns are the coordinates of the n + 1 vertices
of the simplex Δk

i , and w is an (n + 1)-vector with components w j that form a partition of
unity; that is,

123

342 J Glob Optim (2016) 66:331–382

n+1∑

j=1

w j = 1, w j ≥ 0 j = 1, 2, . . . , n + 1,

which may be written compactly in matrix form as
[
1 . . . 1

]
w = 1, −Iw ≤ 0. (8)

In each simplex Δk
i , we thus minimize a new search function ski (w) defined as

ski (w) = Yi w − K
[
R2
i − (Xi w − zki)

T (Xi w − zki)
]

= K wT XT
i Xi w + (Yi − 2K (zki)

T Xi)w

+ K [(zki)T zki − R2
i]. (9)

whereYi is an 1×(n+1) rowvectorwhose elements are the function values at then+1vertices
of the simplex Δk

i . Minimization of (9), subject to the constraints (8), can be performed
exceptionally quickly using convex quadratic programming. This optimization gives a vector
of weightsw0, which defines the initial guess for the local minimization of the function ski (x)
within the simplex Δk

i . Since we have analytic expressions for the gradient and Hessian of
ski (x), and a good initial guess of its minimum, we can apply either a Trust Region method, or
Newton’s method with Hessian modification, in order to find quickly the minimum of ski (x).
Newton’s method is a line search algorithm with a descent direction derived based on both
the gradient and the Hessian of the function; because of the nonconvexity of ski (x), Hessian
modification is required to ensure convergence. The Hessian modification that has been used
in our numerical code is modified Cholesky factorization [13], and the line search algorithm
used is a backtracking line search algorithm (Algorithm 3.1 in [27]). Convergence of this
local optimization algorithm is proved in [27].

3.4 Convergence of Algorithm 2

Before analyzing the convergence properties of Algorithm 2, we establish a useful lemma.

Lemma 6 Assume that the function of interest f (x) and the interpolating function pk(x)
at step k > 0 of Algorithm 2 are continuously twice differentiable functions with bounded
Hessians. Denote λmax (·) as the maximum eigenvalue of its argument, and K is chosen as
follow

K > λmax (∇2 f (x) − ∇2 pk(x))/2 (10)

for all x located in the feasible domain L. Then, there is a point x̃ ∈ L for which

sk(x̃) ≤ f (x∗), (11)

where x∗ is a global minimizer of f (x).

Proof Consider Δk
i as a simplex in Δk which includes x∗. Since the uncertainty function eki

is defined for all x inside the simplex Δk
i as

eki (x) = (rki)2 −
(
x − zki

)T (
x − zki

)
,

the Hessian of the uncertainty function eki is simply

∇2eki (x) = −2 I.

123

J Glob Optim (2016) 66:331–382 343

Now define a function G(x) for all x ∈ L such that

G(x) = pk(x) − K ek(x) − f (x), (12)

and thus

∇2G(x) =
(
∇2 pk(x) − ∇2 f (x)

)
+ 2 K I. (13)

By choosing K according to (10), the function G(x) is strictly convex inside the closed
simplex that includes x∗; thus, the maximum value of G(x) is located at one of its vertices
(see, e.g. Theorem 1 of [16]). Moreover, by construction, the value of G(x) at the vertices of
this simplex is zero; thus, G(x∗) ≤ 0, and therefore sk(x∗) ≤ f (x∗).
�

Lemma 6 allows us to establish the convergence of Algorithm 2.

Theorem 2 At step k ≥ 0 of Algorithm 2, assume that Sk is the set of available datapoints,
that the function of interest f (x) and the interpolating function pk(x) are continuously twice
differentiable functions, and that L p is a Lipschitz constant of pk(x). Assume also that K
satisfies (10). Define x∗ and xk as the global minimizers of f (x) and the search function
sk(x) at step k, respectively, and rkmax as the maximum circumradius of the triangulation Δk;
then

0 ≤ min
z∈Sk

f (z) − f (x∗) ≤ εk where (14a)

εk = (L f + L p + 2Krkmax) · min
i<k

‖xi − xk‖. (14b)

Proof Select that i , with i < k, such that δ = ‖xi − xk‖ is minimized. By the Lipschitz
norms of pk(x) and (6), we have

‖pk(xi) − pk(xk)‖ ≤ L p δ,

and ‖ek(xi) − ek(xk)‖ ≤ 2 rkmax δ.

Noting that sk(x) = pk(x) − Kek(x), we have

‖sk(xi) − sk(xk)‖ ≤ (L p + 2 Krkmax) δ.

Since xi is one of the evaluation points at the k-th step, at this point the value of the uncertainty
function ek(xi) is zero, and the values of the interpolant pk(xi) and the function f (xi) are
equal. That is,

sk(xi) = pk(xi) − K ek(xi) = f (xi). (15)

Since xk is taken to be the global minimum of sk(x) and K satisfies (10), based on Lemma 6,
sk(xk) ≤ f (x∗); Thus,

f (x∗) ≥ sk(xk) ≥ sk(xi) − (L p + 2 K rkmax) δ

= f (xi) − (L p + 2 Krkmax) δ

≥ [f (xk) − L f δ] − (L p + 2 K rkmax) δ,

⇒ f (x∗) ≥ f (xk) − (L f + L p + 2 K rkmax) δ.

Remark 3 Algorithm 2 begins from a set of initial datapoints, and computes one new data-
point at each iteration. In this setting, (14) provides a (sometimes conservative) termination
certificate that guarantees that a desired degree of convergence εdes has been attained. Algo-
rithm 2 is simply marched in k until εk ≤ εdes, where εk is defined in (14b).

123

344 J Glob Optim (2016) 66:331–382

Note that, if rkmax is bounded, εk → 0 in the limit in which k → ∞. Thus, there is a finite
k for which εk ≤ εdes.

Remark 4 The existence of a bound L p on the Lipschitz norm of pk(x) is required. The
Lipschitz norm L p of the interpolation pk(x) is, in general, cumbersome to compute. Subject
to the above stated assumptions, a simpler way to prove convergence of (and, to certify a
termination criterion for) Algorithm 2 that ensures that (14a) is attained for some εk ≤ εdes
is to calculate εk using linear interpolation, for which it can be shown that L p ≤ L f , thereby
replacing (14b) with

εk = (2 L f + 2Krkmax) · min
y∈Sk

‖xk − y‖.

Remark 5 In addition to the required assumptions of a bound L p for the Lipschitz norm of
pk(x), and existence of K which (10) holds, a bound for the maximum circumradius rkmax of
the triangulation Δk is also required. In general, algorithm 2 cannot guaranty this property.
A slight but technically important change to Algorithm 2 is presented in the next section to
address this issue.

4 Bounding the circumradii

In the previous section, we established that Algorithm 2 converges to the global minimum of
the cost function under two assumptions: (a) the underlying function of interest f (x) is Lip-
schitz and twice differentiable with bounded Hessian, and (b) the maximum circumradii of
the simplicies in the triangulations are bounded as the algorithm proceeds. Without assump-
tion (a), or something like it, not much can be done to assure global convergence, beyond
requiring that the grid becomes everywhere dense as the number of function evaluations
approaches infinity (see [38]). Assumption (b), however, is problematical, as Algorithm 2
doesn’t itself ensure this condition. In this section, we make a small but important technical
adjustment to Algorithm 2 to ensure that condition (b) is satisfied.

Distributing points in R
n such that the resulting Delaunay triangulation of these points

has a bounded maximum circumradius is a common problem in 2D and 3D mesh generation
(see [20,21,32]). Applying known strategies for this problem to the present application is
challenging, however, due to the incremental nature of the point generation, the interest in
n > 3, the large number and nonuniform distribution of points generated, and the possibly
sharp corners of the feasible domain itself. In this section, we thus develop a new method for
solving this problem that meets these several challenges.

The feasible domain L considered is defined in (1a); we assume for the remainder of this
section that the problem is n-dimensional, is bounded by m constraints which result in M
vertices of the feasible domain, that all redundant constraints have been eliminated [see step
(B) of Algorithm 1], and that all equality constraints implied by the condition Ax ≤ b have
been projected out of the problem [see step (C) of Algorithm 1].

Definition 5 Consider P as a point in L , aTi x ≤ bi as a constraint which is not active (that
is, equality) at P , and Hi as the (n − 1)-dimensional hyperplane given by equality in this
constraint. The feasible constraint projection of P onto Hi is the point PL defined as the
outcome of the following procedure:

0. Set k = 1 and P1
L = P .

123

J Glob Optim (2016) 66:331–382 345

aT
i x = bi

P = P 1
L

PL = P 1
R

aT
i x = bi

P = P 1
L

P 2
L

P 1
RPL = P 2

R

aT
i x = bi

P = P 1
L

PL = P 2
L

P 1
R

aT
i x = bi

P = P 1
L

PL = P 2
L

P 1
R

(a) (b)

(c) (d)

Fig. 2 Feasible constraint projections of various points P onto the constraint aTi x ≤ b. a Complete, termina-
tion at step 3 of iteration k = 1, b complete, termination at step 3 of iteration k = 2, c incomplete, termination
at step 1 of iteration k = 2, d incomplete, termination at step 2 of iteration k = 2

1. Define mk
a as the number of active constraints at Pk

L , and Hk
L as the hyperplane (with

dimension less than or equal to n) implied by this set of constraints. If mk
a = n − 1, set

PL = Pk
L and exit.

2. If mk
a > 0 and there is no vertex of L that is contained within both Hk

L and Hi , set
PL = Pk

L and exit.
3. Obtain Pk

R as the point which is contained within both Hk
L and Hi , and has minimum

distance from PL . If Pk
R ∈ L , set PL = Pk

R and exit.
4. Otherwise, set Pk+1

L as the intersection of the line segment from Pk
L to Pk

R with the
boundary of L , increment k, and repeat from step 1.

If the above-described procedure exits at step 3, and thus PL ∈ Hi , then PL is said to be a
complete feasible constraint projection; otherwise (that is, if the procedure exits at step 1 or
2), PL is said to be an incomplete feasible constraint projection. The procedure described
above will terminate after some k steps, where k < n; the Pk

L for k < k are referred to as
intermediate feasible constraint projections.

Some examples of complete and incomplete feasible constraint projections are given in
Fig. 2.

Lemma 7 Consider the Pk
L as the intermediate feasible constraint projections at each step

k ≤ k of a feasible constraint projection (see Definition 5), which exits at iteration k, of some
point P ∈ L onto the hyperplane Hi defined by the constraint aTi x ≤ bi . For any point V
which lies within the intersection of Hk

L and Hi ,

‖P − V ‖
‖P − PT ‖ ≤ ‖Pk

L − V ‖
‖Pk

L − Pk
T ‖ (16)

123

346 J Glob Optim (2016) 66:331–382

for k ≤ k, where PT and Pk
T are the projections of P and Pk

L on Hi .

Proof In the procedure described inDefinition5, at each step k, if Pk
R is in L; then P

k+1
L = Pk

R .
By construction, V is in the intersection of Hk

L and Hi , and Pk
R is the point in the intersection

of Hk
L and Hi that has minimum distance from Pk

L ; it thus follows that
−−−→
Pk
L P

k
R is perpendicular

to
−−→
Pk
RV . Since Pk+1

L is a point on the line between Pk
L and Pk

R , it follows that
−−−−−→
Pk+1
L Pk

R is

also perpendicular to
−−→
Pk
RV . Thus,

‖Pk
L − V ‖2 = ‖Pk

L − Pk
R‖2 + ‖V − Pk

R‖2,
‖Pk+1

L − V ‖2 = ‖Pk+1
L − Pk

R‖2 + ‖V − Pk
R‖2,

‖Pk+1
L − Pk

R‖ ≤ ‖Pk
L − Pk

R‖,
‖Pk

L − V ‖
‖Pk

L − Pk
R‖ ≤ ‖Pk+1

L − V ‖
‖Pk+1

L − Pk
R‖ . (17)

Since Pk
L , P

k+1
L and Pk

R are collinear and Pk
R is on the hyperplane aTi x = bi , it follows that

‖Pk+1
L − Pk

R‖
‖Pk

L − Pk
R‖ = ‖Pk+1

L − Pk+1
T ‖

‖Pk
L − Pk

T ‖ . (18)

Combining (17) and (18) over several steps k and noting that P1
L = P , (16) follows.
�

Definition 6 Consider P as a point in a set of points S in the convex polyhedra L , aTi x = bi
as a constraint which is not active at P , and Hi as the hyperplane defined by this constraint.
The points Pk

L are taken as the intermediate feasible constraint projections of P onto Hi

(see Definition 5, which we take as exiting at iteration k). With respect to some parameter
r > 1, the point P is said to be poorly situated with respect to the constraint aTi x ≤ bi if
the feasible constraint projection is complete and, for any point V ∈ S which is in both Hk

L
and Hi ,

‖Pk
L − V ‖

‖Pk
L − Pk

R‖ > r, ∀ 1 ≤ k ≤ k; (19)

otherwise, the point P is said to be well situated with respect to the constraint aTi x ≤ bi .
The set of data points S is a well-situated set if, for all pairs of points P ∈ S and constraints
aTi x ≤ bi defining L , P is well-situated with respect to the constraint aTi x ≤ bi .

Remark 6 It is easy to verify that the set of vertices of the feasible domain L is itself a
well-situated set for any r > 1.

The important property of a well-situated set S is that the maximum circumradius of the
Delaunay triangulation of S is bounded by r [the factor used in (19), which will be considered
further at the end of Sect. 4] and some parameters related to L . These geometric parameters
are identified in Definitions 7 and 8, and existence of a bound for the maximum circumradius
is proved in Theorem 3, based on Lemmas 9 and 10.

Definition 7 Consider Aa(V) as the set of active constraints at a vertex V of a feasible
domain L with redundant constraints eliminated [see step (B) ofAlgorithm1], and all equality
constraints removed [see step (C) of Algorithm 1]. Since there are no redundant constraints,
Aa(V) includes exactly n constraints which are linearly independent. Consider aTi x ≤ bi as

123

J Glob Optim (2016) 66:331–382 347

Fig. 3 The skewness of a vertex
V with respect to constraint
aTi x ≤ bi in n = 3 dimensions is
defined as
Si (V) = 1/cos(θ i (V)), where
θ i (V) is the angle indicated

ai

vi

θi(V)

aT
i

x = bi

V

a constraint in Aa(V), and Ai
a(V) as the set of all active constraints at V except {aTi x ≤ bi }.

It can be observed that the space defined by Ai
a(V) is a ray from V . In other words, each

point in this one-dimensional space can be written as V + α vi , where α is a positive real
number. Defining θ i (V) as the angle between ai and vi , the skewness of the vertex V with
respect to the constraint aTi x ≤ bi is defined as Si (V) = 1/ cos(θ i (V)). The skewness of the
feasible domain L , denoted S(L), is the maximum of Si (V) over all vertices V and active
constraints aTi x ≤ bi at V .

Remark 7 If the feasible domain L is defined by simple box constraints (a ≤ x ≤ b), then
the skewness of all vertices with respect to all active constraints (and, thus, the skewness of
the domain L itself) is equal to 1. In n = 2 dimensions, the skewness of each vertex is simply
Si (V) = 1/| sin(θ)|, where θ is the angle of vertex V . In n = 3 dimensions, the value of
θ i (V) is illustrated in Fig. 3. Note that, in general, Si (V) ≥ 1.

Lemma 8 Consider V as a vertex of L, and Aa(V) as the set of constraints active at V .
Consider some point x ∈ L at which the set of active constraints, denoted Aa1(V), is a
proper subset of Aa(V). Denote aTi x ≤ bi as a constraint in Aa(V) which is not in Aa1(V).
Define x1 as the projection of x onto the hyperplane defined by aTi x = bi , and define x2 as
the projection of x onto the hyperplane defined by the union of aTi x = bi and Aa1(V). Then,

1 ≤ ‖x − x2‖
‖x − x1‖ ≤ Si (V) ≤ S(L). (20)

Proof Consider x3 as the point in the hyperplane defined by Ai
a(V) with minimum distance

from x , where Ai
a(V) is identified in Definition 7. By construction, ‖x − x3‖ ≥ ‖x − x2‖;

note that x3 is also in the hyperplane defined by Aa1(V). Moreover, according to Definition
7, ‖x − x3‖/‖x − x1‖ = Si (V).
�

Definition 8 For each pair of vertices V of L and constraints aTi x ≤ bi not active at V ,
VL is defined as the projection of V onto the hyperplane defined by aTi x = b. Define
L1 = maxx,y∈L ‖x − y‖ as is the diameter of L . The aspect ratio κ(L) is taken as the
maximum value of L1/‖V − VL‖ for all pairs of vertices V and constraints aTi x ≤ bi not
active at V (Fig. 4).

123

348 J Glob Optim (2016) 66:331–382

VL

V

||V
L
−

V
||

L
1

aT
i x = bi

Fig. 4 This figure represent the aspect ratio of the convex polyhedra L . Note that the vertex V and constraint
aTi x = bi hasminimumdistance from all pair of vertex and constraints, and L1 is the diameter of the polyhedra

L . The aspect ratio is equal to κ(L) = L1
V−VT

where ‖V − VT ‖ and L1 are shown

Lemma 9 Consider S as a set of feasible points in L (including the vertices of L) which
is well-situated (see Definition 6) with factor r . Then, for each pair of points P ∈ S and
constraints aTi x ≤ bi not active at P, there is a point V ∈ S such that aTi V = bi and

1 ≤ ‖P − V ‖
‖P − PT ‖ ≤ max {r S(L), κ(L)}, (21)

where PT is taken as the projection of P onto the hyperplane Hi , and S(L) and κ(L) are the
skewness and aspect ratio of the feasible domain L.

Proof Consider PL as the feasible constraint projections of P onto Hi (see Definition 5,
which we take as exiting at iteration k). According to this procedure, there are three possible
termination conditions, each of which is considered below.

First, consider the case in which the feasible constraint projection is terminated at step 2.
In this case, PL = Pk

L , and there is no vertex of L that is contained within both Hk
L and Hi .

Therefore, the point in intersection of the feasible domain L and the hyperplane Hk
L which

has minimum distance from the hyperplane Hi is a vertex of L , denoted V . Thus,

‖V − VT ‖ ≤ ‖PL − PLT ‖, (22)

where PLT , Pk
T and VT are the projections of PL , Pk

L and V onto Hi ; thus, PLT = Pk
T .

Further, at each step of the procedure of feasible constraint projection (Definition 5), the
distance of the point considered to Hi is reduced. Thus,

‖PL − PLT ‖ = ‖Pk
L − Pk

T ‖ ≤ ‖P − PT ‖. (23)

Using (22) and (23),

‖V − VT ‖ ≤ ‖P − PT ‖ (24)

123

J Glob Optim (2016) 66:331–382 349

On the other hand, ‖P −V ‖ ≤ L1, where L1 is the diameter of the feasible domain L . Thus,

‖P − V ‖
‖P − PT ‖ ≤ L1

‖V − VT ‖ ≤ κ(L). (25)

Next, consider the case in which the feasible constraint projection is terminated at step 1.
In this case, the number of active constraints at PL is ma = n − 1, and PL = Pk

L . If there is

no vertex of L that is contained within both Hk
L and Hi , the situation is similar to the previous

case, and (25) again follows. On the other hand, if there is a vertex V of L which is in both
Hk
L and Hi , then it follows from Lemma 7 that

‖P − V ‖
‖P − PT ‖ ≤ ‖PL − V ‖

‖PL − PLT ‖ . (26)

Note that Aa(PL) is a proper subset of Aa(V) which does not include the constraint aTi x ≤
bi , and V is the only point which is in both Hk

L and Hi , as the intersection of n linear
independent hyperplanes is a unique point. Therefore, via Lemma 8 (taking x = PL and
thus, by construction, x1 = PLT and x2 = V),

‖PL − V ‖
‖PL − PLT ‖ ≤ Si (V) ≤ S(L) (27)

Using (26) and (27)

‖P − V ‖
‖P − PT ‖ ≤ S(L) ≤ r S(L). (28)

Finally, consider the case in which the feasible constraint projection is terminated at step
3, and thus the process is complete, and PL = Pk

R . Since P is well situated with respect to
the constraint aTi x ≤ bi (see Definition 6), there is a k ∈ {1, 2, . . . , k} and a point V ∈ S
which is in both Hk

L and Hi such that

‖Pk
L − V ‖

‖Pk
L − Pk

R‖ ≤ r. (29)

Since V is in both Hk
L and Hi , there is a vertex of L , denoted W , which is in both Hk

L and
Hi . Moreover, Pk

L is not in Hi , and Aa(Pk
L) is a proper subset of Aa(W). Denote again Pk

T
as the projection of Pk

L on the hyperplane Hi . Via Lemma 8 (taking x = Pk
L and thus, by

construction, x1 = Pk
T and x2 = Pk

R), it follows that

‖Pk
L − Pk

R‖
‖Pk

L − Pk
T ‖ ≤ Si (W) ≤ S(L). (30)

Combining (29) and (30),

‖Pk
L − V ‖

‖Pk
L − Pk

T ‖ ≤ r S(L)

Thus, via Lemma 7, it follows that

‖P − V ‖
‖P − PT ‖ ≤ ‖Pk

L − V ‖
‖Pk

L − Pk
T ‖ ≤ r S(L). (31)

�

123

350 J Glob Optim (2016) 66:331–382

Fig. 5 The position of candidate
simplices for a representative
triangulation. Hatched triangles
are interior candidate simplices,
and triangles filled with stars are
boundary candidate simplices.
The dark shaded area is the
maximal simplex. a An interior
candidate simplex is maximal, b
a boundary candidate simplex is
maximal

(a)

(b)

Lemma 9 allows us to show that the maximum circumradius of a Delaunay triangulation
of a well-situated set of points is bounded. In order to do this, some additional lemmas and
definitions are helpful.

Definition 9 A simplexΔx in a Delaunay triangulationΔk of a set of points S (including the
vertices of L) which has the maximum circumradius among all simplices is called amaximal
simplex. Note that a given triangulation might have more than one maximal simplices.

A simplex Δx is called a candidate simplex (Figs. 4) and (Fig. 5) if either (a) the cir-
cumcenter of Δx is inside or on the boundary of Δx , or (b) an n − 1 dimensional face p
of this simplex forms part of the boundary of L corresponding to equality in the constraint
aTi x ≤ bi , and the circumcenter ofΔx violates this constraint. Case (a) is denoted an interior
candidate simplex, and case (b) is denoted a boundary candidate simplex.

Lemma 10 There is a maximal simplex in a Delaunay triangulation Δk of a set of points S
(including the vertices of L) which is a candidate simplex.

123

J Glob Optim (2016) 66:331–382 351

Proof ConsiderΔx as amaximal simplex of aDelaunay triangulationΔk . IfΔx is a candidate
simplex, then the lemma is true. Otherwise, define p as an n − 1 dimensional face of this
simplex, lying within an n − 1 dimensional hyperplane H , in which V , the vertex of Δx that
is not in H , and Z , the circumcenter of Δx , are on opposite sides of H , and none of the n−1
dimensional boundaries of L lie within H .

Then there is a simplex Δ1
x which is a neighbor of Δx that shares the face p. Define V ′ as

the vertex of Δ1
x which is not in H , and Z ′ as the circumcenter of Δ1

x . Since the triangulation
is Delaunay

‖Z − V ‖ ≤ ‖Z − V ′‖ and ‖Z ′ − V ′‖ ≤ ‖Z ′ − V ‖. (32)

Define ZT as the projection of both Z and Z ′ on H (by construction, they have the same
projection), and VT and V ′

T as the projections of V and V ′ on H , respectively. By the
assumption, Z and V ′ are on one side of H , and V is on the other side. Thus, (32) implies

‖VT − ZT ‖2 + [‖ZT − Z‖ + ‖V − VT ‖]2 ≤
‖V ′

T − ZT ‖2 + [‖V ′ − V ′
T ‖ − ‖ZT − Z‖]2. (33)

Moreover, regardless of the position of Z ′, we may write

‖Z ′ − V ′‖2 ≥
‖V ′

T − ZT ‖2 + [‖V ′ − V ′
T ‖ − ‖ZT − Z ′‖]2,

‖Z ′ − V ‖2 ≤
‖VT − ZT ‖2 + [‖V ′ − V ′

T ‖ + ‖ZT − Z ′‖]2;
thus, due to (32),

‖V ′
T − ZT ‖2 + [‖V ′ − V ′

T ‖ − ‖ZT − Z ′‖]2
≤ ‖VT − ZT ‖2 + [‖V − VT ‖ + ‖ZT − Z ′‖]2. (34)

Adding (33) and (34) gives

‖ZT − Z‖‖V − VT ‖ − ‖V ′ − V ′
T ‖‖ZT − Z ′‖

≤ ‖V − VT ‖‖ZT − Z ′‖ − ‖V ′ − V ′
T ‖‖ZT − Z‖,

and thus

‖ZT − Z‖[‖V − VT ‖ + ‖V ′ − V ′
T ‖]

≤ ‖ZT − Z ′‖[‖V − VT ‖ + ‖V ′ − V ′
T ‖],

‖Z − ZT ‖ ≤ ‖Z ′ZT ‖. (35)

Define W as a common vertex of Δx and Δ′
x , noting that W must be in H . Since Z − ZT

and Z ′ − ZT are perpendicular to ZT − W , (35) gives

‖Z − W‖ ≤ ‖Z ′ − W‖. (36)

It may be shown analogously that, if (32) is a strict inequality, then (36) is a strict inequality
as well. Further, since Δx is a maximal simplex, ‖Z −W‖ ≥ ‖Z ′ −W‖; thus, the inequality
(36) must be an equality, and Δx and Δ′

x are both maximal. We may also conclude that3 (32)
must also be an equality, which implies that Z and Z ′ are, in fact, the same point.

3 The logic for this conclusion is as follows: if (i) a ≤ b and (ii) a < b → c < d, then, if c = d, then a = b.

123

352 J Glob Optim (2016) 66:331–382

Now define F as the polygon which is equal to the union of those simplices of Δk whose
circumcenter is Z ; note that all of the simplices that make up F are maximal. If Z is inside
F , the simplex which includes Z is an interior candidate simplex. If Z is not inside F then,
by the above reasoning, any boundary of F which Z is on the opposite side of must also be
a boundary of L , and the simplex in F which shares this boundary is a boundary candidate
simplex.
�
Theorem 3 Consider Δk as an n dimensional Delaunay triangulation of a set of well-
situated points S ∈ L (including the vertices of L), with factor of r . Then

Rmax ≤ L2r
n−1
1 where r1 = max {r S(L), κ(L)},

where Rmax is the maximum circumradius, L2 is the maximum edge length in all simplices,
and S(L) and κ(L) are the skewness and aspect ratio of L.

Proof This theorem is shown by induction on n, the dimension of the problem. For n = 1, the
circumcenter of any simplex is located in L , and the lemma is trivially satisfied. Assuming
the theorem is true for the n− 1 dimensional case, we now show that the theorem is also true
for the n dimensional case.

Consider Δx as a maximal simplex of the n dimensional Delaunay triangulation Δk , with
circumcenter Z , which is also a candidate simplex (see Lemma 10). If Δx is an interior
candidate simple, it includes its circumcenter, and the lemma is trivially satisfied, since Z
is located in L . Otherwise, Δx is a boundary candidate simplex, and there is a constraint
aTi x ≤ bi bounding L which is active at n vertices of Δx , and Z violates this constraint.
Denote Hi as the n − 1 dimensional hyperplane which contains this constraint.

Consider P as the vertex of Δx which is not in Hi . Define ZT and PT as the projections
of Z and P onto Hi , and W as a vertex of Δx which is in Hi ; then

‖Z − P‖ = ‖Z − W‖,
[‖Z − ZT ‖ + ‖P − PT ‖]2 + ‖ZT − PT ‖2

= ‖Z − ZT ‖2 + ‖ZT − W‖2
2‖ZT − Z‖‖P − PT ‖ + ‖P − PT ‖2

= ‖ZT − W‖2 − ‖ZT − PT ‖2 (37)

By construction ZT is the circumcenter of an n − 1 dimensional simplex Δ1
x which includes

all vertices of Δx except P . Note that restriction of Δk onto the hyperplane Hi is itself an
n− 1 dimensional Delaunay triangulation. In other words, for any point V ∈ S that is in Hi ,

‖ZT − V ‖ ≥ ‖ZT − W‖
‖PT − V ‖ ≥ ‖ZT − V ‖ − ‖ZT − PT ‖
‖PT − V ‖ ≥ ‖ZT − W‖ − ‖ZT − PT ‖

‖ZT − W‖2 − ‖ZT − PT ‖2
= (‖ZT − W‖ + ‖ZT − PT ‖)(‖ZT − W‖ − ‖ZT − PT ‖)

According to equation (37), ‖ZT − W‖ ≥ ‖ZT − PT ‖; it thus follows from the above
equations that

‖ZT − W‖2 − ‖ZT − PT ‖2 ≤ 2‖ZT − W‖‖PT − V ‖. (38)

Combining (37) and (38), we may write

‖ZT − Z‖‖P − PT ‖ ≤ ‖ZT − W‖‖PT − V ‖ (39)

123

J Glob Optim (2016) 66:331–382 353

Furthermore, by construction, ZT − Z and P − PT are perpendicular Hi to ; therefore,

‖Z − W‖2 ≤ ‖ZT − W‖2[1 + ‖V − PT ‖2
‖P − PT ‖2]

‖P − V ‖2 = ‖V − PT ‖2 + ‖P − PT ‖2

‖Z − W‖ ≤ ‖ZT − W‖ ‖P − V ‖
‖P − PT ‖ (40)

On the other hand, since S is well-situated with factor of r , according to Lemma 9, there is
a point V in S which is in Hi , and

‖P − V ‖
‖P − PT ‖ ≤ r1. (41)

Note that, if S is well situated with factor of r , the subset of points of S which lie within
Hi , denoted Si , are also well situated with factor of r . Since ‖ZT − W‖ is the circumradius
of the n − 1 dimensional simplex Δ1

x of the Delaunay triangulation of Si , by the inductive
hypothesis,

‖ZT − W‖ ≤ L2r
n−2
1

Applying (40) and (41), it thus follows from the above condition that

‖Z − W‖ ≤ L2r
n−1
1

Since ‖Z − W‖ is equal to the maximum circumradius of Δk , the theorem is proved.
�
We now use Theorem 3 to perform a slight modification of Algorithm 2 in a way that

ensures the set of datapoints remains well situated, with factor r , as the iteration proceeds. In
this way, a bound for the maximum circumradius of the Delaunay triangulations generated
by the algorithm is assured.

Algorithm 2 is initialized with the vertices of L . By Remark 6, this set of points is well
situated. Algorithm 2 then (a) adds to this initial set of points a number of user specified points
of interest, and then (b) adds (at step 5) a new datapoint [selected carefully, as described in
the algorithm] to the existing set of datapoints at each iteration, until convergence. We now
modify Algorithm 2 such that each time a new datapoint P is added, in both steps a and b
above, an adjustment Q to the location of point P is made, if necessary, in order to ensure
that set of datapoints remains well situated. This adjustment is performed as follows.

Algorithm 3 Assume S is a well-situated set of points, and P is a candidate point to be
added to this set (after adjustment, if necessary).

0. Set Q=P.
1. Find a constraint aTi x ≤ bi for which P is not in a well situated position. If none can be

found, stop the algorithm, and return Q.
2. Replace Q by the feasible constraint projection of Q on aTi x ≤ bi (see Definition 5).
3. Repeat from step 1 until the algorithm stops.

Note that Aa(Q) includes the active constraints of P . At each step of the above algorithm,
an additional constraint is added. Thus, the above algorithm stops after atmost n−1 iterations.

In Lemma 11, we show that Algorithm 2 still converges, even if we add Q instead of P
at each iteration.

123

354 J Glob Optim (2016) 66:331–382

Lemma 11 Consider S as a well-situated set of points in L, and Q as the outcome of
Algorithm 3 from input P. Then,

min
x∈S ‖P − x‖ ≤ ρ · min

y∈S ‖Q − y‖, (42)

ρ =
[
2r21

(
1 − 1

r2

)]− n−1
2

, (43)

r1 = max {r S(L), κ(L)}. (44)

Proof Consider y ∈ S as a point which minimizes ‖Q − y‖. If a constraint aTi x ≤ bi exists
in Aa(Q) which is not active at y, since S is well-situated, according to Lemma 9, there is a
point y1 ∈ S such that aTi x ≤ bi is active at it, and

‖y − y1‖
‖y − yT ‖ ≤ r1, (45)

where yT is the projection of y on the hyperplane aTi x = bi . By construction,

‖y − Q‖2 = ‖y − yT ‖2 + ‖yT − Q‖2,
‖y − Q‖ ≥ ‖y − yT ‖ + ‖yT − Q‖√

2
,

‖y1 − Q‖ ≤ ‖y1 − yT ‖ + ‖yT − Q‖,
‖y − Q‖
‖y1 − Q‖ ≥ 1√

2

‖y − yT ‖ + ‖yT − Q‖
‖y1 − yT ‖ + ‖yT − Q‖ . (46)

Using (45) and (46), we have:

‖y − Q‖
‖y1 − Q‖ ≥ 1√

2 r1
. (47)

Using (47), recursively over the k ≤ n − 1 binding constraints at point Q, we will derive
that there is a point yk ∈ Sk in which Aa(Q) ⊆ Aa(yk), and

‖y − Q‖
‖yk − Q‖ ≥ (

1√
2 r1

)n−1. (48)

Take V = yk ; then we will show that

‖P − V ‖
‖Q − V ‖ ≤ (1 − 1

r2
)−

n−1
2 . (49)

According to Algorithm 3, Q is derived by a series of successive complete feasible con-
straint projections of a point P onto various constraints of L which are active at Q. Assume
that m feasible constraint projections are performed in during the process of Algorithm 3,
and {P1, P2, . . . , Pm+1} is the series of points which are generated by Algorithm 3. In this
way, P1 = P , Pm+1 = Q, and Pi for 1 < i ≤ m + 1 is the feasible-constraint-projection
of Pi−1 onto a constraint of L demoted by aTi x ≤ bi .

Define Pi, j
L as the intermediate feasible constraint projection of Pi onto constraint aTi x ≤

bi , at step j , and Hi, j
L as the hyperplane (with dimension less than or equal to n) implied by

Aa(P
i, j
L). Then denote Pi, j

R as a point in the intersection of Hi and Hi, j
L , that has minimum

distance from Pi, j
L . (This is similar to Pk

R in Definition 5).

123

J Glob Optim (2016) 66:331–382 355

Since the point Pi is in a poorly situated position with respect to the constraint aTi x ≤ bi ,

and Aa(P
i, j
L) ⊆ Aa(Q), and therefore V is in both Hi and Hi, j

L ,

‖Pi, j
L − V ‖

‖Pi, j
L − Pi, j

R ‖
> r

‖Pi, j
L − V ‖2 = ‖Pi, j

L − Pi, j
R ‖2 + ‖Pi, j

R − V ‖2
‖Pi, j+1

L − V ‖
‖Pi, j

L − V ‖
≥ ‖Pi, j

R − V ‖
‖Pi, j

L − V ‖
≥
√

1 − 1

r2

Moreover, at each iteration of the feasible constraint projection, a linearly independent
constraint is added to the set of active constraints, therefore, step 3 of the procedure of feasible
boundary projection could happened at most n−1 times. Thus, (49) is satisfied which shows
(42) when Aa(Q) ⊆ Aa(V). Furthermore, by using (48) and (49), (42) is satisfied when
Aa(Q) � Aa(V).
�
Theorem 4 Algorithm 2, with the adjustment described in Algorithm 3, will converge to the
global minimum of the feasible domain L if the parameter K satisfies (10), and pk(x) is
Lipschitz with a single Lipschitz constant L p for all steps k.

Proof Consider Sk as the set of datapoints at step k, xk as the global minimizer of sk(x), and
x ′
k as the outcome of Algorithm 3 for input xk . Denote δk and δ1k as follows:

δ1k = min
y∈Sk

‖xk − y‖,
δk = min

y∈Sk
‖x ′

k − y‖.

Note that Sk+1 = Sk ∪ {x ′
k}.

0 ≤ min
z∈Sk

f (z) − f (x∗) ≤ (L p + 2Krkmax)δ
1
k , (50)

where rkmax is the maximum circumradius of a Delaunay triangulation for Sk , and L p is the
Lipschitz constant of pk(x).

Since Sk is a well-situated set with factor of r , according to Theorem 3,

rkmax ≤ L2r
n−1
1 . (51)

where r1 and L2 are constants. Moreover, via Lemma 11,

δ1k ≤ ρδk, (52)

where ρ is a constant defined in (43). Thus, using (50), (51) and (52), it follows that

0 ≤ min
z∈Sk

f (z) − f (x∗) ≤ εk

εk = ρ
(
L p + 2K L2r

n−1
1

)
δk . (53a)

Since the feasible domain L is bounded, δk → 0 as k → ∞. Thus, Algorithm 2, with the
adjustment described in Algorithm 3 incorporated, will achieve εk ≤ εdes in finite k, where
εk defined in (53a) for any specified εdes > 0.
�

123

356 J Glob Optim (2016) 66:331–382

Remark 8 The parameter r > 1 represents a balance between two important tendencies of
Algorithm 2, with the adjustment described in Algorithm 3. For the r → 1, many feasible
constraint projections are performed, and thusmany datapoints are computed on the boundary
of F ; as a result, a restrictive bound on the maximum circumradius of the triangulation is
available. On the other hand, as r is made large, fewer feasible constraint projections are
performed, and thus fewer datapoints are computed on the boundary of F ; as a result, the
bound on the maximum circumradius of the triangulation is less restrictive. A good balance
between these two competing objectives seems to be given by r = c

√
n where c is an O(1)

constant; note that Algorithm 2 is recovered in the r → ∞ limit.

5 Adapting K

The tuning parameter K in Algorithms 2 and 3 specifies the trade-off between global explo-
ration, which is emphasized for large K , and local refinement, which is emphasized for small
K . In this section, we develop a method to adjust the tuning parameter K at each itera-
tion k in such a way as to maximally accelerate local refinement while still assuring global
convergence.

The method builds on the fact that, if there exists an x̃ such that pk(x̃)−K ek(x̃) ≤ f (x∗)
where f (x∗) is a global minimumof f (x) at each step k of Algorithm 2, then (11) is sufficient
to establish convergence in Theorems 2 and 4, and (10) may be relaxed. Furthermore, it is
not necessary to choose constant value for K in Algorithm 2, instead we may adapt Kk at
each step k in such a way that Kk ≥ 0 is bounded and pk(x̃) − Kk ek(x̃) ≤ f (x∗) at each
step k of Algorithm 2.

If y0 is a known lower bound for f (x) over the feasible domain L , then if we choose Kk

adaptively at each step of Algorithm 2 such that

0 ≤ Kk ≤ Kmax, (54a)

∃ x̃ ∈ L pk(x̃) − Kk e(x̃) ≤ y0, (54b)

then the Algorithm 2 will converge to a global minimizer.
Note that reduced values of Kk accelerate local convergence. Thus, at each step k, we

seek the smallest value of Kk which satisfies (54). The optimal Kk can be found simply as
follows

Kk = min
pk(x) − y0

ek(x)
. (55)

It is trivial to verify that the x which minimizes (55) also minimizes the corresponding
search function pk(x) − Kk ek(x). Thus, an alternative definition of the search function is

ska (x) = pk (x)−y0
ek (x)

, which has a same minimizer as sk(x) = pk(x)− Kkek(x) for the optimal

value of Kk given in (55).
If at some step k, the solution of (55) is negative, we take Kk at that step as zero, and the

adaptive search function as ska (x) = pk(x).

The new search function ska (x) = pk (x)−y0
ek (x)

is defined piecewise, similar to the original
search function. Thus, we have to solve several optimization problems with linear constraints
in order to minimize ska (x) in L . Following similar reasoning as in Lemma 5, we can relax

these constraints: for each simplex Δk
i , we can instead minimize ska,i (x) = pk (x)−y0

eki (x)
in the

intersection of the circumsphere Δk
i and the feasible domain L .

123

J Glob Optim (2016) 66:331–382 357

Again in order to minimize ska,i (x) for each simplex, a good initial guess is required. In

each simplexΔk
i , a minimizer generally has a large value of eki (x); therefore, the projection of

the simplex’s circumcenter onto the simplex itself is a good initialization point for searching
for the minimum of ska,i (x). This initial point for each simplex is denoted x̂ ki .

As before, with this initial guess for the minimum of ska,i (x) in each simplex, we can find
the global minimum using a Newton method with Hessian modification. We thus need the
gradient and Hessian of the function ska,i (x):

∇
(
pk(x) − y0

eki (x)

)

= ∇ (pk(x))

eki (x)
− (p(x) − y0)

∇eki (x)

eki (x)
2

∇2

(
pk(x) − y0

eki (x)

)

= ∇2
(
pk(x)

)

eki (x)

−
(∇ pk(x)

) (∇eki (x)
)T

eki (x)
2

−
(∇eki (x)

)
(∇ p(x))T

eki (x)
2

+
(
pk(x) − y0

)
(

−∇2eki (x)

eki (x)
2

+ 2
∇eki (x)∇eki (x)

T

eki (x)
3

)

The algorithm for optimization with adaptive K can be formalized as follows:

Algorithm 4 This algorithm is identical to Algorithm 2 except for step 3.c and 3.d, which
at step k initially defines the local search functions (upon which the global search function
is built) as

ska,i (x) = pk(x) − y0
eki (x)

, (56)

and at step 3.d, the minimizer of ska,i (x) is calculated instead of ski (x). but then, if a point x

is encountered during this search for which pk(x) < y0, subsequently redefines the global
search function for step k as ska (x) = pk(x)

Remark 9 Newton’smethoddoesn’t always converge to aglobalminimum.Thus, the result of
the search functionminimization algorithm at step k, xk , is not necessarily a global minimizer
of ska (x). However, the following properties are guaranteed:

if ska (x) = pk(x), then pk(xk) ≤ y0;
if ska (x) = pk(x) − y0

ek(xk)
, then (57a)

ska (xk) ≤ ska
(
x̂ kj

)
∀Δk

j ∈ Δk . (57b)

Recall that x̂ kj is the maximizer of ekj (x) in Δk
j (x).

In the following theorem we prove the convergence of Algorithm 4 to the global minimum
of f (x). Convergence is based on the conditions in (57); note that global minimization of
the search function ska (x) at each iteration k is not required.

Theorem 5 Algorithm 4, with the modification described in Algorithm 3 incorporated, will
converge to the global minimum of the feasible domain L if f (x) and pk(x) are twice
differentiable functions with bounded Hessian, and all pk(x) are Lipschitz with the same
Lipschitz constant.

123

358 J Glob Optim (2016) 66:331–382

Proof Define Sk , rkmax, and Lk
2 as the set of datapoints, the maximum circumradius of Δk ,

and the maximum edge length of Δk , respectively, where Δk is a Delaunay triangulation of
Sk . Define xk as the outcome of Algorithm 4, which at step k satisfies (57), and define x ′

k as
the outcome of Algorithm 3 from input xk . According to Algorithm 3, Sk+1 = Sk ∪ {x ′

k}.
Since f (x) and pk(x) are twice differentiable with bounded Hessian, constants K f and Kpf

exist such that

K f ≥ λmax
(∇2 f (x)

)
/2, (58a)

Kpf ≥ λmax

(
∇2
(
f (x) − pk(x)

))/
2. (58b)

Define L p as a Lipschitz constant of pk(x) for all steps k of Algorithm 2. Define y1 ∈ Sk as
the point which minimizes δ = minx∈Sk ‖x − xk‖.

We will now show that

min
z∈Sk

f (z) − f (x∗) ≤ ε̄k,

ε̄k =
√
2rkmaxK f L pLk

2δ +
[
2rkmax max

{
Kpf , K f

}+ L p

]
δ, (59)

where x∗ is a global minimizer of f (x∗).
During the iterations of Algorithm 4, there two possible cases for ska (x). The first case is

when ska (x) = pk(x). In this case, via (57a), pk(xk) ≤ y0, and therefore pk(xk) ≤ f (x∗).
Since y1 ∈ Sk , it follows that pk(y1) = f (y1). Moreover, L p is a Lipschitz constant for
pk(x); therefore,

pk(y1) − pk(xk) ≤ L p δ,

f (y1) − pk(xk) ≤ L p δ,

f (y1) − f (x∗) ≤ L p δ,

min
z∈Sk

f (z) − f (x∗) ≤ L p δ,

which shows that (59) is true in this case.

The other case is when ska (x) = pk (x)−y0
ek (x)

. For this case, consider Δk
j as a simplex in Δk

which includes x∗. Define L(x) as the unique linear function for which L(Vi) = f (Vi),
where Vi are the vertices of the simplex Δk

j . According to Lemma 6 and (58a), there is an

x̃ ∈ Δk
j

L(x̃1) − K f e
k(x̃1) ≤ f (x∗). (60)

Since L(x) is a linear function, it takes its minimum value at one of its vertices; thus,

min
z∈Sk

f (z) − f (x∗) ≤ K f e
k(x̃1).

Recall x̂ kj is the point in simplex Δk
j which maximizes ekj (x) inside the closed simplex Δk

j ;

therefore, ek(x̃1) ≤ ek(x̂ kj), and

min
z∈Sk

f (z) − f (x∗) ≤ K f e
k
(
x̂ kj

)
. (61)

On the other hand, according to Lemma 4, 2 rkmax is the Lipschitz norm for the uncertainty
function, y1 ∈ Sk , and thus ek(y1) = 0; hence,

ek(xk) ≤ 2 rkmax δ.

123

J Glob Optim (2016) 66:331–382 359

If ek(x̂ kj) ≤ ek(xk),

min
z∈Sk

f (z) − f (x∗) ≤ 2 rkmax K f δ;

therefore, (59) is satisfied. Otherwise,

f (x∗) − y0

ek
(
x̂ kj

) ≤ f (x∗) − y0
ek(xk)

. (62)

Using (57b) and (62), it follows:

pk(xk) − f (x∗)
ek(xk)

≤
pk
(
x̂ kj

)
− f (x∗)

ek
(
x̂ kj

) . (63)

According Lemma 6 and (58b), there is an x̃2 ∈ Δk
j such that

pk(x̃2) − Kpf e
k(x̃2) ≤ f (x∗).

Since x̃2 ∈ Δk
j and L p is a Lipschitz constant for pk(x), it follows that

pk
(
x̂ kj

)
− L pL

k
2 − Kpf e

k
(
x̂ kj

)
≤ f (x∗),

pk
(
x̂ kj

)
− f (x∗)

ek
(
x̂ kj

) ≤ Kpf + L pLk
2

ek
(
x̂ kj

) . (64)

Using (63), (64), and the fact that L p and 2 rkmax are Lipschitz constants for p
k(x) and ek(x),

it follows:

pk(xk) − f (x∗) ≤
⎡

⎣Kpf + L pLk
2

ek
(
x̂ kj

)

⎤

⎦ ek(xk),

pk(y1) − f (x∗) ≤
⎡

⎣2rkmax

⎛

⎝Kpf + L pLk
2

ek
(
x̂ kj

)

⎞

⎠+ L p

⎤

⎦ δ.

Note that y1 ∈ Sk ; thus, pk(y1) = f (y1) ≥ minz∈Sk f (z), and

min
z∈Sk

f (z) − f (x∗) ≤
⎡

⎣2rkmax

⎛

⎝Kpf + L pLk
2

ek
(
x̂ kj

)

⎞

⎠+ L p

⎤

⎦ δ. (65)

Using (61) and (65), it follows:

min
z∈Sk

f (z) − f (x∗) ≤
[
2rkmax Kpf + L p

]
δ

+ 2rkmax K f Lk
2L p

minz∈Sk f (z) − f (x∗)
δ.

123

360 J Glob Optim (2016) 66:331–382

Since x∗ is a global minimizer of f (x), minz∈Sk f (z) ≥ f (x∗), and therefore
[
min
z∈Sk

f (z) − f (x∗)
]2

≤ 2rkmaxK f L pL
k
2δ

+
[
2rkmaxKpf + L p

] [
min
z∈Sk

f (z) − f (x∗)
]

δ.

Apply the quadratic inequality,4 and the triangular inequality, it follows:

min
z∈Sk

f (z) − f (x∗) ≤
√
2rkmaxK f L pLk

2δ +
[
2rkmaxKpf + L p

]
δ.

The above equation implies that (59) is true for this case too. Thus, (59) is true for all
possible cases.

Moreover, by construction, Sk is a well situated set; thus, by Theorem 3,

rkmax ≤ Lk
2r

n−1
1 , (66)

Furthermore, via Lemma 11,

δ ≤ ρ δk, (67)

where ρ is defined as in (43), and δk = minx∈Sk ‖x ′
k − x‖. Note that the L2

k are bounded, and
define L2 as an upper bound for the L2

k for all k. Using (59), (66) and (67), it follows that,

0 ≤ min
z∈Sk̂

f (z) − f (x∗) ≤ εk, where

εk = Aδk + Bδk,

A =
√
2ρrkmaxK f L pLk

2,

B = ρ
[
2rkmax max

{
Kpf , K f

}+ L p

]
.

Since the feasible domain is bounded, δk → 0 as k̂ → ∞. Moreover, A and B are two
constants; therefore, εk → 0 as k → ∞; thus, the global convergence of Algorithm 4, with
Algorithm 3 incorporated, is assured.
�
Remark 10 Globally minimizing the search function ska (x) at each step k is not required
in Algorithm 4; it is enough to have (57) to guarantee convergence. In contrast, the
search function sk(x) must be globally minimized in order to guarantee convergence of
Algorithm 2.

Since performing Newton’s method for minimizing the search function is not required for
global convergence, in practice, we will perform Newton’s method only in those simplices
whose initial points x̂ kj have small values for the adaptive search function ska (x). In general,
performing Newton iterations in more simplices reduces the number of function evaluations
required for convergence, but increases the cost of each optimization step.

5.1 Using an inaccurate estimate of y0

It was shown in Theorem 5 that, using Algorithm 4 with a lower bound y0 for the function,
convergence to a global minimum of the function is guaranteed. However, it is observed

4 If A, B,C > 0, and A2 ≤ AB + C then A ≤ B + √
C .

123

J Glob Optim (2016) 66:331–382 361

in Sect. 7 that, if y0 is not an accurate lower bound for the global minimum, the speed of
convergence is reduced. In this subsection, we study the behavior of Algorithm 4, when the
estimated value of y0 is slightly larger than the actual minimum of the function of interest.

Theorem 6 Assume that f (x) and pk(x) are twice differentiable functions with bounded
Hessian, and all pk(x) are Lipschitz with the same Lipschitz constant. Then, for any small
positive ε > 0, there is a finite iteration k of Algorithm 4, with the modification described in
Algorithm 3 incorporated, such that a point z ∈ Sk exists for which:

f (z) − max
{
f
(
x∗) , y0

} ≤ ε, (68)

where f (x∗) is the global minimum of f (x).

Proof To prove this theorem, we use the notations defined in the proof of Theorem 5. Note
that, if y0 ≤ f (x∗), the theorem is true based on Theorem 5. Otherwise, similar to (59), we
will show that

min
z∈Sk

f (z) − y0 ≤
√
2rkmaxK f Lk

2L pδ +
[
L p + 2rkmaxKpf

]
δ. (69)

As stated previously, during the iterations of Algorithm 4, there two possible cases for ska (x).
The first case is when ska (x) = pk(x). In this case, via (57a), pk(xk) ≤ y0. Since y1 ∈ Sk , it
follows that pk(y1) = f (y1). Moreover, L p is a Lipschitz constant for pk(x); therefore,

pk(y1) − pk(xk) ≤ L p δ,

f (y1) − pk(xk) ≤ L p δ,

f (y1) − y0 ≤ L p δ,

min
z∈Sk

f (z) − y0 ≤ L p δ,

which shows that (69) is true in this case.

The other case is when ska (x) = pk (x)−y0
ek (x)

. In this case, (57b) is satisfied. Now, similar to

the proof of Theorem 5, define Δk
j as a simplex in Δk which includes a global minimizer

x∗. Following the same reasoning as in the proof of Theorem 5, (61) is true. Moreover,
y0 ≥ f (x∗), and thus

min
z∈Sk

f (z) − y0 ≤ K f e
k
(
x̂ kj

)
.

In addition, if minz∈Sk f (z) ≤ y0, the theorem is trivial, otherwise, the above equation may
be modified to

1

ek
(
x̂ kj

) ≤ K f

minz∈Sk f (z) − y0
. (70)

Note that (64) is true in this case too. Using (57b), y0 ≥ f (x∗), and the Lipschitz properties
of pk(x) and ek(x), it follows that

min
z∈Sk

f (z) − y0 ≤
⎡

⎣2rkmax

⎛

⎝Kpf + L pLk
2

ek
(
x̂ kj

)

⎞

⎠+ L p

⎤

⎦ δ. (71)

123

362 J Glob Optim (2016) 66:331–382

Using (70), (71), and minz∈Sk f (z) ≥ y0, it follows that

[
min
z∈Sk

f (z) − y0)

]2
≤ 2rkmaxK f L pL

k
2δ

+
[
2rkmaxKpf + L p

] [
min
z∈Sk

f (z) − f (x∗)
]

δ.

It follows from the above equation that (69) is true for all possible cases. Note that (66) and
(67) are true in this theorem too; thus, with similar reasoning, it follows:

0 ≤ min
z∈Sk̂

f (z) − y0 ≤ εk, where

εk = A
√

δk + Bδk,

A =
√
2ρL2

2r
n−1
1 K f L p,

B = ρ
[
L p + 2L2r

n−1
1 Kpf

]
.

where δk = minx∈Sk ‖x ′
k − x‖. Since the feasible domain is bounded, δk → 0 as k → ∞;

thus, εk → 0 as k → ∞.
�
Remark 11 Theorem 6 shows that if an inaccurate guess for the lower bound y0 of the
function f (x) is used, Algorithm 4 will converge to a point whose function value is equal to
or below the estimate y0. In other words, Algorithm 4 will first converge to a point whose
function value is less than y0, and then perform only local refinements thereafter, taking
sk(x) = pk(x) for later iterations.

6 Parallelization

Parallel computing is one of the most powerful tools of modern numerical methods. In
expensive optimization problems, performing an optimization of the type discussed here on
a single CPU is relatively slow. The algorithms presented above only accommodate serial
computations, with one function evaluation performed in each step.

The present algorithms are intended for problems with expensive function evaluations.
Other than these function evaluations, the most expensive part of the present algorithms are
the search functionminimizations. Constructing the Delaunay triangulation is also somewhat
expensive in high-dimensional problems; however, this ismade negligible in comparisonwith
the other parts of the algorithm when an Incremental method is used to update the Delaunay
triangulation from one step to the next.

The search function minimization allows for straightforward parallel implementation.
As described before, we must minimize the local search functions ski (x) [or, in Algorithm 4,
ska,i (x)]within each simplex of theDelaunay triangulation at step k; this task is embarrassingly
parallel.

The other expensive part (which will be the most expensive part in many applications)
is the function evaluations themselves. We may modify Algorithms 2 and 4 to perform n p

function evaluations in parallel. To accomplish this, we need to identify n p new points to
evaluate at each step.

During Algorithm 2 or 4, xk is derived by minimizing sk(x) = pk(x) − Kek(x) or

ska (x) = pk (x)−y0
ek (x)

. Note that, at each step, the uncertainty function ek(x) is independent from

123

J Glob Optim (2016) 66:331–382 363

the interpolation pk(x) and the function values themselves. Thus, we can modify ek+1(x)
without performing the cost function evaluation at xk . This idea may be implemented as
follows

Algorithm 5 In this algorithm, a modification for Algorithm 2 is presented is which, at each
step k, identifies n p new points to evaluate in parallel at each step. Note that this approach
extends immediately to Algorithm 4.

0. Take the set of initialization points S0 as all M of the vertices of the feasible domain L
together with one or more user-specified points of interest on the interior of L. Evaluate
the function f (x) at each of these initialization points in parallel. Perform a Delaunay
triangulation for S0. Set k = 0.

1. Calculate (or, for k > 0, update) an appropriate interpolating function pk(x) through
all points in Sk .

2. Calculate x0k as the minimizer of sk(x) (see step 3 and 4 of Algorithm 2). This task may
be done in parallel for each simplex.

3. Replace x0k with the outcome of Algorithm 3 from input x0k , then take Sk1 = Sk ∪ {x0k }.
4. For each substep i ∈ {1, 2, . . . , n p − 1}, do the following:

a. Incrementally calculate the Delaunay triangulation for data points for Ski in order
to derive the new uncertainty function eki (x).

b. Derive xik as a global minimizer of ski (x) = pk(x) − Keki (x).
c. Calculate δki = miny∈Ski ‖xik − y‖, and δk0 = miny∈Sk ‖x0k − y‖.
d. If δki ≤ cδk0 for some c with 0 < c ≤ 1, replace xik with a global minimizer of e

ki (x).
e. Replace xik with the outcome of Algorithm 3 from input xik .
f. Take Ski+1(x) = Ski ∪ {xik}.

5. Take Sk+1 = Sknp
, and evaluate the function at

{
x0k , x

1
k , . . . , x

np−1
k

}
in parallel.

6. Repeat from step 1 until δk0 ≤ δdes .

Note that minimizing ski (x) for 0 < i < n p is a relatively easy task, since ski (x) =
ski−1(x) in most of the simplices, and the incremental implementation of the Delaunay trian-
gulation can be used to flag the indices of those simplices that have been changed by adding
xki to Ski−1(x) (see [36]).

Remark 12 It is easy to show that the modification proposed in Algorithm 5 preserves the
convergence properties of Algorithms 2 and 4. The parameter c at step 4.d plays a significant
role in the convergence rate; large c forces more of the function evaluations to be related
strictly to global exploration, whereas small c allows function evaluations to potentially get
dense in regions away from the global minimum. Intermediate values of c are thus preferred,
as discussed further in Sect. 7.5.

7 Results

To evaluate the performance of our algorithms, we applied them to the minimization of the
some representative test functions (see Appendix.A [26]):

– One dimension

123

364 J Glob Optim (2016) 66:331–382

Weierstrass function: 5 Taking N � 1 (N = 300 in the simulations performed here),

f (x) =
N∑

i=0

1

2i
cos(3iπ x) (72)

– Two dimensions
Parabolic function:

f (x, y) = x2 + y2 (73)

Schwefel fuction: Defining c = 418.982887,

f (x, y) = c − x sin
(√|x |

)
− y sin

(√|y|
)

(74)

Rastrigin function: Defining A = 2,

f (x, y) = 2 A + x2 + y2 +
−A cos(2π x) − A cos 2π y (75)

Rosenbrock function: Defining p = 10,

f (x, y) = (1 − x2) + p (y − x2)2 (76)

– Higher dimensions
Rastrigin function: Defining A = 2,

f (xi) = A n +
n∑

i=1

[
x2i − A cos (2π xi)

]
(77)

Rosenbrock function: Defining p = 10,

f (xi) =
n−1∑

i=1

[
(1 − xi)

2 + p
(
xi+1 − x2i

)2]
(78)

Except where otherwise stated, each simulation was initialized solely with function evalu-
ations at each vertex of the feasible domain; that is, no user-specified points were used during
the initialization. What follows is a description of the results of the simulations performed.

Also, unless otherwise stated, each test result reported incorporates Algorithm 3 into
Algorithms 2 and 4, with parameter r = 2

√
n.

7.1 Nondifferentiable 1D case

The Weierstrass function is a classical example of a nondifferentiable function, for which
derivative-based optimization approaches are ill-suited. Note that the proofs of convergence
of the present algorithms, as developed above, don’t even apply in this case; however, it is
seen that the algorithms developed converge quickly regardless.

We sought a global minimum of this test function over the domain [−2, π]. For this test
function (only), the set of initial data points was taken as S0 = {−2, 0.5, π}. The result using
Algorithm 2 with K = 0 is illustrated in Fig. 6a, the result using Algorithm 2 with K = 100

5 The parameters of the Weierstrass function used in this paper do not satisfy the condition assuring nondif-
ferentiability everywhere that Weierstrass originally identified; however, according to [15], these parameters
indeed assure nondifferentiability of the Weiertrass function everywhere as N → ∞.

123

J Glob Optim (2016) 66:331–382 365

Fig. 6 Implementation of
Algorithms 2 and 4 for the
Weierstrass function (72). Actual
function (solid), function
evaluations (squares), and
interplant after the final function
evaluation (dashed). a Algorithm
2 with K = 0. b Algorithm 2
with K = 100. c Algorithm 4
with y0 = −2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

(b)

(c)

is illustrated in Fig. 6b, and the result using Algorithm 4 (with adaptive K , taking y0 = −2,
which is the known lower bound of f (x)) is illustrated in Fig. 6c. The optimizations were
terminated when minx∈Sk ‖xk − x‖ ≤ 0.01.

It is seen in the K = 0 case that the optimization routine terminated prematurely, and the
global minimum of the problem was not identified; it is thus seen that the global exploration

123

366 J Glob Optim (2016) 66:331–382

part of the algorithm (for K > 0) is important. It is seen in the K = 100 case that global
convergence was achieved, and that 34 function evaluations were required for convergence.
It is seen in the adaptive K case that global convergence was achievedmore rapidly, requiring
only 17 function evaluations for convergence.

7.2 Box constraints

7.2.1 2D parabola

The first 2D test function considered is a parabola (73). This simplistic test was made to
benchmark the effectiveness of the algorithm on a trivial convex optimization problem. The
function considered has a global minimizer at (0, 0) in the feasible domain xi ∈ [−π, 4]
(the center of the domain is shifted away from the origin to make the minimum nontrivial
to find). Again, the optimizations were terminated when minx∈Sk ‖xk − x‖ ≤ 0.01. For this
problem, for both small K (K = 0.3, see Fig. 7a) and larger K (K = 1, see Fig. 7b), global
convergence was achieved; 16 function evaluations were required for convergence of this
simple function with K = 0.3, and 29 function evaluations were required for convergence
with K = 1. For the larger value of K , a bit more global exploration is evident. Taking K = 0
in the present case again results in premature termination of the optimization algorithm, at
the very first step, and the global minimum in not identified

Given exact knowledge of y0, the behavior of Algorithm 4 for this simple test function is
remarkable, and the algorithm converges in only 6 function evaluations (that is, two function
evaluation after evaluating the function at the vertices of L). As shown in Fig. 7d, taking
y0 as a bound on the minimum, y0 = −0.1, the algorithm requires a few more iterations
(19 function evaluations are needed). In this case, Algorithm 4 actually performs a function
evaluation very near the global minimizer within the first two iterations, similar to the case
when y0 = 0; however, the algorithm continues to explore a bit more, until it confirms that
no other minima with reduced function values exist near this point.

7.2.2 2D Schwefel

The second 2D test function considered is the Schwefel function (74), which is characterized
by nine local minima over the domain considered, xi ∈ [0, 500], with the global minimizer
at (420.968746, 420.968746), and global minimum of f (x∗) = 0. The optimizations were
terminated when minx∈Sk ‖xk − x‖ ≤ 1. As shown in Fig. 8a, for K = 0.03, the algorithm
fails to converge to the global minimum, as not enough global exploration is performed. As
shown in Fig. 8b, taking K = 0.2, and thus performingmore global exploration, the algorithm
succeeds in finding the global minimum after 87 function evaluations. As shown in Fig. 8c,
using adaptive K based on accurate knowledge of global minimum y0 = 0, the result is
similar to the K = 0.3 case, but only 36 function evaluations are performed; convergence is
seen to be especially rapid once the neighborhood of the global minimum was identified. As
shown in Fig. 8e, using adaptive K based on a bound on the global minimum, y0 = −20,
the algorithm continues to explore a bit more, now requiring 64 function evaluations for
convergence. As shown in Fig. 8f, using adaptive K based on an inaccurate guess of the
bound on the global minimum, y0 = 20, convergence is similar to the case with y0 = 0
(Fig. 8d), with actually a bit faster convergence (now requiring 26 function evaluations for
convergence), because global exploration is suspended (that is, K is driven to zero) once
function values below y0 are discovered, with the algorithm thereafter focusing solely on
local refinement; recall from Theorem 6 that, in this case, the algorithm may stop any time

123

J Glob Optim (2016) 66:331–382 367

−2 0 2 4

−2

0

2

4

−2 0 2 4

−2

0

2

4

−2 0 2 4

−2

0

2

4

−2 0 2 4

−2

0

2

4

(a) (b)

(c) (d)

Fig. 7 Location of function evaluations usingAlgorithms 2 and 4 applied to the 2D parabola (73). aAlgorithm
2 with K = 0.3. b Algorithm 2 with K = 1. c Algorithm 4 with y0 = 0. d Algorithm 4 with y0 = −0.1

after function values below y0 are discovered, and convergence to a neighborhood of the
global minimum is not assured.

7.2.3 2D and 3D rastrigin

The third test function considered is the Rastrigin function. We first consider the 2D case
(75), which is characterized by 36 local minima over the domain considered, xi ∈ [−2, π],
with the global minimum at the origin. The results for this test function are presented in Figs.
9a–c, and are similar to the Schewefel test case. Algorithm 2 fails to converge to the global
minimum when K = 10, which is too small for this problem, and more extensive global
exploration was performed when K = 20, in which case convergence was achieved in 63
function evaluations. More efficient convergence was obtained when Algorithm 4 (adaptive
K) was used with an accurate value of y0 = 0, requiring only 30 function evaluations for
convergence.

In Fig. 10, we consider the 3D case (77), which is characterized by 216 local minima over
the domain considered, xi ∈ [−2, π], with the global minimum at the origin. We applied
Algorithm4with an accurate value of y0 = 0, and terminatedwhenminx∈Sk ‖xk−x‖ ≤ 0.01.
During the first iteration after the initialization, a point was obtainedwith function value close

123

368 J Glob Optim (2016) 66:331–382

0 100 200 300 400 500
0

100

200

300

400

500

0 100 200 300 400 500
0

100

200

300

400

500

0 100 200 300 400 500
0

100

200

300

400

500

0 100 200 300 400 500
0

100

200

300

400

500

0 100 200 300 400 500
0

100

200

300

400

500

(a) (b)

(c) (d)

(e)

Fig. 8 Location of function evaluations in Algorithms 2 and 4 on the 2D Schwefel function (74). a Algorithm
2 with K = 0.03. b Algorithm 2 with K = 0.2. c Algorithm 4 with y0 = 0. d Algorithm 4 with y0 = −20. e
Algorithm 4 with y0 = 20.

to the global minimum; however, several more iterations were required until the algorithm
stopped after 50 iterations (i.e., including the vertices of L , 58 function evaluations).

7.2.4 2D and 3D rosenbrock

The next test function considered is the Rosenbrock function. We first consider the 2D case
(76), which is characterized by a single minimum over the domain considered, xi ∈ [−2 2],

123

J Glob Optim (2016) 66:331–382 369

Fig. 9 Location of function
evaluations in Algorithms 2 and 4
on the 2D Rastrigin function
(75). a Algorithm 2 with K = 10.
b Algorithm 2 with K = 20. c
Algorithm 4 with y0 = 0

−2 0 2
−2

−1

0

1

2

3

−2 0 2
−2

−1

0

1

2

3

−2 0 2
−2

−1

0

1

2

3

(a)

(b)

(c)

with the globalminimumat (1, 1), and a challenging, nearly flat valley along the curve y = x2

where the global minimum lies. In this test function, the optimizations were terminated
when minx∈Sk ‖xk − x‖ ≤ 0.01; since the valley is so flat in this case, the accuracy of the
converged solution is a strong function of the termination criterion, and significantly relaxing
this criterion leads to inaccurate results. As shown in Fig. 11a, for K = 5, the algorithm fails
to converge to the global minimum, as not enough global exploration is performed. As shown
in Fig. 11b, a larger value of the tuning parameter, K = 20, facilitates more thorough global
exploration over the domain, with the function evaluations concentrating along the valley,

123

370 J Glob Optim (2016) 66:331–382

Fig. 10 Implementation of
Algorithm 4 with y0 = 0 on the
3D Rastrigin function (77). a
Function values at the evaluation
points. b Coordinates of the
evaluation points

0 20 40 60
0

10

20

30

−2

0

2

x 1

−2

0

2

x 2

0 20 40 60
−2

0

2

x 3

(a)

(b)

and convergence is achieved in 70 function evaluations. As shown in Fig. 11c, applying
Algorithm 4 (adaptive K) using an accurate value of y0 = 0 focused the function evaluations
even better along the valley of the function, and convergence is achieved in only 34 function
evaluations.

In Fig. 12, we consider the 3D case (78), which is again characterized by a singleminimum
over the domain considered, xi ∈ [−2 2], with the global minimum at (1, 1, 1), and a
challenging region near the 3D curve x3 = x22 = x41 where the function is nearly “flat”. We
applied Algorithm 4 with an accurate value of y0 = 0, and terminated when minx∈Sk ‖xk −
x‖ ≤ 0.01. Similar to the 2D case, after a brief exploration of the feasible domain, the
algorithm soon concentrates function evaluations near the x3 = x22 = x41 curve where the
reduced function values lie, as shown in Fig. 12b, and convergence is achieved in 76 iterations.

7.3 General linear constraints

The above tests were all performed using simple box constraints (1b), a ≤ x ≤ b. We now
test the performance of Algorithm 4 with y0 = 0 when more general linear constrains (1a)
are applied, Ax ≤ b.

We first consider the 2D Rastrigin function (75) with the following linear constraints:

− 2 ≤ x, (79a)

x ≤ π, (79b)

−2 ≤ y, (79c)

y ≤ π, (79d)

123

J Glob Optim (2016) 66:331–382 371

Fig. 11 Location of function
evaluations in Algorithms 2 and 4
on the 2D Rosenbrock function
(76). a Algorithm 2 with K = 5.
b Algorithm 2 with K = 20. c
Algorithm 4 with y0 = 0

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

(a)

(b)

(c)

x ≤ y, (79e)

x + y ≤ 1. (79f)

During the initialization step, after finding the vertices of L , it is determined that (79b), (79c)
and (79d) are redundant. Thus, the feasible domain (in general, a convex polyhedron) is
actually a simplex in this case, bounded by (79a), (79e), and (79f). The global minimum in
this case lies on the constraint boundary (79e); as shown in Fig. 13, Algorithm 4 converges
after initially exploring the feasible domain with 17 function evaluations.

123

372 J Glob Optim (2016) 66:331–382

Fig. 12 Implementation of
Algorithm 4 with y0 = 0 on the
3D Rosenbrock function (78). a
Function values at the evaluation
points. b Coordinates of the
evaluation points

0 20 40 60 80
0

50

100

150

200

−2

0

2

x 1

−2

0

2

x 2

0 20 40 60 80
−2

0

2

x 3

(a)

(b)

Fig. 13 Rastrigin function in 2D
with linear constraints

−2 −1 0 1
−2

−1

0

1

2

3

Next, consider the 2D Rosenbrock function (76) with the following linear constraints:

− 2 ≤ x ≤ 2, (80a)

−2 ≤ y ≤ 2, (80b)

−2.2 ≤ x + y, (80c)

x + y ≤ 2.2. (80d)

During the initialization step, it is determined that none of the constraints are redundant, since
each constraint is active at exactly two vertices. As shown in Fig. 14, the feasible domain in
this case is a convex polygon with six vertices. The global minimum in this case lies near,
but not on, the constraint boundary (80d). As expected, the results are quite similar to the

123

J Glob Optim (2016) 66:331–382 373

Fig. 14 Rosenbrock function in
2D with linear constraints

−2 −1 0 1 2
−2

−1

0

1

2

case with box constraints (see Fig. 11), and the global minimum is found with 27 function
evaluations.

Finally, we considered the 3D Rastrigin and Rosenbrock functions, (77) and (78), with
the following linear constraints:

−2 ≤ xi ≤ 2 for 1 ≤ i ≤ 3, (81a)

x1 + x2 + x3 ≤ 3, (81b)

x1 − x2 − x3 ≤ 0. (81c)

During the initialization step, it is determined that the constraint x1 ≤ 2 is the only redundant
constraint, since each of the other constraints is active at at least three of the vertices. The
feasible domain in this case is a convex polyhedron with 10 vertices; it turns out that the
constraint in (81) is active at six vertices, so one of the faces of this polyhedron is a hexagon.
As shown in Figs. 15 and 16, the behavior of Algorithm 4 is similar to the corresponding
tests with box constraints discussed previously. Note, of course, that all function evaluations
performed by Algorithm 4 are evaluated at feasible points.

7.4 Feasible constraint projections

We now explore the role of the feasible boundary projections introduced in Definition 5, and
incorporated into Algorithm 3, on the convergence of Algorithm 2 with K = 1, focusing
specifically on the impact of the r parameter, taking r = 1.05, r = 5 and r = 30.We perform
this test using the 2D parabolic function (73) subject to the following linear constraints:

x ≤ 0.1, (82a)

−1.1 ≤ y, (82b)

y − x ≤ 0.5. (82c)

The location of the function evaluations for different values of r is shown in Fig. 17.
Recall that 1 < r < ∞, with the r → ∞ limit suppressing all feasible constraint

projections. It is observed that, for small values of r , the algorithm tends to explore more on
the boundaries of the feasible domain, and for large values of r , the triangulation is more
irregular, with certain function evaluations clustered in a region far from the global minimum.
Intermediate values of r are thus preferred.

Figure 18 plots the maximum circumradius rkmax of the Delaunay triangulationΔk , as well
as the upper bound for rkmax, during the optimization using Algorithm 2 with Algorithm 3

123

374 J Glob Optim (2016) 66:331–382

0 50 100
−2

−1

0

1

2

0 50 100
−2

−1

0

1

2

0 50 100
−2

−1

0

1

2

0 50 100
−2

0

2

4

0 50 100
−4

−3

−2

−1

0

1

0 10 20 30 40 50 60 70 80 90100
0
2
4
6
8

10
12
14
16
18
20

(a) (b) (c)

(d) (e) (f)

Fig. 15 Implementation Algorithm 4 on the 3D Rastrigin function (77) with linear constraints. The first row
shows the location of the function evaluations, and the second row shows the actual function values, as well
as the “slack” distance of the function evaluations from the two constraints of L that are not simple bound
constraints. a x1 coordinate, b x3 coordinate, c Cost function values, d x1 + x2 + x3, e x1 − x2 − x3

0 50 100 150
−2

−1

0

1

2

0 50 100 150
−2

−1

0

1

2

0 50 100 150
−2

−1

0

1

2

0 50 100 150
−2

0

2

4

0 50 100 150
−4

−3

−2

−1

0

1

0 20 40 60 80 100 120
0

50
100
150
200
250
300
350
400
450

(a) (b) (c)

(d) (e) (f)

Fig. 16 As in Fig. 15 for the 3D Rosenbrock function (78). a x1 coordinate, b x2 coordinate, c x3 coordinate,
d Cost function values, e x1 + x2 + x3, f x1 − x2 − x3

incorporated using different values of r . The maximum circumradius rkmax is seen to be
reduced when smaller values of r are used; however, the cases with r = 1.05 and r = 5
are not noticeably different in this respect. Another important observation is that the bound
on the maximum circumradius, given by (51), is also reduced when smaller values of r are
used; however, this bound is seen to be quite conservative in this example.

123

J Glob Optim (2016) 66:331–382 375

Fig. 17 The location of function
evaluations by Algorithm 2, with
Algorithm 3 incorporated, for
different values of r . The cost
function is simple quadratic
function whose minimizer is an
interior point within a feasible
domain given by a right triangle.
a Implementation for r = 1.05. b
Implementation for r = 5. c
Implementation for r = 30

−1.5

−1

−0.5

0

0.5

1

−1.5 −1 −0.5 0 0.5 1

−1.5 −1 −0.5 0 0.5 1

−1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

−1.5

−1

−0.5

0

0.5

1

(a)

(b)

(c)

7.5 Parallel performance

We now test the performance of the constant-K version of Algorithm 5 on the Weierstrass
function (72), over the domain [−2, π] using n p = 3 processors, taking K = 15 and, in turn,
c = 0, c = 0.5 and c = 1. The optimizationswere terminatedwhenminx∈Sk ‖xk−x‖ ≤ 0.01.
Algorithm 5 fails to converge to the global minimum when c = 0, as multiple function
evaluations are performed at a single step k that are close to each other in this case, which

123

376 J Glob Optim (2016) 66:331–382

Fig. 18 The actual value and the
theoretical bound for the
maximum circumradius rkmax of
Δk , as a function of k, for the
optimizations illustrated in Fig.
17. Solid line, dashed line, and
dot–dashed line are the results
for r = 1.05, r = 5 and r = 30
respectively. a Actual value of
rkmax. b Theoretical upper bound
for rkmax

0 5 10 15 20 25
0

2

4

6

8

10

12

0 5 10 15 20 25
0

20

40

60

80

100

(a)

(b)

causes premature termination of the algorithm.Algorithm 5 converges to the globalminimum
for c = 0.5 in 18 function evaluations, and for c = 1 in 21 function evaluations; it is thus
seen that intermediate values of c are preferred. In the c = 0.5 case, after the initialization,
6 iterations were executed, with 7 function evaluations performed in parallel during each
iteration.

Testing Algorithm 2 with K = 15 on the same problem, it is seen that fewer (in this case,
13) function evaluations are required by the serial version of the algorithm, as the location of
each new function evaluation is based on the trends revealed in all of the previous function
evaluations. However, the total number of iterations that need to be executed in this case
is increased from 6 to 10, thus demonstrating the benefit of the parallel algorithm when
performing function evaluations in parallel is possible (Fig. 19).

8 Conclusions

In this paper, we have presented a new response surface method for derivative-free optimiza-
tion of nonconvex functions within a feasible domain L bounded by linear constraints. The
paper developed five algorithms:

• Algorithm1 showedhow to initialize the problem, identifying the vertices of L , eliminating
the redundant constraints, and projecting the equality constraints out of the problem.

123

J Glob Optim (2016) 66:331–382 377

-2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) (b)

(c) (d)

Fig. 19 Comparison of Algorithm 5, for various values of c, and Algorithm 2, all with K = 15, on the
Weierstrass function considered previously. Evaluated points (squares), function of interest (solid line), inter-
polation at last step (dashed line). a Parallel Algorithmwith c = 0, n p = 3. b Parallel Algorithmwith c = 0.5,
n p = 3. c Parallel Algorithm with c = 1, n p = 3. d Serial Algorithm

• Algorithm 2 presented the essential strawman form of the method. It uses any well-
behaved interpolation function of the user’s choosing, and a synthetic piecewise-quadratic
uncertainty function built on the framework of a Delaunay triangulation. A search function
given by a linear combination of the interpolation and a model of the uncertainty is
minimized at each iteration. The search function itself is piecewise smooth, and may
in fact be nonconvex within certain simplices of the Delaunay triangulation. A valuable
feature of the algorithm is that global minimization of the search function within each
simplex is, in fact, not required at each iteration; convergence to the global minimum can
be guaranteed even if the algorithm only locally minimizes the search function within
each simplex at each iteration. Unfortunately, this simple algorithm contains an important
technical flaw: it does not ensure that the triangulation remains well behaved as new
datapoints are added.

• Algorithm 3 showed how to correct the technical flaw of Algorithm 2 by performing
feasible constraint projections, when necessary, to ensure that the triangulation remains
well behaved, with bounded circumradii, as new datapoints are added.

• Algorithm 4 showed how to use an estimate for the lower bound of the function to maxi-
mally accelerate local refinement while still ensuring convergence to the global minimum.

123

378 J Glob Optim (2016) 66:331–382

• Algorithm 5 showed how to efficiently parallelize the function evaluations on n p proces-
sors at each step of the algorithm.

Four adjustable parameters were identified in the above algorithms, and their effects
quantified in numerical tests:

• Algorithm 2 introduced a tuning parameter K > 0, which governs the balance between
global exploration and local refinement. For sufficiently large K applied to smooth func-
tions (that is, Lipschitz, twice-differentiable, and bounded Hessian), convergence to a
neighborhood of the global minimum is guaranteed in a finite number of iterations. For
larger values of K , exploration becomes essentially uniformly over L .

• Algorithm 3 introduced a tuning parameter r > 1 which controls how frequently feasible
constraint projections are performed. Small values of r leads to function evaluations accu-
mulating on the boundaries of L , and amore uniform triangulationwith reducedmaximum
circumradius. Large values of r leads to fewer function evaluations on the boundaries of
L , and less uniform triangulations. Intermediate values of r are thus preferred.

• Algorithm 4 uses a tuning parameter y0, which is an estimate for the global minimum.
Convergence of Algorithm 4 was found to be remarkably rapid when y0 was an accurate
estimate of the global minimum, both for smooth functions, and even certain nonsmooth
functions, like Weierstrass, characterized by exploitable trends of the global shape of
function. (For problems without such exploitable trends, the algorithm was well behaved,
exploring essentially uniformly over the feasible domain.) When y0 is less than the global
minimum, convergence of Algorithm 4 to a global minimizer is guaranteed, though more
global exploration is typically performed in the process.When y0 is greater than the global
minimum, convergence of Algorithm 4 to a value less than or equal to y0 is guaranteed,
with some local refinement performed thereafter.

• Algorithm 5 uses a tuning parameter c which controls how much closer evaluation points
are allowed to get during the parallel substeps of the iteration. Global convergence is
guaranteed for 0 < c ≤ 1. Small values of c allow function evaluations to get dense
far from the global minimum during the parallel substeps, and slows convergence. Large
values of c force the algorithm to focus primarily on global exploration, again slowing
convergence. Intermediate values of c are thus preferred.

The algorithms described above were tested in Matlab, and Python and C++ implemen-
tations of these algorithms are currently being developed; for more information regarding
availability of these codes, please contact the authors via email. Of course, as with any
derivative-free optimization algorithm, there is a curse of dimensionality, and optimization
in only moderate dimensional problems (i.e., n < 10) is expected to be numerically tractable;
a key bottleneck of the present code as the dimension of the problem increases is the over-
head required with the enumeration of the triangulation. The parallel version of the algorithm
is expected to be particularly efficient in cases requiring substantial global exploration; in
cases focusing primarily on local refinement, the speed up provided by performing function
evaluations in parallel is anticipated to be reduced.

In Part 2 of thiswork,we extend the algorithms developed here to convex domains bounded
by arbitrary convex constraints. In Part 3 of this work, we extend the algorithms developed
here to approximate function evaluations, each of which is obtained via statistical averaging
over a finite number of samples. The numerical results presented in the present paper are
intended to exhibit a proof of concept of the behavior of the algorithms developed herein;
future papers will consider more practical applications, and compare to other leading global
optimization algorithms available in the literature.

123

J Glob Optim (2016) 66:331–382 379

Acknowledgments The authors gratefully acknowledge funding fromAFOSR FA 9550-12-1-0046, from the
Cymer Center for Control Systems & Dynamics, and from Leidos corporation in support of this work.

Appendix: Polyharmonic splines

The algorithms described above require the gradient and Hessian of the interpolant being
used to facilitate Newton-based minimizations of the search function. Since our numerical
tests all implement the polyharmonic spline interpolation formula, we now derive analytical
expressions of the gradient and Hessian in this case.

The polyharmonic spline interpolation p(x) of a function f (x) in R
n is defined as a

weighted sumof a set of radial basis functionsϕ(r)built around the location of each evaluation
point, plus a linear function of x :

p(x) =
N∑

i=1

wi ϕ(r) + vT
[
1
x

]
,

where ϕ(r) = r3 and r = ‖x − xi‖. (83)

The weights wi and vi represent N and n + 1 unknowns, respectively, to be determined
through appropriate conditions. First, we match the interpolant p(x) to the known values
of f (x) at each evaluation point xi , i.e. p(xi) = f (xi); this gives N conditions. Then, we
impose the orthogonality conditions

∑
i wi = 0 and

∑
i wi xi j = 0, j = 1, 2, . . . , n. This

gives n + 1 additional conditions. Thus,
[
F V T

V 0

] [
w

v

]
=
[
f (xi)
0

]
where

Fi j = ϕ(‖xi − x j‖) and

V =
[
1 1 . . . 1
x1 x2 . . . xN

]
. (84)

The gradient and Hessian of p(x) may now be written as follows:

∇ p(x) = ∇
(

N∑

i=1

wi‖x − xi‖3 + vT
[
1
x

])

= 3
N∑

i=1

wi‖x − xi‖(x − xi) + v̄,

where v̄ = [v2, v3, . . . , vn+1]T , and

∇2 p(x) = ∇2

(
N∑

i=1

wi‖x − xi‖3 + vT
[
1
x

])

= 3
N∑

i=0

wi

(
(x − xi)(x − xi)T

‖x − xi‖ + ‖x − xi‖In×n

)
.

Note that the calculation of the weights of a polyharmonic spline interpolant requires the
solution of a (N + n + 1) × (N + n + 1) linear system. This system is not diagonally dom-
inant, and does not show an easily-exploitable sparsity pattern facilitating fast factorization

123

380 J Glob Optim (2016) 66:331–382

techniques. Nevertheless, since our algorithm adds only one point to the set of N evaluation
points at each iteration, we can avoid the solution of the new linear system from scratch, and
instead implement a rank-one update at each iteration as follows. First, for the set of initial
points, we calculate the inverse A = [

F V T

V 0

]
. This step is somewhat time consuming, but

reduces the computations required in subsequent steps. Using Matrix Inversion Lemma, we
then update the inverse of A with the new information given at each step as follows:

A−1
N+1 =

[
AN bT

b 0

]−1

=
[
A−1
N + A−1

N bT bA−1
N /c −A−1

N bT /c
−bA−1

N /c 1/c

]
, (85)

where b is a vector of length n + 1 defined as b = [
1 xN+1

]T , and c = −bA−1
N bT is a

scalar. Multiplication of A−1
N+1 in (85) with the vector

[
f (xi) 0 f (xN+1)

]T gives the vector

of weights in an unordered fashion, i.e.
[

wi vi wN+1)
]T . Therefore, before adding the new

function evaluation in the following iteration and performing the next rank-one update, it is
necessary to permute the matrix A−1

N+1, given by

A−1
N+1 =

⎡

⎣
F V T ϕ(‖xN+1 − xi ‖)T
V 0

[
1 xN+1

]

ϕ(‖xN+1 − xi ‖)
[

1
xN+1

]
0

⎤

⎦

−1

,

such that the desired 2 × 2 block form at the next iteration is recovered:

PA−1
N+1P

T =
[
F+ V T+
V+ 0

]−1

=

⎡

⎢⎢
⎣

F ϕ(‖xN+1 − xi‖)T V T

ϕ(‖xN+1 − xi‖) 0
[
1 xN+1

]

V

[
1

xN+1

]
0

⎤

⎥⎥
⎦

−1

.

After this permutation, it is possible to apply theMatrix InversionLemma (85) at the following
step.

Remark 13 Another fast method to find the coefficients of radial basis functions is described
in [35]. Since the present algorithms build the dataset incrementally, the method described
above is less expensive in the present case.

As mentioned earlier, variations of Kriging interpolation are often used in Response
Surface Methods, such as the Surrogate Management Framework, for derivative-free opti-
mization. DACE (see [8]) is one of the standard packages used for numerically computing
the Kriging interpolant. Figure 20a and b compare of the polyharmonic spline interpolation
method described above and the Kriging interpolation method computed using DACE, as
applied to the test function f (r) = r ∗ sin 1/r , where r2 = x2 + y2 with N = 1004 data
points. The data points used in this example are the 4 corners of a square domain, and 1000
random-chosen points clustered within a small neighborhood of the center of the square,
which highlights the numerical challenge of performing interpolation when grid points begin
to cluster in a particular region, which is common when a response surface method for
derivative-free optimization approaches convergence. Figure 20a and b plot the difference
between the real value of f and the value of the corresponding interpolants.

An observation which motivated the present study is that, in such problems, the Kriging
interpolant is often spurious in comparison with other interpolation methods, such as poly-
harmonic splines. Note that various methods have been proposed to regularize such spurious

123

J Glob Optim (2016) 66:331–382 381

Fig. 20 The difference between
the actual function,
f (r) = r ∗ sin 1/r , where
r2 = x2 + y2, and its interpolant
for two different interpolation
strategies when 1000 function
evaluations are clustered near the
center of a square domain. a The
error of the polyharmonic spline
interpolation interpolant (83). b
The error of the Kriging
interpolant with a Gaussian
model for the corrrelation,
computed using DACE

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.1

0.2

0.3

0.4

0.5

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

5000

10000

15000

(a)

(b)

interpolations in the presence of clustered datapoints, such as combining interpolants which
summarize global trends with interpolants which account for local fluctuations. Our desire
in the present effort was to develop a robust response surface method that can implement
any good interpolation strategy, the selection of which is expected to be somewhat problem
dependent.

References

1. Alexandria, D.A.: Convex Polyhedra. Springer, Berlin (2005)
2. Balinski, M.L.: An algorithm for finding all vertices of convex polyhedral sets. J. Soc. Ind. Appl. Math.

9(1), 72–88 (1961)
3. Belitz, P., Bewley, T.: New horizons in sphere-packing theory, part II: lattice-based derivative-free opti-

mization via global surrogates. J. Glob. Optim. 56(1), 61–91 (2013)
4. Booker, A.J., Deniss, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A Rigorous framework

for optimization of expensive function by surrogates. Struct. Optim. 17(1), 1–13 (1999)
5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
6. Hornus, S., Boissonnat, J.D.: An Efficient Implementation of Delaunay Triangulations inMediumDimen-

sions, [research report] RR-6743 (2008)
7. Boissonnat, J.D., Devillers, O., Hornus, S.: Incremental construction of the Delaunay triangulation and

the Delaunay graph in medium dimension. In: Proceedings of the Twenty-Fifth Annual Symposium on
Computational Geometry. ACM (2009)

8. Nielsen, H.B., Lophaven, S.N., Sndergaard, J., DACE,A.: Amatlab kriging toolbox. In: Technical Report,
Technical University of Denmark, Version 2.0, 1 Aug (2002)

123

382 J Glob Optim (2016) 66:331–382

9. Dwyer, R.A.: A faster divide-and-conquer algorithm for constructing delaunay triangulation. Algorith-
mica 2(1–4), 137–151 (1987)

10. Dwyer, R.A.: Higher-dimensional Voronoi diagram in linear exprected time. Discrete Comput. Geom.
6(1), 343–367 (1991)

11. Dwyer, R.A.: The expected number of k-faces of Voronoi diagram. Comput. Math. Appl. 26(5), 13–19
(1993)

12. George, P.L., Borouchaki, H.: Delaunay Triangulation and Meshing: Application to Finite Element.
Hermes, Paris (1998)

13. Gill, P.E., Murray, M.: Newton-type methods for unconstrained and linearly constrained optimization.
Math. Progr. 7(1), 311–350 (1974)

14. Gutmann, H.M.: A radial basis function method for global optimization. J. Glob. Optim. 19(3), 201–227
(2001)

15. Hardy, G.H.: Weierstrass as non differentiable function. Trans. Amer. Math. Soc. 17(3), 301–325 (1916)
16. Hoffman, K.L.: A method for globally minimizing concave functions over convex sets. Math. Progr.

20(1), 22–32 (1981)
17. Jones, D.: A taxonomy of global optimization methods based on response surfaces. J. Glob.Optim. 21,

345–383 (2001)
18. Krige, D.G.: A Statistical Approach to Some Mine Valuations and Allied Problems at the Witwatersrand.

Masters thesis of the University of Witwatersrand, South Africa (1951)
19. Lewis, R.M., Torczon,V., Trosset,M.W.:Direct SearchMethod: Then andNow,NASA/CR-2000-210125,

ICASE Report No.2000-26 (2000)
20. Li, X.Y.: Generating well-shaped d-dimensional Delaunay meshes. Theor. Comput. Sci. 296(1), 145–165

(2003)
21. Li, X-Y, Teng, S.H.: Generating well-shaped Delaunay meshed in 3D. In: Proceedings of the Twelfth

Annual ACM-SIAM Symposium on Discrete algorithms. SIAM (2001)
22. Manas,M., Nedoma, J.: Finding all vertices of a convex polyhedron. Numer.Math. 12(3), 226–229 (1968)
23. Matheiss, T.H., Rubin, D.S.: A survey and comparison of methods for finding all vertices of convex

polyhedral sets. Math. Oper. Res. 5(2), 167–185 (1980)
24. Matheron, B.: Principles of geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)
25. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17(02), 179–184

(1970)
26. Yang, X.: Nature-inspired optimization algorithms. Elsevier (2014)
27. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (1999)
28. Powell, M.J.D.: An efficient method for finding the minimum for function of several variables without

calculating derivatives. Comput. J. 7(2), 155–162 (1964)
29. Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. Comput. J.

3(3), 175–184 (1960)
30. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge

(2006)
31. Schonlau, M., Welch, W.J., Jones, D.J.: A Data-Analytic Approach to Bayesian Global Optimization.

Department of Statistics and Actuarial Science and The Institute for Improvement in Quality and Pro-
ductivity, 1997 ASA conference (1997)

32. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22(1),
21–74 (2002)

33. Spendley, W., Hext, G.R., Himsworth, F.R.: Sequential application of simplex designs in optimisation
and evolutionary operation. Technometrics 4(4), 441–461 (1962)

34. Torczon, V.: Multi-Directional Search, A Direct Search Algorithm for Parallel Machines, Ph.D. thesis,
Rice University, Houstin, TX (1989)

35. Wahba, G.: Spline models for observational data, Vol. 59. Siam (1990)
36. Watson, D.: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes.

Comput. J. 24(2), 167–172 (1981)
37. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)
38. Torn, A., Zilinkas, A.: Global Optimization. Springer, New York (1989)
39. http://www.qhull.org. Accessed 31 March 2015
40. http://netlib.org/voronoi/hull.html. Accessed 31 March 2015
41. http://www.cgal.org. Accessed 31 March 2015

123

http://www.qhull.org
http://netlib.org/voronoi/hull.html
http://www.cgal.org

	Delaunay-based derivative-free optimization via global surrogates, part I: linear constraints
	Abstract
	1 Introduction
	2 Initialization
	3 Strawman form of algorithm
	3.1 Characterizing the triangulation
	3.2 Smoothness of the uncertainty
	3.3 Minimizing the search function
	3.4 Convergence of Algorithm 2

	4 Bounding the circumradii
	5 Adapting K
	5.1 Using an inaccurate estimate of y0

	6 Parallelization
	7 Results
	7.1 Nondifferentiable 1D case
	7.2 Box constraints
	7.2.1 2D parabola
	7.2.2 2D Schwefel
	7.2.3 2D and 3D rastrigin
	7.2.4 2D and 3D rosenbrock

	7.3 General linear constraints
	7.4 Feasible constraint projections
	7.5 Parallel performance

	8 Conclusions
	Acknowledgments
	Appendix: Polyharmonic splines
	References

