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Abstract Anewclass of extragradient-typemethods is introduced for solving an equilibrium
problem in a real Hilbert space without any monotonicity assumption on the equilibrium
function. The strategy is to replace the second projection step in the classical extragradient
method by a projection onto shrinking convex subsets of the feasible set. Furthermore, to
ensure a sufficient decrease on the equilibrium function, a general Armijo-type condition is
imposed. This condition is shown to be satisfied for four different linesearches used in the
literature. Then, the weak and strong convergence of the resulting algorithms is obtained
under non-monotonicity assumptions. Finally, some numerical experiments are reported.

Keywords Non-monotone equilibrium problems · Shrinking projection methods ·
Extragradient methods · Weak convergence · Strong convergence

1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert spaceH and let f be a function
fromH ×H toR. The equilibrium problem associated with f and C in the sense of Blum
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and Oettli [6] consists in finding a point x∗ ∈ C such that

f (x∗, y) ≥ 0 ∀y ∈ C. (1.1)

This problem is denoted by EP( f,C) and its solution set by SE . The equilibrium problem,
also known under the name of Ky Fan inequality [11], is very general in the sense that
it includes, as special cases, many well-known problems: the optimization problem, the
variational inequality problem, the saddle point problem, the (generalized) Nash equilibrium
problem in game theory, the fixed point problem, and others; see, for instance, [24,26,31],
and the references quoted therein. Associated with the classical equilibrium problem, the
dual equilibrium problem, denotedDEP( f,C), can be expressed as finding x∗ ∈ C such that

f (y, x∗) ≤ 0 ∀y ∈ C. (1.2)

This problem was initially introduced in 1964 by Debrunnen and Flor [9] for variational
inequalities where a first existence result was obtained. In 1967 it was reconsidered byMinty
[21] and its relevance to applications was pointed out in [12].

Let us denote by SD the solution set of DEP( f,C). The inclusion SE ⊂ SD holds under
the pseudo-monotonicity assumption of f on C , namely: for every x, y ∈ C

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0.

In that situation, the inclusion SE ⊂ SD can also be expressed as

∀x∗ ∈ SE f (y, x∗) ≤ 0 for all y ∈ C.

As mentioned in [13], the converse inclusion SD ⊂ SE is true when f (·, y) is upper semi-
continuous for every y ∈ C and f (x, ·) is convex for every x ∈ C (see also [5]).

Many methods have been proposed for solving equilibrium problems such as the pro-
jection methods [19,24,32], the proximal point methods [14,23], the subgradient methods
[29,36], the extragradient methods with or without linesearches [25,26,33,38], the gap func-
tion method [20,27] and the bundle methods [34]. Each solution method is adapted to a
class of equilibrium problems so that the convergence of the algorithm can be guaranteed.
The reader is referred to [5] and the references quoted therein for an excellent survey on the
existing methods.

Among the solution methods for solving EP( f,C), the extragradient method is well-
known because of its efficiency in numerical tests. To the best of our knowledge, most
of the extragradient methods require at least the pseudo-monotonicity assumption on the
function f . However, this assumption may not be satisfied in a lot of practical problems
as, for example, in the Nash–Cournot equilibrium problem [25]. So our aim in this paper
is to study a new class of extragradient methods for solving EP( f,C) in the framework of
Hilbert spaces and without assuming any pseudo-monotonicity assumption on f . To do this,
the projection algorithms proposed in [2,10,26] for solving finite-dimensional equilibrium
problems are modified and embedded in a class of extragradient methods. The prediction step
is unchanged but the correction step is new and obtained by projecting the prediction point
onto shrinking convex subsets of C that contain the solution set SD of problem DEP( f,C).
Since these subsets become smaller and smaller after each iteration, the proposed method
should have a good numerical behavior. Furthermore, this strategy allows us to prove the
convergence of the method without assuming any pseudo-monotonicity property on f but
rather the condition

∃x∗ ∈ SE such that f (y, x∗) ≤ 0 for all y ∈ C.
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When SD ⊂ SE , this condition is equivalent to the nonemptyness of the set SD and allows
us to obtain the convergence.

Recently, Ye andHe presented in [37] a double projectionmethod for solving finite dimen-
sional variational inequalities without monotonicity assumptions on the function defining the
variational inequality. Their method is a modification of a method due to Solodov and Svaiter
[30] and coincides with one of the methods studied in this paper when the equilibrium prob-
lem is a finite-dimensional variational inequality problem. Finally, let us mention that other
methods also exist for solving non-monotone equilibrium problems. One of them consists in
solving at each iteration a perturbed equilibrium problem depending on a parameter ε that
goes to zero. The reader is referred to [17] for more details.

The remainder of the paper is organized as follows: In Sect. 2, some preliminary results are
recalled. A very general algorithm is presented in Sect. 3 for finding a point in the intersection
of a sequence {Ck} of closed convex subsets of C ⊂ H . The weak and strong convergence
of this algorithm is discussed in detail. In the next section, the sets Ck are defined via an
extragradient method using a general Armijo-type condition. In Sect. 5, four implementable
linesearches satisfying the general Armijo-type condition are introduced and the weak and
strong convergence of the resulting algorithms is proven under the very mild assumption that
the set SD is nonempty. Finally, some numerical results are reported in Sect. 6 to show the
efficiency of the methods.

2 Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert spaceH . For each x ∈ H , there
exists a unique point in C , denoted PCx , such that

‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C.

The mapping PC is known as the metric projection from H onto C . Below are listed some
well-known properties of the projection PC (see, for example, [16]).

Theorem 2.1 (a) PC (·) is a nonexpansive mapping, i.e., for all x, y ∈ H

‖PCx − PC y‖ ≤ ‖x − y‖.
(b) For any x ∈ H and y ∈ C, it holds that 〈x − PCx, y − PCx〉 ≤ 0.
Conversely, if u ∈ C and 〈x − u, y − u〉 ≤ 0 for all y ∈ C, then u = PCx.

Let f : H × H → R be a function such that f (x, ·) is convex for every x ∈ H . Let
also x, y ∈ H and ε ≥ 0. The ε-subdifferential of f (x, ·) at y is denoted ∂ε

2 f (x, y) and
defined by

∂ε
2 f (x, y) = {u ∈ H : f (x, z) − f (x, y) ≥ 〈u, z − y〉 − ε ∀z ∈ H }.

When ε = 0, the set ∂ε
2 f (x, y) is written ∂2 f (x, y) and called the subdifferential of f (x, ·)

at y.
One often considers EP( f,C) with some additional properties imposed on the function f

such as monotonicity and pseudo-monotonicity. Let us recall these well-known definitions.

Definition 2.1 A function f : H × H → R is called

(i) pseudo-monotone on C if for all x, y ∈ C ,

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0
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(ii) monotone on C if for all x, y ∈ C ,

f (x, y) + f (y, x) ≤ 0.

It is easy to see that (ii) ⇒ (i).

Throughout this paper, for finding a solution of problem EP( f,C), we assume that the
solution set SD of the dual equilibrium problem DEP( f,C) is nonempty and the function
f : H × H → R satisfies the following conditions:

(U1) f (x, x) = 0 for all x ∈ H ;
(U2) f (x, ·) is a continuous and convex function on H for all x ∈ H ;
(U3) f is jointly weakly continuous on H × H . In other words, if x, y ∈ H and {xn}

and {yn} are two sequences in H converging weakly to x and y, respectively, then
f (xn, yn) → f (x, y).

From Condition (U2), we have immediately that the function f (x, ·) is subdifferentiable
for any x ∈ H (see for example [15], Theorem 3.26).

In this paper we do not assume that the function f is pseudo-monotone onC as in the clas-
sical extragradient methods [26] and their variants [2,3,10], where the pseudo-monotonicity
of f is used to get that SE ⊂ SD . The following example shows that property SE ⊂ SD may
not be satisfied when f is not pseudo-monotone.

Example 1 Let C = [−1, 1]× [−1, 1] ⊂ R2 and consider the equilibrium function defined,
for every x = (x1, x2), y = (y1, y2) ∈ R2 by

f (x, y) = (x21 + x22 )[(y1 − x1) + (y2 − x2)].
It is easy to see that

SE = {(0, 0), (−1,−1)} and SD = {(−1,−1)},
and thus that SD ⊂ SE with SE �= SD . Moreover, for x = (0, 0) and for all y ∈ [−1, 0) ×
[−1, 0), we have

f (x, y) = 0 and f (y, x) > 0.

This means that f is neither monotone nor pseudo-monotone on C .

The next two propositions will be useful for proving the convergence of our algorithms.

Proposition 2.1 Assume that the function f satisfies conditions (U1)–(U3). Let {vk} and
{wk} be two bounded sequences in C and let {μk} be a sequence such that

μk ∈ ∂
εk
2 f (vk, wk) with 0 ≤ εk ≤ 1 for all k.

Then

(i) There exists a subsequence of {μk} which is bounded;
(ii) If, in addition, εk = 0 for all k and the sequences {vk} and {wk} are weakly convergent,

then the whole sequence {μk} is bounded.
Proof (i) The function f (x, ·) being continuous and convex for all x ∈ H (see Condition
(U2)), and μk belonging to ∂

εk
2 f (vk, wk) for all k, it follows from the Brønsted-Rockafellar

property (see [7] Lemma, p. 608) that for all k, there exists tk ∈ B(wk, 1) such that

μk ∈ ∂2 f (v
k, tk) + B(0, 1)
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where B(x, r) denotes the ball with center x and radius r > 0. The sequence {wk} being
bounded, it is easy to see that the sequence {tk} is also bounded and thus that one of its
subsequences denoted by {tk j } converges weakly to some t̄ . Similarly, the sequence {vk}
being bounded, there exists a subsequence of {vk j } denoted again by {vk j } that converges
weakly to some v̄. Then it follows from Proposition 4.3 in [35] that there exist η > 0 and an
integer j0 such that for all j ≥ j0

∂2 f (v
k j , tk j ) ⊂ ∂2 f (v̄, t̄) + η−1 B(0, 1).

Consequently, for all j ≥ j0,

μk j ∈ ∂2 f (v̄, t̄) + (1 + η−1) B(0, 1).

Since ∂2 f (v̄, t̄) and B(0, 1) are bounded, the sequence {μk j } is bounded.
(ii) When εk = 0 for all k and the sequences {vk} and {wk} are weakly convergent to v̄

and w̄, respectively, it follows from Proposition 4.3 in [35] that there exist η > 0 and an
integer k0 such that for all k ≥ k0

μk ∈ ∂2 f (v
k, wk) ⊂ ∂2 f (v̄, w̄) + η−1 B(0, 1).

Since ∂2 f (v̄, w̄) and B(0, 1) are bounded, the whole sequence {μk} is bounded. ��
Proposition 2.2 ([18], Lemma 1.5) Let Ω be a nonempty, closed and convex subset of H .
Let u ∈ H and let {xk} be a sequence in H such that any weak limit point of {xk} belongs
to Ω and

‖xk − u‖ ≤ ‖u − PΩ(u)‖ ∀k ∈ N.

Then xk → PΩ(u) (strongly).

3 A general algorithm

Let C be a closed convex subset of a real Hilbert space H and let {Ck} be a sequence of
closed convex subsets ofC . Let alsoC∞ be a nonempty closed convex subset ofH such that
C∞ ⊂ Ck for all k. In the first part of this section, we consider the sequence {xk} defined by

x0 ∈ C and xk+1 = PCk x
k for all k. (3.1)

In the next proposition we give some properties of the sequence generated by (3.1).

Proposition 3.1 Let x∗ ∈ C∞ and let {xk} be any sequence generated by (3.1). Then

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 for all k.

Furthermore, the sequence {xk} is bounded and
‖xk − x∗‖ → a ≥ 0 and ‖xk+1 − xk‖ → 0 as k → ∞.

Proof Let x∗ ∈ C∞ and let k be fixed. Then x∗ ∈ Ck and since xk+1 = PCk x
k , we have

〈xk − xk+1, x∗ − xk+1〉 ≤ 0. So we can successively write

‖xk − x∗‖2 = ‖xk − xk+1‖2 + ‖xk+1 − x∗‖2 + 2〈xk − xk+1, xk+1 − x∗〉
≥ ‖xk − xk+1‖2 + ‖xk+1 − x∗‖2.

The rest of the proof is straightforward. ��
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Proposition 3.2 If any weak limit point of the sequence {xk} belongs to C∞, then the whole
sequence {xk} converges weakly to some x̄ ∈ C∞.

Proof The sequence {xk} being Féjer monotone with respect to C∞ (see Proposition 3.1),
the result directly follows from Theorem 5.5 of [4]. ��

Now, before proving that any weak limit point of the sequence {xk} belongs to C∞, we
recall the following definition:

Definition 3.1 ([22], p. 519) A sequence {Sk} of subsets of H converges to S ⊂ H (in
short, Sk → S) if

S = w − lim sup Sk = s − lim inf Sk

where

w − lim sup Sk = {v ∈ H | ∃{v j }, v j ⇀ v, v j ∈ Sk j ∀ j ∈ N, {Sk j } ⊂ {Sk}}
and

s − lim inf Sk = {v ∈ H | ∃{vk}, vk → v, vk ∈ Sk ∀k ∈ N}.
Remark 3.1 Since C∞ ⊂ Ck for all k, we have (see [22], Sect. 3) that

Ck → C∞ if and only if w − lim sup Ck ⊂ C∞.

More information about the convergence of a sequence of subsets in a real Hilbert space can
be found in Mosco’s paper [22].

Proposition 3.3 If the sequence {Ck} converges to C∞, then any weak limit point of the
sequence {xk} defined by (3.1) belongs to C∞.

Proof Let x be a weak limit point of {xk}. Then there exists a subsequence {x j } of {xk} that
converges weakly to x and that satisfies for all j the property: x j ∈ Ck j where k j = j − 1.
Consequently, x belongs to w − lim sup Ck , and thus also to C∞ thanks to Remark 3.1. ��

Now to obtain that the sequence {Ck} converges to C∞, we assume that the sets {Ck}
satisfy the following conditions:

(T1) Ck+1 ⊂ Ck ⊂ C for all k;
(T2) C∞ = ∩∞

k=0Ck �= ∅.
Proposition 3.4 Under conditions (T1), (T2), the sequence {Ck} converges to C∞ and any
weak limit point of the sequence {xk} belongs to C∞.

Proof Thanks to Remark 3.1 and Proposition 3.3, we have only to prove that

w − lim sup Ck ⊂ C∞.

In that purpose, let x ∈ w− lim sup Ck . Then there exists a sequence {x j } converging weakly
to x with x j ∈ Ck j for all j where {Ck j } is a subsequence of {Ck}. Next, let N ∈ N. Since
k j → ∞ as j → ∞, there exists j0 such that k j ≥ N for all j ≥ j0. Then, using assumption
(T1), we can write that

x j ∈ Ck j ⊂ CN for all j ≥ j0.

On the other hand, the set CN being closed and convex is also weakly closed. Consequently,
since x j ⇀ x as j → ∞, we obtain that x ∈ CN . Finally, recalling that C∞ = ∩∞

N=0CN ,
we can easily deduce that x ∈ C∞. ��
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From Propositions 3.1–3.4 we can derive the following theorem:

Theorem 3.1 Under conditions (T1), (T2), the sequence {xk} defined by (3.1) is bounded
and converges weakly to some x ∈ C∞.

In the second part of this section, our aim is to generate a sequence {xk} that converges
strongly to some x∗ ∈ C∞ under the same conditions (T1) and (T2). Furthermore, we impose
that x∗ = PC∞(xg) where xg ∈ C is given. This can be done by adding a supplementary
step in (3.1). More precisely, let x0 = xg ∈ C and assume that xk ∈ C is known. Then xk+1

is computed through an iterate uk as follows:

uk = PCk (x
k) and xk+1 = PBk∩Dk∩C (xg) (3.2)

where the sequence {Ck} satisfies conditions (T1) and (T2) and the sets Bk and Dk are defined
for all k by

Bk = {x ∈ H | ‖uk − x‖ ≤ ‖xk − x‖} (3.3)

Dk = {x ∈ H | 〈x − xk, xg − xk〉 ≤ 0}. (3.4)

Using Proposition 3.1 with xk+1 replaced by uk , we obtain, for all k, the following inequality

‖uk − x∗‖2 ≤ ‖xk − x∗‖2 − ‖uk − xk‖2 (3.5)

where x∗ ∈ C∞. In the next proposition, we give the relationship between the set C∞ and
the sets Bk and Dk .

Proposition 3.5 Let Bk and Dk be the subsets of H defined by (3.3) and (3.4). Then

C∞ ⊂ Bk ∩ Dk ∩ C for all k.

Proof Let x∗ ∈ C∞. Using (3.5) and the definition of C∞ and Bk , we easily obtain that
x∗ ∈ Bk ∩ C . Let us prove, by induction, that x∗ ∈ Dk for all k. Since x0 = xg , we have
immediately that x∗ ∈ D0. Next, suppose that x∗ ∈ Dk for some k. By definition of xk+1,
we have that

〈xg − xk+1, z − xk+1〉 ≤ 0 ∀z ∈ Bk ∩ Dk ∩ C.

Since x∗ ∈ Bk ∩ Dk ∩ C , we immediately deduce that

〈xg − xk+1, x∗ − xk+1〉 ≤ 0,

i.e., x∗ ∈ Dk+1. ��
In order to prove the strong convergence of the sequence {xk} generated bymeans of (3.2),

we need the following proposition.

Proposition 3.6 The sequences {xk} and {uk} generated by (3.2) satisfy the properties:

1. ‖xk − xg‖ ≤ ‖xg − PC∞(xg)‖ for all k.
2. limk→∞ ‖xk − xg‖ exists and the sequence {xk} is bounded.
3. ‖xk+1 − xk‖ → 0 and ‖xk − uk‖ → 0 as k → ∞.

Proof By definition of Dk , we have that xk = PDk (x
g) and thus that ‖xk − xg‖ ≤ ‖x − xg‖

for all x ∈ Dk . Since xk+1 ∈ Dk and C∞ ⊂ Dk , the sequence {‖xk − xg‖} is non-decreasing
and ‖xk − xg‖ ≤ ‖xg − PC∞(xg)‖. Hence limk→∞ ‖xk − xg‖ exists and the sequence {xk}
is bounded. The proof of the third part is similar to the beginning of the proof of Theorem
4.1 in [10]. ��
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Remark 3.2 From the first part of Proposition 3.6, and thanks to Proposition 2.2 with Ω =
C∞, it suffices to prove that any weak limit point of the sequence {xk} belongs to C∞ to
obtain the strong convergence of {xk} to PC∞(xg).

Proposition 3.7 If the sequence {Ck} converges to C∞, then any weak limit point of the
sequence {xk} defined for all k by (3.2) belongs to C∞.

Proof Let x be a weak limit point of {xk}. Then there exists a subsequence {x j } of {xk} that
converges weakly to x . By definition, u j = PC j (x

j ) ∈ C j for all j . Since x j ⇀ x , and
by Proposition 3.6, ‖u j − x j‖ → 0, it follows that u j ⇀ x as j → ∞. Consequently, x
belongs to w − lim sup Ck , and thus also to C∞ thanks to Remark 3.1. ��

Under conditions (T1), (T2), it is easy to prove that the statement of Proposition 3.4 is still
valid when (3.2) is used instead of (3.1). So, taking account of Remark 3.2, we can deduce
the next theorem.

Theorem 3.2 Under conditions (T1), (T2), the sequence {Ck} converges to C∞. Further-
more, the sequence {xk} defined for all k by (3.2) converges strongly to the projection of xg

onto C∞.

To conclude this section, we can say that under conditions (T1) and (T2), the sequence
{xk} defined by (3.1) converges weakly to an element of C∞ and that the sequence {xk}
defined for all k by (3.2) converges strongly to PC∞(xg) ∈ C∞.

4 Two convergent algorithms

Our aim in this section is to construct a sequence {Ck} of subsets of C satisfying not only
conditions (T1) and (T2) but also one of the next properties

1. The sequence {xk} defined by (3.1), being weakly converging to a point of C∞, is also
weakly converging to a solution of problem EP( f,C).

2. The sequence {xk} defined by (3.2), being strongly converging to a point of C∞, is also
weakly (and thus strongly) converging to a solution of problem EP( f,C).

So to consider both cases, we assume that the sequence {xk} is weakly convergent and we
prove that any weak limit point of this sequence is a solution of problem EP( f,C). From
now on, we assume that conditions (U1) – (U3) hold.

The strategy developed here is based on the extragradient method and consists in using
separating closed half-spaces to define the sequence {Ck}. More precisely, our general algo-
rithm will take the following forms depending on the type of convergence (weak or strong)
we want to obtain.

Algorithm 1

Step 0 Let x0 ∈ C and let c > 0. Set k = 0.
Step 1 Compute yk = argminy∈C { f (xk, y) + 1

2‖y − xk‖2}. If yk = xk , then Stop: xk is a
solution of problem EP( f,C).

Step 2 Otherwise find αk ∈ (0, 1) and compute zk = (1 − αk)xk + αk yk such that

εk + αkc ‖xk − yk‖2 ≤ 〈gk, xk − zk〉 (4.1)

where εk ≥ 0 and gk ∈ ∂
εk
2 f (zk, zk). Denote by Hk the half-space

Hk = {x ∈ H | 〈gk, x − zk〉 ≤ εk}.
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Step 3 Compute uk = PCk (x
k) where Ck denotes the closed convex set

Ck = ∩k
i=0 [C ∩ Hi ].

Step 4 Set xk+1 = uk .
Step 5 Set k := k + 1 and go back to Step 1.

To obtain the strong convergence of the sequence {xk}, we replace Step 4 in Algorithm 1
by the following step

Step 4a Compute xk+1 = PBk∩Dk∩C (xg) where xg = x0 and Bk and Dk are defined as in
(3.3) and (3.4), respectively.
The corresponding algorithm is called Algorithm 2.

In this section wemake the following assumption: for all k such that xk �= yk , it is possible
to find αk ∈ (0, 1) such that the point zk = (1−αk)xk +αk yk satisfies inequality (4.1) where

εk ≥ 0 and gk ∈ ∂
εk
2 f (zk, zk).

In particular, note that this assumption implies that gk �= 0 when xk �= yk . In next section,
we will give four examples of linesearches where inequality (4.1) is satisfied when xk �= yk .

Remark 4.1 When SD is nonempty, the subsets Ck = ∩k
i=0 [C ∩ Hi ], k ∈ N satisfy condi-

tions (T1) and (T2). Indeed, condition (T1) is immediately verified. To obtain condition (T2),
we prove that SD ⊂ ∩∞

k=0Ck ≡ C∞. Let x∗ ∈ SD . Then x∗ ∈ C and

f (y, x∗) ≤ 0 for all y ∈ C.

So, for all i ∈ N, by definition of gi ∈ ∂
εi
2 f (zi , zi ), we can write

−εi + 〈gi , x∗ − zi 〉 ≤ f (zi , x∗) ≤ 0,

and thus x∗ ∈ C ∩Hi . Consequently, SD ⊂ C∞ and condition (T2) is satisfied. Furthermore,
the sets Ck being nonempty closed and convex, the projection of xk onto Ck is well-defined
at Step 3 of Algorithms 1 and 2. From now on, we assume that SD is nonempty.

Remark 4.2 In the particular case when f is pseudo-monotone, we know that SD = SE ⊂
C∞. So whenAlgorithm 1 or Algorithm 2 is used, we can replaceC∞ by SE in the statements
of Propositions 3.1, 3.2 and 3.6 and takeΩ = SE in Proposition 2.2. Hence we obtain that the
sequence {xk} generated by Algorithm 1 (Algorithm 2) converges weakly (strongly) to some
x̄ ∈ SE when each weak limit point of {xk} belongs to SE . As we will see it later (see Remark
5.5 and Theorem 5.2), this last property can be proven without using Proposition 3.4 and
Theorem 3.2. So, conditions (T1) and (T2) are not requested when f is pseudo-monotone.

Remark 4.3 When H = Rn and εk = 0 for all k, the choice Ck = ∩k
i=0 [C ∩ Hi ] has

already been considered by Ye and He in [37] in the framework of variational inequalities.

In next proposition, we start by recalling some properties satisfied by the sequence {yk}
defined at Step 1.

Proposition 4.1 [[1], Lemma 3.1 (8)] For every y ∈ C, the two sequences {xk} and {yk}
generated by Algorithm 1 or Algorithm 2 verify, for all k, the property

f (xk, y) ≥ f (xk, yk) + 〈xk − yk, y − yk〉.
In particular, the inequality ‖xk − yk‖2 + f (xk, yk) ≤ 0 is satisfied for all k. Furthermore,
if yk = xk for some k, then xk is a solution of problem EP( f,C).
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From now on, we assume that xk �= yk for all k and thus that the sequence {xk} generated
by Algorithm 1 or Algorithm 2 is infinite.

First we prove that any weak limit point of the sequence {xk} generated by Algorithm 1
or Algorithm 2 is a solution of problem EP( f,C).

Theorem 4.1 Let x̄ be a weak limit point of the sequence {xk} and let {xk j } be the corre-
sponding subsequence converging weakly to x̄ . If the subsequence {‖xk j − yk j ‖} converges
to 0, then x̄ is a solution of problem EP( f,C).

Proof Let y ∈ C . Then, for all j , we have, using Proposition 4.1, that

f (xk j , y) ≥ f (xk j , yk j ) + 〈xk j − yk j , y − yk j 〉.
Taking the limit as j → ∞, we have that yk j ⇀ x̄ and remembering assumption (U3) and
‖xk j − yk j ‖ → 0, we obtain that f (x̄, y) ≥ 0. So x̄ is a solution of EP( f,C). ��

Now it remains to prove that {‖xk j − yk j ‖} → 0 when xk j ⇀ x̄ . In that purpose, we need
the following result.

Proposition 4.2 Assume that Ck ⊂ C ∩ Hk for all k. Then the following inequality holds

αkc

‖gk‖‖xk − yk‖2 ≤ ‖uk − xk‖

for all k. Furthermore,

αkc

‖gk‖‖xk − yk‖2 → 0 as k → ∞.

Proof By construction, for all k, the iterate uk belongs to Ck and thus, by assumption, to Hk .
So 〈gk, uk − zk〉 ≤ εk . Consequently, using the linesearch (Step 2), we obtain successively

εk + αkc ‖xk − yk‖2 ≤ 〈gk, xk − zk〉
= 〈gk, xk − uk〉 + 〈gk, uk − zk〉
≤ 〈gk, xk − uk〉 + εk

≤ ‖gk‖‖uk − xk‖ + εk . (4.2)

But this means that
αkc

‖gk‖‖xk − yk‖2 ≤ ‖uk − xk‖.

Finally, since ‖uk − xk‖ → 0 (see Propositions 3.1 and 3.6), we obtain that

αkc

‖gk‖‖xk − yk‖2 → 0 as k → ∞.

��

The next step is to prove that a subsequence of the sequence {gk j } is bounded when
xk j ⇀ x̄ . In that purpose we first prove that the sequences {yk j } and {zk j } are bounded.

Proposition 4.3 Assume that xk j ⇀ x̄ . Then the two sequences {yk j } and {zk j } are bounded.
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Proof Let j be fixed and let sk j ∈ ∂2 f (xk j , xk j ). First we prove that ‖xk j − yk j ‖ ≤ ‖sk j ‖.
Since f (xk j , xk j ) = 0, we have, by definition of the subdifferential, that f (xk j , yk j ) ≥
〈sk j , yk j −xk j 〉. Hence, using successively Proposition 4.1 and the Cauchy–Schwarz inequal-
ity, we obtain

‖xk j − yk j ‖2 ≤ − f (xk j , yk j ) ≤ −〈sk j , yk j − xk j 〉 ≤ ‖sk j ‖ ‖xk j − yk j ‖.
So ‖xk j − yk j ‖ ≤ ‖sk j ‖. Using Proposition 2.1 (ii) with {vk} = {xk j }, {wk} = {xk j } and
{μk} = {sk j }, and recalling that xk j ⇀ x̄ , we can deduce that the sequence {sk j } is bounded.
Hence, the sequence {xk j } being bounded, we have immediately that the sequence {yk j }
is also bounded. Finally, the sequence {zk j } is also bounded because the sequence {xk j } is
bounded and zk j belongs to the segment [xk j ; yk j ] for all j . ��
Proposition 4.4 Assume that xk j ⇀ x̄ . If the sequence {gk j } satisfies one of the following
conditions

(Cond1) ∀ j gk j ∈ ∂
εk j
2 f (zk j , zk j ) with 0 ≤ εk j ≤ 1

(Cond2) ∀ j gk j ∈ ∂2 f (zk j , xk j ),

then there is a subsequence of {gk j } that is bounded.
Proof The sequences {zk j } and {xk j } being bounded (see Proposition 4.3), it follows from
Proposition 2.1 (i), that there is a subsequence of {gk j } that is bounded under conditions
(Cond1) or (Cond2). ��

As a consequence, under conditions (Cond1) or (Cond2), it follows from Propositions 4.2
and 4.4 that a subsequence of {αk j ‖xk j − yk j ‖} tends to 0. Without loss of generality, we
will assume that

αk j ‖xk j − yk j ‖ → 0 as j → ∞. (4.3)

To obtain that any weak limit point of the sequence {xk} generated by Algorithm 1 or
Algorithm 2 is a solution of problem EP( f,C), it remains to prove that ‖xk j − yk j ‖ → 0
when the sequence {xk j } converges weakly to some x̄ (see Theorem 4.1). In that purpose,
we have to precise the way the linesearch is performed in Step 2 of Algorithm 1.

5 A class of extragradient methods

Let xk and yk be the iterates obtained in Step 1 of Algorithm 1 or Algorithm 2. In this section
we assume that xk �= yk and we give several procedures for finding the steplength αk ∈ (0, 1]
and the vector zk = (1 − αk)xk + αk yk satisfying the inequality

εk + αkc ‖xk − yk‖2 ≤ 〈gk, xk − zk〉
where εk ≥ 0 and gk ∈ ∂

εk
2 f (zk, zk). This will be done thanks to a linesearch between xk

and yk . In the first linesearch, we suppose that εk = 0.
Linesearch 1: Given α ∈ (0, 1) and ρ ∈ (0, 1), find m the smallest nonnegative integer such
that { 〈gk,m, xk − yk〉 ≥ ρ ‖xk − yk‖2

where zk,m := (1 − αm) xk + αm yk and gk,m ∈ ∂2 f (zk,m, zk,m)

and set αk = αm , zk = zk,m , and gk = gk,m .
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This linesearch was used in [10] for solving pseudo-monotone equilibrium problems. It
was proven therein that this linesearch iswell-defined. Furthermore, as xk−zk = αk(xk−yk),
the following proposition holds immediately.

Proposition 5.1 Let zk and gk be generated by Linesearch 1. Then

αk c ‖xk − yk‖2 ≤ 〈gk, xk − zk〉
with c = ρ.

A second linesearch between xk and yk can be expressed as follows:
Linesearch 2: Given α ∈ (0, 1), β ∈ [0, α] and ρ ∈ (0, 1), find m the smallest nonnegative
integer such that {

2βm + f (zk,m, yk) ≤ −ρ ‖xk − yk‖2
where zk,m := (1 − αm)xk + αm yk

and set αk = αm , βk = βm and zk = zk,m . When β = 0, this linesearch coincides with the
one introduced by Quoc et al. in [26] and by Anh et al. in [2].

Remark 5.1 Linesearch 2 is well-defined when xk �= yk . Indeed suppose, to get a contradic-
tion, that this linesearch is not finite, meaning that for all m ∈ N, we have the inequality

2βm + f (zk,m, yk) > −ρ ‖xk − yk‖2.
Taking the limit as m → ∞ and noting that f (·, yk) is weakly continuous, we deduce that

f (xk, yk) ≥ −ρ‖xk − yk‖2.
On the other hand, from Proposition 4.1, we have

f (xk, yk) ≤ −‖xk − yk‖2.
Since ρ ∈ (0, 1), we obtain that yk = xk , which contradicts the assumption that yk �= xk .
Therefore, Linesearch 2 is well-defined.

Linesearch 2 is also a particular achievement of the linesearch considered in Algorithms
1 and 2.

Proposition 5.2 Let zk be generated by Linesearch 2. Then for every εk ≤ β2
k and gk ∈

∂
εk
2 f (zk, zk), we have

εk + αk c ‖xk − yk‖2 ≤ 〈gk, xk − zk〉
with c = ρ.

Proof From the definition of zk and gk , we deduce successively that

ρ‖xk − yk‖2 ≤ − f (zk, yk) − 2βk

≤ 〈gk, zk − yk〉 + εk − 2βk

≤ 〈gk, zk − yk〉 + β2
k − 2βk

≤ 〈gk, zk − yk〉 − βk . (5.1)

Since zk = (1−αk)xk +αk yk , we have zk − yk = (1−αk)(xk − yk). Hence it follows from
the last inequality that

ρ‖xk − yk‖2 ≤ (1 − αk)〈gk, xk − yk〉 − βk .
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Multiplying both sides of this inequality by the positive number αk gives

αkρ‖xk − yk‖2 ≤ αk(1 − αk)〈gk, xk − yk〉 − αkβk

≤ (1 − αk)〈gk, αk(x
k − yk)〉 − εk .

Since zk = (1 − αk)xk + αk yk , the last inequality implies

αkρ‖xk − yk‖2 ≤ (1 − αk)〈gk, xk − zk〉 − εk .

Hence εk + αkρ‖xk − yk‖2 ≤ 〈gk, xk − zk〉. ��
The next linesearch, denoted Linesearch 3, was used in [26], Algorithm 2a, for solving

pseudo-monotone equilibrium problems (see also Linesearch 1 in [31]). This linesearch is
well-defined and can be expressed as follows:
Linesearch 3: Given α ∈ (0, 1) and ρ ∈ (0, 1), find m the smallest nonnegative integer such
that {

f (zk,m, xk) − f (zk,m, yk) ≥ ρ ‖xk − yk‖2
where zk,m := (1 − αm)xk + αm yk

and set αk = αm and zk = zk,m .
For this linesearch, we have the following result.

Proposition 5.3 Let zk be generated by Linesearch 3 and let gk ∈ ∂2 f (zk, xk). Then gk ∈
∂

εk
2 f (zk, zk) with εk = 〈gk, xk − zk〉 − f (zk, xk) ≥ 0. Furthermore, we have

εk + αkc ‖xk − yk‖2 ≤ 〈gk, xk − zk〉
with c = ρ.

Proof From the definition of gk , we deduce that

f (zk, y) − f (zk, xk) ≥ 〈gk, y − xk〉 (5.2)

for every y ∈ C . Equivalently,

f (zk, y) − f (zk, zk) ≥ 〈gk, y − zk〉 + 〈gk, zk − xk〉 + f (zk, xk)

for every y ∈ C . Setting

εk = 〈gk, xk − zk〉 − f (zk, xk),

we have εk ≥ 0 because, by (5.2),

0 = f (zk, zk) ≥ f (zk, xk) + 〈gk, zk − xk〉.
Then, for every y ∈ C , we obtain that

f (zk, y) − f (zk, zk) ≥ 〈gk, y − zk〉 − εk .

Hence gk ∈ ∂
εk
2 f (zk, zk). On the other hand, since zk = (1 − αk)xk + αk yk and f (zk, ·) is

convex, we have

0 = f (zk, zk) ≤ (1 − αk) f (z
k, xk) + αk f (z

k, yk)

which implies, by definition of Linesearch 3, that

f (zk, xk) ≥ αk[ f (zk, xk) − f (zk, yk)]
≥ αkρ‖xk − yk‖2. (5.3)
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Adding εk = 〈gk, xk − zk〉 − f (zk, xk) ≥ 0 to both sides of (5.3), we obtain the requested
inequality

〈gk, xk − zk〉 ≥ αkρ‖xk − yk‖2 + εk .

��
Remark 5.2 Let us observe that when Linesearch 3 is incorporated in Algorithm 1, the half-
space

Hk = {x ∈ H | 〈gk, x − zk〉 ≤ εk}
with εk = 〈gk, xk − zk〉 − f (zk, xk) coincides with the half-space

{x ∈ H | 〈gk, x − xk〉 + f (zk, xk) ≤ 0}
used in [26]. So our Algorithm 1 with Linesearch 3 incorporated in Step 2 and with Ck =
C

⋂
Hk is very close to the extragradient Algorithm 2a proposed in [26] where xk+1 =

PC (PHk (x
k)).

The last linesearch, denoted Linesearch 4, was used in [31] for solving pseudo-monotone
quasi-equilibrium problems. This linesearch is well-defined and can be expressed as follows:

Linesearch 4: Given α ∈ (0, 1) and ρ ∈ (0, 1), find m the smallest nonnegative integer such
that {

f (zk,m, xk) − f (zk,m, yk) + f (xk, yk) ≥ −ρ ‖xk − yk‖2
where zk,m := (1 − αm)xk + αm yk

and set αk = αm and zk = zk,m .
Let zk be generated byLinesearch 4. Since f (xk, yk) ≤ −‖xk−yk‖2 holds by Proposition

4.1, we have that

f (zk, xk) − f (zk, yk) ≥ (1 − ρ) ‖xk − yk‖2.
So the next result follows from Proposition 5.3.

Proposition 5.4 Let zk be generated by Linesearch 4 and let gk ∈ ∂2 f (zk, xk). Then gk ∈
∂

εk
2 f (zk, zk) with εk = 〈gk, xk − zk〉 − f (zk, xk) ≥ 0. Furthermore, we have

εk + αkc ‖xk − yk‖2 ≤ 〈gk, xk − zk〉
with c = 1 − ρ.

Remark 5.3 In the particular case of variational inequality problems, Linesearch 4 coincides
with the linesearch used in [37]. Consequently, with Linesearch 4, our Algorithm 1 is a
generalization to equilibrium problems of Algorithm 2.1 studied in [37] for solving non-
monotone variational inequality problems.

To summarize, we can say that inequality (4.1) is satisfied when each of the linesearches
considered above is incorporated in Step 2 of Algorithm 1 or Algorithm 2. Now to obtain the
convergence of the corresponding algorithms, it remains to prove that in each situation the
sequence {‖xk j − yk j ‖} tends to zero when the sequence {xk j } converges weakly to x̄ (see
Theorem 4.1). It is the aim of the next proposition.

Proposition 5.5 Let x̄ be a weak limit point of the sequence {xk} and let {xk j } be the corre-
sponding subsequence converging weakly to x̄ . Then ‖xk j − yk j ‖ → 0 as j → ∞.
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Proof Since each linesearch satisfies either condition (Cond1) or condition (Cond2), it fol-
lows from (4.3) that αk j ‖xk j − yk j ‖ → 0 as j → ∞. So to get that ‖xk j − yk j ‖ → 0 as
j → ∞, we consider two cases.
Case 1 inf j αk j > 0. In that case, it follows directly from (4.3) that ‖xk j − yk j ‖ → 0 as
j → ∞.
Case 2 inf j αk j = 0. Then αk j → 0 (for a subsequence). But this implies that αk j < 1 for j
large enough and that the linesearch condition in Step 2 of Algorithms 1 and 2 is not satisfied

for
αk j
α
. Let us consider the following vector

z̄k j =
(
1 − αk j

α

)
xk j + αk j

α
yk j .

It is immediate that z̄k j ⇀ x̄ .
Now we examine separately the four linesearches.
(a) When Linesearch 1 is used, we have for all j that

〈ḡk j , xk j − yk j 〉 < ρ ‖xk j − yk j ‖2 (5.4)

where ḡk j ∈ ∂2 f (z̄k j , z̄k j ). On the other hand, by definition of ḡk j and z̄k j and by Proposition
4.1, we can write, for all j , the two following inequalities

f (z̄k j , yk j ) ≥ 〈ḡk j , yk j − z̄k j 〉 =
(
1 − αk j

α

)
〈ḡk j , yk j − xk j 〉 (5.5)

‖xk j − yk j ‖2 ≤ − f (xk j , yk j ). (5.6)

Using successively (5.4), (5.5) and (5.6), we obtain that for all j

f (z̄k j , yk j ) ≥ −ρ
(
1 − αk j

α

)
‖xk j − yk j ‖2 ≥ ρ

(
1 − αk j

α

)
f (xk j , yk j ). (5.7)

Let ȳ be aweak limit point of the bounded sequence {yk j }. Since the sequence {‖xk j −yk j ‖} is
bounded, there is one of its subsequences (again denoted {‖xk j − yk j ‖}) which is convergent
to some a ≥ 0. Taking the limit in (5.7), and observing that z̄k j ⇀ x̄ , xk j ⇀ x̄ and αk j → 0,
we obtain, thanks to condition (U3), that

f (x̄, ȳ) ≥ −ρa2 ≥ ρ f (x̄, ȳ).

Hence f (x̄, ȳ) ≥ 0 and a = 0. But this means that ‖xk j − yk j ‖ → 0 as j → ∞. ��
(b) When Linesearch 2 is used, we have for all j that

2
βk j

β
+ f (z̄k j , yk j ) > −ρ ‖xk j − yk j ‖2.

From Proposition 4.1 we also have

− f (xk j , yk j ) ≥ ‖xk j − yk j ‖2.
Adding these two inequalities, we obtain for all j that

2
βk j

β
+ f (z̄k j , yk j ) − f (xk j , yk j ) > (1 − ρ)‖xk j − yk j ‖2. (5.8)

Let ȳ be a weak limit point of the bounded sequence {yk j }. Taking the limit in (5.8), and
observing that z̄k j ⇀ x̄ , xk j ⇀ x̄ and βk j → 0, we obtain, thanks to condition (U3), that
the left-hand side of the previous inequality tends to

f (x̄, ȳ) − f (x̄, ȳ) = 0.
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Consequently, we have that ‖xk j − yk j ‖ → 0.
(c) When Linesearch 3 is used, we have for all j that

f (z̄k j , xk j ) − f (z̄k j , yk j ) < ρ ‖xk j − yk j ‖2.
From Proposition 4.1, we also have

‖xk j − yk j ‖2 ≤ − f (xk j , yk j ).

Let ȳ be a weak limit point of the bounded sequence {yk j }. Then combining the last two
inequalities and taking the limit as j → ∞, we obtain

f (x̄, x̄) − f (x̄, ȳ) ≤ −ρ f (x̄, ȳ),

which implies that f (x̄, ȳ) ≥ 0. So

− f (xk j , yk j ) → − f (x̄, ȳ) ≤ 0,

and ‖xk j − yk j ‖2 → 0 when j → ∞.
(d) When Linesearch 4 is used, we have for all j that

f (z̄k j , xk j ) − f (z̄k j , yk j ) + f (xk j , yk j ) < −ρ ‖xk j − yk j ‖2.
Let ȳ be a limit point of the bounded sequence {yk j }. Taking the limit as j → ∞ in
the previous inequality, we obtain directly that the left-hand side tends to 0, and thus that
‖xk j − yk j ‖2 → 0 when j → ∞. ��

Finally, using successively Propositions 5.1–5.4, Theorem 4.1 and Proposition 5.5, we
obtain the following convergence results without any pseudo-monotonicity assumption.

Theorem 5.1 Assume that SD is nonempty and conditions (U1) – (U3) are satisfied. Let {xk}
be a sequence generated by Algorithm 1 with one of the Linesearches 1 to 4 incorporated
in Step 2. Then the sequence {xk} converges weakly to a solution of problem EP( f,C). The
convergence of {xk} is strong when Algorithm 2 is used instead of Algorithm 1.

Remark 5.4 Algorithm 2 allows us to construct a sequence of iterates converging strongly to
a solution of the equilibrium problem in the non-pseudo-monotone case. However, this result
is only interesting in the framework of infinite dimensional Hilbert spaces. Indeed, contrary
to the pseudo-monotone situation, we cannot prove in the non-pseudo-monotone case that
the sequence of iterates (strongly) converges to the projection of the starting point onto the
solution set of the equilibrium problem.

Remark 5.5 When f is pseudo-monotone, the solution set SE of the equilibrium problem is
contained in C∞. In that case, we have seen in Remark 4.2 that the sequence {xk} generated
by Algorithm 1 (Algorithm 2) converges weakly (strongly) to some x̄ ∈ SE when any weak
limit point of {xk} belongs to SE . Now it is easy to see that this last property is a direct
consequence of Theorem 4.1 and Proposition 5.5. So, in that situation, we do not need to use
Proposition 3.4 or Theorem 3.2 to obtain the convergence. However, as we must take account
of Proposition 4.2, we have to choose Ck ⊂ C ∩ Hk in Step 3 of Algorithm 1.

Theorem 5.2 Assume that f is pseudo-monotone, SE is nonempty and conditions (U1)

– (U3) are satisfied. Let {xk} be a sequence generated by Algorithm 1 with one of the
Linesearches 1 to 4 incorporated in Step 2. If Ck = C ∩ Hk for all k, then the sequence
{xk} converges weakly to a solution of problem EP( f,C). The convergence of {xk} is strong
when Algorithm 2 is used instead of Algorithm 1.
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In Rn , when f is pseudo-monotone and Linesearch 1 is used, we find again the conver-
gence theorem of an algorithm proposed in [10]. When it is Linesearch 2 that is used, we
obtain the convergence of an algorithm proposed in [2].

6 Numerical results

In this section,weconsider somenumerical examples to compare the efficiencyof themethods
obtained in Sect. 5. For each of these examples the corresponding equilibrium function is
non-monotone. The algorithms are coded in MATLAB 7.11.0 and their behavior has been
studied on two test problems with one of large size. Different values of the parameters and
different starting points have been used. For each of these test problems, the number of
iterations and the CPU time needed to get a solution are reported in a table where for each
i = 1, . . . , 4, Algorithm Ai corresponds to Algorithm 1 with Linesearch i incorporated in
Step 2. Furthermore, for each test, we have chosen α = 0.5 and ρ = 0.01 for Linesearches
1–3 and ρ = 0.99 for Linesearch 4. The value of each εk and βk has been taken equal to
zero. Finally, we have also used the stopping criterion ‖xk − yk‖ ≤ ε with ε = 10−6 for all
test problems.

To illustrate the behavior of our algorithms and to show their effectiveness, firstwe consider
an equilibrium problem of dimension n = 1000 and afterwards an equilibrium problem
arising from Nash–Cournot oligopolistic equilibrium models of electricity markets.

Problem 1 Let n = 103 and C = [−1, 1]n ⊂ Rn . The equilibrium function is defined, for
every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ C by

f (x, y) = ‖x‖2
n∑

i=1

(yi − xi ).

The solution sets of this problem are

SE = {(0, . . . , 0), (−1, . . . ,−1)} and SD = {(−1, . . . ,−1)}.
Since SD �= SE and SD �= ∅, our algorithms can be used for solving this problem.

Let us mention here that the subproblems miny∈C { f (xk, y) + 1
2‖y − xk‖2} are in fact

quadratic convex minimization problems

min
y∈C

{
1

2

n∑
i=1

y2i +
n∑

i=1

yi [‖xk‖2 − xki ]
}

and that for all k, gk = ∇2 f (zk, zk) = ‖zk‖2(1, . . . , 1)T .
The four algorithmsA1 toA4 have been applied for solving this problemwith the values of

parameters chosen above. The obtained solution is (−1, . . . ,−1). Furthermore, the number
of iterations and the CPU-time (s) are reported in Table 1. From these results, one can say
that on this example, the numerical behavior of each algorithm is quite similar.

Problem 2 Consider the equilibrium problem recently investigated by Quoc, Anh and Muu
in [25] and based on Nash–Cournot oligopolistic equilibrium models of electricity markets.
Since, contrary to [8], the cost function f is nonsmooth and convex, the resulting equilibrium
problem cannot be transformed into a variational inequality problem. More precisely, the
equilibrium function f : R6 × R6 → R is defined for each x, y ∈ R6 by

f (x, y) = [(A + B)x + By + a]T (y − x) + d(y) − d(x)
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Table 1 Results of Problem 1 for Algorithms A1–A4

Starting point x0(i) Number of iterations CPU in s

i = 1–1000 A1 A2 A3 A4 A1 A2 A3 A4

0.5 26 26 26 26 39.5 40.9 39.4 40.0

0.99 28 27 27 28 42.5 41.4 41.0 42.1

−0.5 24 24 24 24 36.1 36.8 36.5 39.7

Table 2 Results of Problem 2 for Algorithms A1–A4 and for extragradient Algorithm grad

Starting point Number of iterations CPU in s

A1 A2 A3 A4 Grad A1 A2 A3 A4 Grad

s1 734 483 734 488 1379 49.9 30.4 50.9 29.1 52.7

s2 509 359 509 514 1193 33.4 25.8 34.0 36.5 62.6

s3 541 526 541 504 1498 39.3 33.9 40.1 35.3 69.8

where A is a nonpositive semidefinite matrix, B is a symmetric positive semidefinite matrix,
a ∈ R6 and d is a nonsmooth convex function. The values of A, B, and d(x) can be found
in the statement (59) of [25]. Let us observe that for these values the equilibrium function
is not monotone because the matrix A is not positive semidefinite. Finally the constraint
set of this problem is defined by C = {x | lb ≤ x ≤ ub} where lb = (0, . . . , 0) and
ub = (80, 80, 50, 55, 30, 40).

The four algorithms A1 to A4 have been applied for solving this Problem and their numer-
ical behavior has been compared with the one of the extragradient Algorithm (Algorithm 1
in [26]) applied on a monotone reformulation of the equilibrium problem (see Lemma 7 in
[25]). The three starting points are

s1 = (1, 1, 1, 1, 1, 1); s2 = (30, 30, 15, 20, 10, 10); s3 = (30, 10, 2, 10, 20, 10).

The number of iterations and the obtained CPU-time (s) are reported in Table 2. On this
example, Algorithm A2 seems to have the best numerical behavior.

7 Conclusion

In this paper, we have presented and studied a very general class of extragradient methods
for solving non-monotone equilibrium problems in a real Hilbert space. The difficulty with
these methods is that projections have to be done onto intersections of half-spaces and that
the number of these half-spaces increases at each iteration. So to avoid a huge number of
constraints in the quadratic subproblems, a strategy would be to aggregate the constraints
with the possibility of limiting their number to two. Such a technique, but for solving a similar
problem, has been proposed in Sect. 7.4.4 of [28]. The use of such a method adapted to our
situation could be the subject of a future research.
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