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Abstract This paper is concerned with a general model of financial flows and prices related
to individual entities, called sectors, which invest in financial instruments as assets and as
liabilities. In particular, using delicate tools of Functional Analysis, besides existence results
of financial equilibrium, in the dual formulation, the Lagrange functions ρ∗1

j (t) and ρ∗2
j (t),

called “deficit” and “surplus” variables, appear and reveal to be very relevant in order to
analyze the financial model and the possible insolvencies, which can lead to a financial
contagion. In the paper the continuity of these Lagrange functions is proved. Finally, a
procedure for the calculus of these variables is suggested.

Keywords Financial problem ·Variational inequality formulation · Equilibrium conditions ·
Dual Lagrange formulation · Deficit and surplus variables · Financial contagion
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1 Introduction

The first authors to develop a multi-sector, multi-instrument financial equilibrium model,
using the variational inequality theory, were Nagurney et al. in [32]. These results were,
subsequently, extended by Nagurney in [33,34] to include more general utility functions and
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by Nagurney and Siokos in [35,36] to the international domain (see also [27,37] for related
papers). In [20], the authors apply for the first time the methodology of projected dynamical
systems to develop a multi-sector, multi-instrument financial model, whose set of stationary
points coincides with the set of solutions to the variational inequality model developed in
[33], and then to study it qualitatively, providing stability analysis results.

Very recently, a general equilibrium model of financial flows and prices, evolving in time,
is studied in [3,5].

The problem of financial equilibrium is a global optimization problem in the feasible set
of a utility function, given by risk-aversion and profit. More precisely, we consider a financial
economy consisting of m sectors, with a typical sector denoted by i , and of n instruments,
with a typical financial instrument denoted by j , in the time interval [0, T ]. If si (t) denotes
the total financial volume held by sector i at time t as assets, and li (t) denotes the total
financial volume held by sector i at time t as liabilities, then, the set of feasible assets and
liabilities for each sector i = 1, . . . , m, is

Pi =
{
(xi (t), yi (t)) ∈ L2([0, T ],R2n) :

n∑
j=1

xi j (t) = si (t),
n∑

j=1

yi j (t) = li (t) a.e. in [0, T ],

xi (t) ≥ 0, yi (t) ≥ 0, a.e. in [0, T ]
}

∀i = 1, . . . , m.

In such a way the set of all feasible assets and liabilities becomes

P =
{
(x(t), y(t)) ∈ L2([0, T ],R2mn) :

n∑
j=1

xi j (t) = si (t),
n∑

j=1

yi j (t) = li (t),

∀ i =1, . . . , m, a.e. in [0, T ], xi (t) ≥ 0, yi (t) ≥ 0, ∀ i = 1, . . . , m, a.e. in [0, T ]
}
,

whereas the set of feasible instrument prices is:

R = {r ∈ L2([0, T ],Rn) : r j (t) ≤ r j (t) ≤ r j (t), j = 1, . . . , n, a.e. in [0, T ]},
where r and r are assumed to belong to L2([0, T ],Rn), (for a detailed description of the
model see Sect. 2).

In order to determine for each sector i the optimal composition of instruments held as assets
and as liabilities, we consider, as usual, the influence due to risk-aversion and the process
of optimization of each sector in the financial economy, namely the desire to maximize the
value of the asset holdingswhileminimizing the value of liabilities.Moreover, the equilibrium
condition for the prices,which expresses the equilibrationof the total assets, the total liabilities
and the portion of financial transactions per unit Fj employed to cover the expenses of the
financial institutions including possible dividends and manager bonus r j of instrument j is
the following:

m∑
i=1

(1 − τi j (t))
[
x∗

i j (t) − (1 + h j (t))y∗
i j (t)

]
+ Fj (t)

⎧⎨
⎩

≥ 0 if r∗
j (t) = r j (t)

= 0 if r j (t) < r∗
j (t) < r j (t)

≤ 0 if r∗
j (t) = r j (t),

(1)

where (x∗, y∗, r∗) is the equilibrium solution for the investments as assets and as liabilities
and for the prices.

Let us explicitly remark that the definition of equilibrium conditions (see Definition 2) of
the financial model may be also expressed in the following form:
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Definition 1 A vector of sector assets, liabilities and instrument prices (x∗, y∗, r∗) ∈ P ×R
is an equilibriumof the dynamic financialmodel if and only if∀i = 1, . . . , m,∀ j = 1, . . . , n,

and a.e. in [0, T ], it is a solution to

max
Pi

∫ T

0

{
ui (t, xi (t), yi (t)) + (1 − τi (t))r

∗(t) × [xi (t) − (1 + h(t))yi (t)]
}

dt,

∀(xi , yi ) ∈ Pi ,

and verifies condition (1).

Let us note that the term −ui (t, xi (t), yi (t)) represents a measure of the risk of the financial
agent, r j (t)(1−τi j (t))[xi (t)−(1+h j (t))yi (t)] represents the value of the difference between
the asset holdings and the liabilities.

In [5] these equilibrium conditions are expressed in terms of an evolutionary variational
inequality and some existence theorems are provided. Moreover, it is possible to consider the
so-called shadow market, namely the dual Lagrange problem, when the Lagrange variables
ρ∗1

j (t) and ρ∗2
j (t), called “deficit” and “surplus” variables, appear. These variables play a

fundamental role in order to analyze the model and to achieve suggestions for the manage-
ment of the world economy (see the Deficit formula, the Balance Law and the Liabilities
Formula).

On the other hand, in [10] by means of these Lagrange variables the authors study
the possible insolvencies related to the financial instruments and analyze, in terms of∑n

j=1 ρ
(1)∗
j (t) − ∑n

j=1 ρ
(2)∗
j (t), when the insolvencies propagate to the entire system, pro-

ducing a “financial contagion”.
In [4] the regularity of the solutions of the evolutionary variational inequality, governing

the financial model, is investigated. In particular, the authors are able to obtain a continuity
result of the equilibrium solution (see [1,2] for the study of continuity of solutions to general
evolutionary variational inequalities).

Because of the relevance and importance of the “deficit” and “surplus” variables
ρ∗1

j (t) and ρ∗2
j (t) in the study of the evolutionary financial equilibrium problem, it

remains to investigate regularity properties of these Lagrange variables. In this paper the
authors, analyzing the model already introduced, in which the equilibrium is expressed
in terms of a global maximum, are able to prove, first, the continuity of the equilib-
rium solution and then, under the same conditions, a continuity result of the “deficit”
and “surplus” variables ρ∗1

j (t), ρ∗2
j (t). These regularity results allow us to apply a cal-

culus procedure in order to compute the equilibrium solution and, then, the Lagrange
variables.

The paper is organized as follows: in Sect. 2 the model is presented in detail, together with
the equilibrium conditions and their evolutionary variational inequality formulation; in Sect.
3 we give the dual formulation in which the Lagrange variables ρ∗1

j (t) and ρ∗2
j (t) appear; in

Sect. 4 we state the main result of the paper; in Sect. 5 we provide the proof of our result;
in Sect. 6 we give a computational procedure and we stress the relevance of these variables
in order to analyze the financial contagion; in Sect. 7 we provide a numerical example and
finally Sect. 8 summarizes our results.

It is worth stressing that variational inequality theory has revealed to be a powerful instru-
ment in order to study equilibrium problems, for example Walrasian equilibrium problem
(see [17–19]), the oligopolistic market equilibrium problem (see [6,7]), the weighted traffic
equilibrium problem (see [25,26]), Signorini problem (see [21] and references therein) and
many others.
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2 The financial model and the equilibrium conditions

Now, we describe the financial network we are dealing with (for more details we refer
to [3,5,11]). In the general competitive financial equilibrium models here considered, the
equilibrium yields both asset and liability volumes, as well as the instrument prices.

Then, we consider a financial economy consisting of m sectors, for example households,
domestic business, banks and other financial institutions, as well as state and local govern-
ments, with a typical sector denoted by i , and of n instruments, for example mortgages,
mutual funds, saving deposits, money market funds, with a typical financial instrument
denoted by j , in the time interval [0, T ]. Let si (t) denote the total financial volume held
by sector i at time t as assets, and let li (t) be the total financial volume held by sector
i at time t as liabilities. In general, the investments of markets in assets and liabilities,
si (t) and li (t), may be different and depending on time, since we are in the presence of
uncertainty and risk perspectives. At time t , we denote the amount of instrument j , held
as an asset in sector i’s portfolio, by xi j (t) and the amount of instrument j , held as a
liability in sector i’s portfolio, by yi j (t). The assets and liabilities in all the sectors are
grouped into the matrices x(t) = [x1(t), . . . , xi (t), . . . , xn(t)]T = {xi j (t)}

i=1,...,m
j=1,...,n

and

y(t) = [y1(t), . . . , yi (t), . . . , yn(t)]T = {yi j (t)}
i=1,...,m
j=1,...,n

.

We choose as a functional setting the very general Lebesgue space L2([0, T ],Rp) ={
f : [0, T ] → R

p :
∫ T

0
‖ f (t)‖2pdt < +∞

}
.

As it is well known, the dual space of L2([0, T ],Rp) is still L2([0, T ],Rp) and we define
the canonical bilinear form in L2([0, T ],Rp) × L2([0, T ],Rp) as

〈〈g, x〉〉 =
∫ T

0
〈g(t), x(t)〉dt, g, x ∈ L2([0, T ],Rp).

Then, the set of feasible assets and liabilities, for each sector i = 1, . . . , m, becomes

Pi =
{
(xi (t), yi (t)) ∈ L2([0, T ],R2n) :

n∑
j=1

xi j (t) = si (t),

n∑
j=1

yi j (t) = li (t) a.e. in [0, T ], xi (t) ≥ 0, yi (t) ≥ 0, a.e. in [0, T ]
}
;

and the set of all feasible assets and liabilities becomes

P =
{
(x(t), y(t)) ∈ L2([0, T ],R2mn) :

n∑
j=1

xi j (t) = si (t),

n∑
j=1

yi j (t) = li (t), ∀ i = 1, . . . , m, a.e. in [0, T ],

xi (t) ≥ 0, yi (t) ≥ 0, ∀ i = 1, . . . , m, a.e. in [0, T ]
}
.

We denote the price of instrument j , held as an asset at time t , by r j (t) and the price of
instrument j , held as a liability at time t , by (1 + h j (t))r j (t), where h j is a nonnegative
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function belonging to L∞([0, T ]). The term h j (t) describes the realistic behaviour of the
markets, for which the liabilities are more expensive than the assets. We group the instrument
prices, held as assets, into the vector r(t) = [r1(t), r2(t), . . . , ri (t), . . . , rn(t)]T and the
instrument prices, held as liabilities, into the vector (1+ h(t))r(t) = [(1+ h1(t))r1(t), (1+
h2(t))r2(t), . . . , (1+ hi (t))ri (t), . . . , (1+ hn(t))rn(t)]T . In our problem the prices of each
instrument appear as unknown variables.

As in [5], we consider a more complete definition of equilibrium prices r∗(t), based on
the demand-supply law, imposing that the equilibrium prices vary between floor and ceiling
prices.

To this aim, we denote the nonnegative floor price and the ceiling price, associ-
ated with instrument j , by r j (t) and r j (t), respectively, with r j (t) > r j (t) a.e. in
[0, T ], and we group the instrument ceiling prices r j (t) into the column vector r(t) =
[r1(t), . . . , r i (t), . . . , rn(t)]T and the instrument floor prices r(t) into the column vector
r j (t) = [r1(t), . . . , r i (t), . . . , rn(t)]T .

The set of feasible instrument prices becomes:

R = {r ∈ L2([0, T ],Rn) : r j (t) ≤ r j (t) ≤ r j (t), j = 1, . . . , n, a.e. in [0, T ]},
where r(t) and r(t) are assumed to belong to L2([0, T ],Rn).

In this way, to each investor a minimal price r j (t) for the assets held in the instrument j is
guaranteed, whereas each investor is requested to pay for the liabilities, in any case, aminimal
price (1 + h j )r j (t). Similarly, each investor cannot obtain, for an asset, a price greater than
r j (t) and, as a liability, the price cannot exceed the maximum price (1 + h j (t))r j (t).

Moreover, we incorporate policy interventions in the financial equilibrium in form of taxes
and price controls.We denote the tax rate levied on sector i’s net yield on financial instrument
j as τi j (t) and group it into the matrix τ(t) = {τi j (t)}i=1,...,m, j=1,...,n .

We assume that each sector i seeks to maximize its utility, with the utility function,
∀i = 1, . . . , m, given by

Ui (t, xi (t), yi (t), r(t))

= ui (t, xi (t), yi (t)) +
n∑

j=1

r j (t)(1 − τi j (t))[xi j (t) − (1 + h j (t))yi j (t)],

where the term −ui (t, xi (t), yi (t)) represents a measure of the risk of the financial agent,
r j (t)(1− τi j (t))[xi (t) − (1+ h j (t))yi (t)] represents the value of the difference between the
asset holdings and the liabilities. First, wemake the following assumptions, calledHypotheses
1, which will be denoted by Hp. 1:

– The sector’s utility function Ui (t, xi (t), yi (t)) is defined on [0, T ] × R
n × R

n × R
n , is

measurable in t and is continuous with respect to the other variables.
– ∂ui/∂xi j and ∂ui/∂yi j exist and they are measurable in t and continuous with respect

to xi and yi .
– ∀i = 1, . . . , m, ∀ j = 1, . . . , n, and a.e. in [0, T ], the following growth conditions hold

true:

|ui (t, x, y)| ≤ αi (t)‖x‖‖y‖, ∀x, y ∈ R
n, (2)∣∣∣∂ui (t, x, y)

∂xi j

∣∣∣ ≤ βi j (t)‖y‖,
∣∣∣∂ui (t, x, y)

∂yi j

∣∣∣ ≤ γi j (t)‖x‖, (3)

where αi , βi j , γi j are non-negative functions of L∞([0, T ]).
– The function ui (t, x, y) is concave.
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– −∂ui (t, xi (t), yi (t))/∂xi j , −∂ui (t, xi (t), yi (t))/∂yi j are strongly monotone functions
(for the definition, see for example [8]).

We remind that the time-dependent Markowitz utility function verifies conditions (2) and
(3) (see [28,29]).

The equilibrium condition for the prices expresses the equilibration of the total assets, the
total liabilities and the portion of financial transactions per unit Fj . Hence, the equilibrium
condition for the price r j of instrument j is the following:

m∑
i=1

(1 − τi j (t))
[
x∗

i j (t) − (1 + h j (t))y∗
i j (t)

]
+ Fj (t)

⎧⎨
⎩

≥ 0 if r∗
j (t) = r j (t)

= 0 if r j (t) < r∗
j (t) < r j (t)

≤ 0 if r∗
j (t) = r j (t)

(4)

where (x∗, y∗, r∗) is an equilibrium solution belonging to P ×R for the investments as assets
and as liabilities and for the prices. Fj (t) is the portion of financial transactions per unit,
employed to cover the expenses of the financial institutions, including possible dividends
and manager bonus.

In other words, the prices are determined taking into account the amount of the supply,
the demand of an instrument and the charges Fj , namely, if there is an actual supply excess
of an instrument as assets and of the charges Fj in the economy, then its price must be the
floor price. If the price of an instrument is positive, but not at the ceiling, then the market of
that instrument must clear. Finally, if there is an actual demand excess of an instrument as
liabilities and of the charges Fj in the economy, then the price must be at the ceiling.

Let us note that, if r(t), r(t) are continuous functions, then the equilibrium price r∗(t)
can be also chosen as a continuous one.

Hence, the definition of equilibrium conditions is the following one.

Definition 2 Avector of sector assets, liabilities and instrument prices (x∗(t), y∗(t), r∗(t)) ∈
P × R is an equilibrium of the dynamic financial model if and only if, ∀i = 1, . . . , m,

∀ j = 1, . . . , n, and a.e. in [0, T ], it satisfies the system of inequalities

−∂ui (t, x∗, y∗)
∂xi j

− (1 − τi j (t))r
∗
j (t) − μ

(1)∗
i (t) ≥ 0, (5)

−∂ui (t, x∗, y∗)
∂yi j

+ (1 − τi j (t))(1 + h j (t))r
∗
j (t) − μ

(2)∗
i (t) ≥ 0, (6)

and equalities

x∗
i j (t)

[
− ∂ui (t, x∗, y∗)

∂xi j
− (1 − τi j (t))r

∗
j (t) − μ

(1)∗
i (t)

]
= 0, (7)

y∗
i j (t)

[
− ∂ui (t, x∗, y∗)

∂xi j
+ (1 − τi j (t))(1 + h j (t))r

∗
j (t) − μ

(2)∗
i (t)

]
= 0, (8)

where μ
(1)∗
i (t), μ(2)∗

i (t) ∈ L2([0, T ]) are Lagrange multipliers, and it verifies conditions (4)
a.e. in [0, T ].

It is worth remarking that the equilibrium definition is, in a sense, the same as given
by Wardrop’s principle, which states that, in the case of user optimization on congested
transportation networks, the user rejects the less convenient (or more costly) choice.
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The functionsμ
(1)∗
i (t) andμ

(2)∗
i (t) are Lagrange multipliers associated a.e. in [0, T ]with

the constraints
n∑

j=1

xi j (t) − si (t) = 0 and
n∑

j=1

yi j (t) − li (t) = 0, respectively. They are

unknown a priori, but this fact has no influence, because the following Theorem states that
Definition 2 is equivalent to a variational inequality in which μ

(1)∗
i (t) and μ

(2)∗
i (t) do not

appear.
The following Theorem, which provides the variational inequality formulation of the

equilibrium conditions, is proved in [5] (see Theorem 2.1).

Theorem 1 A vector (x∗, y∗, r∗) ∈ P ×R is a dynamic financial equilibrium if and only if
it satisfies the following variational inequality:

Find (x∗, y∗, r∗) ∈ P × R:

m∑
i=1

∫ T

0

{ n∑
j=1

[
− ∂ui (t, x∗

i (t), y∗
i (t))

∂xi j
− (1 − τi j (t))r

∗
j (t)

]
× [xi j (t) − x∗

i j (t)]

+
n∑

j=1

[
− ∂ui (t, x∗

i (t), y∗
i (t))

∂yi j
+ (1 − τi j (t))r

∗
j (t)(1 + h j (t))

]
× [yi j (t) − y∗

i j (t)]
}

dt

+
n∑

j=1

∫ T

0

m∑
i=1

{
(1 − τi j (t))

[
x∗

i j (t) − (1 + h j (t))y∗
i j (t)

]
+ Fj (t)

}

×[
r j (t) − r∗

j (t)
]
dt ≥ 0, ∀(x, y, r) ∈ P × R. (9)

Let us observe that the first part of variational inequality (9) is equivalent to the utility
maximization problem in P , whereas the second part expresses conditions (4). It is worth
remarking that a solution (x∗(t), y∗(t)) of the first part of (9) is unique and does not depend
on the equilibrium price r∗(t), but only on floor and ceiling prices, r(t) and r(t), as proved
in Sect. 5.

We refer to [8] for an existence theorem of the equilibrium solution for the financial model.

3 The deficit and surplus variables: the shadow market

In order to better understand the behavior of the financial equilibrium, in [5] the authors,
applying to the general financial model a very recent infinite dimensional duality theory
introduced and developed in [12,14–16,31], obtain an interesting and useful output as
the Deficit Formula, the Balance Law and the Liability Formula, from which important
suggestions and remarks follow for the management of the world economy. In this frame-
work, the Lagrange variables surplus and deficit, ρ

(1)∗
j (t) and ρ

(2)∗
j (t), appear and play a

fundamental role. For analogous results on the relevance of the Lagrange multipliers see
[13,22–24].

Indeed, first the authors introduce the Lagrange functional

L(x, y, r, λ(1), λ(2), μ(1), μ(2), ρ(1), ρ(2))

= f (x, y, r) −
m∑

i=1

n∑
j=1

∫ T

0
λ

(1)
i j (t)xi j (t) dt −

m∑
i=1

n∑
j=1

∫ T

0
λ

(2)
i j yi j (t) dt
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−
m∑

i=1

∫ T

0
μ

(1)
i (t)

⎛
⎝ n∑

j=1

xi j (t) − si (t)

⎞
⎠ dt −

m∑
i=1

∫ T

0
μ

(2)
i (t)

⎛
⎝ n∑

j=1

yi j (t) − li (t)

⎞
⎠ dt

+
n∑

j=1

∫ T

0
ρ

(1)
j (t)(r j (t) − r j (t)) dt +

n∑
j=1

∫ T

0
ρ

(2)
j (t)(r j (t) − r j (t)) dt,

where

f (x, y, r)

=
∫ T

0

{ m∑
i=1

n∑
j=1

[
−∂ui (t, x∗(t), y∗(t))

∂xi j
− (1 − τi j (t))r

∗
j (t)

]
× [xi j (t) − x∗

i j (t)]

+
m∑

i=1

n∑
j=1

[
−∂ui (t, x∗(t), y∗(t))

∂yi j
+ (1 − τi j (t))(1 + h j (t))r

∗
j (t)

]
× [yi j (t) − y∗

i j (t)]

+
n∑

j=1

[
m∑

i=1

(1 − τi j (t))
[
x∗

i j (t) − (1 + h j (t))y∗
i j (t)

]
+ Fj (t)

]
×

[
r j (t) − r∗

j (t)
] }

dt,

with (x, y, r) ∈ L2([0, T ],R2mn+n), λ(1), λ(2) ∈ L2([0, T ],Rmn+ ), μ(1), μ(2) ∈ L2([0, T ],
R

m), ρ(1), ρ(2) ∈ L2([0, T ],Rn+).

It is worth noting that λ(1), λ(2), ρ(1), ρ(2) are the Lagrange multipliers associated, a.e. in
[0, T ], to the sign constraints xi (t) ≥ 0 , yi (t) ≥ 0, r j (t) − r j (t) ≥ 0, r j (t) − r j (t) ≥ 0,

respectively. The functions μ(1)(t) and μ(2)(t) are the Lagrange multipliers associated, a.e.

in [0, T ], to the equality constraints
n∑

j=1

xi j (t) − si (t) = 0 and
n∑

j=1

yi j (t) − li (t) = 0,

respectively.
Then, they prove the following Theorem (Theorem 6.1 in [5]).

Theorem 2 Let (x∗, y∗, r∗) ∈ P × R be a solution to variational inequality (9) and
let us consider the associated Lagrange functional (10). Then, there exist λ(1)∗, λ(2)∗ ∈
L2([0, T ],Rmn+ ), μ(1)∗, μ(2)∗ ∈ L2([0, T ],Rm), ρ(1)∗, ρ(2)∗ ∈ L2([0, T ],Rn+) such that
(x∗, y∗, r∗, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗, ρ(1)∗, ρ(2)∗) is a saddle point of the Lagrange func-
tional, namely

L(x∗, y∗, r∗, λ(1), λ(2), μ(1), μ(2), ρ(1), ρ(2))

≤ L(x∗, y∗, r∗, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗, ρ(1)∗, ρ(2)∗)
≤ L(x, y, r, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗, ρ(1)∗, ρ(2)∗) (10)

∀(x, y, r) ∈ L2([0, T ],R2mn+n), ∀λ(1), λ(2) ∈ L2([0, T ], Rmn+ ), ∀μ(1), μ(2) ∈ L2([0, T ],
R

m), ∀ρ(1), ρ(2) ∈ L2([0, T ],Rn+) and, a.e. in [0, T ],

−∂ui (t, x∗(t), y∗(t))
∂xi j

− (1 − τi j (t))r
∗
j (t) − λ

(1)∗
i j (t) − μ

(1)∗
i (t) = 0,

∀i = 1, . . . , m, ∀ j = 1 . . . , n;
−∂ui (t, x∗(t), y∗(t))

∂yi j
+ (1 − τi j (t))(1 + h j (t))r

∗
j (t) − λ

(2)∗
i j (t) − μ

(2)∗
i (t) = 0,

∀i = 1, . . . , m, ∀ j = 1 . . . , n;
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m∑
i=1

(1 − τi j (t))
[
x∗

i j (t) − (1 + h j (t))y∗
i j (t)

]
+ Fj (t) + ρ

(2)∗
j (t) = ρ

(1)∗
j (t),

∀ j = 1, . . . , n; (11)

λ
(1)∗
i j (t)x∗

i j (t) = 0, λ
(2)∗
i j (t)y∗

i j (t) = 0, ∀i = 1, . . . , m, ∀ j = 1, . . . , n (12)

μ
(1)∗
i (t)

⎛
⎝ n∑

j=1

x∗
i j (t) − si (t)

⎞
⎠ = 0, μ

(2)∗
i (t)

⎛
⎝ n∑

j=1

y∗
i j (t) − li (t)

⎞
⎠ = 0,

∀i = 1, . . . , m (13)

ρ
(1)∗
j (t)(r j (t) − r∗

j (t)) = 0, ρ
(2)∗
j (t)(r∗

j (t) − r j (t)) = 0, ∀ j = 1, . . . , n. (14)

Formula (11) represents the Deficit Formula.
ρ

(1)∗
j (t) represents the deficit per unit, whereas ρ

(2)∗
j (t) is the positive surplus per unit.

From (11) it is possible to obtain the Balance Law

m∑
i=1

li (t) =
m∑

i=1

si (t) −
m∑

i=1

n∑
j=1

τi j (t)
[
x∗

i j (t) − y∗
i j (t)

]

−
m∑

i=1

n∑
j=1

(1 − τi j (t))h j (t)y∗
i j (t) +

n∑
j=1

Fj (t) −
n∑

j=1

ρ
(1)∗
j (t) +

n∑
j=1

ρ
(2)∗
j (t). (15)

Finally, assuming that the taxes τi j (t), i = 1, . . . , m, j = 1, . . . , n, have a common value
θ(t), and the increments h j (t), j = 1, . . . , n, have a common value i(t), otherwise we can
consider the average values (see Remark 7.1 in [5]), the significant Liability Formula follows

m∑
i=1

li (t) =
(1 − θ(t))

m∑
i=1

si (t) +
n∑

j=1

Fj (t) −
n∑

j=1

ρ
(1)∗
j (t) +

n∑
j=1

ρ
(2)∗
j (t)

(1 − θ(t))(1 + i(t))
.

The financial problem can be considered from two different perspectives: one from the
Point of View of the Sectors, which try to maximize the utility and a second point of view, that
we can call System Point of View, which regards the whole equilibrium, namely the respect of
the previous laws. For example, from the point of view of the sectors, li (t), for i = 1, . . . , m,
are liabilities, whereas for the economic system they are investments and, hence, the Liability
Formula, from the system point of view, can be called “Investments Formula”. The system
point of view coincides with the dual Lagrange problem (the so-called “shadow market”) in
which ρ

(1)
j (t) and ρ

(2)
j (t) are the dual multipliers, representing the deficit and the surplus per

unit arising from instrument j . Formally, the dual problem is given by
Find (ρ(1)∗, ρ(2)∗) ∈ L2([0, T ],R2n+ ) such that

n∑
j=1

∫ T

0
(ρ

(1)
j (t) − ρ

(1)∗
j (t))(r j (t) − r∗

j (t))dt

+
n∑

j=1

∫ T

0
(ρ

(2)
j (t) − ρ

(2)∗
j (t))(r∗

j (t) − r j (t))dt ≤ 0,

∀(ρ(1), ρ(2)) ∈ L2([0, T ],R2n+ ). (16)
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In fact, taking into account inequality (10), we get

−
m∑

i=1

n∑
j=1

∫ T

0
(λ

(1)
i j (t) − λ

(1)∗
i j (t))x∗

i j (t) dt −
m∑

i=1

n∑
j=1

∫ T

0
(λ

(2)
i j − λ

(2)∗
i j )y∗

i j (t) dt

−
m∑

i=1

∫ T

0
(μ

(1)
i (t) − μ

(1)∗
i (t))

⎛
⎝ n∑

j=1

x∗
i j (t) − si (t)

⎞
⎠ dt

−
m∑

i=1

∫ T

0
(μ

(2)
i (t) − μ

(2)∗
i (t))

⎛
⎝ n∑

j=1

y∗
i j (t) − li (t)

⎞
⎠ dt

+
n∑

j=1

∫ T

0
(ρ

(1)
j (t) − ρ

(1)∗
j (t))(r j (t) − r∗

j (t)) dt

+
n∑

j=1

∫ T

0
(ρ

(2)
j (t) − ρ

(2)∗
j (t))(r∗

j (t) − r j (t)) dt ≤ 0

∀λ(1), λ(2) ∈ L2([0, T ],Rmn+ ), μ(1), μ(2) ∈ L2([0, T ],Rm), ρ(1), ρ(2) ∈ L2([0, T ],Rn+).

Choosing λ(1) = λ(1)∗, λ(2) = λ(2)∗, μ(1) = μ(1)∗, μ(2) = μ(2)∗, we obtain the dual
problem (16)

Note that, from the System Point of View, also the expenses of the institutions Fj (t) are
supported from the liabilities of the sectors.

Remark 1 Let us recall that, from the Liability Formula, we get the following index E(t),
called “Evaluation Index”, that is very useful for the rating procedure:

E(t) =

m∑
i=1

li (t)

m∑
i=1

s̃i (t) +
n∑

j=1

F̃j (t)

,

where we set

s̃i (t) = si (t)

1 + i(t)
, F̃j (t) = Fj (t)

1 + i(t) − θ(t) − θ(t)i(t)
.

From the Liability Formula we obtain

E(t) = 1 −

n∑
j=1

ρ
(1)∗
j (t)

(1 − θ(t))(1 + i(t))

⎛
⎝ m∑

i=1

s̃i (t) +
n∑

j=1

F̃j (t)

⎞
⎠

+

n∑
j=1

ρ
(2)∗
j (t)

(1 − θ(t))(1 + i(t))

⎛
⎝ m∑

i=1

s̃i (t) +
n∑

j=1

F̃j (t)

⎞
⎠

(17)
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If E(t) is greater or equal than 1, the evaluation of the financial equilibrium is positive
(better if E(t) is proximal to 1), whereas if E(t) is less than 1, the evaluation of the financial
equilibrium is negative.

Remark 2 In [10] the authors note that, if
n∑

j=1

ρ
(1)∗
j (t) >

n∑
j=1

ρ
(2)∗
j (t), (18)

the balance of all the financial entities is negative, the whole deficit exceeds the sum of all the
surplus, a negative contagion appears and the insolvencies of individual entities propagate
through the entire system. It is sufficient that only one deficit ρ

(1)∗
j (t) is large to obtain a

negative balance for the entire system, even if the other ones are lightly positive.
When condition (18) is verified, we get E(t) ≤ 1 and, hence, also E(t) is a significant

indicator that the financial contagion happens.

4 Main result

In the previous section the shadow market is introduced, in which the Lagrange variables
ρ

(1)∗
j (t), ρ(2)∗

j (t) appear. These variables represent the deficit and the surplus per unit, respec-
tively, and constitute a very important instrument in order to analyze the financial model.

Now, in order to present the main achievement of the paper, namely a regularity result of
ρ

(1)∗
j (t), ρ(2)∗

j (t), let us set:

F(t) = [F1(t), F2(t), . . . , Fn(t)]T ;

ν = (x, y, r) =
⎛
⎜⎝(

xi j
)

i=1,...,m
j=1,...,n

,
(
yi j

)
i=1,...,m
j=1,...,n

,
(
r j
)

j=1,...,n

⎞
⎟⎠ ;

A(t, ν) =
([

−∂ui (t, x, y)

∂xi j
− (1 − τi j (t))r j (t)

]
i=1,...,m
j=1,...,n

,

[
−∂ui (t, x, y)

∂yi j
+ (1 − τi j (t))(1 + h j (t))r j (t)

]
i=1,...,m
j=1,...,n

,

[
m∑

i=1

(1 − τi j (t))
(
xi j (t) − (1 + h j (t))yi j (t)

) + Fj (t)

]

j=1,...,n

)
;

A : K → L2([0, T ],R2mn+n), (19)

with

K = P × R.

Let us note thatK is a convex, bounded and closed subset of L2([0, T ],R2mn+n).Moreover
assumption (3) implies that A is lower semicontinuous along line segments.

We are able to prove the following result:

Theorem 3 Let A ∈ C0([0, T ],R2mn+n) be strongly monotone in x and y, monotone in r ,
namely, there exists α such that, for t ∈ [0, T ],
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〈〈A(t, ν1) − A(t, ν2), ν1 − ν2〉〉 ≥ α(‖x1 − x2‖2 + ‖y1 − y2‖2), (20)

∀ν1 = (x1, y1, r1), ν2 = (x2, y2, r2) ∈ R
2mn+n.

Let r(t), r(t), h(t), F(t) ∈ C0([0, T ],Rn+), let τ(t) ∈ C0([0, T ],Rmn) and let s, l ∈
C0([0, T ],Rm), satisfying the following assumption (β):

– there exist δ1(t) ∈ L2([0, T ]) and c1 ∈ R such that, for a.a. t ∈ [0, T ],
‖s(t)‖ ≤ δ1(t) + c1;

– there exist δ2(t) ∈ L2([0, T ]) and c2 ∈ R such that, for a.a. t ∈ [0, T ],
‖l(t)‖ ≤ δ2(t) + c2.

Then the Lagrange variables, ρ(1)∗(t), ρ(2)∗(t), whose existence is ensured by Theorem 2
and which represent the deficit and the surplus per unit, respectively, are continuous too.

5 Proof of the theorem

In order to prove the regularity of the deficit and surplus variables, we start from the following
result, which ensures the continuity of the equilibrium solution only if the operator A is
strongly monotone with respect to (x, y, r) (see [4]).

Theorem 4 Let A ∈ C0([0, T ],R2mn+n) be strongly monotone. Let s, l ∈ C0([0, T ], Rm),
let r(t), r(t) ∈ C0([0, T ],Rn+). Then variational inequality (9) admits a unique continuous
solution.

Let us note that the operator of the financial equilibriumproblem (19) is stronglymonotone
with respect to the variables x and y, but only monotone with respect to r (see [8] Section
3). Then, Theorem 4 cannot be directly applied. However, here we are able to prove, under
the assumptions of Theorem 3, the existence of a continuous equilibrium solution.

To this aim, let us consider the variational inequality (9):

m∑
i=1

∫ T

0

{ n∑
j=1

[
− ∂ui (t, x∗

i (t), y∗
i (t))

∂xi j
− (1 − τi j (t))r

∗
j (t)

]
× [xi j (t) − x∗

i j (t)]

+
n∑

j=1

[
− ∂ui (t, x∗

i (t), y∗
i (t))

∂yi j
+ (1 − τi j (t))r

∗
j (t)(1 + h j (t))

]
× [yi j (t) − y∗

i j (t)]
}

dt

+
n∑

j=1

∫ T

0

m∑
i=1

{
(1 − τi j (t))

[
x∗

i j (t) − (1 + h j (t))y∗
i j (t)

]
+ Fj (t)

}

× [
r j (t) − r∗

j (t)
]
dt ≥ 0, ∀(x, y, r) ∈ P × R.

The existence of a solution to (9) is ensured by Theorem 2.3 in [8].
Let us prove that, assuming r(t), r(t) continuous functions, we can find continuous solu-

tions to (9).
Indeed, let (x∗(t), y∗(t), r∗(t)) be a solution to (9). Setting in (9) xi j = x∗

i j and yi j = y∗
i j

it follows that the equilibrium price r∗(t) verifies variational inequality:
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Find r∗ ∈ R such that
n∑

j=1

∫ T

0

m∑
i=1

{
(1 − τi j (t))

[
x∗

i j (t) − (1 + h j (t))y∗
i j (t)

]
+ Fj (t)

}

× [
r j (t) − r∗

j (t)
]
dt ≥ 0, ∀r ∈ R. (21)

Let us note that, as in Theorem 4.4 in [3], it is possible to prove that variational inequality
(21) is equivalent to conditions (4).

Now, let us define, for j = 1, . . . , n,

E j =
{

t ∈ [0, T ] : r∗
j (t) = r j (t)

}
;

E j =
{

t ∈ [0, T ] : r∗
j (t) = r j (t)

}
;

E∗
j =

{
t ∈ [0, T ] : r j (t) < r∗

j (t) < r j (t)
}

.

Since r(t), r(t) are assumed to be continuous functions, each continuous function
r∗∗(t) = (r∗∗

1 (t), . . . , r∗∗
n (t)), that is equal to r∗

j (t) in E j and E j and r j (t) < r∗∗
j (t) < r j (t)

in E∗
j , still verifies variational inequality (21), since in E∗

j the coefficient
∑m

i=1
(1 −

τi j (t))
[
x∗

i j (t) − (1 + h j (t))y∗
i j (t)

]
+ Fj (t) is equal to zero due to (4). As a consequence,

r∗∗(t) also verifies condition (4).
On the other hand, setting in (9) r j = r∗

j , (x∗(t), y∗(t)) verifies variational inequality:
Find (x∗, y∗) ∈ P such that

m∑
i=1

∫ T

0

{ n∑
j=1

[
− ∂ui (t, x∗

i (t), y∗
i (t))

∂xi j
− (1 − τi j (t))r

∗
j (t)

]
× [xi j (t) − x∗

i j (t)]

+
n∑

j=1

[
− ∂ui (t, x∗

i (t), y∗
i (t))

∂yi j
+ (1 − τi j (t))r

∗
j (t)(1 + h j (t))

]

×[yi j (t) − y∗
i j (t)]

}
dt ≥ 0, ∀(x, y) ∈ P. (22)

Arguing as in the proof of Theorem 2.1 in [5], it is possible to prove that variational
inequality (22) is equivalent to conditions (5)–(8).

Moreover, following the proof of Theorem 5 in [3], wemay prove the equivalence between
problem (22) and the optimization problem

max
P

m∑
i=1

∫ T

0
(ui (t, xi (t), yi (t)) +

n∑
j=1

r∗
j (t)

{
(1 − τi j (t))[xi j (t) − (1 + h j (t))yi j (t)]

}
)dt.

(23)

If (x∗, y∗) is a solution to (23), it is still a solution to

max
P

m∑
i=1

∫ T

0
(ui (t, xi (t), yi (t))

+
n∑

j=1

r∗
j (t)

{
(1 − τi j (t))[xi j (t) − (1 + h j (t))yi j (t)] + Fj (t)

}
)dt. (24)
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Since r∗∗ coincides with r∗ in E j and E j and in E∗
j the coefficient

m∑
i=1

r∗∗
j (t)

{
(1 − τi j (t))[xi j (t) − (1 + h j (t))yi j (t)] + Fj

}

is equal to zero, it follows that (x∗, y∗) is still a solution to

max
P

m∑
i=1

∫ T

0
(ui (t, xi (t), yi (t))

+
n∑

j=1

r∗∗
j (t)

{
(1 − τi j (t))[xi j (t) − (1 + h j (t))yi j (t)] + Fj

}
)dt. (25)

Then, for the already cited equivalence, (x∗(t), y∗(t)) verifies
m∑

i=1

∫ T

0

{ n∑
j=1

[
− ∂ui (t, x∗

i (t), y∗
i (t))

∂xi j
− (1 − τi j (t))r

∗∗
j (t)

]

×[xi j (t) − x∗
i j (t)]

+
n∑

j=1

[
− ∂ui (t, x∗

i (t), y∗
i (t))

∂yi j
+ (1 − τi j (t))r

∗∗
j (t)(1 + h j (t))

]

×
[

yi j (t) − y∗
i j (t)

] }
dt ≥ 0, ∀(x, y) ∈ P. (26)

The operator in (26) is strongly monotone with respect to (x, y) and then, by virtue of
Theorem 4, the unique solution (x∗(t), y∗(t)) is continuous too.

Then, we may conclude that the solution (x∗(t), y∗(t), r∗∗(t)) is continuous, generalizing
Theorem 4.1 to operators which are strongly monotone with respect to (x, y) and only
monotone with respect to r .

Let us stress that (x∗(t), y∗(t)) is unique and does not depend on the equilibrium price
r∗∗(t), but only on floor and ceiling prices, r(t) and r(t).

Now, we are able to prove our main result, Theorem 3.
Let us set, for a fixed j = 1, . . . , n,

I +
1, j = {t ∈ [0, T ] : ρ

(1)∗
j (t) > 0}

I 01, j = {t ∈ [0, T ] : ρ
(1)∗
j (t) = 0}.

From the Deficit Formula (11) we have, ∀ j = 1, . . . , n,

B j (t) =
m∑

i=1

(1 − τi j (t))
[
x∗

i j (t) − (1 + h j (t))y∗
i j (t)

]
+ Fj (t) = ρ

(1)∗
j (t) − ρ

(2)∗
j (t).

ρ
(1)∗
j (t) is a continuous function in I +

1, j . In fact, in I +
1, j , from (14) it follows ρ

(2)∗
j (t) = 0

and then, from Deficit Formula (11), in I +
1, j

ρ
(1)∗
j (t) = B j (t) =

m∑
i=1

(1 − τi j (t))
[
x∗

i j (t) − (1 + h j (t))y∗
i j (t)

]
+ Fj (t), (27)

namely, ρ(1)∗
j (t) is the sum of continuous functions.
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Let us remark that the continuity of ρ
(1)∗
j (t) in I +

1, j implies that I +
1, j is an open set.

In the interior of the closed set I 01, j ρ
(1)∗
j (t) is a continuous function, since in this set

ρ
(1)∗
j ≡ 0.

Let us examine the continuity of ρ
(1)∗
j (t) in ∂ I +

1, j = ∂ I 01, j . Let t0 ∈ ∂ I 01, j and let us prove

the continuity of ρ
(1)∗
j (t) in t0. Since ∂ I 01, j ⊆ I 01, j , it results ρ

(1)∗
j (t0) = 0. Because of the

continuity of B j (t), it results to be

lim
t→t0
t∈I 01, j

B j (t) = lim
t→t0
t∈I 01, j

(−ρ
(2)∗
j (t)) = B j (t0)

and

lim
t→t0
t∈I +

1, j

B j (t) = lim
t→t0
t∈I +

1, j

ρ
(1)∗
j (t) = B j (t0).

Then, we may conclude

B j (t0) = lim
t→t0
t∈I +

1, j

ρ
(1)∗
j (t) = lim

t→t0
t∈I 01, j

(−ρ
(2)∗
j (t)),

and the only possibility, taking into account the nonnegativity of ρ
(1)∗
j (t) and ρ

(2)∗
j (t), is that

B j (t0) = 0. This means that

lim
t→t0
t∈I +

1, j

ρ
(1)∗
j (t) = lim

t→t0
t∈I 01, j

ρ
(1)∗
j (t) = 0 = ρ

(1)∗
j (t0).

In a similar way, we may prove the continuity of ρ
(2)∗
j (t) in [0, T ].

In the following Section we also provide a procedure in order to compute numerically the
deficit and surplus variables (see [9]).

6 Computational procedure

First, it is worth noting that variational inequality (9) is equivalent to the problem: Find
ν∗ ∈ K = P × R such that

〈A(t, ν∗(t)), ν(t) − ν∗(t)〉 ≥ 0 ∀ν ∈ K, a.e. in [0, T ], (28)

(see [9]).
As we already proved in Sect. 5, we may construct a continuous equilibrium solution to

(28). For example, we may find a continuous solution r∗∗(t) to (4) in the following form

r∗∗
j (t) =

⎧⎪⎨
⎪⎩

r j (t) t ∈ E j

r j (t1) + r j (t2)−r j (t1)
t2−t1

(t − t1) t ∈ E∗
j

r j (t) t ∈ E j ,

(E j or E j may eventually be empty).
Then, if ν∗ = (x∗, y∗, r∗∗) is the continuous equilibrium solution constructed, it satisfies:

〈A(t, ν∗(t)), ν(t) − ν∗(t)〉 ≥ 0 ∀t ∈ [0, T ]. (29)
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Consider, now, a sequence of partitions πn of [0, T ], such that:
πn = (t0n , t1n , . . . , t Nn

n ), 0 = t0n < t1n < . . . < t Nn
n = T

and

δn = max
{

tk
n − tk−1

n : k = 1, . . . , Nn

}

with limn→∞ δn = 0. Then, for each value tk−1
n , we consider the variational inequality

〈A(tk−1
n , ν∗(tk−1

n )), ν − ν∗(tk−1
n )〉 ≥ 0 ∀ν ∈ K(tk−1

n ) (30)

where

K(tk−1
n ) =

{
ν = (x, y, r) ∈ R

2mn+n :
n∑

j=1

xi j = si (t
k−1
n ),

n∑
j=1

yi j = li (t
k−1
n ), xi ≥ 0, yi ≥ 0, ∀ i = 1, . . . , m,

r j (t
k−1
n ) ≤ r j ≤ r j (t

k−1
n ), j = 1, . . . , n

}
.

Using the well-known methods for the finite dimensional variational inequality, we can
construct an interpolation function νn(t) such that

lim
n

‖νn(t) − ν∗(t)‖L∞([0,T ],R2mn+n) = 0.

Once achieved the equilibrium solution, we may obtain the surplus and deficit variables
from (11) and (14). In fact, if r∗∗

j (t) = r j (t), from (14) it follows ρ
(2)∗
j (t) = 0 and we may

calculate ρ
(1)∗
j (t) from (11). Analogously, if r∗∗

j (t) = r j (t), from (14) it follows ρ
(1)∗
j (t) = 0

and we may calculate ρ
(2)∗
j (t) from (11). Finally, if r j (t) < r∗∗

j (t) < r j (t) from (11) it

follows ρ
(1)∗
j (t) = ρ

(2)∗
j (t) = 0.

Wewould like to remind the importance of the calculus of the variables deficit and surplus.
In fact, from the difference

n∑
j=1

ρ
(1)∗
j (t) −

n∑
j=1

ρ
(2)∗
j (t)

it depends if a negative contagion appears on the financial system (see [10]). In fact, if

n∑
j=1

ρ
(1)∗
j (t) >

n∑
j=1

ρ
(2)∗
j (t), (31)

the balance of all the financial entities is negative, the whole deficit exceeds the sum of all the
surplus, a negative contagion appears and the insolvencies of individual entities propagate
through the entire system. As we can see, it is sufficient that only one deficit ρ(1)∗

j (t) is large
to obtain a negative balance for the entire system, even if the other ones are ligthly positive.
Moreover we would like to stress that, even if for only a sector there is a big insolvency
related to the instrument j , we can have ρ

(1)∗
j (t) > 0.
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7 Numerical example

Let us analyze a numerical financial example, in which we consider a utility function of
Markowitz type with memory, namely in which the risk aversion function ui is given by the
sumof the one suggested byH.M.Markowitz in [28] and [29], which expresses at each instant
t ∈ [0, T ] the risk aversion by means of variance-covariance matrices, denoting the sector’s
assessment of the standard deviation of prices for each instrument, and of the memory term.
As it happens in real life, we even assume in the example that the amount of the investments
as assets and liabilities depends on the expected solution (see [8]).
In detail, we consider an economy with two agents and two financial instruments. The
variance-covariance matrices of the two agents are:

Q1 =

⎡
⎢⎢⎣

1 0 −0.5 0
0 1 0 0

−0.5 0 1 0
0 0 0 1

⎤
⎥⎥⎦ and Q2 =

⎡
⎢⎢⎣
1 0 0 0
0 1 −0.5 0
0 −0.5 1 0
0 0 0 1

⎤
⎥⎥⎦ .

In the time interval [0, 1], the risk aversion function ui (t, xi (t), yi (t)) is given by:

ui (t, xi (t), yi (t)) = −
[

xi (t)
yi (t)

]T

Qi
[

xi (t)
yi (t)

]
+

∫ t

0

[
xi (t − z)
yi (t − z)

]T

Qi
[

xi (t − z)
yi (t − z)

]
dz.

We choose as the feasible set for assets, liabilities and prices:

K(w∗) =
{
w = (x(t), y(t), r(t)) ∈ L2([0, 1],R10+ ) :

x11(t) + x12(t) = 6
∫ 1

0
r∗
1 (s) ds + 3, x21(t) + x22(t) = 6

∫ 1

0
r∗
2 (s) ds + 3,

y11(t) + y12(t) = 11, y21(t) + y22(t) = 1 a.e. in [0, 1]
and 2t ≤ r1(t) ≤ 3t, t ≤ r2(t) ≤ 3

2
t a.e. in [0, 1]

}

Moreover, we choose τi j = 1
4 , ∀i, j = 1, 2 and h j = 1 ∀ j = 1, 2.

It follows that quasi-variational inequality (9) becomes: Find w∗ ∈ K(w∗):
∫ 1

0

{[
2(x∗

11(t) − 0.5y∗
11(t))+

∫ t

0
2(x∗

11(τ ) − 0.5y∗
11(τ ))dτ − 3

4
r∗
1 (t)

] (
x11(t) − x∗

11(t)
)

+
[
2x∗

12(t) +
∫ t

0
2x∗

12(τ )dτ − 3

4
r∗
2 (t)

] (
x12(t) − x∗

12(t)
)

+
[
2x∗

21(t) +
∫ t

0
2x∗

21(τ )dτ − 3

4
r∗
1 (t)

] (
x21(t) − x∗

21(t)
)

+
[
2(x∗

22(t) − 0.5y∗
21(t)) +

∫ t

0
2(x∗

22(τ ) − 0.5y∗
21(τ ))dτ − 3

4
r∗
2 (t)

] (
x22(t) − x∗

22(t)
)

+
[
2(y∗

11(t) − 0.5x∗
11(t)) +

∫ t

0
2(y∗

11(τ ) − 0.5x∗
11(τ ))dτ + 3

2
r∗
1 (t)

] (
y11(t) − y∗

11(t)
)

+
[
2y∗

12(t) +
∫ t

0
2y∗

12(τ )dτ + 3

2
r∗
2 (t)

] (
y12(t) − y∗

12(t)
)

+
[
2(y∗

21(t) − 0.5x∗
22(t)) +

∫ t

0
2(y∗

21(τ ) − 0.5x∗
22(τ ))dτ + 3

2
r∗
1 (t)

] (
y21(t) − y∗

21(t)
)
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+
[
2y∗

22(t) +
∫ t

0
2y∗

22(τ )dτ + 3

2
r∗
2 (t)

] (
y22(t) − y∗

22(t)
)

+
{
3

4

[
x∗
11(t) − 2 y∗

11(t)
] + 3

4

[
x∗
21(t) − 2 y∗

21(t)
] + F1(t)

} (
r1(t) − r∗

1 (t)
)

+
{
3

4

[
x∗
12(t) − 2 y∗

12(t)
] + 3

4

[
x∗
22(t) − 2 y∗

22(t)
] + F2(t)

} (
r2(t) − r∗

2 (t)
) }

dt ≥ 0 ,

∀w ∈ K(w∗). (32)

We can apply to problem (32) the method described in Sect. 6, but, in this case, it is more
convenient to apply the direct method (see [9,30]). So, we can first derive from the constraints
of the convex set K(w∗) the values of some variables in terms of the others, namely, a.e. in
[0, 1],

x12(t) = 6
∫ 1

0
r∗
1 (s) ds − x11(t) + 3, x21(t) = 6

∫ 1

0
r∗
2 (s) ds − x22(t) + 3,

y12(t) = − y11(t) + 11, y21(t) = − y22(t) + 1.

Substituting in the quasi variational inequality (32), we have:∫ 1

0

([
4 x∗

11(t) + 4
∫ t

0
x∗
11(τ ) dτ − y∗

11(t) −
∫ t

0
y∗
11(τ ) dτ − 12

∫ 1

0
r∗
1 (s) ds

− 12
∫ t

0

∫ 1

0
r∗
1 (s) dτds − 6 − 6t − 3

4
r∗
1 (t) + 3

4
r∗
2 (t)

]
(x11(t) − x∗

11(t))

+
[
4 x∗

22(t) + 4
∫ t

0
x∗
22(τ ) dτ + y∗

22(t) +
∫ t

0
y∗
22(τ ) dτ − 12

∫ 1

0
r∗
2 (s) ds

− 12
∫ t

0

∫ 1

0
r∗
2 (s) dτds − 7 − 7t + 3

4
r∗
1 (t) − 3

4
r∗
2 (t)

]
(x22(t) − x∗

22(t))

+
[
4 y∗

11(t) + 4
∫ t

0
y∗
11(τ ) dτ − x∗

11(t) −
∫ t

0
x∗
11(τ ) dτ − 22 − 22t

+ 3

2
r∗
1 (t) − 3

2
r∗
2 (t)

]
(y11(t) − y∗

11(t)) +
[
4 y∗

22(t) + 4
∫ t

0
y∗
22(τ ) dτ + x∗

22(t)

+
∫ t

0
x∗
22(τ ) dτ − 2 − 2t − 3

2
r∗
1 (t) + 3

2
r∗
2 (t)

]
(y22(t) − y∗

22(t))

+
{
3

4

[
6
∫ 1

0
r∗
2 (s) ds − x∗

22(t) + 3 − 2

(
− y∗

22(t) + 1

)]

+ 3

4
[x∗

11(t) − 2y∗
11(t)] + F1(t)

}
(r1(t) − r∗

1 (t))

+
{
3

4

[
6
∫ 1

0
r∗
1 (s) ds − x∗

11(t) + 3 − 2

(
− y∗

11(t) + 11

)]

+ 3

4
[x∗

22(t) − 2y∗
22(t)] + F2(t)

}
(r2(t) − r∗

2 (t))

)
dt ≥ 0 ,

for all x11(t), x22(t), y11(t), y22(t), r1(t), r2(t) such that

0 ≤ x11(t) ≤ 6
∫ 1

0
r∗
1 (s) ds + 3, 0 ≤ x22(t) ≤ 6

∫ 1

0
r∗
2 (s) ds + 3, 0 ≤ y11(t) ≤ 11,

0 ≤ y22(t) ≤ 1, 2t ≤ r1(t) ≤ 3t, t ≤ r2(t) ≤ 3

2
t, a.e.in [0, 1]. (33)
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Then, the solution to the quasivariational inequality (33) is obtained by solving the system:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ1 = 4 x∗
11(t) + 4

∫ t

0
x∗
11(t) dτ − y∗

11(t) −
∫ t

0
y∗
11(t) dτ − 12

∫ 1

0
r∗
1 (s) ds +

− 12
∫ t

0

∫ 1

0
r∗
1 (s) dτds − 6 − 6t − 3

4
r∗
1 + 3

4
r∗
2 (t) = 0

Γ2 = 4 x∗
22(t) + 4

∫ t

0
x∗
22(t) dτ + y∗

22(t) +
∫ t

0
y∗
22(t) dτ − 12

∫ 1

0
r∗
2 (s) ds +

− 12
∫ t

0

∫ 1

0
r∗
2 (s) dτds − 7 − 7t + 3

4
r∗
1 − 3

4
r∗
2 (t) = 0

Γ3 = 4 y∗
11(t) + 4

∫ t

0
y∗
11(t) dτ − x∗

11(t) −
∫ t

0
x∗
11(t) dτ − 22 − 22t + 3

2
r∗
1 − 3

2
r∗
2 = 0

Γ4 = 4 y∗
22(t) + 4

∫ t

0
y∗
22(t) dτ + x∗

22(t) +
∫ t

0
x∗
22(t) dτ − 2 − 2t − 3

2
r∗
1 + 3

2
r∗
2 > 0

Γ5 = 3

4

[
x∗
11(t) − 2y∗

11(t)
] + 3

4

[
6
∫ 1

0
r∗
2 (s) ds − x∗

22 + 3 − 2

(
− y∗

22 + 1

)]
+ F1(t) > 0

Γ6 = 3

4

[
6
∫ 1

0
r∗
1 (s) ds − x∗

11 + 3 − 2

(
− y∗

11 + 11

)]
+ 3

4

[
x∗
22(t) − 2y∗

22(t)
] + F2(t) > 0.

Since Γ4 > 0, Γ5 > 0 and Γ6 > 0, the direct method allows to find the following solution,
a.e. in [0, 1],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗
11(t) = − 1

10
e−t + 191

30

x∗
22(t) = 3

16
e−t + 49

16

y∗
11(t) = 7

20
e−t + 403

60

y∗
22(t) = 0

r∗
1 (t) = 2t

r∗
2 (t) = t

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗
12(t) = 1

10
e−t + 79

30

x∗
21(t) = − 3

16
e−t + 47

16

y∗
12(t) = − 7

20
e−t + 257

60

y∗
21(t) = 1.

From (11) and (14), taking into account that r∗
1 (t) = r1(t), and r∗

2 (t) = r2(t), we get:

Γ5 = 3

4

[
x∗
11(t) − x∗

22(t) − 2y∗
11(t) + 2y∗

22(t) + 4
] + F1(t)

= −3

4

[
79

80
e−t + 1471

240

]
+ F1(t) = ρ

(1)∗
1 (t) > 0,

Γ6 = 3

4

[−x∗
11(t) + x∗

22(t) + 2y∗
11(t) − 2y∗

22(t) − 13
] + F2(t)

= 3

4

[
79

80
e−t − 689

240

]
+ F2(t) = ρ

(1)∗
2 (t) > 0,
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provided that, a.e. in [0, 1],

F1(t) >
3

4

[
79

80
e−t + 1471

240

]
,

F2(t) >
3

4

[
−79

80
e−t + 689

240

]
.

Since the deficit variables ρ
(1)∗
1 (t), ρ(1)∗

2 (t) are positive, then the economy is in a phase of
regression. The same conclusion is confirmed by the evaluation index. In fact, setting, a.e. in
[0, 1],

F1 = 3

4

[
79

80
e−t + 1471

240

]
+ φ1(t),

F2 = 3

4

[
−79

80
e−t + 689

240

]
+ φ2(t),

φ1(t), φ2(t) > 0 in [0, 1],
and, taking into account that,

E(t) =

2∑
i=1

li (t)

2∑
i=1

s̃i (t) +
2∑

j=1

F̃j (t)

with F̃j (t) = Fj (t)

1 + i(t) − θ(t) − θ(t)i(t)
; s̃i (t) = si (t)

1 + i(t)
, i(t) = 1, θ(t) = 1

4 , a simple

calculation gives

E(t) = 12

12 + 2
3 (φ1(t) + φ2(t))

< 1.

Finally, since it results

2∑
j=1

ρ
(1)∗
j (t) >

2∑
j=1

ρ
(2)∗
j (t),

as noted in Remark 2, a negative contagion can appear and the insolvencies of individual
entities can mutually propagate through the entire system.

8 Conclusions

In the paper a general equilibriummodel of financial flows and prices is studied. In particular,
considering the Lagrange dual formulation of the financial model, the Lagrange variables,
which represent the deficit and the surplus per unit, are considered and the continuity of these
variables is proved. Finally, a procedure in order to compute numerically these variables is
provided.
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