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Abstract The Douglas–Rachford algorithm is a classical and very successful method for
solving optimization and feasibility problems. In this paper, we provide novel conditions
sufficient for finite convergence in the context of convex feasibility problems. Our analy-
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obtain finite convergence in the presence of Slater’s condition in the affine-polyhedral and in
a hyperplanar-epigraphical case. Various examples illustrate our results. Numerical experi-
ments demonstrate the competitiveness of the Douglas–Rachford algorithm for solving linear
equations with a positivity constraint when compared to themethod of alternating projections
and the method of reflection–projection.
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1 Introduction

Throughout this paper, we assume that

X is a Euclidean space, (1)

i.e., a finite-dimensional real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖,
and

A and B are closed convex subsets of X such that A ∩ B �= ∅. (2)

Consider the convex feasibility problem

find a point in A ∩ B (3)

and assume that it is possible to evaluate the projectors (nearest point mappings) PA and PB

corresponding to A and B, respectively. We denote the corresponding reflectors by RA :=
2PA − Id and RB := 2PB − Id, respectively. Projection methods combine the projectors and
reflectors in a suitable way to generate a sequence converging to a solution of (3)—we refer
the reader to [2,8], and [9] and the references therein for further information.

One celebrated algorithm for solving (3) is the so-called Douglas–Rachford algorithm
(DRA) [11]. The adaption of this algorithm to optimization and feasibility is actually due to
Lions and Mercier was laid out beautifully in their landmark paper [16] (see also [12]). The
DRA is based on the Douglas–Rachford splitting operator,

T := Id−PA + PB RA, (4)

which is used to generate a sequence (zn)n∈N with starting point z0 ∈ X via

(∀n ∈ N) zn+1 := T zn . (5)

Then the “governing sequence” (zn)n∈N converges to a point z ∈ Fix T , and, more impor-
tantly, the “shadow sequence” (PAzn)n∈N converges to PAz which is a solution of (3).

An important question concerns the speed of convergence of the sequence (PAzn)n∈N.
Linear convergence was more clearly understood recently, see [14,21], and [6].

The aim of this paper is to provide verifiable conditions sufficient for finite convergence.
Our two main results reveal that Slater’s condition, i.e.,

A ∩ int B �= ∅ (6)

plays a key role and guarantees finite convergence when (MR1) A is an affine subspace and
B is a polyhedron (Theorem 3.7); or when (MR2) A is a certain hyperplane and B is an
epigraph (Theorem 5.4). Examples illustrate that these results are applicable in situations
where previously known conditions sufficient for finite convergence fail. When specialized
to a product space setting, we derive a finite-convergence result due to Spingarn [26] for
his method of partial inverses [25]. Indeed, the proof of Theorem 3.7 follows his pioneering
work, but, at the same time, we simplify his proofs and strengthen the conclusions. These
sharpenings allow us to obtain finite-convergence results for solving linear equations with
a positivity constraint. Numerical experiments support the competitiveness of the DRA for
solving (3).
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It would be interesting to derive additional conditions guaranteeing finite convergence, not
only in the present finite-dimensional setting but also in a more general infinite-dimensional
setting. Moreover, how these results generalize (if at all) from convex feasibility to finding
the zero of the sum of two maximally monotone operators is currently quite unclear.

1.1 Organization of the paper

The paper is organized as follows. In Sect. 2, we present several auxiliary results which make
the eventual proofs of the main results more structured and transparent. Section 3 contains
the first main result (MR1). Applications using the product space set up, a comparison
with Spingarn’s work, and numerical experiments are provided in Sect. 4. The final Sect. 5
concerns the second main result (MR2).

1.2 Notation

The notation employed is standard and follows largely [2]. The real numbers are R, and the
nonnegative integers are N. Further, R+ := {

x ∈ R

∣
∣ x ≥ 0

}
and R++ := {

x ∈ R

∣
∣ x > 0

}
.

Let C be a subset of X . Then the closure of C is C , the interior of C is int C , the boundary
of C is bdryC , and the smallest affine and linear subspaces containing C are, respectively,
aff C and spanC . The relative interior of C , ri C , is the interior of C relative to aff C . The
orthogonal complement ofC isC⊥ := {

y ∈ X
∣
∣ (∀x ∈ C) 〈x, y〉 = 0

}
, and the dual cone of

C is C⊕ := {
y ∈ X

∣
∣ (∀x ∈ C) 〈x, y〉 ≥ 0

}
. The normal cone operator of C is denoted by

NC , i.e., NC (x) = {
y ∈ X

∣
∣ (∀c ∈ C) 〈y, c − x〉 ≤ 0

}
if x ∈ C , and NC (x) = ∅ otherwise.

If x ∈ X and ρ ∈ R++, then ball(x; ρ) := {
y ∈ X

∣
∣ ‖x − y‖ ≤ ρ

}
is the closed ball centered

at x with radius ρ.

2 Auxiliary results

In this section, we collect several auxiliary results that will be useful in the sequel.

2.1 Convex sets

Lemma 2.1 Let C be a nonempty closed convex subset of X, let x ∈ X, and let y ∈ C. Then
x − PCx ∈ NC (y) ⇔ 〈x − PCx, y − PCx〉 = 0.

Proof Because y ∈ C and x − PCx ∈ NC (PCx), we have 〈x − PCx, y − PCx〉 ≤ 0.
“⇒”: From x − PCx ∈ NC (y) and PCx ∈ C , we have 〈x − PCx, PCx − y〉 ≤
0. Thus 〈x − PCx, PCx − y〉 = 0. “⇐”: We have (∀c ∈ C) 〈x − PCx, c − y〉 =
〈x − PCx, c − PCx〉+〈x − PCx, PCx − y〉 = 〈x − PCx, c − PCx〉 ≤ 0. Hence x−PCx ∈
NC (y). ��

Lemma 2.2 Let C be a nonempty convex subset of X. Then int C �= ∅ ⇔ 0 ∈ int(C − C).

Proof “⇒”: Clear. ”⇐”: By [22, Theorem 6.2], ri C �= 0. After translating the set if
necessary, we assume that 0 ∈ ri C . Then 0 ∈ C , and so Y := aff C = spanC . Since
0 ∈ int(C − C) ⊆ int(spanC) = int Y , this gives int Y �= ∅ and thus Y = X . In turn,
int C = ri C �= ∅. ��

123



332 J Glob Optim (2016) 65:329–349

2.2 Cones

Lemma 2.3 Let K be a nonempty convex cone in X. Then there exists v ∈ ri K ∩ ri K⊕
such that

(∀x ∈ K�(K ∩ (−K ))) 〈v, x〉 > 0. (7)

Proof By [26, Lemma 2], there exists v ∈ ri K ∩ ri K⊕. Then v ∈ ri K⊕ = ri K
⊕
. Noting

that K is a closed convex cone and using [26, Lemma 3], we complete the proof. ��

Lemma 2.4 Let (zn)n∈N be a sequence in X, and let f : X → R be linear. Assume that
zn → z ∈ X, and that

(∀n ∈ N) f (zn) > f (zn+1). (8)

Then there exist n0 ∈ N�{0} and (μ1, . . . , μn0) ∈ R
n0+ such that

∑n0
k=1 μk = 1 and

〈
n0∑

k=1

μk(zk−1 − zk),
n0∑

k=1

μk(zk − z)

〉

> 0. (9)

Proof Introducing
(∀n ∈ N�{0}) yn := zn−1 − zn, (10)

we get
(∀n ∈ N�{0}) f (yn) > 0, and so yn �= 0. (11)

Let K be the convex cone generated by {yn}n∈N�{0}. We see that

(∀x ∈ K�{0}) f (x) > 0, and (∀x ∈ −K�{0}) f (x) < 0. (12)

Therefore,
K ∩ (−K ) ⊆ {

x ∈ X
∣
∣ f (x) = 0

}
. (13)

Setting
(∀n ∈ N�{0}) wn := zn − z, (14)

we immediately have wn → 0, and so

(∀n ∈ N�{0}) wn = zn − z =
∞∑

k=n+1

(zk−1 − zk) =
∞∑

k=n+1

yk ∈ K . (15)

From (8) we get
(∀n ∈ N�{0}) f (wn) > f (wn+1). (16)

Moreover, f (wn) → f (0) = 0, hence

(∀n ∈ N�{0}) f (wn) > 0. (17)

Together with (13) and (15), this gives

(∀n ∈ N�{0}) wn ∈ K�(K ∩ (−K )). (18)

By Lemma 2.3, there exists v ∈ ri K ∩ ri K⊕ such that

(∀n ∈ N�{0}) 〈v,wn〉 > 0. (19)
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Then we must have v �= 0. Since v ∈ K , after scaling if necessary, there exist n0 ∈ N�{0}
and (μ1, . . . , μn0) ∈ R

n0+ such that

v =
n0∑

k=1

μk yk, and
n0∑

k=1

μk = 1. (20)

This combined with (19) implies
〈

n0∑

k=1

μk yk,
n0∑

k=1

μkwk

〉

> 0, (21)

and so (9) holds. ��
Lemma 2.5 Let K be a nonempty pointed1 convex cone in X. Then the following hold:

(i) Let m ∈ N�{0} and let (x1, . . . , xm) ∈ Km. Then x1 + · · · + xm = 0 ⇔ x1 = · · · =
xm = 0.

(ii) If K is closed and L : X → X is linear such that

ker L ∩ K = {0}, (22)

then L(K ) is a nonempty pointed closed convex cone.

Proof (i) Assume that x1 + · · · + xm = 0. Then since K is a convex cone,

− x1 = x2 + · · · + xm ∈ K , (23)

and so x1 ∈ K ∩ (−K ). Since K is pointed, we get x1 = 0. Continuing in this fashion,
we eventually conclude that x1 = · · · = xm = 0. The converse is trivial.

(ii) Since K is a closed convex cone, so is M := L(K ) due to assumption (22) and [7,
Proposition 3.4]. Now let z ∈ M ∩ (−M). Then z = L(r) = −L(s) for some points
r, s in K . Thus L(r + s) = L(r) + L(s) = 0, which gives r + s ∈ ker L , and so
r + s ∈ ker L ∩ K . By again (22), r + s = 0, and now (i) implies r = s = 0. Therefore,
z = 0, and M is pointed.

��
Lemma 2.6 Let (an)n∈N be a sequence in X such that an → a ∈ X, and K be a pointed
closed convex cone of X. Assume that

(∃ p ∈ N) ap = a and (∀n ≥ p) an − an+1 ∈ K . (24)

Then
(∀n ≥ p) an = a. (25)

Proof Since K is a closed convex cone and an → a, it follows from (24) that

(∀n ≥ p) an − a =
∞∑

k=n

(ak − ak+1) ∈ K , (26)

and so ap+1 − a ∈ K . Since ap = a, (24) gives a − ap+1 ∈ K . Noting that K is pointed,
this implies ap+1 − a ∈ K ∩ (−K ) ⊆ {0}, and hence ap+1 = a. Repeating this argument,
we get the conclusion. ��
1 Recall that a cone K is pointed if K ∩ (−K ) ⊆ {0}.
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2.3 Locally polyhedral sets

Definition 2.7 (Local polyhedrality) Let C be a subset of X . We say that C is polyhedral at
c ∈ C if there exist a polyhedral2 set D and ε ∈ R++ such thatC∩ball(c; ε) = D∩ball(c; ε).

It is clear from the definition that every polyhedron is polyhedral at each of its points and
that every subset C of X is polyhedral at each point in int C .

Lemma 2.8 Let C be a subset of X, and assume that C is polyhedral at c ∈ C. Then there
exist ε ∈ R++, a finite set I , (di )i∈I ∈ (X�{0})I , (δi )i∈I ∈ R

I such that

C ∩ ball(c; ε) =
{
x ∈ X

∣
∣
∣
∣ max

i∈I
( 〈di , x〉 − δi

) ≤ 0

}
∩ ball(c; ε), (27)

(∀i ∈ I ) 〈di , c〉 = δi , and
(∀y ∈ C ∩ ball(c; ε)

)
NC (y) =

∑

i∈I (y)
R+di , where I (y) := {

i ∈ I
∣
∣ 〈di , y〉 = δi

}
.

(28)

Proof Combine Lemma 2.12 with [24, Theorem 6.46]. ��
Lemma 2.9 Let C be a nonempty closed convex subset of X that is polyhedral at c ∈ C.
Then there exists ε ∈ R++ such that

(∀x ∈ P−1
C (C ∩ ball(c; ε))

) 〈x − PCx, c − PCx〉 = 0 and x − PCx ∈ NC (c). (29)

Proof We adopt the notation of the conclusion of Lemma 2.8. Let x ∈ X such that
y := PCx ∈ ball(c; ε). Then x − y ∈ NC (y) and Lemma 2.8 guarantees the existence
of (λi )i∈I (y) ∈ R

I (y)
+ such that

x − y =
∑

i∈I (y)
λi di . (30)

Then

〈x − y, c − y〉 =
∑

i∈I (y)
λi 〈di , c − y〉 =

∑

i∈I (y)
λi (〈di , c〉 − 〈di , y〉) =

∑

i∈I (y)
λi (δi − δi ) = 0

(31)
and so 〈x − PCx, c − PCx〉 = 0. Furthermore, by Lemma 2.1, x − PCx ∈ NC (c). ��
2.4 Two convex sets

Proposition 2.10 Let A and B be closed convex subsets of X such that A ∩ B �= ∅. Then
the following hold:

(i) (∀a ∈ A)(∀b ∈ B) NA−B(a − b) = NA(a) ∩ ( − NB(b)
)
.

(ii) 0 ∈ int(A − B) ⇔ NA−B(0) = {0}.
(iii) int B �= ∅ ⇔ (∀x ∈ B) NB(x) ∩ (−NB(x)) = {0}.
Proof (i) Noting that N−B(−b) = −NB(b) by definition, the conclusion follows from [20,
Proposition 2.11(ii)] or from a direct computation. (ii) Clear from [2, Corollary 6.44]. (iii)
Let x ∈ B. By (i), NB(x) ∩ (−NB(x)) = NB−B(0). Now Lemma 2.2 and (ii) complete the
proof. ��
2 Recall that a set is polyhedral if it is a finite intersection of halfspaces.
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Corollary 2.11 Let A be a linear subspace of X, and let B be a nonempty closed convex
subset of X such that A ∩ B �= ∅. Then the following hold:

(i) 0 ∈ int(A − B) ⇔ [
(∀x ∈ A ∩ B) A⊥ ∩ NB(x) = {0}].

(ii) A ∩ int B �= ∅ ⇔ [
0 ∈ int(A − B) and int B �= ∅

]
.

Proof (i) Let x ∈ A ∩ B. Since A is a linear subspace, Proposition 2.10(i) yields

A⊥ ∩ NB(x) = −(NA(x) ∩ (−NB(x))) = −NA−B(0). (32)

Now apply Proposition 2.10(ii).
(ii) If 0 ∈ int(A − B) and int B �= ∅, then 0 ∈ ri(A − B) and ri B = int B. Since A is a

linear subspace, we have ri A = A, and using [22, Corollary 6.6.2], we get

0 ∈ ri(A − B) = ri A − ri B = A − int B, (33)

which implies A ∩ int B �= ∅. The converse is obvious.
��

Lemma 2.12 Let A and B be closed convex subsets of X, and let c ∈ A ∩ B and ε ∈ R++
be such that A ∩ ball(c; ε) = B ∩ ball(c; ε). Then NA(c) = NB(c).

Proof Let u ∈ X .Workingwith the directional derivative and using [2, Proposition 17.17(i)],
we have u ∈ NA(c) = ∂ιA(c) ⇔ (∀h ∈ X) 〈u, h〉 ≤ ι′A(c; h) ⇔ (∀h ∈ X) 〈u, h〉 ≤ ι′B(c; h)

⇔ u ∈ NB(c) = ∂ιB(c). ��
2.5 Monotone operators

Lemma 2.13 Let L : X×X → X×X : (x, y) �→ (L11x+L12y, L21x+L22y), where each
Li j : X → X is linear. Assume that L∗

11L22 + L∗
21L12 = Id and that L∗

11L21 and L∗
22L12

are skew.3 Then the following hold:

(i) If (x, y) ∈ X × X and (u, v) = L(x, y), then 〈u, v〉 = 〈x, y〉.
(ii) Let M : X ⇒ X be a monotone operator, and define ML : X ⇒ X via gra ML =

L(gra M). Then for all ordered pairs (x, y) and (x ′, y′) in gra M and (u, v) = L(x, y),
(u′, v′) = L(x ′, y′), we have

〈
u − v, u′ − v′〉 = 〈

x − x ′, y − y′〉; consequently, ML is
monotone.

Proof (i) The assumptions indeed imply

〈u, v〉 = 〈L11x + L12y, L21x + L22y〉 (34a)

= 〈
x, (L∗

11L22 + L∗
21L12)y

〉 + 〈
x, L∗

11L21x
〉 + 〈

y, L∗
22L12y

〉 = 〈x, y〉 . (34b)

(ii) Since (x − x ′, y − y′) = (x, y) − (x ′, y′) and L is linear, the result follows from (i).
��

Corollary 2.14 Let A be a linear subspace of X, and let (x, y) and (x ′, y′) be in X × X.
Then the following hold:

(i)
〈
PAy − PA⊥x, PAx − PA⊥ y

〉 = 〈y, x〉
(ii)

〈
(PAy − PA⊥x) − (PAy′ − PA⊥x ′), (PAx − PA⊥ y) − (PAx ′ − PA⊥ y′)

〉

= 〈
y − y′, x − x ′〉.

3 Recall that S : X → X is skew if S∗ = −S.
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Proof Set L11 = L22 = PA and L12 = L21 = −PA⊥ in Lemma 2.13. ��
Remark 2.15 Spingarn’s original partial inverse [25] arises from Lemma 2.13 by setting
L11 = L22 = PA and L12 = L21 = PA⊥ while in Corollary 2.14 we used L11 = L22 = PA

and L12 = L21 = −PA⊥ . Other choices are possible: e.g., if X = R
2 and R denotes the

clockwise rotator by π/4, then a valid choice for Lemma 2.13 is L11 = L22 = 1
2 R and

L12 = L21 = 1
2 R

∗.

2.6 Finite-convergence conditions for the proximal point algorithm

It is known (see, e.g., [12, Theorem 6]) that the DRA is a special case of the exact proximal
point algorithm (with constant parameter 1). The latter generates, for a given maximally
monotone operator M : X ⇒ X with resolvent T := JM = (Id+M)−1, a sequence by

z0 ∈ X, (∀n ∈ N) zn+1 := T zn = (Id+M)−1zn, (35)

in order to solve the problem

find z ∈ X such that 0 ∈ Mz; equivalently, z ∈ Fix T . (36)

A classical sufficient condition dates back to Rockafellar (see [23, Theorem 3]) who proved
finite convergence when

(∃ z̄ ∈ X)(∃ δ ∈ R++) ball(0; δ) ⊆ Mz̄. (37)

It is instructive to view this condition from the resolvent side:

(∃ z̄ ∈ X)(∃ δ ∈ R++)(∀z ∈ X) ‖z − z̄‖ ≤ δ ⇒ T z = z̄. (38)

Note that since Fix T is convex, this implies that

Fix T = {z̄} (39)

is a singleton, which severely limits the applicability of this condition.
Later, Luque (see [17, Theorem 3.2]) proved finite convergence under the more general

condition
M−10 �= ∅ and (∃ δ ∈ R++) M−1( ball(0; δ)

) ⊆ M−10. (40)

On the resolvent side, his condition turns into

Fix T �= ∅ and (∃δ > 0) ‖z − T z‖ ≤ δ ⇒ T z ∈ Fix T . (41)

However, when M−10 = Fix T �= ∅, it is well known that zn − T zn → 0; thus, the
finite-convergence condition is essentially a tautology.

When illustrating our main results, we shall provide examples where both (37) and (40)
fail while our results are applicable (see Remark 3.8 and Example 5.5 below).

2.7 Douglas–Rachford operator

For future use, we record some results on the DRA that are easily checked. Recall that, for
two nonempty closed convex subsets A and B, the DRA operator is

T := Id−PA + PB(2PA − Id) = 1
2 (Id+RB RA) . (42)

The following result, the proof of which we omit since it is a direct verification, records
properties in the presence of affinity/linearity.
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Proposition 2.16 Let A be an affine subspace of X and let B be a nonempty closed convex
subset of X. Then the following hold:

(i) PA is an affine operator and

PARA = PA, PAT = PAPB RA and T = (PA + PB − Id)RA. (43)

(ii) If A is a linear subspace, then PA is a symmetric linear operator and

T = (
PAPB − PA⊥(Id−PB)

)
RA. (44)

The next result will be used in Sect. 4.1 below to clarify the connection between the DRA
and Spingarn’s method.

Lemma 2.17 Let A be a linear subspace of X, let B be a nonempty closed convex subset of
X, let (a, a⊥) ∈ A × A⊥, and set (a+, a⊥+) := (PAPB(a + a⊥), PA⊥(Id−PB)(a + a⊥)) ∈
A × A⊥. Then T (a − a⊥) = a+ − a⊥+ .

Proof Clearly, a+ ∈ A and a⊥+ ∈ A⊥. Since RA(a−a⊥) = (PA − PA⊥)(a−a⊥) = a+a⊥,
the conclusion follows from (44). ��

3 The affine-polyhedral case with Slater’s condition

In this section, we are able to state and prove finite convergence of the DRA in the case where
A is an affine subspace and B is a polyhedral set such that Slater’s condition, A∩ int B �= ∅,
is satisfied. We start by recalling our standing assumptions. We assume that

X is a finite-dimensional real Hilbert space, (45)

and that

A and B are closed convex subsets of X such that A ∩ B �= ∅. (46)

The DRA is based on the operator

T := Id−PA + PB RA. (47)

Given a starting point z0 ∈ X , the DRA sequence (zn)n∈N is generated by

(∀n ∈ N) zn+1 := T zn . (48a)

We also set

(∀n ∈ N) an := PAzn, rn := RAzn = 2an − zn . (48b)

We now state the basic convergence result for the DRA.

Fact 3.1 (Convergence of DRA) The DRA sequences (48) satisfy

zn → z ∈ Fix T = (A ∩ B) + NA−B(0) and an → PAz ∈ A ∩ B. (49)

Proof Combine [3, Corollary 3.9 and Theorem 3.13]. ��
Fact 3.1 can be strengthened when a constraint qualification is satisfied.

Lemma 3.2 Suppose that 0 ∈ int(A− B). Then there exists a point c ∈ A∩ B such that the
following hold for the DRA sequences (48):
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(i) ri(A) ∩ ri(B) �= ∅ and hence (zn)n∈N, (an)n∈N and (rn)n∈N converge linearly to c.
(ii) If c ∈ int B, then the convergence of (zn)n∈N, (an)n∈N and (rn)n∈N to c is finite.

Proof (i) From 0 ∈ int(A − B), we have NA−B(0) = {0} due to Proposition 2.10. This
gives Fix T = A ∩ B, and Fact 3.1 implies zn → c ∈ A ∩ B and an → PAc = c.
Then rn = 2an − zn → c. Using again 0 ∈ int(A − B), [22, Corollary 6.6.2] yields
0 ∈ ri(A − B) = ri A − ri B, and thus ri A ∩ ri B �= ∅. Now the linear convergence
follows from [21, Theorem 4.14] or from [6, Theorem 8.5(i)].

(ii) Since rn → c and an → c by (i), there exists n ∈ N such that rn ∈ B and an ∈ B. Then
PBrn = rn and

zn+1 = zn − an + PBrn = zn − an + rn = an ∈ A ∩ B = Fix T . (50)

Hence an = zn+1 = zn+2 = · · · and we are done.
��

Lemma 3.3 Suppose that A is a linear subspace. Then the DRA sequences (48) satisfy

an = PAzn = PArn and an+1 = PAT zn = PAPB RAzn = PAPBrn, (51)

and
(∀n ∈ N) an − an+1 = PA(rn − PBrn). (52)

Proof (51): Clear from (i). (52): Use (51) and the linearity of PA. ��
Lemma 3.4 Suppose that A is a linear subspace and that for the DRA sequences (48) there
exists p ∈ N such that ap = ap+1 = c ∈ A ∩ B, and that there is a subset N of X such that
rp − PBrp ∈ N and A⊥ ∩ N = {0}. Then (∀n ≥ p + 1) zn = c.

Proof Since ap − ap+1 = 0, (52) implies rp − PBrp ∈ A⊥ ∩ N = {0}. Thus PBrp = rp
and therefore z p+1 = z p − ap + rp = ap = c ∈ A ∩ B ⊆ Fix T . ��
Lemma 3.5 Suppose that A is a linear subspace and let a ∈ A. Then the DRA sequence
(48a) satisfies

(∀n ∈ N) 〈zn − zn+1, zn+1 − a〉 = 〈rn − PBrn, PBrn − a〉 , (53a)

and
(∀n ∈ N)(∀m ∈ N) 〈zn+1 − zm+1, (zn − zn+1) − (zm − zm+1)〉 ≥ 0. (53b)

Proof Let n ∈ N. Using (51), we find that

zn − zn+1 = an − PBrn = PArn − PBrn = PA(rn − PBrn) − PA⊥(PBrn − a). (54)

Next, (44) yields

zn+1 − a = PAPBrn − PA⊥(rn − PBrn) − a = PA(PBrn − a) − PA⊥(rn − PBrn). (55)

Moreover, rn − PBrn ∈ NB(PBrn) = NB−a(PBrn − a) and NB−a is a monotone operator.
The result thus follows from Corollary 2.14. ��
Lemma 3.6 Suppose that A is a linear subspace and that the DRA sequences (48) satisfy

zn → a ∈ A and (∀n ∈ N) 〈rn − PBrn, a − PBrn〉 = 0. (56)

Then there is no linear functional f : X → R such that

(∀n ∈ N) f (zn) > f (zn+1). (57)
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Proof Suppose to the contrary that there exists a linear function f : X → R satisfying (57).
Now set

(∀n ∈ N�{0}) yn := zn−1 − zn and wn := zn − a. (58)

On the one hand, Lemma 2.4 yields n0 ∈ N�{0} and (μ1, . . . , μn0) ∈ R
n0+ such that

n0∑

k=1

μk = 1 and

〈
n0∑

k=1

μk yk,
n0∑

k=1

μkwk

〉

> 0. (59)

On the other hand, Lemma 3.5 and (56) yield

(∀k ∈ N�{0})(∀ j ∈ N�{0}) 〈yk, wk〉 = 0 and
〈
yk − y j , wk − w j

〉 ≥ 0; (60)

consequently, with the help of [2, Lemma 2.13(i)],
〈

n0∑

k=1

μk yk,
n0∑

k=1

μkwk

〉

=
n0∑

k=1

μk 〈yk, wk〉− 1
2

n0∑

k=1

n0∑

j=1

μkμ j
〈
yk − y j , wk − w j

〉 ≤ 0. (61)

Comparing (59) with (61), we arrive at the desired contradiction. ��
We are now ready for our first main result concerning the finite convergence of the DRA.

Theorem 3.7 (Finite convergence of DRA in the affine-polyhedral case) Suppose that A
is an affine subspace, that B is polyhedral at every point in A ∩ bdry B, and that Slater’s
condition

A ∩ int B �= ∅ (62)

holds. Then the DRA sequences (48) converge in finitely many steps to a point in A ∩ B.

Proof After translating the sets if necessary, we can and do assume that A is a linear subspace
of X . By Corollary 2.11(ii), (62) yields

0 ∈ int(A − B) and int B �= ∅. (63)

Lemma 3.2(i) thus implies that (zn)n∈N, (an)n∈N and (rn)n∈N converge linearly to a point
c ∈ A ∩ B. Since PB is (firmly) nonexpansive, it also follows that (PBrn)n∈N converges
linearly to c. Since B is clearly polyhedral at every point in int B it follows from the hypothesis
that B is polyhedral at c. Lemma 2.9 guarantees the existence of n0 ∈ N such that

(∀n ≥ n0) 〈rn − PBrn, c − PBrn〉 = 0, (64)

and
(∀n ≥ n0) rn − PBrn ∈ NB(c). (65)

Because of int B �= ∅ and c ∈ B, Proposition 2.10(iii) yields NB(c) ∩ (−NB(c)) = {0}.
Hence NB(c) is a nonempty pointed closed convex cone. Using again 0 ∈ int(A − B),
Corollary 2.11(i) gives

ker PA ∩ NB(c) = A⊥ ∩ NB(c) = {0}. (66)

In view of Lemma 2.5(ii),

K := PA
(
NB(c)

)
is a nonempty pointed closed convex cone. (67)

Combining (52) and (65), we obtain

(∀n ≥ n0) an − an+1 ∈ K . (68)
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Since an → c and K is a closed convex cone, we have

(∀n ≥ n0) an − c =
∞∑

k=n

(ak − ak+1) ∈ K . (69)

We now consider two cases.
Case 1: (∃ p ≥ n0) ap = c.
Using (67) and (68), we deduce from Lemma 2.6 that ap = ap+1 = c. Now (65), (66),

and Lemma 3.4 yield (∀n ≥ p + 1) zn = c as required.
Case 2: (∀n ≥ n0) an �= c.
By (69), (∀n ≥ n0) an − c ∈ K�{0}. Since K is pointed [see (67)], Lemma 2.3 yields

v ∈ ri K ∩ ri K⊕ ⊆ K such that

(∀n ≥ n0) 〈v, an − c〉 > 0. (70)

Recalling (67), we get u ∈ NB(c) such that v = PAu. Clearly, (∀n ≥ n0) 〈u, an − c〉 =
〈u, PA(an − c)〉 = 〈PAu, an − c〉 = 〈v, an − c〉. It follows from (70) that

(∀n ≥ n0) 〈u, an − c〉 > 0. (71)

Since u ∈ NB(c) we also have

(∀n ≥ n0) 〈u, PBrn − c〉 ≤ 0. (72)

Now define a linear functional on X by

f : X → R : x �→ 〈u, x〉 . (73)

In view of (71) with (72), we obtain (∀n ≥ n0) f (zn − zn+1) = f (an − PBrn) = f (an −
c) − f (PBrn − c) = 〈u, an − c〉 − 〈u, PBrn − c〉 > 0. Therefore,

(∀n ≥ n0) f (zn) > f (zn+1). (74)

However, this and (56) together contradict Lemma 3.6 (applied to (zn)n≥n0 ). We deduce that
Case 2 never occurs which completes the proof of the theorem. ��

Remark 3.8 Some comments on Theorem 3.7 are in order.

(i) Suppose we replace the Slater’s condition “A ∩ int B �= ∅” by “A ∩ ri B �= ∅”. Then
one still obtains linear convergence (see [21, Theorem 4.14] or [6, Theorem 8.5(i)]);
however, finite convergence fails in general: indeed, B can chosen to be an affine sub-
space (see [1, Section 5]).

(ii) Under the assumptions of Theorem 3.7, Rockafellar’s condition (37) is only applicable
when both A = {ā} and ā ∈ int B hold. There are many examples where this condition
is violated yet our condition is applicable (see, e.g., the scenario in the following item).

(iii) Suppose that X = R
2, that A = R × {0} and that B = epi f , where f : R → R : x �→

|x | − 1. It is clear that B is polyhedral and that A ∩ int B �= ∅. Define (∀ε ∈ R++)

zε := (1 + ε, ε). Then

(∀ε ∈ R++) T zε = (1, ε) /∈ Fix T = [−1, 1] × {0} yet ‖zε − T zε‖ = ε. (75)

We conclude that (the resolvent reformulation of) Luque’s condition (41) fails.
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4 Applications

4.1 Product space setup and Spingarn’s method

Let us now consider a feasibility problem with possibly more than two sets, say

find a point in C :=
M⋂

j=1

C j , (76)

where

C1, . . . ,CM are closed convex subsets of X such that C �= ∅. (77)

This problem is reduced to a two-set problem as follows. In the product Hilbert space X :=
XM , with the inner product defined by ((x1, . . . , xM ), (y1, . . . , yM )) �→ ∑M

j=1

〈
x j , y j

〉
, we

set
A := {

(x, . . . , x) ∈ X
∣
∣ x ∈ X

}
and B := C1 × · · · × CM . (78)

Because of

x ∈
M⋂

j=1

C j ⇔ (x, . . . , x) ∈ A ∩ B, (79)

the M-set problem (76), which is formulated in X , is equivalent to the two-set problem

find a point in A ∩ B, (80)

which is posed in X. By, e.g., [2, Proposition 25.4(iii) and Proposition 28.3], the projections
of x = (x1, . . . , xM ) ∈ X onto A and B are respectively given by

PAx =
( 1

M

M∑

j=1

x j , . . . ,
1

M

M∑

j=1

x j
)

and PBx = (
PC1x1, . . . , PCM xM

)
. (81)

This opens the door of applying the DRA in X: indeed, set

T := Id−PA + PBRA, (82)

fix a starting point z0 ∈ X, and generate the DRA sequence (zn)n∈N via

(∀n ∈ N) zn+1 := Tzn . (83)

We now obtain the following result as a consequence of Theorem 3.7.

Corollary 4.1 Suppose that C1, . . . ,CM are polyhedral such that int C �= ∅. Then the DRA
sequence defined by (83) converges finitely to z = (z, . . . , z) ∈ A∩Bwith z ∈ C = ⋂M

j=1 C j .

Proof Since int C �= ∅, there exists c ∈ C and ε ∈ R++ such that (∀ j ∈ {1, . . . , M})
ball(c; ε) ⊆ C j . Then (c, . . . , c) ∈ A∩int B, and soA∩int B �= ∅. SinceB = C1×· · ·×CM

is a polyhedral subset of X, the conclusion now follows from Theorem 3.7. ��
Problem (76) was already considered by Spingarn [26] for the case where all sets

C1, . . . ,CM are halfspaces. He cast the resulting problem into the form

find (a, b) ∈ A × A⊥ such that b ∈ NB(a), (84)

123



342 J Glob Optim (2016) 65:329–349

and suggested solving it by a version of his method of partial inverses [25], which generates
a sequence (an, bn)n∈N via

(a0, b0) ∈ A × A⊥ and (∀n ∈ N)

{
a′
n := PB(an + bn), b′

n := an + bn − a′
n,

an+1 := PAa′
n, bn+1 := b′

n − PAb′
n .

(85)

It was pointed out in [15, Section 1], [12, Section 5], [19, Appendix] and [10, Remark 2.4] that
this scheme is closely related to the DRA. (In fact, Lemma 2.17 above makes it completely
clear why (85) is equivalent to applying the DRA to A and B, with starting point (a0 − b0).)
However, Spingarn’s proof of finite convergence in [26] requires

an − an+1 ∈ NC (c) × · · · × NC (c), (86)

and he chooses a linear functional f based on the “diagonal” structure of A—unfortunately,
his proof does not work for problem (3). Our proof in the previous section at the same time
simplifies and strengthens his proof technique to allow us to deal with polyhedral sets rather
than just halfspaces.While every polyhedron is an intersection of halfspaces, the problems are
theoretically equivalent—in practice, however, there can be huge savings as the requirement
to work in Spingarn’s setup might lead to much larger instances of the product space X!
It also liberates us from being forced to work in the product space. Our extension is also
intrinsically more flexible as the following example illustrates.

Example 4.2 Suppose that X = R
2, that A = {

(x, x)
∣
∣ x ∈ R

}
is diagonal, and that B ={

(x, y) ∈ R
2

∣
∣ −y ≤ x ≤ 2

}
. Clearly, B is polyhedral and A ∩ int B �= ∅. Moreover, B is

also not the Cartesian product of two polyhedral subsets ofR, i.e., of two intervals. Therefore,
the proof of finite convergence of theDRA in [26] no longer applies. However, A and B satisfy
all assumptions of Theorem 3.7, and thus the DRA finds a point in A∩B after a finite number
of steps (regardless of the location of starting point). See Fig. 1 for an illustration, created
with GeoGebra [13].

Fig. 1 The DRA for the case when B is not a Cartesian product
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4.2 Solving linear equalities with a strict positivity constraint

In this subsection, we assume that
X = R

N , (87)

and that
A = {

x ∈ X
∣
∣ Lx = a

}
and B = R

N+ , (88)

where L ∈ R
M×N and a ∈ R

M . Note that the set A ∩ B is polyhedral yet A ∩ B has empty
interior (unless A = X which is a case of little interest). Thus, Spingarn’s finite-convergence
result is never applicable. However, Theorem 3.7 guarantees finite convergence of the DRA
provided that Slater’s condition

R
N++ ∩ L−1a �= ∅ (89)

holds. Using [5, Lemma 4.1], we obtain

PA : X → X : x �→ x − L†(Lx − a), (90)

where L† denotes theMoore-Penrose inverse of L .We also have (see, e.g., [2, Example 6.28])

PB : X → X : x = (ξ1, . . . , ξN ) �→ x = (ξ+
1 , . . . , ξ+

N ), (91)

where ξ+ = max{ξ, 0} for every ξ ∈ R. This implies RA : X → X : x �→ x − 2L†(Lx − a)

and RB : X → X : x = (ξ1, . . . , ξN ) �→ (|ξ1|, . . . , |ξN |). We will compare three algorithms,
all of which generate a governing sequence with starting point z0 ∈ X via

(∀n ∈ N) zn+1 = T zn . (92)

The DRA uses, of course,
T = Id−PA + PB RA. (93)

The second method is the classical method of alternating projections (MAP) where

T = PAPB; (94)

while the third method of reflection–projection (MRP) employs

T = PARB . (95)

Wenow illustrate the performance of these three algorithmsnumerically. For the remainder
of this section, we assume that that X = R

2, that A = {
(x, y) ∈ R

2
∣
∣ x + 5y = 6

}
, and that

B = R
2+. Then A and B satisfy (89), and the sequence (93) generated by the DRA thus

converges finitely to a point in A ∩ B regardless of the starting point. See Fig. 2 for an
illustration, created with GeoGebra [13]. Note that the shadow sequence (PAzn)n∈N for
the DRA finds a point in A ∩ B even before a fixed point is reached. For each starting point
z0 ∈ [−100, 100]2 ⊆ R

2, we perform the DRA until zn+1 = zn , and run the MAP and
the MRP until dB(zn) = max{dA(zn), dB(zn)} < ε, where we set the tolerance ε = 10−4.
Figure 3 compares the number of iterations needed to stop each algorithm. Note that even
though we put the DRA at an “unfair disadvantage” (it must find a true fixed point while the
MAP and the MRP will stop with ε-feasible solutions), it does extremely well. In Fig. 4, we
level the playing field and compare the distance from PAzn (for the DRA) or from zn (for
the MAP and the MRP) to B, where n ∈ {5, 10}.

Now we look at the process of reaching a solution for each algorithm. For the DRA, we
monitor the shadow sequence (PAzn)n∈N and for theMAP and theMRP, wemonitor (zn)n∈N,
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Fig. 2 The orbits of DRA (dashed), MAP (dotted) and MRP (solid)

Fig. 3 Number of iterations needed to get the solution of DRA, MAP and MRP

which is actually the same as (PAzn)n∈N. Because all three monitored sequences lie in A,
we are concerned about the distance to B. Our stopping criterion is therefore

dB(PAzn) < ε (96)

for all three algorithms. From top to bottom in Fig. 5, we check howmany iterates are required
to get to tolerance ε = 10−m , where m ∈ {2, 4}, respectively. Computations were performed
with MATLAB R2013b [18]. These experiments illustrate the superior convergence behav-
iour of the DRA compared to the MAP and the MRP.
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Fig. 4 The distance from the monitored iterate to B after 5 steps (top) and 10 steps (bottom)

5 The hyperplanar-epigraphical case with Slater’s condition

In this section we assume that

f : X → R is convex and continuous. (97a)

We will work in X × R, where we set

A := X × {0} (97b)

and

B := epi f := {
(x, ρ) ∈ X × R

∣
∣ f (x) ≤ ρ

}
. (97c)

Then
PA : X × R → X × R : (x, ρ) �→ (x, 0), (98)

and the projection onto B is described in the following result.

Lemma 5.1 Let (x, ρ) ∈ (X × R)�B. Then there exists p ∈ X such that PB(x, ρ) =
(p, f (p)),

x ∈ p + (
f (p) − ρ

)
∂ f (p) and ρ < f (p) ≤ f (x) (99)

and
(∀y ∈ X) 〈y − p, x − p〉 ≤ (

f (y) − f (p)
)(

f (p) − ρ
)
. (100)
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Fig. 5 Number of iterations needed to get the tolerance 10−2 (top) and 10−4 (bottom) of DRA, MAP and
MRP

Moreover, the following hold:

(i) If u is a minimizer of f , then 〈u − p, x − p〉 ≤ 0.
(ii) If x is a minimizer of f , then p = x.
(iii) If x is not a minimizer of f , then f (p) < f (x).

Proof According to [2, Proposition 28.28], there exists (p, p∗) ∈ gra ∂ f such that
PB(x, ρ) = (p, f (p)) and x = p+ ( f (p)−ρ)p∗. Next, [2, Propositions 9.18] implies that
ρ < f (p) and (100). The subgradient inequality gives

f (x) − f (p) ≥ 〈
p∗, x − p

〉 = 〈
p∗, ( f (p) − ρ)p∗〉 = ( f (p) − ρ)‖p∗‖2 ≥ 0. (101)

Hence f (p) ≤ f (x), and this completes the proof of (99),

(i) It follows from (100) that 〈u − p, x − p〉 ≤ ( f (u) − f (p))( f (p) − ρ). Since f (p) −
ρ > 0 and f (u) ≤ f (p), we have 〈u − p, x − p〉 ≤ 0.

(ii) Apply (i) with u = x .
(iii) By (99), ρ < f (p) ≤ f (x). We show the contrapositive and thus assume that f (p) =

f (x). Since f (p) − ρ > 0, (101) yields p∗ = 0, and so 0 ∈ ∂ f (p). It follows that p is
a minimizer of f , and therefore x also minimizes f .

��
Remark 5.2 When X = R and u is a minimizer of f , then (u − p)(x − p) ≤ 0 by
Lemma 5.1(i). Therefore, p lies between x and u (see also [4, Corollary 4.2]).
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Define the DRA operator by

T := Id−PA + PB RA. (102)

It will be convenient to abbreviate

B ′ := RA(B) = {
(x, ρ) ∈ X × R

∣
∣ ρ ≤ − f (x)

}
(103)

and to analyze the effect of performing one DRA step in the following result.

Corollary 5.3 (One DRA step) Let z = (x, ρ) ∈ X ×R, and set z+ := (x+, ρ+) = T (x, ρ).
Then the following hold:

(i) Suppose that z ∈ B ′. Then z+ = (x, 0) ∈ A. Moreover, either ( f (x) ≤ 0 and z+ ∈
A ∩ B) or ( f (x) > 0 and z+ /∈ B ∪ B ′).

(ii) Suppose that z /∈ B ′. Then there exists x∗+ ∈ ∂ f (x+) such that

x+ = x − ρ+x∗+, f (x+) ≤ f (x), and ρ+ = ρ + f (x+) > 0. (104)

Moreover, either (ρ ≥ 0 and z+ ∈ B) or (ρ < 0, z+ /∈ B ∪ B ′ and T z+ ∈ B).
(iii) Suppose that z ∈ B ∩ B ′. Then z+ ∈ A ∩ B.
(iv) Suppose that z ∈ B�B ′. Then z+ ∈ B.

Proof (i) We have PAz = (x, 0) and RAz = (x,−ρ) ∈ B. Thus PB RAz = PB(x,−ρ) =
(x,−ρ), which gives

z+ = (Id−PA + PB RA)z = (x, ρ) − (x, 0) + (x,−ρ) = (x, 0) ∈ A. (105)

If f (x) ≤ 0, then z+ = (x, 0) ∈ B, and hence z+ ∈ A ∩ B. Otherwise, f (x) > 0
which implies − f (x) < 0 and further z+ = (x, 0) /∈ B ∪ B ′.

(ii) We have RAz = (x,−ρ) /∈ B, and by (99), PB(x,−ρ) = (p, f (p)), where

p = x − (ρ + f (p))p∗ for some p∗ ∈ ∂ f (p), and − ρ < f (p) ≤ f (x). (106)

We obtain

z+ = (x+, ρ+) = (Id−PA + PB RA)z = (x, ρ) − (x, 0) + (p, f (p)) = (p, ρ + f (p)),
(107)

which gives x+ = p and ρ+ = ρ + f (p) > 0, so (104) holds. If ρ ≥ 0, then
ρ+ = ρ + f (x+) ≥ f (x+), and thus z+ ∈ B. Otherwise, ρ < 0, so ρ+ < f (x+) and
also f (x+) > −ρ > 0. Hence ρ+ > 0 > − f (x+), which implies z+ /∈ B ∪ B ′, and
then T z+ ∈ B because ρ+ > 0 and the previous case applies.

(iii) We have f (x) ≤ ρ ≤ − f (x), and so f (x) ≤ 0. Now apply (i).
(iv) We have ρ ≥ f (x) and ρ > − f (x). Then ρ ≥ | f (x)| ≥ 0, and (ii) gives z+ ∈ B.

��

Theorem 5.4 (Finite convergence of DRA in the hyperplanar-epigraphical case) Suppose
that inf X f < 0, and, given a starting point z0 = (x0, ρ0) ∈ X × R, generate the DRA
sequence (zn)n∈N by

(∀n ∈ N) zn+1 = (xn+1, ρn+1) = T zn . (108)

Then (zn)n∈N converges finitely to a point z ∈ A ∩ B.

123



348 J Glob Optim (2016) 65:329–349

Proof In view of Corollary 5.3(i)&(iii), we can and do assume that z0 ∈ B�B ′, where B ′
was defined in (103). It follows then from Corollary 5.3(iii)&(iv), that (zn)n∈N lies in B.

Case 1: (∃n ∈ N) zn ∈ B ∩ B ′.
By Corollary 5.3(iii), zn+1 ∈ A ∩ B and we are done.

Case 2: (∀n ∈ N) zn ∈ B�B ′.
By Corollary 5.3(ii),

(∀n ∈ N) f (xn+1) ≤ f (xn) and ρn+1 = ρn + f (xn+1) > 0. (109)

Next, it follows from [22, Lemma 7.3] that int B = {
(x, ρ) ∈ X × R

∣
∣ f (x) < ρ

}
. Because

inf X f < 0, we obtain A ∩ int B �= ∅, which, due to Lemma 3.2(i) yields zn → z =
(x, ρ) ∈ A∩ B. Since z ∈ A, we must have ρ = 0. If (∀n ∈ N) f (xn+1) ≥ 0, then, by (109),
0 < ρ1 ≤ ρ2 ≤ · · · ≤ ρn → ρ = 0 which is absurd. Therefore,

(∃ n0 ∈ N) f (xn0+1) < 0. (110)

In viewof (109),we see that (∀n ≥ n0+1) ρn ≤ ρn0+(n−n0) f (xn0+1). Since f (xn0+1) < 0,
there exists n1 ∈ N, n1 ≥ n0 + 1 such that

ρn0 + (n1 − n0) f (xn0+1) ≤ − f (xn0+1). (111)

Noting that f (xn1) ≤ f (xn0+1), we then obtain

ρn1 ≤ ρn0 + (n1 − n0) f (xn0+1) ≤ − f (xn0+1) ≤ − f (xn1). (112)

Hence zn1 ∈ B ′, which contradicts the assumption ofCase 2. Therefore,Case 2 never occurs
and the proof is complete. ��

We conclude by illustrating that finite convergence may be deduced from Theorem 5.4
but not necessarily from the finite-convergence conditions of Sect. 2.6.

Example 5.5 Suppose that X = R, that A = R × {0}, and that B = epi f , where f : R →
R : x �→ x2 − 1. Let (∀ε ∈ R++) zε = (1 + ε,−ε). Then (∀ε ∈ R++) T zε /∈ Fix T =
[−1, 1] × {0}, and zε − T zε → 0 as ε → 0+. Consequently, Luque’s condition (41) fails.

Proof Let ε ∈ R++. Then − f (1 + ε) = −2ε − ε2 < −ε, and so zε = (1 + ε,−ε) /∈ B ′.
By Corollary 5.3(ii), there exists xε ∈ R such that

T zε = (xε,−ε+ f (xε)), xε = 1+ε−(−ε+ f (xε))2xε, and −ε+ f (xε) > 0. (113)

The last inequality shows that T zε /∈ Fix T = [−1, 1] × {0}. It follows from the expression
of xε that

2x3ε − (1 + 2ε)xε − 1 − ε = 0. (114)

Note that (xε, f (xε))+ (0,−ε) = T zε = zε − PAzε + PB RAzε = (1+ε,−ε)− (1+ε, 0)+
PB(1 + ε, ε) = PB(1 + ε, ε) + (0,−ε) and hence (xε, f (xε)) = PB(1 + ε, ε). Remark 5.2
gives 0 ≤ xε ≤ 1 + ε. If 0 ≤ xε ≤ 1, then (114) yields 0 ≤ 2xε − (1 + 2ε)xε − 1 − ε =
(xε − 1) − 2εxε − ε < 0, which is absurd. Thus 1 < xε ≤ 1 + ε. Now as ε → 0+, we have
xε → 1, f (xε) → f (1) = 0, and at the same time, zε − T zε = (1+ ε − xε,− f (xε)) → 0.
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