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Abstract We examine Malfatti’s problem which dates back to 200years ago from the view
point of global optimization. The problem has been formulated as the convex maximization
problem over a nonconvex set. Global optimality condition by Strekalovsky (Sov Math Dokl
292(5):1062–1066, 1987) has been applied to this problem.For solvingnumericallyMalfatti’s
problem, we propose the algorithm in Enkhbat (J Glob Optim 8:379–391, 1996) which
converges globally. Some computational results are provided.
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1 Introduction

In 1803 Italian mathematician Malfatti posed the following problem: how to pack three
non-overlapping circles of maximum total area in a given triangle?

Malfatti originally assumed that the solution to this problem are three circles inscribed in
a triangle such that each circle tangent to other two and touches two sides of the triangle.

Now it is well known that Malfatti’s solution is not optimal. There are works devoted
to solving Malfatti’s problem [1–8]. The most common methods used for finding the best
solutions to Malfatti’s problem were algebraic and geometric approaches. In 1994 Zalgaller
and Los [3] showed that the greedy arrangement is the best one. Based on trigonometric
equations and inequalities, using so called rigid systems they have found the best solution
to Malfatti’s problem. It is seems that there is a little attention paid to Malfatti’s problem so
far from a view point of optimization theory and algorithm. Aim of this paper is to fulfill
this gap. The paper is organized as follows. In Sect. 2, we formulate Malfatti’s problem as
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the convex maximization problem. Global optimality conditions for Malfatti’s problem are
given in Sect. 3. Section 4 is devoted to computational results.

2 Malfatti’s problem and convex maximization

In order to formulateMalfatti’s problem as an optimization problem, we need to do following
steps.

First, we equivalently formulate the problem in terms of convex sets such as a ball and
triangle set. Secondly, we characterize inscribed conditions of balls into a triangle set. For
this purpose, we introduce the following sets. Denote by B(x, z) a ball with a center x ∈ R

2

and a radius z ∈ R:

B(x, z) = {
y ∈ R

2|‖y − x‖ ≤ z
}
, (1)

A triangle set D ⊂ R
2 is given by

D =
{
x ∈ R

2|〈ai , x〉 ≤ bi , ai ∈ R
2, bi ∈ R, i = 1, 2, 3

}
, (2)

here 〈, 〉 denotes the scalar product of two vectors in R
2, and ‖ · ‖ is Euclidean norm, ai ∦

a j , i �= j; i, j = 1, 2, 3.

Theorem 1 B(x, z) ⊂ D if and only if

〈ai , x〉 + z‖ai‖ ≤ bi , i = 1, 2, 3 (3)

Proof Necessity Let y ∈ B(x, z) and y ∈ D. A point y ∈ B(x, z) can be easily presented
as y = x + zh, h ∈ R

2, ‖h‖ ≤ 1. Condition y ∈ D follows that 〈ai , y〉 ≤ bi , i = 1, 2, 3 or
equivalently, 〈ai , x〉 + z〈ai , h〉 ≤ bi , i = 1, 2, 3, ∀h ∈ R

2. Hence, we have

〈ai , x〉 + z max‖h‖≤1
〈ai , h〉 ≤ bi , i = 1, 2, 3

or

〈ai , x〉 + z〈ai , ai

‖ai‖〉 ≤ bi , i = 1, 2, 3,

which yield

〈ai , x〉 + z‖ai‖ ≤ bi , i = 1, 2, 3.

Sufficiency Let condition (3) be held and on the contrary, assume that there exists ỹ ∈ B(x, z)
such that ỹ /∈ D. Clearly, there exists h̃ ∈ R

2 so that ỹ = x + zh̃, ‖h̃‖ ≤ 1. Since ỹ /∈ D,
there exists j ∈ {1, 2, 3} for which 〈a j , ỹ〉 > b j or 〈a j , x + zh̃〉 = 〈a j , x〉 + z〈a j , h̃〉 > b j .
On the other hand, we have 〈a j , x〉 + z‖a j‖ > b j which contradicts (3).

Now we formulate inscribed conditions of three balls into a triangle set. Assume that
intersections of interiors of these balls are empty. There are three main cases:

Case 1 Three balls are mutually tangent to each other.

Case 2 One of the balls is tangent to other two and the centers of the balls lie on the same
line.
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Case 3 One of the balls is tangent to other two but their centers don’t lie on the same line.
At the same time, the last two balls don’t intersect with each other.

Denote by u(x1, x2), v(x4, x5) and p(x7, x8) centers of three balls inscribed in a triangle set
D given by (2). Let x3, x6 and x9 be their corresponding radii.
Now we are ready to formulate Malfatti’s problem for Case 1.

max f = π(x23 + x26 + x29 ), (4)

〈ai , u〉 + x3‖ai‖ ≤ bi , i = 1, 2, 3, (5)

〈ai , v〉 + x6‖ai‖ ≤ bi , i = 1, 2, 3, (6)

〈ai , p〉 + x9‖ai‖ ≤ bi , i = 1, 2, 3, (7)

(x4 − x1)
2 + (x5 − x2)

2 = (x3 + x6)
2, (8)

(x7 − x1)
2 + (x8 − x2)

2 = (x3 + x9)
2, (9)

(x7 − x4)
2 + (x8 − x5)

2 = (x6 + x9)
2, (10)

x3 ≥ 0, x6 ≥ 0, x9 ≥ 0. (11)

The function f in (4) denotes a total area of the three balls. Conditions (5)–(7) characterize
inscribed conditions of three balls into a triangle set while conditions (8)–(11) correspond to
Case 1. We can easily see that conditions (8) and (9) and

(x7 − x4)
2 + (x8 − x5)

2 = (x6 + 2x3 + x9)
2 (12)

describe Case 2. Case 3 is defined by conditions (8) and (9) and

(x7 − x4)
2 + (x8 − x5)

2 ≥ (x6 + x9)
2. (13)

S1 denotes the set defined by the conditions (5)–(11).
S2 denotes the set given by the conditions (5)–(9), (11) and (12).
Meanwhile, S3 denotes the set given by conditions (5)–(9), (11) and (13).
The set S1, S2 and S3 are nonconvex compact sets. Thus, problem (4)—(11) becomes the
convex maximization problem over a nonconvex set. A stationary point of this problem
satisfies a system of 36 equations and inequalities with 24 variables including Lagrange
multipliers.

3 Global optimality conditions and algorithm

In previous section, we note that the solution to Malfatti’s problem is f ∗ = max{maxx∈S1 f ,
maxx∈S2 f,maxx∈S3 f }. Let us consider again these problems

max
x∈Si

f, Si ⊂ R
9, i = 1, 2, 3. (14)

Problems (14) belong to a class of concave programming or equivalently, convex maximiza-
tion problem.

Global Optimality conditions for the convex maximization problem first formulated by
Strekalovsky [9]. Now we apply this result to problem (14) as follows:

Theorem 2 [9] Let z ∈ Si satisfy f ′(z) �= 0, then z is a solution to problem (14) if and only
if

〈 f ′(y), x − y〉 ≤ 0 for all y ∈ E f (z)( f ) and x ∈ Si ,
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where Ec( f ) = {y ∈ R
n | f (y) = c} is the level set of f at c and f ′(y) is the gradient of f

at y.
Before presenting an algorithm for solving problem (14) it is useful to restate Theorem 2

in a convenient way via the function Θ(z) defined for z ∈ Si :

Θ(z) = max
y∈E f (z)( f )

Π(y),

where Π(y) = maxx∈Si 〈 f ′(y), x − y〉.
It has been shown in [10] that the functionΠ(y) is continuous and differentiable in directions.
Since f is strongly convex the set E f (z)( f ) is compact. Thus, Θ(z) < +∞. We note that
Π(y) ≤ Θ(z) for all y ∈ E f (z)( f ).

Theorem 3 Let z ∈ Si satisfy f ′(z) �= 0, if Θ(z) = 0 then z is a global solution to problem
(14).

Proof follows from the following inequalities:

〈 f ′(y), x − y〉 ≤ Π(y) = max
x∈Si

〈 f ′(y), x − y〉 ≤ Θ(z) = 0

which hold for all x ∈ Si and y ∈ E f (z)( f ). ��
Now we apply the Algorithm MAX in [10] to solve problem (14) numerically.

The convergence of the Algorithm is given by the following theorem.

Theorem 4 [10] The sequence {xk, k = 1, 2, . . .} generated by Algorithm MAX is a maxi-
mizing sequence for problem (14),that is,

lim
k→∞ f (xk) = max

x∈Si
f (x),

and every accumulation point of the sequence {xk, k = 1, 2, . . .} is a global maximizer of
the problem.

4 Computational results

AlgorithmMAXstartswith an arbitrary localmaximizer xk found by fmincon inMatlab.Note
that in numerical experiments we solved subproblemsmaxy∈E f (xk )

( f ) Π(y) at each iterations
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k = 1, 2, . . ., as problems with the single equality constraint by the set covering method [11]
while problems maxx∈Si 〈 f ′(yk), x − yk〉 have been solved by Lagrangian method. For a test
purpose, the triangle with vertices A(0, 0), B(3, 4) and C(8, 6) has been considered. As we
can see in Sect. 2 that solving Malfatti’s problem consisted of three main cases. Then for
Case 1 we have the following problem:

max f = π(x23 + x26 + x29 ), (15)

− 4x1 + 3x2 + 5x3 ≤ 0,

6x1 − 8x2 + 10x3 ≤ 0,

− 2x1 + 5x2 + √
29x3 ≤ 14,

− 4x4 + 3x5 + 5x6 ≤ 0,

6x4 − 8x5 + 10x6 ≤ 0,

− 2x4 + 5x5 + √
29x6 ≤ 14,

− 4x7 + 3x8 + 5x9 ≤ 0,

6x7 − 8x8 + 10x9 ≤ 0,

− 2x7 + 5x8 + √
29x9 ≤ 14,

(x4 − x1)
2 + (x5 − x2)

2 − (x3 + x6)
2 = 0,

(x7 − x1)
2 + (x8 − x2)

2 − (x3 + x9)
2 = 0,

(x7 − x4)
2 + (x8 − x5)

2 − (x6 + x9)
2 = 0,

x3 ≥ 0, x6 ≥ 0, x9 ≥ 0. (16)

For Case 2, we replace 12th constraint in (16) with the following constraint:

(x7 − x4)
2 + (x8 − x5)

2 = (x6 + 2x3 + x9)
2.

Also, for Case 3 instead of 12th constraint in (16), we have the following constraint:

(x7 − x4)
2 + (x8 − x5)

2 − (x6 + x9)
2 ≥ 0 (17)

In the computational experiment, fromaviewpoint of geometric triviality,we did not consider
cases where at least one ball is not tangent to other two.

Theperformanceof the proposed algorithmwas tested on three cases ofMalfatti’s problem.
For a given triangle set, the programming code for the algorithm was written in Matlab and
run on a computer Pentium Core 2. The results are given for each case in Table 1.

Table 1 Numerical results

Case Initial local value Number of local
solutions

Global value Computational
time (min:s)

Case 1 0.7765 13 2.44628 1:21

Case 2 1.15858 17 2.79624 2:46

Case 3 1.43503 3 3.192752 00:18
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Fig. 1 Case 1
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Fig. 2 Case 2

The global solution to Malfatti’s problem (15)–(16) corresponding to Case 3 was f ∗ =
3.192752 and the centers of the balls were:

(x∗
1 , x

∗
2 ) = (2.5830, 2.5830),

(x∗
4 , x

∗
5 ) = (3.4339, 3.4339),

(x∗
7 , x

∗
8 ) = (4.4925, 4.0288).

During computational process, totally 33 local and stationary points were examined
by Algorithm MAX. Geometric pictures showing global solutions of 3 cases are given in
Figs. 1, 2 and 3.
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Fig. 3 Case 3

5 Conclusion

200years old Malfatti’s problem, for the first time, has been examined from a point of
global optimization theory and algorithm view. The problem was reduced to the convex
maximization problem with 9 variables. The global optimality conditions by Strekalovsky
as well as a global search algorithm in [9] have been applied to the problem. This approach
gives us an opportunity to generalize Malfatti’s problem for a high dimensional polyhedral
set which will be discussed in a next paper.
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