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Abstract Given a graph G, we study the problem of finding the minimum number of colors
required for a proper edge coloring of G such that any pair of vertices at distance 2 have
distinct sets consisting of colors of their incident edges. This minimum number is called the
2-distance vertex-distinguishing index, denoted by χ ′

d2(G). Using the breadth first search
method, this paper provides a polynomial-time algorithm producing nearly-optimal solution
in outerplanar graphs. More precisely, if G is an outerplanar graph with maximum degree
Δ, then the produced solution uses colors at most Δ + 8. Since χ ′

d2(G) ≥ Δ for any graph
G, our solution is within eight colors from optimal.
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1 Introduction

Only simple and finite graphs are considered in this paper. Let G be a graph with vertex set
V (G), edge set E(G), maximum degreeΔ(G) andminimum degree δ(G). For a vertex v, we
use E(v) to denote the set of edges incident to v. So dG(v) = |E(v)| denotes the degree of v

in G. A k-vertex is a vertex of degree k. A leaf is a vertex of degree 1. The distance between
two vertices u and v, denoted by dG(u, v), is the length of a shortest path connecting them
if there is any. Otherwise, dG(u, v) = ∞ by convention. If dG(u, v) = r for u, v ∈ V (G),
then u is called an r-distance vertex or an r-neighbor of v, and vice versa. Moreover, we
use Nr

G(v) to denote the set of r -neighbors of v in the graph G. In particular, we simply
call a 1-neighbor of v a neighbor of v and abbreviate N 1

G(v) to NG(v). If no ambiguity
arises, Δ(G), dG(v), dG(u, v), Nr

G(v), and NG(v) are written as Δ, d(v), d(u, v), Nr (v),

and N (v), respectively. Let diam(G) denote the diameter of a connected graph G, i.e., the
maximumof distances between any pair of different vertices inG. A graphG is called normal
if it contains no isolated edges.

A proper edge k-coloring of a graph G is a mapping φ : E(G) → C = {1, 2, . . . , k} such
that φ(e) �= φ(e′) for any two adjacent edges e and e′. For a vertex v ∈ V (G), let Cφ(v)

denote the set of colors assigned to the edges in E(v), i.e., Cφ(v) = {φ(uv)|uv ∈ E(G)}.
In this paper, we study the problem of finding the minimum number of colors required for

a proper edge coloring of G such that any pair of vertices at distance 2 have distinct color
sets. This minimum number is called the 2-distance vertex-distinguishing index, denoted by
χ ′
d2(G).

1.1 Related works

For an integer r ≥ 1, the r-strong edge chromatic number χ ′
s(G, r) of a graph G is the

minimum number of colors required for a proper edge coloring of G such that any two
vertices u and v with d(u, v) ≤ r have Cφ(u) �= Cφ(v). Note that χ ′

s(G, r) is well defined if
and only if G is normal. This concept was introduced by Akbari et al. [1], and independently
by Zhang et al. [17]. The reader is referred to [11,12] for latest results for large r . Moreover,
when r ≥ diam(G), χ ′

s(G, r) = χ ′
s(G), where χ ′

s(G) is called the strong edge chromatic
number of G and this parameter has been extensively investigated, see [3–5].

The adjacent vertex distinguishing edge chromatic number χ ′
a(G) is precisely χ ′

s(G, 1).
Zhang et al. [16] first introduced this notion (adjacent strong edge coloring in their termi-
nology). Among other things, they proposed the following challenging conjecture, in which
C5 denotes the cycle on five vertices.

Conjecture 1 If G is a normal graph and G �= C5, then χ ′
a(G) ≤ Δ + 2.

Conjecture 1 was confirmed for bipartite graphs and subcubic graphs [2]. Using proba-
bilistic analysis, Hatami [9] showed that every graphG withΔ > 1020 hasχ ′

a(G) ≤ Δ+300.
Wang et al. [15] showed that every graph G has χ ′

a(G) ≤ 2.5Δ and every semi-regular graph
G has χ ′

a(G) ≤ 5
3Δ + 13

3 . A graph G is said to be semi-regular if each edge of G is incident
to at least one Δ-vertex. If G is a planar graph, then it is shown in [10] that χ ′

a(G) ≤ Δ + 2
if Δ ≥ 12.

More recently, the first four authors considered in [13] the 2-distance vertex-distinguishing
edge coloring of graphs,which canbe regarded as a relaxed formof the 2-strong edge coloring.
Thus, Δ ≤ χ ′(G) ≤ χ ′

d2(G) ≤ χ ′
s(G, 2). In [13], the 2-distance vertex-distinguishing

indices of cycles, paths, trees, complete bipartite graphs, and unicycle graphswere completely
determined. Moreover, a nearly-optimal upper bound on the 2-distance vertex-distinguishing
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index of Halin graphs was also obtained. Especially, the following conjecture was proposed
in [13]:

Conjecture 2 For any graph G, χ ′
d2(G) ≤ Δ + 2.

1.2 Our contribution

In this paper, we establish a nearly-optimal algorithm with running time O(n3) for the 2-
distance vertex-distinguishing edge-coloring problem in outerplanar graphs. A planar graph
is called outerplanar if it has an embedding in the Euclidean plane such that all the vertices
are located on the boundary of the unbounded face. An outerplane graph is a particular
drawing of an outerplanar graph on the Euclidean plane. A cycle C is called separating if
both its interior and exterior contain at least one vertex of G.

Suppose that G is an outerplane graph. Then the following properties (P1)–(P3) hold.
Note that (P3) follows from (P2) easily, whereas the proof of (P2) appeared in [7].

(P1) δ(G) ≤ 2.
(P2) G does not contain a subdivision of K4 or K2,3 as a subgraph.
(P3) G does not contain a separating cycle.

Our algorithm is built on those properties. It gives an upper bound of Δ + 8 for the
2-distance vertex-distinguishing index of outerplanar graphs. This means that the solution
given by our algorithm is within eight colors from optimal.

2 Outerplanar graphs with Δ ≥ 5

In this section, we construct an algorithm of cubic time to legally color the edges of an
outerplanar graph G with Δ ≥ 5 using at most Δ + 8 colors.

2.1 Ordered breadth first search

A rooted tree T is a tree with a particular vertex r designated as its root. The vertices of a
rooted tree can be arranged in layers, with vertices at distances i to the root r forming layer
i . Hence, layer 0 consists of the root only. For a vertex v in layer i ≥ 1, the neighbor of v

in layer i − 1 is called its father and all the neighbors of v in layer i + 1 are called its sons.
Vertices in layer i are ordered from left to right with labels vi1, v

i
2, . . . , v

i
li
so that, for any j ,

either vij and vij+1 have the same father, or the father of vij is to the left side of the father of

vij+1.
Let G be a connected outerplane graph. Beginning with a chosen vertex r , we order all

vertices clockwise. Calamoneri and Petreschi [6] constructed an algorithm OBFT for G.
It is a breadth first search starting from r in such a way that vertices coming first in the
cyclic ordering are visited first. Using OBFT, G can be edge-partitioned into a spanning
tree T rooted at r and a subgraph H with Δ(H) ≤ 4, i.e., E(G) = E(T ) ∪ E(H) and
E(T ) ∩ E(H) = ∅. Edges in E(T ) and E(H) are called tree-edges and non-tree-edges of
G, respectively. This edge-partition is called an OBFT partition. Calamoneri and Petreschi
[6] used OBFT partition to determined the L(h, 1)-labeling number of an outerplanar graph.
This edge-partition technique was also successfully employed in [14] to study the surviving
rate of outerplanar graphs.

The following key lemma was given in [6]:
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Fig. 1 An outerplane graph G∗ on 18 vertices

Fig. 2 An OBFT partition of G∗

Lemma 1 EveryOBFTpartition T∪H for a connectedouterplanegraphG has the following
properties:

(1) If vij is adjacent to vik with j < k, then vijv
i
k is a non-tree-edge, and k = j + 1.

(2) If vijv
i−1
k ∈ E(H) and vij is a son of vi−1

r , then k = r + 1 and vij is the rightmost son

of vi−1
r .

Lemma 1 indicates that every vertex vil has at most two neighbors in layer i − 1, at most
two neighbors in layer i , and at most d(vil ) − 1 neighbors in layer i + 1.

To give an example of OBFT partition, we consider the outerplane graph G∗ depicted in
Fig. 1. In Fig. 2, vertex 1 is the root of the tree T produced by OBFT and solid (broken) lines
denote tree-edges (non-tree-edges).

2.2 A legal (Δ + 8)-coloring algorithm

Given a proper edge coloring φ of a graph G, we say that two vertices u and v are conflict
if Cφ(u) = Cφ(v). Hence φ is 2-distance vertex-distinguishing if and only if there are no
conflict pair of vertices at distance 2. For convenience, a 2-distance vertex-distinguishing
edge k-coloring is abbreviated as a 2DVDE k-coloring in the following. We say that an edge
uv ∈ E(G) is legally colored if the color assigned to it is different from those of its adjacent
edges and no pair of vertices of distance 2 are conflict. Let H be a subgraph of G. A proper
edge coloring φ of H is called a 2DVDE partial coloring of G on H if Cφ(u) �= Cφ(v) for
each pair of vertices u, v ∈ V (H) with dH (u) = dG(u), dH (v) = dG(v), and dH (u, v) = 2.

Theorem 1 If G is an outerplane graph with Δ ≥ 5, then χ ′
d2(G) ≤ Δ + 8.
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Proof Let G be an outerplane graph with Δ ≥ 5. Without loss of generality, assume that
G is connected. By carrying out OBFT, G is edge-partitioned into a rooted spanning tree T
with r as its root and a subgraph H with Δ(H) ≤ 4. Then we are going to give an algorithm
of finding a 2DVDE (Δ + 8)-coloring of G using the color set C = {1, 2, . . . , Δ + 8}.
Note that |C | ≥ 13. Let u j (1 ≤ j ≤ |V (G)|) be the j-th vertex visited in this OBFT
partition, where u1 = r . Recall that E(u j ) is the set of edges incident to the vertex u j .
Define E j = E(u1) ∪ E(u2) ∪ · · · ∪ E(u j ), and G j = G[E j ], which is the subgraph of G
induced by edges in E j .

At Step 1, we color E(u1) properly with distinct colors inC . Let j ≥ 2. Suppose that E j−1

has been colored such that a 2DVDE partial coloring of G on G j−1 has been established.
At Step j , we color E(u j ) to form a 2DVDE partial coloring of G on G j . Then we set
j := j + 1 and continue our coloring procedure. Once all E(u j )’s, for 1 ≤ j ≤ |V (G)|,
have been colored, a 2DVDE coloring of G using at most Δ + 8 colors is constructed.

By Lemma 1 and the structural property of outerplane graphs, we obtain the following
useful observation:

Observation 1 (i) Let vi+1
p be a son of vil , and vi+1

q be a son of vih such that l ≤ h. If

vi+1
p vi+1

q ∈ E(H), then q = p + 1, and h = l or h = l + 1.

(ii) For j = 1, 2, 3, let vi+1
l j

be the son of vik j
with l1 < l2 < l3. If vi+1

l1
vi+1
l2

, vi+1
l2

vi+1
l3

∈
E(H), then k1 ≤ k2 ≤ k3, and exactly one of the following cases holds:

(1) k1 = k2 = k3;
(2) k2 = k1 and k3 = k2 + 1;
(3) k3 = k2 and k2 = k1 + 1.

Let u j = vil . Let v
i−1
k be the father of vil . We say that a vertex z ∈ V (G) is full if all edges

in E(z) have been colored in the foregoing steps.
We now begin with constructing a 2DVDE partial (Δ + 8)-coloring of G on G j using

C = {1, 2, . . . , Δ + 8}. Let dG j (v
i
l ) = p, dG j−1(v

i
l ) = q , and t = p − q . Then q ≤ 3.

When t = 0, since all edges in E(vil ) have been colored, we are done. Thus, in the following
discussion, wemay assume that t ≥ 1. For a vertex y ∈ V (G), letF(y) denote the set of fully
conflict vertices of y when certain edges in E(y) are considered to be colored. Obviously,
|F(y)| is no more than the number of 2-neighbors of y in G j .

Remark 1 No son z of vi−1
k+1 is in F(vil ), and no neighbor z

∗ of vil−1 in layer i +1 is in F(vil ).

Proof In fact, if z or z∗ ∈ F(vil ), then it is easy to derive that vil v
i+1
k+1 ∈ E(H) or vil v

i
l−1 ∈

E(H) and hence dG j (v
i
l ) ≥ 3. However, z or z∗ is a leaf or a 2-vertex in G j . �

The followingClaim 1 deals with the number of fully conflict vertices of vil in the subgraph
G j . By Remark 1, we need to consider the number of 2-neighbors of vil in layer i − 2, i − 1,
and i , respectively.

Claim 1 (a) If vi−1
k has the unique son vil , then vil has at most 5 fully conflict vertices.

(b) If vi−1
k has at least two sons, and vil is the leftmost son of vi−1

k , then vil has at most 5
fully conflict vertices.

(c) If vi−1
k has at least two sons, and vil is the rightmost son of vi−1

k , then vil has at most
Δ + 1 fully conflict vertices.

(d) If vi−1
k has at least three sons, and vil is a middle son of v

i−1
k , then vil has at most Δ − 1

fully conflict vertices.
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Fig. 3 Configurations a1–a6 in Claim 1(a), where black squares denote possible conflict vertices with vil

Proof We first prove (a). Note that vil has at most two neighbors in layer i . If vil has exactly
two neighbors in layer i , then Lemma 1(1) asserts that these two neighbors are vil−1 and vil+1,
and vil v

i
l−1 and vil v

i
l+1 are non-tree-edges. By Observation 1(ii), v

i
l and vil−1 have a common

father, or vil and vil+1 have a common father, which contradicts the hypothesis that vil is the

unique son of vi−1
k .

Now assume that vil has exactly one neighbor in layer i . We need to consider two subcases.
If vil v

i
l−1 ∈ E(H) and vil v

i
l+1 /∈ E(H), then the father of vil−1 is vi−1

k−1 by the outerplanarity

of G, and vil v
i−1
k+1 /∈ E(G) for otherwise G will contain a separating cycle with vi−1

k as an
internal vertex, contradicting (P3). Hence vil has at most 5 fully conflict vertices, as shown
in Fig. 3a1. If vil v

i
l−1 /∈ E(H) and vil v

i
l+1 ∈ E(H), then the father of vil+1 is vi−1

k+1 by

Observation 1(i). Furthermore, if the father of vi−1
k is vi−2

h , and the father of vi−1
k+1 is vi−2

s ,
then s = h, or s = h + 1 by the outerplanarity of G. First, we claim that vil has at most two
2-neighbors in layer i − 2. Actually, by Lemma 1(2), vi−1

k has at most two neighbors vi−2
h

and vi−2
h+1 in layer i − 2, and vi−1

k+1 has at most two neighbors vi−2
s and vi−2

s+1 in layer i − 2. If

s = h, then vil has at most two 2-neighbors vi−2
h and vi−2

h+1 in layer i − 2. If s = h + 1, then

vi−1
k+1v

i−2
s+1 /∈ E(G) because otherwise G contains a separating cycle with vi−2

h+1 as an internal

vertex, which contradicts (P3). Then vil also has at most two 2-neighbors vi−2
h and vi−2

h+1 in
layer i − 2. Hence, as shown in Fig. 3a2, a3, vil has at most 5 fully conflict vertices.

Finally, assume that vil has no neighbor in layer i , that is, vil v
i
l−1, v

i
l v

i
l+1 /∈ E(H). It is

easy to see that there do not exist a vertex x in layer i−1 and a vertex y in layer i+1 such that
xvil and yvil are non-tree-edges, for otherwise G will contain a separating cycle with vi−1

k as
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Fig. 4 Configurations b, d1 and d2 in Claim 1(b) and (d)

Fig. 5 Configurations c1–c3 in Claim 1(c)

an internal vertex. Then vil has at most 5 fully conflict vertices as shown in Fig. 3a4–a6 by
Remark 1.

Next we prove (b) and (d). It is easy to inspect from Lemma 1 that vil has the desired
properties whatever vil is adjacent to vil+1, as shown in Fig. 4b, d1, d2. It is worth noticing
that in (b), when vil+1 has two neighbors in layer i − 1, then the second neighbor, other than

vi−1
k , must be vi−1

k+1 by Lemma 1(2).

Finally, we prove (c). First assume that vil has exactly one neighbor in layer i−1, i.e., vi−1
k .

Thus, vil v
i−1
k+1 /∈ E(G). If vil v

i
l+1 /∈ E(G), then vil has obviously at most Δ − 1 fully conflict

vertices, since each such vertex must be a neighbor of vi−1
k . So assume that vil v

i
l+1 ∈ E(G).

Then vil+1 also has exactly one neighbor in layer i − 1, i.e., vi−1
k+1, by the outerplanarity of G.

It turns out that vil has at most (Δ − 1) + 1 = Δ fully conflict vertices, as shown in Fig. 5c1.
Next assume that vil has two neighbors in layer i − 1. By Lemma 1, these two neighbors

are vi−1
k and vi−1

k+1. If vil v
i
l+1 ∈ E(G), then the father of vil+1 is vi−1

k+1 by Observation 1(i).

Let vi−2
h and vi−2

s be the father of vi−1
k and vi−1

k+1, respectively. Then s = h or s = h + 1 by
the outerplanarity of G. If s = h, then vil has at most (Δ − 1) + 2 = Δ + 1 fully conflict
vertices, as shown in Fig. 5c2. If s = h+1, then vi−1

k+1 has exactly one neighbor in layer i −2
by the outerplanarity of G. Thus vil has at most (Δ − 1) + 2 = Δ + 1 fully conflict vertices,
as shown in Fig. 5c3. If vil v

i
l+1 /∈ E(G), with the similar argument, we can show that vil has

at most (Δ − 1) + 2 = Δ + 1 fully conflict vertices. �
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Since Δ ≥ 5, Claim 1 implies that vil has at most Δ + 1 fully conflict vertices in every
case.

Our project is to legally color the edges in E(u j ) \ {zu j |zu j ∈ E j−1} in such an order if
they exist: (1) vil v

i
l+1 ∈ E(H); (2) vil v

i+1
s ∈ E(H); (3) other uncolored edges.

It should be pointed out that if dG j (v
i
l+1) = dG(vil+1), then to construct a 2DVDE partial

coloring of G on G j , we must keep the legality of vil+1, i.e., the color set of vil+1 is required
to differ from those of its fully conflict vertices. To do this, let us estimate the number of
fully conflict vertices of vil+1 or vi+1

s , where vil v
i+1
s is a non-tree-edge.

Claim 2 If vil v
i
l+1 ∈ E(H) and dG j (v

i
l+1) = dG(vil+1), then |F(vil )∪F(vil+1)| ≤ |F(vil )|+

3.

Proof If vi−1
k is the root, then vi−1

k vil+1 ∈ E(T ), and F(vil+1) consists of at most one vertex

vil−1. Hence |F(vil ) ∪ F(vil+1)| ≤ |F(vil )| + |F(vil+1)| ≤ |F(vil )| + 1. So suppose that vi−1
k

is not the root. By Observation 1(i), the father of vil+1 is vi−1
k or vi−1

k+1.

• Assume that the father of vil+1 is vi−1
k . If vil+1 has exactly one neighbor in layer i − 1,

i.e., vi−1
k , then it is easy to see that dG j (v

i
l+1) = dG(vil+1) = 2. Note that every 2-

neighbor of vil+1 in N (vi−1
k ) \ {vil−1, v

i
l , v

i
l+1} is also a 2-neighbor of vil . This implies that

F(vil+1) ⊆ F(vil ) ∪ {vil−1}, and hence |F(vil ) ∪ F(vil+1)| ≤ |F(vil )| + 1. Now suppose

that vil+1 has exactly two neighbors in layer i − 1, i.e., vi−1
k and vi−1

k+1. It follows that

vil+1v
i−1
k+1 ∈ E(H) and dG j (v

i
l+1) = dG(vil+1) = 3. Note that the sons of vi−1

k+1 are of
degree at most 2 in G j . Therefore, if x ∈ F(vil+1) \ F(vil ), then x is just vil−1, or is the

neighbor of vi−1
k+1 in layer i − 1 or i − 2. By Lemma 1, vi−1

k+1 has at most two neighbors in
layer i − 2, and at most two neighbors in layer i − 1, whereas someone of these neighbors
is vi−1

k . Let vi−2
t be the father of vi−1

k , and vi−2
s be the father of vi−1

k+1. Then s = t or

s = t + 1 by the outerplanarity of G. If s = t , then vi−2
t ∈ F(vil ) ∩ F(vil+1), and hence

|F(vil ) ∪ F(vil+1)| ≤ |F(vil )| + 3. If s = t + 1, then vi−1
k+1 has exactly one neighbor in

layer i − 2, for otherwise G contains a separating cycle with vi−2
s as an internal vertex,

contradicting (P3). We also get that |F(vil ) ∪ F(vil+1)| ≤ |F(vil )| + 3.

• Assume that the father of vil+1 is vi−1
k+1. Then vil+1 has exactly one neighbor in layer

i − 1, for otherwise G contains a separating cycle with vi−1
k+1 as an internal vertex. Hence

vil+1v
i−1
k+2 /∈ E(G), and dG j (v

i
l+1) = dG(vil+1) = 2. Let vi−2

t be the father of vi−1
k , and

vi−2
s be the father of vi−1

k+1. Then s = t or s = t + 1 by the outerplanarity of G. We define

A =
{
vil−1, v

i−1
k , vi−1

k+2, v
i−2
s , vi−2

s+1

}
,

B =
{
z|z is a son of vi−1

k+1 other than vil+1 with dG j (z) = dG(z) = 2
}

.

Then it is not difficult to see that |B| ≤ 1 and F(vil+1) \ F(vil ) ⊆ A ∪ B. If |B| = 1,

say B = {w}, then wvi−1
k+2 is a non-tree-edge by the outerplanarity of G. This implies that

vi−1
k+2 /∈ F(vil+1) \ F(vil ), for otherwise vi−1

k+1v
i−1
k+2 ∈ E(G) and dG(vi−1

k+2) ≥ 3. Thus, at most

one vertex in B ∪ {vi−1
k+2} belongs to F(vil+1) \F(vil ). Assume that dG j (v

i−1
k ) ≥ 3. If at most

one of vi−2
s and vi−2

s+1 is inF(vil+1)\F(vil ), then |F(vil )∪F(vil+1)| ≤ |F(vil )|+3. Otherwise,

vi−2
s , vi−2

s+1 ∈ F(vil+1) \ F(vil ). Then vi−1
k+1v

i−2
s+1 is a non-tree-edge. By the outerplanarity of

G, s must be identical to t . Hence, vi−2
s = vi−2

t ∈ F(vil ), contradicting the assumption
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that vi−2
s ∈ F(vil+1) \ F(vil ). Now assume that dG j (v

i−1
k ) = 2. Then vil v

i
l−1 /∈ E(G),

for otherwise G would contain a separating cycle with vi−1
k as an internal vertex. Thus,

vil−1 /∈ F(vil+1). If s = t , then vi−2
t ∈ F(vil )∩F(vil+1), and henceforth |F(vil )∪F(vil+1)| ≤

|F(vil )|+3. If s = t+1, then vi−1
k+1 has exactly one neighbor in layer i−2, for otherwiseG will

contain a separating cycle with vi−2
s as an internal vertex. Consequently, |F(vil )∪F(vil+1)| ≤

|F(vil )| + 3. �
Claim 3 If vil v

i+1
s ∈ E(H) and dG j (v

i+1
s ) = dG(vi+1

s ), then |F(vi+1
s )| ≤ 2.

Proof By Lemma 1, vil−1 is the father of vi+1
s . All the sons of vil−1, other than vi+1

s , are
leaves in G j , and dG j (v

i+1
s ) = dG(vi+1

s ) = 2. Every vertex in F(vi+1
s ) is either a neighbor

of vil or vil−1 in layer i − 1 or i , or a vertex x0 in layer i + 1 with x0vil−1 ∈ E(H). Notice
that if x0 exists, then vil−2 is the father of x0 by Lemma 1. Hence, either dG j (v

i
l−2) ≥ 3, or

dG j (v
i
l−2) = 2 and vil−2 has distance 3 to vi+1

s . Therefore, at most one of x0 and vil−2 belongs
to F(vi+1

s ). It is easy to see that x0 is unique if it exists by Lemma 1. We need to consider
two situations as follows.
Case 1 vi−1

k is the root.
If dG j (v

i−1
k ) = 2, then vi−1

k has exactly two neighbors vil and vil−1 in layer 1. Thus,

F(vi+1
s ) contains at most one vertex, i.e., vi−1

k , hence |F(vi+1
s )| ≤ 1. If dG j (v

i−1
k ) ≥ 3, then

since vil has at most two neighbors in layer 1 (including vil−1), we have |F(vi+1
s )| ≤ 2.

Case 2 vi−1
k is not the root.

Case 2.1 vi−1
k is not the father of vil−1.

Then vi−1
k−1 is the father of v

i
l−1, and vil v

i−1
k+1 /∈ E(G), for otherwiseG contains a separating

cycle with vi−1
k as an internal vertex.

Case 2.1.1 vil v
i
l+1 ∈ E(H).

Then vi−1
k is the father of vil+1 by the outerplanarity of G. Thus, dG j (v

i−1
k ) ≥ 3. If

dG j (v
i−1
k−1) ≥ 3, then F(vi+1

s ) ⊆ {x0, vil−2, v
i
l+1} and hence |F(vi+1

s )| ≤ 2 by the above

discussion. So suppose that dG j (v
i−1
k−1) = 2. If neither x0 nor vil−2 is in F(vi+1

s ), then

F(vi+1
s ) ⊆ {vi−1

k−1, v
i
l+1} and consequently |F(vi+1

s )| ≤ 2. Otherwise, at least one of x0vil−1

and vil−2v
i
l−1 belongs to E(H). Since dG j (v

i−1
k−1) = 2, vi−1

k−1 is not the father of vil−2, and

hence G contains a separating cycle with vi−1
k−1 as an internal vertex, contradicting (P3).

Case 2.1.2 vil v
i
l+1 /∈ E(H).

Then vil+1 /∈ F(vi+1
s ). If neither x0 nor vil−2 is in F(vi+1

s ), then F(vi+1
s ) ⊆ {vi−1

k−1, v
i−1
k },

and so |F(vi+1
s )| ≤ 2.Otherwise, at least one of x0vil−1 and vil−2v

i
l−1 belongs to E(H). Hence

vi−1
k−1 is the father of v

i
l−2, for otherwiseG contains a separating cycle with vi−1

k−1 as an internal

vertex, contradicting (P3). Therefore, dG j (v
i−1
k−1) ≥ 3, and henceF(vi+1

s ) ⊆ {x0, vil−2, v
i−1
k }.

Thus |F(vi+1
s )| ≤ 2 by the above discussion.

Case 2.2 vi−1
k is the father of vil−1.

It suffices to show that at most one of vil+1 and vi−1
k+1 is in F(vi+1

s ). Assume the con-

trary, we have vil v
i
l+1, v

i
l v

i−1
k+1 ∈ E(G). By Observation 1(i), vil+1 is the son of vi−1

k+1. Hence

dG j (v
i−1
k+1) ≥ 3, and so vi−1

k+1 /∈ F(vi+1
s ), a contradiction. Consequently, |F(vi+1

s )| ≤ 2. �
Now we continue to construct a 2DVDE partial (Δ+8)-coloring of G on G j when t ≥ 1.

It suffices to discuss the following cases, depending on the size of t .
Case 1 t = 1.
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Let x be the neighbor of vil not in G j−1. There are two subcases to be disposed as follows:
Case 1.1 x is in layer i .

By Lemma 1, x = vil+1. Note that xv
i
l has at most q + 2 adjacent edges in G j−1, which

are contained in {vil vil−1, v
i
l v

i−1
k , vil v

i−1
k+1, xv

i−1
h , xvi−1

h+1}, where vi−1
k is the father of vli , v

i−1
h

is the father of x , and k ≤ h. By Observation 1(i), h = k or h = k + 1. Thus, xvil has at most
q + 2 ≤ 5 forbidden colors when it is considered for legal coloring at Step j .

If dG(x) > dG j (x), then we need only to legally color xvil with some color in C to form
a 2DVDE partial coloring of G on G j . This can be done since |C | − (q + 2 + |F(vil )|) ≥
|C | − (q + 2 + (Δ + 1)) = Δ + 8 − (Δ + 6) = 2 by Claim 1. It is worth mentioning
that, in this case, we do not need to consider the legality of the vertex x . Now suppose that
dG(x) = dG j (x). Let us further handle two possibilities:

• Assume that h = k. Then q ≤ 2. If vil is the leftmost son of vi−1
k , then |F(vil )| ≤ 5 by

Claim 1(b). Since |F(vil )∪F(vil+1)| ≤ |F(vil )|+3 ≤ 8 byClaim 2, and |C |−(q+2+8) ≥
1, we can legally color xvil with some color in C to get a 2DVDE partial coloring of G on
G j . Otherwise, vil is a middle son of vi−1

k , we have |F(vil )| ≤ Δ − 1 by Claim 1(d), and
|F(vil ) ∪F(x)| ≤ (Δ − 1) + 3 = Δ + 2 by Claim 2. Since |C | − (q + 2+ (Δ + 2)) ≥ 2,
we can legally color xvil with some color in C to form a 2DVDE partial coloring of G on
G j .

• Assume that h = k + 1. Then vil is the rightmost son of vi−1
k , and x is the leftmost son

of vi−1
k+1. Then vil+1v

i−1
k+2 /∈ E(G), for otherwise G has a separating cycle with vi−1

k+1 as
an internal vertex. Hence, xvil has at most q + 1 adjacent edges in G j−1 and dG(x) =
dG j (x) = 2. If vil is the unique son of vi−1

k , then |F(vil )| ≤ 5 by Claim 1(a), |F(vil ) ∪
F(vil+1)| ≤ |F(vil )| + 3 ≤ 8 by Claim 2, and |C | − (q + 1+ 8) ≥ 1. We can legally color

xvil with some color inC . Otherwise, vi−1
k has at least two sons, and vil is the rightmost son

of vi−1
k . By Claim 1(c), |F(vil )| ≤ Δ+1. We note that if q = 3, then vil v

i
l−1 is a non-tree-

edge, which implies that |F(vil )| ≤ Δ by the proof of Claim 1(c). Thus, we always have
that |F(vil )|+q ≤ Δ+3. Since |F(vil )∪F(x)|+q ≤ |F(vil )|+3+q ≤ Δ+3+3 = Δ+6
by Claim 2, and |C | − ((Δ + 6) + 1) ≥ 1, we can legally color xvil with some color in C
to set up a 2DVDE partial coloring of G on G j .

Case 1.2 x is in layer i + 1.
Then xvil has at most q +1 ≤ 4 forbidden colors. If dG(x) > dG j (x), then we can legally

color xvil with some color inC , because |C |−(q+1+|F(vil )|) ≥ |C |−(q+1+(Δ+1)) ≥ 3
by Claim 1. Now assume that dG(x) = dG j (x). If dG(x) = dG j (x) = 1, then we can give
xvil a legal coloring as in the previous case. Otherwise, dG(x) = dG j (x) = 2. By Claim 1,
|F(vil )| ≤ Δ + 1. By Claim 3, |F(x)| ≤ 2. Thus, |C | − (|F(vil )| + |F(x)| + q + 1) ≥
|C |− ((Δ+ 1)+ 2+ 4) = 1, we can legally color xvil with some color in C to get a 2DVDE
partial coloring of G on G j .
Case 2 t = 2.

Let x and y be the neighbors of vil not in G j−1. Note that at least one of x and y differs
from vil+1, say y �= vil+1. Our proof splits into the following two subcases.
Case 2.1 x = vil+1.

Since xvil has at most q + 2 ≤ 5 forbidden colors, and |F(x)| ≤ Δ + 1 by Claim 1, we
can legally color xvil with a color a in C (at the moment, we do not consider whether or not
vil has fully conflict vertices because yvil has not been colored). Now yvil still has at most
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q + 1+ 1 ≤ 5 forbidden colors. We assert that |C |− (|F(vil )|+ |F(y)|+q + 2) > 0, so that
yvil can be legally colored with some color in C . Otherwise, by Claims 2-3, we derive that
|F(vil )| = Δ + 1, |F(y)| = 2, and q = 3. Since q = 3, we see that vil v

i
l−1 ∈ E(H), hence

vil−1 /∈ F(vil ). Recalling the proof of Claim 1(c), we have |F(vil )| ≤ Δ, a contradiction.
Case 2.2 x �= vil+1.

Both x and y are in layer i + 1, say x = vi+1
h , y = vi+1

s with h > s. Indeed, h = s + 1 by
Lemma 1. We first legally color yvil with some color a ∈ C , since yvil has at most q + 1 ≤ 4
forbidden colors, and |F(y)| ≤ 2 by Claim 3. Then we color legally xvil with some color in
C \ {a}, since xvil has at most q + 1 ≤ 4 forbidden colors, and |F(vil )| ≤ Δ + 1 by Claim 1.
Case 3 t ≥ 3.

Let x1, x2, . . . , xt be the neighbors of vil not in G j−1. Without loss of generality, we
may assume that x1 = vil+1, x2 = vi+1

s , . . ., xt = vi+1
s+t−2 by Lemma 1. (If x1 = vi+1

s−1, we
have a similar discussion). First, since x1vil has at most q + 2 ≤ 5 forbidden colors, and
|F(x1)| ≤ Δ + 1 by Claim 1, we may legally color x1vil . Second, since x2vil has at most
q + 2 ≤ 5 forbidden colors and |F(x2)| ≤ 2 by Claim 3, we may legally color x2vil . Finally,

since
(
Δ+8−q−2

t−2

) ≥ (
Δ+3
t−2

) ≥ Δ + 3, there exists a subset C ′ of available colors in C with

|C ′| = t − 2, such that vil v
i+1
s+1, . . . , v

i
l v

i+1
s+t−2 can be legally colored with C ′. �

Using the result of Theorem 1, we can describe the following algorithm of finding a
2DVDE (Δ + 8)-coloring of an outerplanar graph G with Δ ≥ 5:

Algorithm: 2DVDE-Color Outerplanar Graphs (I).
Input: A connected outerplanar graph G with maximum degree Δ ≥ 5;
Output: A 2DVDE (Δ + 8)-coloring of G;

1. Choose a Δ-vertex u1 and run an OBFT partition starting from u1.
2. Color properly E(u1) with colors 1, 2, . . . , Δ.
3. Repeat for each vertex u j , from left to right, from top to down: Coloring the edges in

E(u j ) \ (E(u1) ∪ E(u2) ∪ · · · ∪ E(u j−1)) according to Theorem 1.

Theorem 2 Let G be a connected outerplanar graph with n ≥ 2 vertices and Δ ≥ 5. The
algorithm 2DVDE-Color Outerplanar Graphs (I) runs in O(n3) time.

Proof First, according to a result of [8], the algorithmof searching a spanning tree T in a graph
G by using an OBFT partiton needs O(n) time. Next, the algorithm performed in Theorem 1
is iterated n times. At each iteration, we legally color the edge subset E∗

j := E(u j ) \ E j−1.
The time complexity to consider in this part includes performing the following four tasks.

(a) Computing the total number τ1 of forbidden colors for the edges in E∗
j ;

(b) Computing the total number τ2 of fully conflict vertices for at most three fixed vertices;
(c) Selecting a subset C ′ of available colors from C = {1, 2, . . . , Δ + 8};
(d) Coloring properly E∗

j with C
′.

For (a), it follows from the proof of Theorem 1 that τ1 ≤ 5|E∗
j | ≤ 5dG(u j ) ≤ 5Δ. For

(b), Claims 1–3 showed that each vertex x has at most Δ + 1 fully conflict vertices in G j−1.
Thus, τ2 ≤ 3(Δ + 1). For (c), we need to eliminate at most Δ + 7 color subsets from C ,
whereas every color subset has at most Δ elements. For (d), at most Δ edges are required for
a legal coloring. The above analysis shows that the total running time of our algorithm is at
most n(5Δ+3(Δ+1)+Δ(Δ+7)+Δ) = n(Δ2 +16Δ+3) = O(nΔ2). Since Δ ≤ n−1,
our algorithm runs in O(n3) time. �
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3 Outerplanar graphs with Δ ≤ 4

In this section, wewill present a 2DVDE 10-coloring for an outerplanar graphwithmaximum
degree at most 4 using the color setC = {1, 2, . . . , 10}. The discussion is similar to the proof
of Theorem 1.

Theorem 3 If G is an outerplane graph with Δ ≤ 4, then χ ′
d2(G) ≤ 10.

Proof Let G be a connected outerplane graph with Δ ≤ 4. Carrying out an OBFT partiton,
we edge-partition G into a rooted spanning tree T with r as its root and a subgraph H with
Δ(H) ≤ 4, where dG(r) = Δ. Let u j (1 ≤ j ≤ |V (G)|) be the j-th vertex visited in OBFT,
where u1 = r . Define E j = E(u1) ∪ E(u2) ∪ · · · ∪ E(u j ), and G j = G[E j ], which is the
subgraph of G induced by the edges in E j .

At Step 1, we color u1u2, u1u3, . . . , u1uΔ+1 with colors 1, 2, . . . , Δ, respectively. Then
we color successively u2u3, u3u4, . . . , uΔuΔ+1 with 5, 6, 7 if existed. This is available since
G[{u2, u3, . . . , uΔ+1}] contains at most three edges by Lemma 1.

At Step j , for j = 2, 3, . . . , Δ + 1, we properly color the uncolored edges in E(u j ) from
left to right such that the used colors are selected as follows:

• If j is even, the foregoing colors in the set {8, j, j + 1, . . . , Δ, 1, 2, . . . , j − 2} are used;
• If j is odd, the foregoing colors in the set {9, j, j + 1, . . . , Δ, 1, 2, . . . , j − 2} are used.

Let j ≥ Δ + 2. Assume that E j−1 has been colored such that a 2DVDE partial coloring
φ j−1 of G on G j−1 has been established. At Step j , we will color E(u j ) to find a 2DVDE
partial coloring of G on G j . As soon as all E(u j )’s, for 1 ≤ j ≤ |V (G)|, have been colored,
a 2DVDE coloring of G using at most 10 colors is constructed.

Let u j = vil . Then i ≥ 2. Let vi−1
k be the father of vil , and vi−2

h be the father of vi−1
k . Set

dG j (v
i
l ) = dG(vil ) = p, dG j−1(v

i
l ) = q , and t = p−q . Then q ≤ 3 and p = t+q ≤ Δ ≤ 4.

Let us consider the following cases, depending on the size of t .
Case 1 t = 0.

Since all edges in E(vil ) have been colored, we are done.
Case 2 t = 1.

Let x be the neighbor of vil not in G j−1. Without loss of generality, assume that dG j (x) =
dG(x). In fact, if dG j (x) < dG(x), the proof is easier since we do not need to consider
whether or not x has fully conflict vertices. There are two subcases as follows:
Case 2.1 x is in layer i .

By Lemma 1, x = vil+1. Note that xv
i
l has at most q + 2 adjacent edges in G j−1.

Case 2.1.1 q = 3, i.e., vil v
i
l−1, v

i
l v

i−1
k+1 ∈ E(H).

Then vi−1
k+1 is the father of x , and vil−1v

i−1
k ∈ E(T ) by Observation 1. So dG j (v

i−1
k ) ≥ 3.

Note that xvi−1
k+2 /∈ E(G) for else G contains a separating cycle with vi−1

k+1 as internal vertex,

contradicting (P3). Let z∗ be the forth neighbor of vi−1
k ifdG j (v

i−1
k ) = 4. If vil−1v

i
l−2 ∈ E(G),

then z∗ = vil−2 for otherwise G will contain a separating cycle with vi−1
k as internal vertex.

Since vi−1
k+1 has at most two other neighbors except vil and x , say y1 and y2, by the fact that

Δ ≤ 4, we know that F(vil ) ⊆ {vi−2
h , z∗, y1, y2} and F(x) ⊆ {vil−1, y1, y2} by Remark 1.

Since |C | − (q + 1 + |F(vil ) ∪ F(x)|) ≥ 10 − (3 + 1 + 5) = 1, we can legally color xvil
with some color in C to get a 2DVDE partial coloring of G on G j .
Case 2.1.2 q = 2 with vil v

i−1
k+1 ∈ E(H).

Then vil v
i
l−1 /∈ E(G), and vi−1

k+1 is the father of x by Observation 1. Again, xv
i−1
k+2 /∈ E(G)

by (P3). Similarly to the previous discussion, vi−1
k+1 has at most two other neighbors y1
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and y2, and vi−1
k has at most two other neighbors z1 and z2. This implies that F(vil ) ⊆

{vi−2
h , y1, y2, z1, z2} and F(x) ⊆ {vi−1

k , y1, y2}. Since |C | − (q + 1 + |F(vil ) ∪ F(x)|) ≥
10− (2+ 1+ 6) = 1, we can legally color xvil with some color in C to get a 2DVDE partial
coloring of G on G j .
Case 2.1.3 q = 2 with vil v

i
l−1 ∈ E(H).

Then vil v
i−1
k+1 /∈ E(G). Now the proof splits into the following two cases.

Case 2.1.3.1 vi−1
k is the father of x .

Suppose that xvi−1
k+1 /∈ E(G). Then every 2-neighbor of vil+1 in N (vi−1

k ) \ {vil−1, v
i
l , v

i
l+1}

is also a 2-neighbor of vil . This implies that F(x) ⊆ F(vil ) ∪ {vil−1}, and hence |F(vil ) ∪
F(x)| ≤ |F(vil )| + 1. Since |F(vil )| ≤ 5 by Claim 1, and |C | − (q + 1+ |F(vil ) ∪F(x)|) ≥
10 − (2 + 1 + 5 + 1) = 1, we can legally color xvil with some color in C to get a 2DVDE
partial coloring of G on G j .

Suppose that xvi−1
k+1 ∈ E(G). Then dG j (x) = 3, and vi−1

k is the father of vil−1 by (P3).
Moreover, vil−1v

i
l−2 /∈ E(G) by (P3) and the assumption that Δ ≤ 4, which implies that

F(vil ) ⊆ {vi−2
h , vi−1

k+1} by Remark 1. By Claim 2, |F(vil ) ∪ F(x)| ≤ |F(vil )| + 3 ≤ 5. Since
|C |− (q + 2+|F(vil )∪F(x)|) ≥ 10− (2+ 2+ 5) = 1, we can legally color xvil with some
color in C to get a 2DVDE partial coloring of G on G j .
Case 2.1.3.2 vi−1

k+1 is the father of x .

Then vi−1
k is the father of vil−1 by Observation 1(ii), so dG j (v

i−1
k ) ≥ 3. Note that xvi−1

k+2 /∈
E(G) by (P3). Let z∗ be the forth neighbor of vi−1

k if dG j (v
i−1
k ) = 4. If vil−1v

i
l−2 ∈ E(G),

then z∗ = vil−2 by (P3). By Claim 2, |F(vil ) ∪ F(x)| ≤ |F(vil )| + 3 ≤ 6. Since |C | − (q +
1 + |F(vil ) ∪ F(x)|) ≥ 10 − (2 + 1 + 6) = 1, we can legally color xvil with some color in
C to get a 2DVDE partial coloring of G on G j .
Case 2.1.4 q = 1, i.e., vil v

i−1
k+1, v

i
l v

i
l−1 /∈ E(G).

Suppose that vi−1
k is the father of x . Let z∗ be the forth neighbor of vi−1

k if exists. Then
|F(vil )| ≤ |{z∗, vi−2

h , vi−1
k+1}| = 3. By Claim 2, |F(vil ) ∪ F(x)| ≤ |F(vil )| + 3 ≤ 6. Since

|C |− (q + 2+|F(vil )∪F(x)|) ≥ 10− (1+ 2+ 6) = 1, we can legally color xvil with some
color in C to get a 2DVDE partial coloring of G on G j .

Suppose that vi−1
k+1 is the father of x . Then vil+1v

i−1
k+2 /∈ E(G), and |F(vil )| ≤ |(N (vi−1

k ) \
{vil }) ∪ {vi−1

k+1}| ≤ 4. By Claim 2, |F(vil ) ∪ F(x)| ≤ |F(vil )| + 3 ≤ 7. Since |C | − (q + 1 +
|F(vil ) ∪ F(x)|) ≥ 10 − (1 + 1 + 7) = 1, we can legally color xvil with some color in C to
get a 2DVDE partial coloring of G on G j .
Case 2.2 x is in layer i + 1.

Then xvil has at most q + 1 ≤ 4 forbidden colors. If dG(x) = dG j (x) = 1, then we can
legally color xvil with some color inC , because |C |−(q+1+|F(vil )|) ≥ 10−(q+1+5) ≥ 1
by Claim 1. Otherwise, dG(x) = dG j (x) = 2, i.e., xvil ∈ E(H), and vil−1 is the father of x .

Case 2.2.1 vil v
i−1
k+1 ∈ E(G).

Then vi−1
k is the father of vil−1 by (P3), which implies that dG j (v

i−1
k ) ≥ 3. Let z∗ be the

forth neighbor of vi−1
k if dG j (v

i−1
k ) = 4.

Suppose that dG j (v
i−1
k+1) = 2. Let y∗ be the neighbor of vi−1

k+1 other than vil . Then F(vil ) ⊆
{vi−2

h , z∗, y∗, vil−1}. Moreover, when q = 3, we have vil v
i
l−1 ∈ E(G) and so F(vil ) ⊆

{vi−2
h , z∗, y∗}. Consequently, q + |F(vil )| ≤ 6. By Claim 3, |F(x)| ≤ 2. Since |C | − (q +

1+ |F(vil )| + |F(x)|) ≥ 10− (6+ 1+ 2) = 1, we can legally color xvil with some color in
C .
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Suppose that dG j (v
i−1
k+1) ≥ 3. By the proof of Claim 3, |F(x)| ≤ 1. By Claim 1, |F(vil )| ≤

5. Moreover, if q = 3, then vil v
i
l−1 ∈ E(G) and vil−1 /∈ F(vil ), implying |F(vil )| ≤ 4.

Consequently, q+|F(vil )| ≤ 7. Since |C |−(q+1+|F(vil )|+|F(x)|) ≥ 10−(7+1+1) = 1,
we can legally color xvil with some color in C .
Case 2.2.2 vil v

i−1
k+1 /∈ E(G).

Then 1 ≤ q ≤ 2. Assume that q = 1. By Claim 1, |F(vil )| ≤ 5. By Claim 3, |F(x)| ≤ 2.
Since |C | − (q + 1 + |F(vil )| + |F(x)|) ≥ 10 − (1 + 1 + 5 + 2) = 1, we can legally color
xvil with some color in C to get a 2DVDE partial coloring of G on G j .

Assume that q = 2, i.e., vil v
i
l−1 ∈ E(G). We assert that |C | − (q + 1 + |F(vil )| +

|F(x)|) ≥ 1, so that xvil can be legally colored with some color in C to get a 2DVDE
partial coloring of G on G j . Otherwise, we derive that |F(vil )| = 5, |F(x)| = 2, and
φ j−1(xvil−1) �= φ j−1(v

i
l v

i−1
k ). Hence φ j−1(xvil−1) /∈ {φ j−1(v

i
l v

i
l−1), φ j−1(v

i
l v

i−1
k )}, which

implies that vi−1
k /∈ F(x). In view of the proof of Claim 3, we have |F(x)| ≤ 1, a contradic-

tion.
Case 3 t = 2.

Then q ≤ 2. Let x and y be the neighbors of vil not in G j−1. Note that at least one of x
and y differs from vil+1, say y �= vil+1. Our proof splits into the following two subcases.
Case 3.1 x = vil+1.

Since xvil has at most q + 2 ≤ 4 forbidden colors, and |F(x)| ≤ 5 by Claim 1, we can
legally color xvil with a color a in C (at the moment, we do not consider whether or not
vil has fully conflict vertices because yvil has not been colored). Now yvil still has at most
q + 1 + 1 ≤ 4 forbidden colors.

If dG(y) > dG j (y), thenwe can legally color yv
i
l with some color inC , because |C |−(q+

1 + 1 + |F(vil )|) ≥ 10 − (q + 2 + 5) ≥ 1 by Claim 1. Now assume that dG(y) = dG j (y).
If dG(y) = dG j (y) = 1, then we can give yvil a legal coloring as in the previous case.
Otherwise, dG(y) = dG j (y) = 2, i.e., yvil ∈ E(H). Then vil−1 is the father of y.

Case 3.1.1 vi−1
k+1 is the father of x .

Then vi−1
k is the father of vil−1, and hence dG j (v

i−1
k ) ≥ 3. Let z∗ be the forth neighbor of

vi−1
k if dG j (v

i−1
k ) = 4.

Suppose that q = 1. Then F(vil ) ⊆ {vi−2
h , z∗, vil−1, v

i−1
k+1} by Remark 1. By Claim 3,

|F(y)| ≤ 2. Since |C | − (q + 1 + 1 + |F(vil )| + |F(y)|) ≥ 10 − (1 + 1 + 1 + 4 + 2) = 1,
we can legally color yvil with some color in C .

Suppose that q = 2 and vil v
i
l−1 ∈ E(G). If vil−1v

i
l−2 ∈ E(G), then z∗ = vil−2 by (P3).

So F(vil ) ⊆ {vi−2
h , z∗, vi−1

k+1} by Remark 1. By Claim 3, |F(y)| ≤ 2. Since |C | − (q + 1 +
1+ |F(vil )| + |F(y)|) ≥ 10− (2+ 1+ 1+ 3+ 2) = 1, we can legally color yvil with some
color in C . If vil−1v

i
l−2 /∈ E(G), then we have a similar discussion.

Suppose that q = 2 and vil v
i−1
k+1 ∈ E(G). Then dG j (v

i−1
k+1) ≥ 3. Note that vi−1

k+1 has at most

two other neighbors, say y1, y2. Therefore, F(vil ) ⊆ {vi−2
h , vil−1, z

∗, y1, y2}. By Claim 3,

|F(y)| ≤ 2. Without loss of generality, assume that φ j−1(v
i
l v

i−1
k ) = 1, φ j−1(v

i
l v

i−1
k+1) = 2,

a = 3, and φ j−1(v
i
l−1y) = α.

• α ∈ {1, 2, 3}. Suppose that yvil cannot be legally colored. It follows that |F(y)| = 2 and
|F(vil )| = 5. In this case, x ∈ F(y), and the second vertex in F(y) is vil−2 or a neighbor
of vil−1 in layer i + 1, say u∗, with dG j (v

i
l−2) = 2 or dG j (u

∗) = 2. If vil−2 ∈ F(y), then
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vil−2v
i
l−1 ∈ E(H), and the father of vil−2 is vi−1

k by (P3). That is vil−2 ∈ F(vil ). Hence,
|F(y) ∪ F(vil )| ≤ |F(y)| + |F(vil )| − 1 = 6. Since |C | − (q + 1 + |F(y) ∪ F(vil )|) ≥
10 − (2 + 1 + 6) = 1, yvil can be legally colored, a contradiction. Next suppose that
u∗ ∈ F(y). Then the father of u∗ is vil−2 by Lemma 1, and vi−1

k is the father of vil−2
by (P3). That is z∗ = vil−2, which implies that vil−2 = z∗ ∈ F(vil ). Without loss of
generality, assume that Cφ j−1(x) = {3, 4}, Cφ j−1(yi ) = {1, 2, 3, i + 4} for i = 1, 2,

Cφ j−1(v
i−2
h ) = {1, 2, 3, 7}, Cφ j−1(z

∗) = {1, 2, 3, 8}, Cφ j−1(v
i
l−1) = {1, 2, 3, 9}, and

Cφ j−1(u
∗) = {α, 10}. Then 10 ∈ Cφ j−1(v

i
l−1), which is impossible.

• α /∈ {1, 2, 3}, say α = 4. Then x /∈ F(y), since when yvil is properly colored, x and y
have different color sets. Similarly, we can show that vil−1 /∈ F(vil ). Therefore |F(y)| ≤ 1
and |F(vil )| ≤ 4 by the proof of Claims 1 and 3. Since |C | − (4 + |F(y)| + |F(vil )|) ≥
10 − (4 + 1 + 4) = 1, we can get a 2DVDE partial coloring of G on G j .

Case 3.1.2 vi−1
k is the father of x .

Then dG j (v
i−1
k ) ≥ 3. Let z∗ be the forth neighbor of vi−1

k when dG j (v
i−1
k ) = 4.

If xvi−1
k+1 ∈ E(G), then z∗ = vil−1, for else G contains a separating cycle with vi−1

k as an

internal vertex, contradicting (P3). Hence, F(vil ) ⊆ {vi−2
h , z∗, vi−1

k+1}. Since |C | − (q + 1 +
1+|F(y)|+|F(vil )|) ≥ 10−(2+1+1+2+3) = 1 by Claim 3, we can get a 2DVDE partial
coloring ofG onG j . If xv

i−1
k+1 /∈ E(G), thenF(vil ) ⊆ {vi−2

h , z∗, vil−1}when vil v
i
l−1 /∈ E(G),

or F(vil ) ∪F(y) ⊆ {vi−2
h , z∗, z1, z2, x} when vil v

i
l−1 ∈ E(G), where z1, z2 denote the other

two neighbors of vil−1. Since |C |−(q+1+1+|F(y)|+|F(vil )|) ≥ 10−(2+1+1+2+3) = 1
by Claim 3, we can get a 2DVDE partial coloring of G on G j .
Case 3.2 x �= vil+1.

Both x and y are in layer i + 1, say x = vi+1
h , y = vi+1

s with h > s. Indeed, h = s + 1 by
Lemma 1. We first legally color yvil with some color a ∈ C , since yvil has at most q + 1 ≤ 3
forbidden colors, and |F(y)| ≤ 2 by Claim 3. Then we color legally xvil with some color in
C \ {a}, since xvil has at most q + 1 ≤ 3 forbidden colors, and |F(vil )| ≤ 5 by Claim 1.
Case 4 t = 3.

Then q = 1. Let x1, x2, x3 be the neighbors of vil not in G j−1. Without loss of generality,
we may assume that x1 = vil+1, x2 = vi+1

s , x3 = vi+1
s+1 by Lemma 1. (If x1 = vi+1

s−1,
we have a similar discussion). First, since x1vil has at most q + 2 ≤ 3 forbidden colors,
and |F(x1)| ≤ 5 by Claim 1, we may legally color x1vil . Second, since x2vil has at most
q + 1 ≤ 2 forbidden colors and |F(x2)| ≤ 2 by Claim 3, we may legally color x2vil . Finally,
since |C | − (q + 2) = 7 > |F(vil )|, we color legally x3vil with some color in C . �

Using the result of Theorem 3, we now describe an algorithm of finding a 2DVDE 10-
coloring in an outerplanar graph G with Δ ≤ 4:

Algorithm: 2DVDE-Color Outerplanar Graphs (II).
Input: A connected outerplanar graph G with maximum degree Δ ≤ 4;
Output: A 2DVDE 10-coloring of G;

1. Choose a Δ-vertex u1 and run an OBFT partition starting from u1.
2. Coloring E(u1) with colors 1, 2, . . . , Δ.
3. Coloring the edges in G[{u2, u3, . . . , uΔ+1}] with colors 5, 6, 7.
4. Coloring the uncolored edges in E(u j ) for j = 2, 3, . . . , Δ + 1 from left to right, where

the used colors are selected as follows:
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• If j is even, the foregoing colors in the set {8, j, j + 1, . . . , Δ, 1, 2, . . . , j − 2} are
used;

• If j is odd, the foregoing colors in the set {9, j, j + 1, . . . , Δ, 1, 2, . . . , j − 2} are
used.

5. Repeat for each vertex u j with j ≥ Δ+ 2, from left to right, from top to down: Coloring
the edges in E(u j ) \ (E(u1) ∪ E(u2) ∪ · · · ∪ E(u j−1)) according to Theorem 3.

Similarly to the proof of Theorem 2, we obtain the following algorithmic complexity:

Theorem 4 Let G be a connected outerplanar graph with n ≥ 2 vertices and Δ ≤ 4. The
algorithm 2DVDE-Color Outerplanar Graphs (II) runs in O(n3) time.

4 Conclusion

In this paper, we focus on the study of 2-distance vertex-distinguishing index of the class of
outerplanar graphs. Combining Theorems 1 and 3, we have the following consequence:

Theorem 5 If G is an outerplane graph, then χ ′
d2(G) ≤ Δ + 8.

The upper bound Δ + 8 in Theorem 5 seems not to be best possible. We like to conclude
this paper by raising the following conjecture:

Conjecture 3 If G is an outerplane graph, then χ ′
d2(G) ≤ Δ + 2.

Note that if a graphG contains twoΔ-vertices at distance 2, then χ ′
d2(G) ≥ Δ+1. On the

other hand, it is easy to construct infinitely many outerplanar graphsG with χ ′
d2(G) = Δ+1.

These two facts imply that the upper bound Δ + 1 is tight, if Conjecture 3 is true.
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