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Abstract Given a graph G, we study the problem of finding the minimum number of colors
required for a proper edge coloring of G such that any pair of vertices at distance 2 have
distinct sets consisting of colors of their incident edges. This minimum number is called the
2-distance vertex-distinguishing index, denoted by x,(G). Using the breadth first search
method, this paper provides a polynomial-time algorithm producing nearly-optimal solution
in outerplanar graphs. More precisely, if G is an outerplanar graph with maximum degree
A, then the produced solution uses colors at most A + 8. Since x/,(G) > A for any graph
G, our solution is within eight colors from optimal.
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1 Introduction

Only simple and finite graphs are considered in this paper. Let G be a graph with vertex set
V(G), edge set E(G), maximum degree A(G) and minimum degree 6 (G). For a vertex v, we
use E(v) to denote the set of edges incident to v. So dg (v) = |E(v)| denotes the degree of v
in G. A k-vertex is a vertex of degree k. A leaf'is a vertex of degree 1. The distance between
two vertices u and v, denoted by dg (u, v), is the length of a shortest path connecting them
if there is any. Otherwise, dg (u, v) = 0o by convention. If dg (1, v) = r foru, v € V(G),
then u is called an r-distance vertex or an r-neighbor of v, and vice versa. Moreover, we
use N (v) to denote the set of r-neighbors of v in the graph G. In particular, we simply
call a 1-neighbor of v a neighbor of v and abbreviate N(l; (v) to Ng(v). If no ambiguity
arises, A(G), dg (v), dg (u, v), N;;(v), and Ng(v) are written as A, d(v), d(u, v), N" (v),
and N (v), respectively. Let diam(G) denote the diameter of a connected graph G, i.e., the
maximum of distances between any pair of different vertices in G. A graph G is called normal
if it contains no isolated edges.

A proper edge k-coloring of a graph G is amapping ¢ : E(G) — C ={1,2, ..., k}such
that ¢ (e) # ¢ (¢’) for any two adjacent edges e and e’. For a vertex v € V(G), let Cy(v)
denote the set of colors assigned to the edges in E(v), i.e., Cy(v) = {¢p(wv)|uv € E(G)}.

In this paper, we study the problem of finding the minimum number of colors required for
a proper edge coloring of G such that any pair of vertices at distance 2 have distinct color
sets. This minimum number is called the 2-distance vertex-distinguishing index, denoted by
X(/12(G)~

1.1 Related works

For an integer r > 1, the r-strong edge chromatic number x/(G,r) of a graph G is the
minimum number of colors required for a proper edge coloring of G such that any two
vertices u and v with d(u, v) < r have Cy(u) # Cg(v). Note that x; (G, r) is well defined if
and only if G is normal. This concept was introduced by Akbari et al. [1], and independently
by Zhang et al. [17]. The reader is referred to [11, 12] for latest results for large r. Moreover,
when r > diam(G), x/(G,r) = x,(G), where x/(G) is called the strong edge chromatic
number of G and this parameter has been extensively investigated, see [3-5].

The adjacent vertex distinguishing edge chromatic number x/,(G) is precisely x(G, 1).
Zhang et al. [16] first introduced this notion (adjacent strong edge coloring in their termi-
nology). Among other things, they proposed the following challenging conjecture, in which
Cs denotes the cycle on five vertices.

Conjecture 1 If G is a normal graph and G # Cs, then x(G) < A+ 2.

Conjecture 1 was confirmed for bipartite graphs and subcubic graphs [2]. Using proba-
bilistic analysis, Hatami [9] showed that every graph G with A > 10%0 has x (G) < A+300.
Wang et al. [15] showed that every graph G has yx/(G) < 2.5A and every semi-regular graph
G has x,(G) < %A + %3 A graph G is said to be semi-regular if each edge of G is incident
to at least one A-vertex. If G is a planar graph, then it is shown in [10] that x/(G) < A +2
if A>12.

More recently, the first four authors considered in [13] the 2-distance vertex-distinguishing
edge coloring of graphs, which can be regarded as arelaxed form of the 2-strong edge coloring.
Thus, A < x'(G) < x)»(G) < x/(G,2). In [13], the 2-distance vertex-distinguishing
indices of cycles, paths, trees, complete bipartite graphs, and unicycle graphs were completely
determined. Moreover, a nearly-optimal upper bound on the 2-distance vertex-distinguishing
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index of Halin graphs was also obtained. Especially, the following conjecture was proposed
in [13]:

Conjecture 2 For any graph G, x,(G) < A+ 2.

1.2 Our contribution

In this paper, we establish a nearly-optimal algorithm with running time O (n?) for the 2-
distance vertex-distinguishing edge-coloring problem in outerplanar graphs. A planar graph
is called outerplanar if it has an embedding in the Euclidean plane such that all the vertices
are located on the boundary of the unbounded face. An outerplane graph is a particular
drawing of an outerplanar graph on the Euclidean plane. A cycle C is called separating if
both its interior and exterior contain at least one vertex of G.

Suppose that G is an outerplane graph. Then the following properties (P1)—(P3) hold.
Note that (P3) follows from (P2) easily, whereas the proof of (P2) appeared in [7].

P1) §(G) <2.
(P2) G does not contain a subdivision of K4 or K> 3 as a subgraph.
(P3) G does not contain a separating cycle.

Our algorithm is built on those properties. It gives an upper bound of A 4 8 for the
2-distance vertex-distinguishing index of outerplanar graphs. This means that the solution
given by our algorithm is within eight colors from optimal.

2 Outerplanar graphs with A > 5

In this section, we construct an algorithm of cubic time to legally color the edges of an
outerplanar graph G with A > 5 using at most A 4 8 colors.

2.1 Ordered breadth first search

A rooted tree T is a tree with a particular vertex r designated as its root. The vertices of a
rooted tree can be arranged in layers, with vertices at distances i to the root r forming layer
i. Hence, layer O consists of the root only. For a vertex v in layer i > 1, the neighbor of v
in layer i — 1 is called its father and all the neighbors of v in layer i + 1 are called its sons.
Vertices in layer i are ordered from left to right with labels v’i, vé, o, v;i so that, for any j,

either v; and v; 41 have the same father, or the father of v; is to the left side of the father of
v;. Iy

Let G be a connected outerplane graph. Beginning with a chosen vertex r, we order all
vertices clockwise. Calamoneri and Petreschi [6] constructed an algorithm OBFT for G.
It is a breadth first search starting from r in such a way that vertices coming first in the
cyclic ordering are visited first. Using OBFT, G can be edge-partitioned into a spanning
tree T rooted at r and a subgraph H with A(H) < 4, i.e., E(G) = E(T)U E(H) and
E(T)N E(H) = (. Edges in E(T) and E(H) are called tree-edges and non-tree-edges of
G, respectively. This edge-partition is called an OBFT partition. Calamoneri and Petreschi
[6] used OBFT partition to determined the L (/, 1)-labeling number of an outerplanar graph.
This edge-partition technique was also successfully employed in [14] to study the surviving
rate of outerplanar graphs.

The following key lemma was given in [6]:
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Fig. 1 An outerplane graph G* on 18 vertices

Fig.2 An OBFT partition of G*

Lemma 1 Every OBFTpartition TUH for a connected outerplane graph G has the following
properties:

(@) va§ is adjacent to v,i with j < k, then v§ v,i is a non-tree-edge, and k = j + 1.
2) vaj. v,i_l € E(H) and vj is a son of vi’l, thenk =r + 1 and vj. is the rightmost son

of vi~l.

Lemma 1 indicates that every vertex v; has at most two neighbors in layer i — 1, at most
two neighbors in layer i, and at most d (vf ) — 1 neighbors in layeri + 1.

To give an example of OBFT partition, we consider the outerplane graph G* depicted in
Fig. 1. In Fig. 2, vertex 1 is the root of the tree 7" produced by OBFT and solid (broken) lines
denote tree-edges (non-tree-edges).

2.2 A legal (A + 8)-coloring algorithm

Given a proper edge coloring ¢ of a graph G, we say that two vertices u and v are conflict
if Cyp(u) = Cy(v). Hence ¢ is 2-distance vertex-distinguishing if and only if there are no
conflict pair of vertices at distance 2. For convenience, a 2-distance vertex-distinguishing
edge k-coloring is abbreviated as a 2DVDE k-coloring in the following. We say that an edge
uv € E(G) is legally colored if the color assigned to it is different from those of its adjacent
edges and no pair of vertices of distance 2 are conflict. Let H be a subgraph of G. A proper
edge coloring ¢ of H is called a 2DVDE partial coloring of G on H if Cy(u) # Cy(v) for
each pair of vertices u, v € V(H) withdy (u) = dg(u), dy(v) = dg(v), and dy (u, v) = 2.

Theorem 1 If G is an outerplane graph with A > 5, then x,(G) < A+ 8.
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Proof Let G be an outerplane graph with A > 5. Without loss of generality, assume that
G is connected. By carrying out OBFT, G is edge-partitioned into a rooted spanning tree T
with r as its root and a subgraph H with A(H) < 4. Then we are going to give an algorithm
of finding a 2DVDE (A + 8)-coloring of G using the color set C = {1,2,..., A + 8}.
Note that [C| > 13. Let u; (1 < j < |V(G)]) be the j-th vertex visited in this OBFT
partition, where u; = r. Recall that E(u;) is the set of edges incident to the vertex u;.
Define E; = E(u1) U E(uz) U---U E(u;), and G; = G[E|], which is the subgraph of G
induced by edges in E.

At Step 1, we color E (u) properly with distinct colors in C. Let j > 2. Suppose that £ _;
has been colored such that a 2DVDE partial coloring of G on G has been established.
At Step j, we color E(u;) to form a 2DVDE partial coloring of G on G ;. Then we set
J = Jj + 1 and continue our coloring procedure. Once all E(u;)’s, for 1 < j < [V(G)],
have been colored, a 2DVDE coloring of G using at most A + 8 colors is constructed.

By Lemma 1 and the structural property of outerplane graphs, we obtain the following
useful observation:

Observation 1 (i) Let v;H be a son of v}, and vf;rl be a son of vl such that | < h. If
vj,*lv;“ € E(H),theng=p+1,andh=1orh =1+ 1.

(i) For j = 1,2,3, let v;]fl be the son of v,ij withly <l < I3. chv;flvfjl, v;2+1vf;'1 €
E(H), then k1 < ky < k3, and exactly one of the following cases holds:

(1) ki = ko = k3;

2) kp =kyand ks = ko + 1;

B) ks =kyandkr, =k + 1.

Letu; = vli. Let v,’;l be the father of vf. We say that a vertex z € V(G) is full if all edges
in E(z) have been colored in the foregoing steps.

We now begin with constructing a 2DVDE partial (A + 8)-coloring of G on G using
C={1.2,...,A+8}. Letdg,(v}) = p.dg, ,(v)) = g,and 1 = p —q. Then g < 3.
When ¢t = 0, since all edges in E (v;) have been colored, we are done. Thus, in the following
discussion, we may assume that# > 1. Fora vertex y € V(G), let () denote the set of fully
conflict vertices of y when certain edges in E(y) are considered to be colored. Obviously,
|F(y)| is no more than the number of 2-neighbors of y in G ;.

Remark 1 No son z of v,’;ll is in f(v;), and no neighbor z* of le inlayeri + 1 isin ]—'(v}).
,’(:11 € E(H)orvivl_, €
E(H) and hence de (vf) > 3. However, z or z* is a leaf or a 2-vertex in G . ]

Proof In fact, if z or z* € F (vf ), then it is easy to derive that vf v

The following Claim 1 deals with the number of fully conflict vertices of vli in the subgraph
G;.By Remark 1, we need to consider the number of 2-neighbors of v/ in layeri —2,i — 1,
and i, respectively.

Claim 1 (a) If v,i_l has the unique son vf , then v[i has at most 5 fully conflict vertices.

b) If v,’fl has at least two sons, and vf is the leftmost son of v,’;l, then v; has at most 5
fully conflict vertices. A

C v,  has at least two sons, and v; is the rightmost son of v, ', then v; has at mos

(©) If vy " has at least d v} is the rightmost i1, then v} has at most
A + 1 fully conflict vertices. '

d) I vi™ has at least three sons, and v! is a middle son of v\, then vl has at most A — 1

k 1 k 1

fully conflict vertices.
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(a4) (ad5) (ab)

Fig. 3 Configurations al-a6 in Claim 1(a), where black squares denote possible conflict vertices with v;

Proof We first prove (a). Note that vli has at most two neighbors in layer i. If vl has exactly
two nerghbors in layerz then Lemma 1(1) asserts that these two nerghbors arev;_; and vy,
and vl v17l and vl le are non-tree-edges. By Observation 1(ii), vl and 1),71 have a common
father, or v; and v; 41 have a common father, which contradicts the hypothesis that v; is the
unique son of v,":l

Now assume that v; has exactly one neighbor in layeri. We need to consider two subcases.
Ifv v; | € E(H)andv vl+1 ¢ E(H), then the father of vl L is vk 1 by the outerplanarrty
of G, and v; v,’(lll ¢ E(G) for otherwise G will contain a separating cycle with v} ~asan
internal vertex, contradicting (P3). Hence v; has at most 5 fully conflict vertices, as shown
in Fig. 3al. If Ul”l—l ¢ E(H) and vafH € E(H), then the father of vli+1 is v,’;ll by
Observation 1(i). Furthermore, if the father of v,i_l is vh and the father of vk +1 is vl 2
then s = h, or s = h + 1 by the outerplanarity of G. First we claim that v[ has at most two
2- nerghbors in layer i — 2. Actually, by Lemma 1(2), vk - has at most two neighbors v;l 2
and v; +1 in layer i—2,and v 41 ! has at most two nerghbors v 2 and v 1n layeri — 2. If
s =h, then v[ has at most two 2-neighbors vh 2 and vhle in layer i — 2. Ifs = h + 1, then

]’(:_ll L gé E(G) because otherwise G contains a separating cycle with vh + 1 as an internal

i—2

vertex, which contradicts (P3). Then vl also has at most two 2-neighbors vh % and Vi in

layer i — 2. Hence, as shown in Fig. 3a2, a3, v; has at most 5 fully conflict vertices.
Finally, assume that vli has no neighbor in layer i, that is, vf vli > vf vf+1 ¢ E(H). Itis

easy to see that there do not exist a vertex x in layer i — 1 and a vertex y in layeri +1 such that

xv; and yvl are non-tree-edges, for otherwise G will contain a separating cycle with v}~ Las
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/ i1
= "vkﬂ

(b) (d1) (d2)

Fig. 4 Configurations b, d1 and d2 in Claim 1(b) and (d)

(cD) (c2) (c3)

Fig. 5 Configurations ¢1—¢3 in Claim 1(c)

an internal vertex. Then vli has at most 5 fully conflict vertices as shown in Fig. 3a4—a6 by
Remark 1.

Next we prove (b) and (d). It is easy to inspect from Lemma 1 that vli has the desired
properties whatever v; is adjacent to vf +1- as shown in Fig. 4b, d1, d2. It is worth noticing
that in (b), when vf 41 has two neighbors in layer i — 1, then the second neighbor, other than

-1

v,’; , must be v,’;ll by Lemma 1(2).

Finally, we prove (c). First assume that vli has exactly one neighbor in layeri — 1, i.e., v,i_ I
Thus, vf v,’;ll ¢ E(G). If vli vliJrl ¢ E(G), then vf has obviously at most A — 1 fully conflict
vertices, since each such vertex must be a neighbor of v,’;_l. So assume that vf vf L €E (G).
Then vf 41 also has exactly one neighbor in layeri — 1, i.e., v,’cjr]l by the outerplanarity of G.
It turns out that v; has at most (A — 1) + 1 = A fully conflict vertices, as shown in Fig. 5c1.

Next assume that v; has two neighbors in layer i — 1. By Lemma 1, these two neighbors
are vj ' and v} 7). If vjv!, | € E(G), then the father of v}, is v}, by Observation 1(i).
Let v;'fz and vi~2 be the father of v,";l and v,’cjr]l respectively. Then s = h ors = h + 1 by
the outerplanarity of G. If s = h, then v; has at most (A4 — 1) +2 = A + 1 fully conflict
vertices, as shown in Fig. 5¢2. If s = h + 1, then v,’cjr]l has exactly one neighbor in layer i —2
by the outerplanarity of G. Thus v; has at most (A — 1) +2 = A + 1 fully conflict vertices,
as shown in Fig. 5¢3. If vjv; | ¢ E(G), with the similar argument, we can show that v; has
atmost (A — 1) +2 = A + 1 fully conflict vertices. O
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Since A > 5, Claim 1 implies that vf has at most A + 1 fully conflict vertices in every
case.

Our project is to legally color the edges in E(u;) \ {zuj|zuj € Ej_1} in such an order if
they exist: (1) vl vl+] e E(H); (2) v[ vitl e E(H); (3) other uncolored edges.

It should be pointed out that if dg ; (vl L) =dc (vf +1)» then to construct a 2DVDE partial

coloring of G on G ;, we must keep the legality of U/i 41 1.€., the color set of vli 41 is required
to differ from those of its fully conﬂict Vertices To do this, let us estimate the number of
fully conflict vertices of v; | or vit! where v] vi*! is a non-tree-edge.

Claim 2 Ifvjvj,, € E(H)anddg,(v},,) = dG(v],,), then | F(v)) UF (v}, )| < |F ()| +
3.

Proof If v}( Uis the root, then v’ 1”1+1 € E(T),and f(vf+l) consists of at most one vertex

vl |- Hence I}'(vl) U]—'(vl“)l < |.7-"(vl)| + |.7-"(vl+l)| < If(vl)l + 1. So suppose that v’ !
is not the root. By Observation 1(i), the father of vH_1 is vk “Lor Uk+1'

e Assume that the father of vf+1 is v,i_]. If vf+1 has exactly one neighbor in layer i — 1,
ie., v,":l, then it is easy to see that de(vf+l) = dg(vf_H) = 2. Note that every 2-
neighbor of vj.; in N (v; ")\ {vj_. v, vj,} is also a 2-neighbor of vj. This implies that
}'(le) - ]:(vl) U {vl 1}, and hence If(vl) U f(le)l < If(vl)l + 1. Now suppose
that v; | has exactly two neighbors in layer i — 1, i.e., vk ~! and vk +1 It follows that
1)1Jr111,’(+11 € E(H) and dg (le) = dG(U1+1) = 3. Note that the sons of ka are of
degree at most 2 in G ;. Therefore, if x € }'(vl_H) \ }'(vl) then x is just vl 1» or is the

neighbor of Uk+1 inlayeri — 1 ori —2. By Lemma 1, v,<+1 has at most two neighbors in
layer i —2, and at most two nelghbors 1n layer i — 1, whereas someone of these neighbors
is vy ! Let v; ~2 be the father of v, and vi=2 be the father of ”k+11 Then s = t or
s =t + 1 by the outerplanarity of G. If s = ¢, then v, Ze f(vl) N .7-'(vl+]), and hence
|.7-"(vl") V) f(v;+1)| < If(vli)l + 3. If s =t + 1, then v,’{jrll has exactly one neighbor in

layer i — 2, for otherwise G contains a separating cycle with vi- =2 as an internal vertex,

contradicting (P3). We also get that |.7-'(v[) U ]:(”l+1)| < |]-'(v[)| + 3.

e Assume that the father of v; 41 18 v,’;ll Then v; 41 has exactly one neighbor in layer
i—1, for otherwise G contains a separating cycle with v, +11 as an internal Vertex Hence
vlJrlvk+2 ¢ E(G), and dc (le) = dc(vlﬂ) = 2. Let v§ =2 be the father of v , and

vi= ~2 be the father of vk +l' Then s =t or s = ¢ 4 1 by the outerplanarity of G. We define

_ i i—1 i—1 1 -2 i-2
A= [”1—1’% Veg2o Vs s+1]
B = |zlz is ason of v} other than vf | with dg, (2) = dg(2) =2} .

Then it is not difficult to see that |B| < 1 and F(vj, ) \ F(v)) € AU B.1If |B| =
say B = {w}, then wv,’;_l2 is a non-tree-edge by the outerplanarity of G. This implies that
vk+2 ¢ .7-'(vl+]) \ }"(vl) for otherwise vk+11 vk € E(G) and dG(vk+2) > 3. Thus, at most
one vertex in BU {vk+2} belongs to f(le) \]—'(vl) Assume that dG (v ) > 3. If at most
one of vi~ 2 and vy 1 isin f(vl+1)\f(vl) then |}'(vl)U}'(vl+1)| < |f(v1)|+3 Otherwise,

vi=?, ”£+1 € .7-'(vl+1) \ }"(vl). Then v,’ch]1 ;ﬁ is a non-tree-edge. By the outerplanarity of
G, s must be identical to ¢. Hence, v} -2 = v; 2 erF (vf), contradicting the assumption
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that vi2 € F(vi, ) \ F(v}). Now assume that dg, (v;"') = 2. Then viv]_, ¢ E(G),
for otherwise G would contain a separating cycle with ka as an internal vertex. Thus,
vi_y & F(vj, ). If s = 1, then vf—2 € F(v))NF(v],,). and henceforth | F(v)) U F (v]_ )| <
|F (vl)|+3 If s = r+1,then vk + has exactly one neighbor in layer i —2, for otherwise G will
contain a separating cycle with v}~ 2 as an internal vertex. Consequently, | F (W) UF ()l <
|F @D+ 3. O

Claim 3 Ifvjvit! € E(H) and dg; (vi™") = dg(viT"), then |F(vit!)| < 2.

Proof By Lemma 1, vl | is the father of v""1 All the sons of vl 1» other than v’+1 are
leaves in G ;, and dg; (it = dg (vit1) = 2. Every vertex in F(vi*!) is either a neighbor
of v or v;_, inlayer i — 1 or i, or a vertex xo in layer i + 1 with xov;_, € E(H). Notice
that if xg exists, then vl’;z is the father of xo by Lemma 1. Hence, either de (vl’;z) >3, or
a'G/ (vf_z) = 2and U;—z has distance 3 to v§+1. Therefore, at most one of xp and vli_2 belongs

to F(vit!). It is easy to see that x¢ is unique if it exists by Lemma 1. We need to consider
two situations as follows.
Case 1 v,‘{_1 is the root.

If dG (v’fl) = 2, then v,’:l has exactly two neighbors vf and vli | in layer 1. Thus,
f(vs“) contains at most one vertex, i.e., v,i ,hence | F(vith)| < 1. Ifdg, (v’_l) > 3, then
since vli has at most two neighbors in layer 1 (including vlfl), we have |f(v§+l)| <2.
Case 2 v,’:l is not the root.

Case 2.1 v,’c_1 is not the father of vf_l

Then v,i:ll is the father of v;_l, and vf v,’;ll ¢ E(G), for otherwise G contains a separating
cycle with v};_l as an internal vertex.

Case 2.1.1' Vv, € E(H). ‘ ‘

Then v}(_l is the father of v;; by the outerplanarity of G. Thus, dg; (v,’c_l) > 3. If
dg.(v,’{_ll) > 3, then .7-"(v’+1) C {x0, v;_5, v;,} and hence I}'(v;“)l < 2 by the above
discussion. So suppose that dG/ (v'il) 2. If neither xo nor ”11'72 is in }'(vé“), then
]—'(vé""]) - {v,’(_ll, UH_I} and consequently |]~'(vi+1)| < 2. Otherwise, at least one of xovf_l
and vl’72v; belongs to E(H). Since dg; (v’_l) =2, v’_1 is not the father of v, _,, and
hence G contains a separating cycle with kal as an internal vertex, contradicting (P3).
Case 2.1.2 v v;+] ¢ 'E(H). ' A -

Then U;H ¢ F(viTh). If neither xo nor v]_, is iq .7:(U§+1), the;n Fith c {v,’:ll, v,’;l %
and so |.7-'(v_§+1 )| < 2. Otherwise, atleast one of xov;_; and v;_,v;_, belongsto E(H). Hence
v,’;]l is the father of vf », for otherwise G contains a separating cycle with v,’;]l as an internal
vertex, contradicting (P3). Therefore, dG (v’_l) > 3, and hence }'(v"“) C {xo, v[ 2 vk 1}.
Thus |]-'(v§+])| < 2 by the above dlscussmn.

Case 2.2 v,’:l is the father of v;; 1

It suffices to show that at most one of v; 11 and v,’(jrll is in F (vi+1) Assume the con-

trary, we have Ul le, vl ka € E(G). By Observation 1(i), le is the son of ka Hence

dg, (v,’;ll) > 3, and so v,’;ll ¢ F(vi*!), a contradiction. Consequently, |[F(vit1)| <2. O

Now we continue to construct a 2DVDE partial (A + 8)-coloring of G on G; whent > 1.
It suffices to discuss the following cases, depending on the size of ¢.
Caselr=1.
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Let x be the neighbor of vf notin G ;_1. There are two subcases to be disposed as follows:
Case 1.1 x is in layer i.

By Lemma 1, x = vf_H. Note that xvf has at most ¢ + 2 adjacent edges in G ; 1, which
are contained in {vli v;;l, vli v;;_], vf v,i:Lll, xv;l_1 , xv;;ll }, where v,’;_] is the father of vf, UZ_]
is the father of x, and k < h. By Observation 1(i), h = kor h = k+ 1. Thus, xv; has at most
g + 2 < 5 forbidden colors when it is considered for legal coloring at Step ;.

Ifdg(x) > dcj (x), then we need only to legally color xvf with some color in C to form
a 2DVDE partial coloring of G on G ;. This can be done since [C| — (g + 2 + |}'(v;)|) >
ICl—(@+24+(A+1) =A+8—(A+6) =2 by Claim 1. It is worth mentioning
that, in this case, we do not need to consider the legality of the vertex x. Now suppose that
dg(x) = dcj (x). Let us further handle two possibilities:

e Assume that i = k. Then g < 2. If v; is the leftmost son of v,’fl, then |]-'(vli)| <S5 by
Claim 1(b). Since | F (v))UF (v, )| < [F(v))|+3 < 8byClaim2,and |C|—(g+2+8) >
1, we can legally color xv; with some color in C to get a 2DVDE partial coloring of G on
G ;. Otherwise, vf is a middle son of v,i_l, we have |.7-"(vli)| < A — 1 by Claim 1(d), and
[Fp)UFx)| < (A—-1)+3 = A+2byClaim 2. Since |C| — (¢ +2+ (A +2)) > 2,
we can legally color xv; with some color in C to form a 2DVDE partial coloring of G on
Gj.

o Assume that 7 = k + 1. Then vli is the rightmost son of v,";l, and x is the leftmost son
of v;(jrll Then vf Hv,’;lz ¢ E(G), for otherwise G has a separating cycle with v,’(jrll as
an internal vertex. Hence, xvj has at most ¢ + 1 adjacent edges in G;_; and dg(x) =
dg,(x) = 2.1f v} is the unique son of vj "', then |F(v})| < 5 by Claim 1(a), |F(v}) U
f(vl’+])| < |F(v;)|+3 < 8by Claim 2, and |C| — (¢ + 1 + 8) > 1. We can legally color
xv; with some color in C. Otherwise, v,’jl has at least two sons, and v; is the rightmost son
of v,i_] . By Claim 1(c), |}"(vf)| < A+ 1. We note that if ¢ = 3, then vf vl"_1 is a non-tree-
edge, which implies that |F (U;)| < A by the proof of Claim 1(c). Thus, we always have
that | (v})|+¢ < A+3.Since |FW)HUF@)|+q < |[F@)|+3+qg < A+3+3 = A+6
by Claim 2, and |C| — ((A +6) + 1) > 1, we can legally color xv; with some color in C
to set up a 2DVDE partial coloring of G on G ;.

Case 1.2 x is in layer i + 1.

Then xv; has at most ¢ + 1 < 4 forbidden colors. If dg (x) > d¢ ; (x), then we can legally
colorxv,i with some colorin C, because |C| —(q+1+|}'(vf)|) > |Cl—(g+14+(A+1)) =3
by Claim 1. Now assume that dg(x) = dcj x). If dg(x) = dcj (x) = 1, then we can give
xvli a legal coloring as in the previous case. Otherwise, dg (x) = de (x) = 2. By Claim 1,
|]-'(vf)| < A+ 1. By Claim 3, |F(x)| < 2. Thus, |C| — (I}'(vf)l + | FX)|+g+1) >
|IC]—((A+1)+2+44) =1, we can legally color xvf with some color in C to get a2DVDE
partial coloring of G on G .

Case 2t =2.

Let x and y be the neighbors of vli not in G ;1. Note that at least one of x and y differs
from vf 4108y Y # vli 11+ Our proof splits into the following two subcases.
Case2.1x = vf+1.

Since xv; has at most ¢ + 2 < 5 forbidden colors, and |F(x)| < A 4 1 by Claim 1, we
can legally color xv} with a color a in C (at the moment, we do not consider whether or not
vli has fully conflict vertices because yvli has not been colored). Now yv; still has at most
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q + 141 <5 forbidden colors. We assert that |C| — (|.7-"(vl")| +|F)|+¢+2) > 0,sothat
yvf can be legally colored with some color in C. Otherwise, by Claims 2-3, we derive that
If(v;)l =A+1,|F()| = 2,and g = 3. Since ¢ = 3, we see that U;ULl € E(H), hence
vl’A_1 ¢ F (vf). Recalling the proof of Claim 1(c), we have |F (vli)| < A, a contradiction.
Case2.2x # vy, .

Both x and y are in layer i + 1, say x = v}fl, y = vé"'l with 4 > s.Indeed, h = s 4+ 1 by
Lemma 1. We first legally color yv; with some color a € C, since yvf hasatmostg +1 <4
forbidden colors, and | F(y)| < 2 by Claim 3. Then we color legally xv[i with some color in
C \ {a}, since xv; has at most ¢ + 1 < 4 forbidden colors, and |.7-"(vf)| < A+ 1by Claim 1.
Case 3 > 3. '

Let x1, x2, ..., x; be the neighbors of v; not in G ;1. Without loss of generality, we
i+1 i+1

L x = véi}_z by Lemma 1. (If x; = v."|, we

may assume that x; = vli+1, X2 =0 s

have a similar discussion). First, since xlvf has at most ¢ + 2 < 5 forbidden colors, and
|F(x1)] < A+ 1 by Claim 1, we may legally color x lvli. Second, since xzvli has at most
q + 2 < 5 forbidden colors and |F(x2)| < 2 by Claim 3, we may legally color x; vf. Finally,

since (A+,8_—2q 72) > (?j; ) > A 4+ 3, there exists a subset C’ of available colors in C with
|C’| =t — 2, such that vf v’vﬂ R v} véitliz can be legally colored with C’. O

Using the result of Theorem 1, we can describe the following algorithm of finding a
2DVDE (A + 8)-coloring of an outerplanar graph G with A > 5:

Algorithm: 2DVDE-Color Outerplanar Graphs (I).
Input: A connected outerplanar graph G with maximum degree A > 5;
Output: A 2DVDE (A + 8)-coloring of G;

1. Choose a A-vertex u1 and run an OBFT partition starting from u.

2. Color properly E(u1) with colors 1,2, ..., A.

3. Repeat for each vertex u;, from left to right, from top to down: Coloring the edges in
EQj)\ (E(u)UE2)U---UE(u;_1)) according to Theorem 1.

Theorem 2 Let G be a connected outerplanar graph with n > 2 vertices and A > 5. The
algorithm 2DVDE-Color Outerplanar Graphs (I) runs in 0 (n?) time.

Proof First, according to aresult of [8], the algorithm of searching a spanning tree 7" in a graph
G by using an OBFT partiton needs O (n) time. Next, the algorithm performed in Theorem 1
is iterated n times. At each iteration, we legally color the edge subset E;‘ =Eu;j)\Ej_.
The time complexity to consider in this part includes performing the following four tasks.

(a) Computing the total number 7| of forbidden colors for the edges in E*;

(b) Computing the total number 7, of fully conflict vertices for at most three fixed vertices;
(c) Selecting a subset C’ of available colors from C = {1,2, ..., A + 8};

(d) Coloring properly E;“ with C’.

For (a), it follows from the proof of Theorem 1 that 7] < 5|E;‘f| < 5dg(uj) < 5A. For
(b), Claims 1-3 showed that each vertex x has at most A + 1 fully conflict vertices in G ;.
Thus, 70 < 3(A + 1). For (c), we need to eliminate at most A + 7 color subsets from C,
whereas every color subset has at most A elements. For (d), at most A edges are required for
a legal coloring. The above analysis shows that the total running time of our algorithm is at
most t(SA+3(A+ 1) +AA+T)+A) = n(A%2+164+43) = O(nA?).Since A <n—1,
our algorithm runs in O (n3) time. u]
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3 Outerplanar graphs with A < 4

In this section, we will present a2DVDE 10-coloring for an outerplanar graph with maximum
degree at most 4 using the color set C = {1, 2, ..., 10}. The discussion is similar to the proof
of Theorem 1.

Theorem 3 If G is an outerplane graph with A < 4, then x,(G) < 10.

Proof Let G be a connected outerplane graph with A < 4. Carrying out an OBFT partiton,
we edge-partition G into a rooted spanning tree 7" with r as its root and a subgraph H with
A(H) < 4,wheredg(r) = A.Letu; (1 < j < |V(G)]) be the j-th vertex visited in OBFT,
where u; = r. Define E; = E(u1) U E(u2) U---U E(u;), and G; = G[E;], which is the
subgraph of G induced by the edges in E ;.

At Step 1, we color ujug, ujus, ..., ujua+y withcolors 1,2, ..., A, respectively. Then
we color successively uous, uzua, ..., usru4+1 with 5, 6, 7 if existed. This is available since
G[{uz, us, ..., ua+1}] contains at most three edges by Lemma 1.

At Step j,for j =2,3,..., A+ 1, we properly color the uncolored edges in E(u ;) from
left to right such that the used colors are selected as follows:

e If j is even, the foregoing colors in the set {8, j, j +1,..., A, 1,2,..., j — 2} are used;
e If j is odd, the foregoing colors in the set {9, j, j + 1,..., A, 1,2,..., j — 2} are used.

Let j > A+ 2. Assume that E;_; has been colored such that a 2DVDE partial coloring
¢j—1 of G on G;_; has been established. At Step j, we will color E(u ) to find a 2DVDE
partial coloring of G on G ;. As soonas all E(u;)’s,for 1 < j < [V(G)|, have been colored,
a 2DVDE coloring of G using at most 10 colors is constructed.

Letu; = v;. Theni > 2. Let v,":l be the father of vf, and vifz be the father of v,":l. Set
dg;(v})) =dg(v})) = p,dc;_ ,(v})) = q,andt = p—q.Theng <3andp =1+q < A < 4.
Let us consider the following cases, depending on the size of 7.

Caselr =0. 4
Since all edges in E(v;) have been colored, we are done.
Case2r = 1.

Let x be the neighbor of vf notin G j_. Without loss of generality, assume that dg, (x) =
dg(x). In fact, if de (x) < dg(x), the proof is easier since we do not need to consider
whether or not x has fully conflict vertices. There are two subcases as follows:

Case 2.1 x is in layer i.

By Lemma 1, x = le Note that xv; ' has at most ¢ + 2 adjacent edges in Gj_1.
Case2.1.1¢q =3, i.e., vlv[_l, v,ka € E(H).

Then vl’ﬁl1 1s the father of x, and vli v ’ le E(T) by Observation 1. So dG (v ) > 3.
Note that xv; +2 ¢ E(G) forelse G contams a separatmg cycle with Uk +1 as internal vertex,
contradicting (P3). Let z* be the fonhnelghboroka 1fd(;j. (vk ) =4. val_lvf_2 e E(G),
then z* = v;;z for otherwise G will contain a separating cycle with v,i_l as internal vertex.
Since v,’;ll has at most two other neighbors except v; and x, say yj and yy, by the fact that
A < 4, we know that }'(v;) - {v;l_z, Z*, y1, y2} and F(x) C {v;;l, y1, y2} by Remark 1.
Since |C| — (g + 1 + [F(v)) UF(x)]) = 10 — 3+ 1 +5) = 1, we can legally color xv]
with some color in C to get a 2DVDE partial coloring of G on G .

Case 2.1. 2q = 2 with vlka € E(H)
Then ”1 ”z | & E(G), and ka is the father of x by Observation 1. Again, ka+2 ¢ E(G)

by (P3). Similarly to the previous discussion, vk +1 has at most two other neighbors y;
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and y,, and v,’;_l has at most two other neighbors z; and z,. This implies that F (vli) -
{2 y1. 32,21, 22} and F(x) € {y;7' v, v} Since [C] = (¢ + 1+ |F () UF(0)]) =
10— (2+ 1+ 6) = 1, we can legally color xv; with some color in C to get a 2DVDE partial
coloringof Gon Gj.
Case 2.1.3 q= 2 withvjv;_, € E(H).

Then vl v 1 ¢ E(G). Now the proof splits into the following two cases.
Case 2.1.3.1 v,’( Uis the father of x.

Suppose thatka+1 ¢ E(G). Then every 2-neighbor of vf+1 in N(v,i_]) \ {v;_1 , vf, vf+1}
is also a 2-neighbor of vj. This implies that 7(x) € F(v;) U {v;_,}, and hence |F(v;) U
F()| < |F@)]+ 1. Since |F(v})| < 5by Claim 1, and |C| — (g + 1 + [F(v)) UF(x)]) >

— @2+ 1+5+1) =1, we can legally color xv; with some color in C to get a 2DVDE
partial coloring of G on G .

Suppose that xv;H_ll € E(G). Then de (x) = 3, and v,’;_l is the father of vli_l by (P3).
Moreover, vl WV 2 ¢ E(G) by (P3) and the assumption that A < 4, which implies that
f(vli) - {UL 2 ka} by Remark 1. By Claim 2, |f(vl) UFx)| < |}'(vl)| 4 3 < 5. Since
ICl—(g+2+ |]~'(vl) UFx)) = 10— (2+2+5) =1, we can legally colorxvl with some
colorin C to get a 2DVDE partial coloring of G on G .

Case 2.1.3.2 vk+] is the father of x.

Then vk !is the father of 1)171 by Observation 1(ii), so de (v,":l) > 3. Note that xv,’;l2 ¢
E(G) by (P3). Let z* be the forth neighbor of v, " if dg, (v, ") = 4. If v}_,vi_, € E(G),
then z* = v;_, by (P3). By Claim 2, |F(v;) U F(x)| < |F(v))| + 3 < 6. Since |C| — (g +
1+ |]—"(vl") UFx)) = 10— (24 1+ 6) =1, we can legally color xvli with some color in
C to get a 2DVDE partial coloring of G on G;.

Case2.14q = l,ie., vivj | vivi_| ¢ E(G).

Suppose that v,;_ is the father of x. Let z* be the forth neighbor of v,;_ if exists. Then
|f(vf)| < |{z*, v k+1}| = 3. By Claim 2, |]—'(vl) UFx)| < |_7-'(vl)| 4+ 3 < 6. Since
ICl—(q+2+ |.7-'(vl) UFx)|)) = 10— (1+2+6) =1, we can legally colorxvl with some
color in C to get a 2DVDE partial coloring of G on G

Suppose that ka is the father of x. Then ”l+1 vk+2 ¢ E(G), and I}'(vl)| < |(N(v ) \
{”1}) U {Uk+1}| < 4. By Claim 2, |_7-'(vl) UFx)| < |_7-'(vl)| +3<7.Since |C| — (¢ + 1+
|f(v}) UF(x)|) > 10— (1414 7) =1, we can legally color xv[ with some color in C to
get a 2DVDE partial coloring of G on G;.

Case 2.2 x is in layer i + 1.
Then xv; has at most g + 1 < 4 forbidden colors. If dg (x) = dg,(x) = 1, then we can

legally colorxvf with some colorin C, because [C|— (g + 1+ |.7-"(vli)|) >10—(g+1+45) > 1
by Claim 1. Otherwise, dg (x) = dg; (x) = 2, i.e., xv; € E(H), and v;_, is the father of x.
Case 2.2.1 vlka € E(G).

Then vk Iis the father of le by (P3), which implies that de (v,’;l) > 3. Let z* be the
forth neighbor of v, if dg, (v, ') = 4.

Suppose that dG]. (v,’;ll) = 2. Let y* be the neighbor of v,’;ll other than vf. Then F (vf ) C
{v;l_z,z*, ¥, v;_l}. Moreover, when ¢ = 3, we have v;vf_l € E(G) and so }"(v;) -
{v}f{ z*, y*}. Consequently, g + |]—'(vf)| < 6. By Claim 3, |F(x)| < 2. Since |C| — (¢ +
1+ [F@p|+|F@)]) = 10 — (6 + 1+ 2) = 1, we can legally color xv; with some color in
C.
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Suppose that dg; (ka) > 3. By the proofofClalm 3,|F(x)] < 1.ByClaim 1, I}'(v,)l <
5. Moreover, if ¢ = 3, then Ul 11171 € E(G) and 1)171 ¢ f(vl), implying |f(vl)| < 4.
Consequently, g +|F(v;)| < 7.Since |C|—(g+14+|F()|+|F X)) = 10— (T+1+1) =1,
we can legally color xv; with some color in C.

Case 2.2.2 v; vk+1 ¢ E(G).

Then 1 < g < 2. Assume that ¢ = 1. By Claim 1, | F(v;)| < 5. By Claim 3, | F(x)| < 2.
Since |C| — (g + 1+ |.7-"(vl’)| + |Fx)]) =>10—(1+1+5+2) =1, we can legally color
xv; with some color in C to get a 2DVDE partial coloring of G on G ;.

Assume that ¢ = 2, i.e., vjv;_; € E(G). We assert that [C| — (g + 1 + |F(v))| +
|[F(x)]) > 1, so that xvli can be legally colored with some color in C to get a 2DVDE
partial coloring of G on G;. Otherwise, we derive that |F(v;)| = 5, |F(x)| = 2, and
$j-1(xvj_)) # 9 1(fu () Hence $j-1(xvj_) ¢ {dj-1(Wjv]_)), dj—1(wjvi ), which
implies that vk q_f F(x). In view of the proof of Claim 3, we have |F(x)| < 1, a contradic-
tion.

Case3r=2. ‘

Then g < 2. Let x and y be the neighbors of v; not in G ;_;. Note that at least one of x
and y differs from v; |, say y # v, ;. Our proof splits into the following two subcases.
Case3.1x =v,.

Since xv; has at most ¢ 4+ 2 < 4 forbidden colors, and [F(x)| < 5 by Claim 1, we can
legally color xv; with a color a in C (at the moment, we do not consider whether or not
v; has fully conflict vertices because yv; has not been colored). Now yv; still has at most
g + 1 + 1 < 4 forbidden colors. '

Ifdg(y) > de (v), then we can legally color yv; with some color in C, because |C|— (g +
1+ 14 |F@)D =10 - (g +2+5) > 1 by Claim 1. Now assume that dg(y) = dg;(y).
If dg(y) = dg;(y) = 1, then we can give yv; a legal coloring as in the previous case.
Otherwise, dg (y) = dg,;(y) = 2, 1.e., yv; € E(H). Then v_, is the father of y.

Case 3.1.1 v,‘{jrl is the father of x.

Then vk 1is the father of vl_l, and hence dg ; (v}l:l) > 3. Let z* be the forth neighbor of
v lifdg, (v =4

Suppose that ¢ = 1. Then F(v)) € {v} 2. z* vi_, vi;}} by Remark 1. By Claim 3,
[ F(y)| <2.Since |C|—(g+ 1+ 1+ |]:(U1i)| +IFMHD=10-1+14+14+44+2)=1,
we can legally color yv; with some color in C.

Suppose that ¢ = 2 and v;v;_; € E(G). If vj_,vj_, € E(G), then z* = v;_, by (P3).
So }"(vl) - {vh_z, 75, vk+]} by Remark 1. By Claim 3, |F(y)| < 2. Since |C| — (g + 1 +
1+ |]—'(v1)| +1Fy|) >10—2+14+1+3+2) =1, we can legally color yvl with some
colorin C. If v;_v;_, ¢ E(G) then we have a similar discussion

Suppose that g = 2 and vl vk+1 € E(G). Then dG (vk ) > 3. Note that vk+1 has at most
two other neighbors, say yi, y2. Therefore, ]-'(vl) c {vh vl 1» 2%, ¥1, y2}. By Claim 3,
|F(»)| < 2. Without loss of generality, assume that ¢;_ 1(v; v,’( =1, Gj— 1(v’ i~y =2

Vit
a =3, and ¢]—1(U1_1y) =a.

e o € {1, 2,3}. Suppose that yvli cannot be legally colored. It follows that |F(y)| = 2 and
If(vli)l = 5. In this case, x € F(y), and the second vertex in F(y) is sz or a neighbor
of vf_l in layer i + 1, say u™*, with de(v;_z) =2or d(;j u*) =2.1f U;—z € F(y), then
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Ulile’;fl € E(H), and the father of sz is v,’;_] by (P3). That is Uzifz € }'(v;). Hence,
IFO) UF@DI = IFOI+ IF@)| = 1 = 6. Since |C| — (g + 1+ |F(y) UF @)D =
10 = 2+ 1+ 6) = 1, yv; can be legally colored, a contradiction. Next suppose that
u* € F(y). Then the father of u* is vl’A_2 by Lemma 1, and v,":l is the father of v;_z
by (P3). That is z* = v;72, which implies that vl’;z =7z* e ]:(vli). Without loss of
generality, assume that C¢j_1(x) = {3,4}, C¢j_1(y,~) ={1,2,3,i +4} fori = 1,2,
C¢j71(v;‘l_2) = {1,2,3,7}, Cy;_,(z%) = {1,2,3,8}, C¢j71(vli_1) = {1,2,3,9}, and
C¢j—l(u*) = {o, 10}. Then 10 € Cy, (v;_,), which is impossible.

o o ¢ (1,2,3},say « = 4. Then x ¢ F(y), since when yv; is properly colored, x and y
have different color sets. Similarly, we can show that v;_; ¢ F(v;). Therefore | F(y)| < 1
and |.7-"(vl")| < 4 by the proof of Claims 1 and 3. Since |C| — 4 + | F(¥)| + If(vli)l) >
10 — (4+1+4) =1, we can get a 2DVDE partial coloring of G on G .

Case 3.1.2 v,i_l is the father of x.

Then dg;, (v;;_l) > 3. Let z* be the forth neighbor of v,i_l when dg (v,’;_l) =4.

If xv,ijrll € E(G), then z* = v;_l , for else G contains a separating cycle with v};_l as an
internal vertex, contradicting (P3). Hence, ]:(vf) - {v}fz, z*, v,’;ll}. Since |C| — (¢ + 1+
1+|f(y)|+|f(vf)|) > 10— 2+ 1+1+2+3) = 1 by Claim 3, we can get a 2DVDE partial
coloring of G on G;. If xvj | ¢ E(G), then F(v}) € {v}, %, z*, v}_,} whenvjv{_, ¢ E(G),
or f(v[i) UF(y) C {v;l_z, z*, 21, 22, x} when v,i vf_l € E(G), where z1, z2 denote the other
twoneighborsofvl’;l. Since |C|—(q+1+1+|}'(y)|+|]—'(vl")|) > 10—2+14+14243) =1
by Claim 3, we can get a 2DVDE partial coloring of G on G ;.

Case3.2x £ v,

Both x and y are in layeri + 1, say x = v;l*l,y = vit! withh > 5. Indeed, h = s + 1 by
Lemma 1. We first legally color yvf with some color a € C, since yvf hasatmostg +1 <3
forbidden colors, and |F(y)| < 2 by Claim 3. Then we color legally xvli with some color in
C \ {a}, since xv] has at most ¢ + 1 < 3 forbidden colors, and |F(v})| < 5 by Claim 1.
Casedr = 3. .

Then g = 1. Let x1, x2, x3 be the neighbors of v; notin G;_;. Without loss of generality,
i+l x3 = vt} by Lemma L. (If x; = vi*],
we have a similar discussion). First, since xlv; has at most ¢ + 2 < 3 forbidden colors,
and |F(x1)| < 5 by Claim 1, we may legally color xlvf. Second, since xgvf has at most
q +1 < 2 forbidden colors and |F(x2)| < 2 by Claim 3, we may legally color xv;. Finally,

since |C| —(¢g+2)=T7> |.7-'(vf)|, we color legally X3vf with some color in C. ]

we may assume that x; = vf+], X = v

Using the result of Theorem 3, we now describe an algorithm of finding a 2DVDE 10-
coloring in an outerplanar graph G with A < 4:

Algorithm: 2DVDE-Color Outerplanar Graphs (II).
Input: A connected outerplanar graph G with maximum degree A < 4;
Output: A 2DVDE 10-coloring of G;

1. Choose a A-vertex u and run an OBFT partition starting from u.

2. Coloring E(u1) with colors 1,2, ..., A.

3. Coloring the edges in G[{u2, us, ..., u+1}] with colors 5, 6, 7.

4. Coloring the uncolored edges in E(u;) for j = 2,3, ..., A+ 1 from left to right, where
the used colors are selected as follows:
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e If j is even, the foregoing colors in the set {8, j, j +1,..., A, 1,2,..., j — 2} are
used;

e If j is odd, the foregoing colors in the set {9, j, j +1,..., A, 1,2,...,j — 2} are
used.

5. Repeat for each vertex u ; with j > A + 2, from left to right, from top to down: Coloring
the edges in E(u;) \ (E(u1) U E(uz) U---U E(uj—1)) according to Theorem 3.

Similarly to the proof of Theorem 2, we obtain the following algorithmic complexity:

Theorem 4 Let G be a connected outerplanar graph with n > 2 vertices and A < 4. The
algorithm 2DVDE-Color Outerplanar Graphs (I) runs in O (n3) time.

4 Conclusion

In this paper, we focus on the study of 2-distance vertex-distinguishing index of the class of
outerplanar graphs. Combining Theorems 1 and 3, we have the following consequence:

Theorem S If G is an outerplane graph, then Xéz(G) <A+8.

The upper bound A + 8 in Theorem 5 seems not to be best possible. We like to conclude
this paper by raising the following conjecture:

Conjecture 3 If G is an outerplane graph, then x,(G) < A + 2.

Note that if a graph G contains two A-vertices at distance 2, then x/,(G) > A+ 1. On the
other hand, it is easy to construct infinitely many outerplanar graphs G with x,(G) = A+1.
These two facts imply that the upper bound A + 1 is tight, if Conjecture 3 is true.

References

1. Akbari, S., Bidkhori, H., Nosrati, N.: r-Strong edge colorings of graphs. Discrete Math. 306, 3005-3010
(2006)
2. Balister, PN., Gy6ri, E., Lehel, J., Schelp, R.H.: Adjacent vertex distinguishing edge-colorings. SIAM J.
Discrete Math. 21, 237-250 (2007)
3. Bazgan, C., Harkat-Benhamdine, A.H., Li, H., WoZniak, M.: On the vertex-distinguishing proper edge-
colorings of graphs. J. Comb. Theory Ser. B 75, 288-301 (1999)
4. Burris, A.C.: Vertex-distinguishingedge-colorings. Ph.D. Dissertation, Memphis State University (1993)
5. Burris, A.C., Schelp, R.H.: Vertex-distinguishing proper edge-colorings. J. Graph Theory 26, 73-82
(1997)
6. Calamoneri, T., Petreschi, R.: L(h, 1)-labeling subclasses of planar graphs. J. Parallel. Distrib. Comput.
64, 414-426 (2004)
7. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poincare Sect. B (N.S.) 3, 433-438
(1967)
8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT
Press, Cambridge (2009)
9. Hatami, H.: A + 300 is a bound on the the adjacent vertex distinguishing edge chromatic number. J.
Comb. Theory Ser. B 95, 246-256 (2005)
10. Horndk, M., Huang, D., Wang, W.: On neighbor-distinguishing index of planar graphs. J. Graph Theory
76, 262-278 (2014)
11. Kemnitz, A., Marangio, M.: d-Strong edge colorings of graphs. Graphs Comb. 30, 183-195 (2014)
12. Mockovciakvd, M., Sotdk, R.: Arbitrarily large difference between d-strong chromatic index and its trivial
lower bound. Discrete Math. 313, 2000-2006 (2013)

@ Springer



J Glob Optim (2016) 65:351-367 367

13. Wang, W., Wang, Y., Huang, D., Wang, Y.: 2-Distance vertex-distinguishing edge coloring of graphs.
Discrete Appl. Math. (Submitted) (2015)

14. Wang, W, Yue, X., Zhu, X.: The surviving rate of an outerplanar graph for the firefighter problem. Theor.
Comput. Sci. 412, 913-921 (2011)

15. Wang, Y., Wang, W., Huo, J.: Some bounds on the neighbor-distinguishing index of graphs. Discrete
Math. 338, 2006-2013 (2015)

16. Zhang, Z., Liu, L., Wang, J.: Adjacent strong edge coloring of graphs. Appl. Math. Lett. 15, 623—-626
(2002)

17. Zhang, Z., Li, J., Chen, X., Cheng, H., Yao, B.: D(B)-vertex-distinguishing proper edge-coloring of
graphs. Acta Math. Sinica (Chin. Ser.) 49, 703-708 (2006)

@ Springer



	A polynomial-time nearly-optimal algorithm for an edge coloring problem in outerplanar graphs
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Our contribution

	2 Outerplanar graphs with iDelta ge 5
	2.1  Ordered breadth first search
	2.2 A legal (iDelta+8)-coloring algorithm

	3 Outerplanar graphs with iDelta le 4
	4 Conclusion
	References




