

A polynomial-time nearly-optimal algorithm for an edge coloring problem in outerplanar graphs

Weifan Wang¹ \cdot Danjun Huang¹ \cdot Yanwen Wang¹ \cdot Yiqiao Wang² \cdot Ding-Zhu Du^{3,4}

Received: 7 July 2015 / Accepted: 7 September 2015 / Published online: 5 October 2015 © Springer Science+Business Media New York 2015

Abstract Given a graph *G*, we study the problem of finding the minimum number of colors required for a proper edge coloring of *G* such that any pair of vertices at distance 2 have distinct sets consisting of colors of their incident edges. This minimum number is called the 2-distance vertex-distinguishing index, denoted by $\chi'_{d2}(G)$. Using the breadth first search method, this paper provides a polynomial-time algorithm producing nearly-optimal solution in outerplanar graphs. More precisely, if *G* is an outerplanar graph with maximum degree Δ , then the produced solution uses colors at most $\Delta + 8$. Since $\chi'_{d2}(G) \ge \Delta$ for any graph *G*, our solution is within eight colors from optimal.

Keywords Breadth first search \cdot Tree \cdot Outerplanar graph \cdot Edge coloring \cdot 2-Distance vertex-distinguishing index

⊠ Weifan Wang wwf@zjnu.cn

Danjun Huang hdanjun@zjnu.cn

Ding-Zhu Du ding-zhu.du@tdt.edu.vn; dzdu@utdallas.edu

Yiqiao Wang yqwang@bucm.edu.cn

- ¹ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
- ² School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
- ³ Division of Algorithms and Technologies for Networks Analysis, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Weifan Wang: Research supported by NSFC (No. 11371328). Danjun Huang: Research supported by NSFC (Nos. 11301486, 11401535) and ZJNSFC (No. LQ13A010009). Yiqiao Wang: Research supported by NSFC (No. 11301035).

⁴ Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA

1 Introduction

Only simple and finite graphs are considered in this paper. Let *G* be a graph with vertex set V(G), edge set E(G), maximum degree $\Delta(G)$ and minimum degree $\delta(G)$. For a vertex *v*, we use E(v) to denote the set of edges incident to *v*. So $d_G(v) = |E(v)|$ denotes the degree of *v* in *G*. A *k*-vertex is a vertex of degree *k*. A *leaf* is a vertex of degree 1. The *distance* between two vertices *u* and *v*, denoted by $d_G(u, v)$, is the length of a shortest path connecting them if there is any. Otherwise, $d_G(u, v) = \infty$ by convention. If $d_G(u, v) = r$ for $u, v \in V(G)$, then *u* is called an *r*-distance vertex or an *r*-neighbor of *v*, and vice versa. Moreover, we use $N_G^r(v)$ to denote the set of *r*-neighbors of *v* in the graph *G*. In particular, we simply call a 1-neighbor of *v* a neighbor of *v* and abbreviate $N_G^1(v)$ to $N_G(v)$. If no ambiguity arises, $\Delta(G), d_G(v), d_G(u, v), N_G^r(v)$, and $N_G(v)$ are written as $\Delta, d(v), d(u, v), N^r(v)$, and N(v), respectively. Let diam(*G*) denote the *diameter* of a connected graph *G*, i.e., the maximum of distances between any pair of different vertices in *G*. A graph *G* is called normal if it contains no isolated edges.

A proper edge k-coloring of a graph G is a mapping $\phi : E(G) \to C = \{1, 2, ..., k\}$ such that $\phi(e) \neq \phi(e')$ for any two adjacent edges e and e'. For a vertex $v \in V(G)$, let $C_{\phi}(v)$ denote the set of colors assigned to the edges in E(v), i.e., $C_{\phi}(v) = \{\phi(uv) | uv \in E(G)\}$.

In this paper, we study the problem of finding the minimum number of colors required for a proper edge coloring of G such that any pair of vertices at distance 2 have distinct color sets. This minimum number is called the 2-distance vertex-distinguishing index, denoted by $\chi'_{d2}(G)$.

1.1 Related works

For an integer $r \ge 1$, the *r*-strong edge chromatic number $\chi'_s(G, r)$ of a graph *G* is the minimum number of colors required for a proper edge coloring of *G* such that any two vertices *u* and *v* with $d(u, v) \le r$ have $C_{\phi}(u) \ne C_{\phi}(v)$. Note that $\chi'_s(G, r)$ is well defined if and only if *G* is normal. This concept was introduced by Akbari et al. [1], and independently by Zhang et al. [17]. The reader is referred to [11, 12] for latest results for large *r*. Moreover, when $r \ge \text{diam}(G)$, $\chi'_s(G, r) = \chi'_s(G)$, where $\chi'_s(G)$ is called the *strong edge chromatic number* of *G* and this parameter has been extensively investigated, see [3–5].

The *adjacent vertex distinguishing edge chromatic number* $\chi'_a(G)$ is precisely $\chi'_s(G, 1)$. Zhang et al. [16] first introduced this notion (*adjacent strong edge coloring* in their terminology). Among other things, they proposed the following challenging conjecture, in which C_5 denotes the cycle on five vertices.

Conjecture 1 If G is a normal graph and $G \neq C_5$, then $\chi'_a(G) \leq \Delta + 2$.

Conjecture 1 was confirmed for bipartite graphs and subcubic graphs [2]. Using probabilistic analysis, Hatami [9] showed that every graph *G* with $\Delta > 10^{20}$ has $\chi'_a(G) \le \Delta + 300$. Wang et al. [15] showed that every graph *G* has $\chi'_a(G) \le 2.5\Delta$ and every semi-regular graph *G* has $\chi'_a(G) \le \frac{5}{3}\Delta + \frac{13}{3}$. A graph *G* is said to be *semi-regular* if each edge of *G* is incident to at least one Δ -vertex. If *G* is a planar graph, then it is shown in [10] that $\chi'_a(G) \le \Delta + 2$ if $\Delta \ge 12$.

More recently, the first four authors considered in [13] the 2-distance vertex-distinguishing edge coloring of graphs, which can be regarded as a relaxed form of the 2-strong edge coloring. Thus, $\Delta \leq \chi'(G) \leq \chi'_{d2}(G) \leq \chi'_{s}(G, 2)$. In [13], the 2-distance vertex-distinguishing indices of cycles, paths, trees, complete bipartite graphs, and unicycle graphs were completely determined. Moreover, a nearly-optimal upper bound on the 2-distance vertex-distinguishing

index of Halin graphs was also obtained. Especially, the following conjecture was proposed in [13]:

Conjecture 2 For any graph G, $\chi'_{d2}(G) \leq \Delta + 2$.

1.2 Our contribution

In this paper, we establish a nearly-optimal algorithm with running time $O(n^3)$ for the 2distance vertex-distinguishing edge-coloring problem in outerplanar graphs. A planar graph is called *outerplanar* if it has an embedding in the Euclidean plane such that all the vertices are located on the boundary of the unbounded face. An *outerplane graph* is a particular drawing of an outerplanar graph on the Euclidean plane. A cycle *C* is called *separating* if both its interior and exterior contain at least one vertex of *G*.

Suppose that *G* is an outerplane graph. Then the following properties (P1)–(P3) hold. Note that (P3) follows from (P2) easily, whereas the proof of (P2) appeared in [7].

(P1) $\delta(G) \leq 2$.

(P2) G does not contain a subdivision of K_4 or $K_{2,3}$ as a subgraph.

(P3) G does not contain a separating cycle.

Our algorithm is built on those properties. It gives an upper bound of $\Delta + 8$ for the 2-distance vertex-distinguishing index of outerplanar graphs. This means that the solution given by our algorithm is within eight colors from optimal.

2 Outerplanar graphs with $\Delta \geq 5$

In this section, we construct an algorithm of cubic time to legally color the edges of an outerplanar graph G with $\Delta \ge 5$ using at most $\Delta + 8$ colors.

2.1 Ordered breadth first search

A rooted tree *T* is a tree with a particular vertex *r* designated as its root. The vertices of a rooted tree can be arranged in layers, with vertices at distances *i* to the root *r* forming layer *i*. Hence, layer 0 consists of the root only. For a vertex *v* in layer $i \ge 1$, the neighbor of *v* in layer i - 1 is called its *father* and all the neighbors of *v* in layer i + 1 are called its *sons*. Vertices in layer *i* are ordered from left to right with labels $v_1^i, v_2^i, \ldots, v_{l_i}^i$ so that, for any *j*, either v_j^i and v_{j+1}^i have the same father, or the father of v_j^i is to the left side of the father of v_{j+1}^i .

Let *G* be a connected outerplane graph. Beginning with a chosen vertex *r*, we order all vertices clockwise. Calamoneri and Petreschi [6] constructed an algorithm OBFT for *G*. It is a breadth first search starting from *r* in such a way that vertices coming first in the cyclic ordering are visited first. Using OBFT, *G* can be edge-partitioned into a spanning tree *T* rooted at *r* and a subgraph *H* with $\Delta(H) \leq 4$, i.e., $E(G) = E(T) \cup E(H)$ and $E(T) \cap E(H) = \emptyset$. Edges in E(T) and E(H) are called *tree-edges* and *non-tree-edges* of *G*, respectively. This edge-partition is called an *OBFT partition*. Calamoneri and Petreschi [6] used OBFT partition to determined the L(h, 1)-labeling number of an outerplanar graph. This edge-partition technique was also successfully employed in [14] to study the surviving rate of outerplanar graphs.

The following key lemma was given in [6]:

Fig. 1 An outerplane graph G^* on 18 vertices

Fig. 2 An OBFT partition of G^*

Lemma 1 Every OBFT partition $T \cup H$ for a connected outerplane graph G has the following properties:

- If vⁱ_j is adjacent to vⁱ_k with j < k, then vⁱ_jvⁱ_k is a non-tree-edge, and k = j + 1.
 If vⁱ_jvⁱ⁻¹_k ∈ E(H) and vⁱ_j is a son of vⁱ⁻¹_r, then k = r + 1 and vⁱ_j is the rightmost son of vⁱ⁻¹_r.

Lemma 1 indicates that every vertex v_i^i has at most two neighbors in layer i - 1, at most two neighbors in layer i, and at most $d(v_i^i) - 1$ neighbors in layer i + 1.

To give an example of OBFT partition, we consider the outerplane graph G^* depicted in Fig. 1. In Fig. 2, vertex 1 is the root of the tree T produced by OBFT and solid (broken) lines denote tree-edges (non-tree-edges).

2.2 A legal (Δ + 8)-coloring algorithm

Given a proper edge coloring ϕ of a graph G, we say that two vertices u and v are *conflict* if $C_{\phi}(u) = C_{\phi}(v)$. Hence ϕ is 2-distance vertex-distinguishing if and only if there are no conflict pair of vertices at distance 2. For convenience, a 2-distance vertex-distinguishing edge k-coloring is abbreviated as a 2DVDE k-coloring in the following. We say that an edge $uv \in E(G)$ is *legally* colored if the color assigned to it is different from those of its adjacent edges and no pair of vertices of distance 2 are conflict. Let H be a subgraph of G. A proper edge coloring ϕ of H is called a 2DVDE partial coloring of G on H if $C_{\phi}(u) \neq C_{\phi}(v)$ for each pair of vertices $u, v \in V(H)$ with $d_H(u) = d_G(u), d_H(v) = d_G(v)$, and $d_H(u, v) = 2$.

Theorem 1 If G is an outerplane graph with $\Delta \ge 5$, then $\chi'_{d2}(G) \le \Delta + 8$.

Proof Let *G* be an outerplane graph with $\Delta \ge 5$. Without loss of generality, assume that *G* is connected. By carrying out OBFT, *G* is edge-partitioned into a rooted spanning tree *T* with *r* as its root and a subgraph *H* with $\Delta(H) \le 4$. Then we are going to give an algorithm of finding a 2DVDE ($\Delta + 8$)-coloring of *G* using the color set $C = \{1, 2, ..., \Delta + 8\}$. Note that $|C| \ge 13$. Let u_j ($1 \le j \le |V(G)|$) be the *j*-th vertex visited in this OBFT partition, where $u_1 = r$. Recall that $E(u_j)$ is the set of edges incident to the vertex u_j . Define $E_j = E(u_1) \cup E(u_2) \cup \cdots \cup E(u_j)$, and $G_j = G[E_j]$, which is the subgraph of *G* induced by edges in E_j .

At Step 1, we color $E(u_1)$ properly with distinct colors in C. Let $j \ge 2$. Suppose that E_{j-1} has been colored such that a 2DVDE partial coloring of G on G_{j-1} has been established. At Step j, we color $E(u_j)$ to form a 2DVDE partial coloring of G on G_j . Then we set j := j + 1 and continue our coloring procedure. Once all $E(u_j)$'s, for $1 \le j \le |V(G)|$, have been colored, a 2DVDE coloring of G using at most $\Delta + 8$ colors is constructed.

By Lemma 1 and the structural property of outerplane graphs, we obtain the following useful observation:

Observation 1 (i) Let v_p^{i+1} be a son of v_l^i , and v_q^{i+1} be a son of v_h^i such that $l \le h$. If $v_p^{i+1}v_q^{i+1} \in E(H)$, then q = p + 1, and h = l or h = l + 1.

- (ii) For j = 1, 2, 3, let $v_{l_j}^{i+1}$ be the son of $v_{k_j}^i$ with $l_1 < l_2 < l_3$. If $v_{l_1}^{i+1}v_{l_2}^{i+1}$, $v_{l_2}^{i+1}v_{l_3}^{i+1} \in E(H)$, then $k_1 \le k_2 \le k_3$, and exactly one of the following cases holds:
- (1) $k_1 = k_2 = k_3$;
- (2) $k_2 = k_1$ and $k_3 = k_2 + 1$;
- (3) $k_3 = k_2$ and $k_2 = k_1 + 1$.

Let $u_j = v_l^i$. Let v_k^{i-1} be the father of v_l^i . We say that a vertex $z \in V(G)$ is *full* if all edges in E(z) have been colored in the foregoing steps.

We now begin with constructing a 2DVDE partial $(\Delta + 8)$ -coloring of G on G_j using $C = \{1, 2, ..., \Delta + 8\}$. Let $d_{G_j}(v_l^i) = p$, $d_{G_{j-1}}(v_l^i) = q$, and t = p - q. Then $q \leq 3$. When t = 0, since all edges in $E(v_l^i)$ have been colored, we are done. Thus, in the following discussion, we may assume that $t \geq 1$. For a vertex $y \in V(G)$, let $\mathcal{F}(y)$ denote the set of fully conflict vertices of y when certain edges in E(y) are considered to be colored. Obviously, $|\mathcal{F}(y)|$ is no more than the number of 2-neighbors of y in G_j .

Remark 1 No son z of v_{k+1}^{i-1} is in $\mathcal{F}(v_l^i)$, and no neighbor z^* of v_{l-1}^i in layer i + 1 is in $\mathcal{F}(v_l^i)$.

Proof In fact, if z or $z^* \in \mathcal{F}(v_l^i)$, then it is easy to derive that $v_l^i v_{k+1}^{i+1} \in E(H)$ or $v_l^i v_{l-1}^i \in E(H)$ and hence $d_{G_j}(v_l^i) \ge 3$. However, z or z^* is a leaf or a 2-vertex in G_j .

The following Claim 1 deals with the number of fully conflict vertices of v_l^i in the subgraph G_j . By Remark 1, we need to consider the number of 2-neighbors of v_l^i in layer i - 2, i - 1, and i, respectively.

Claim 1 (a) If v_k^{i-1} has the unique son v_l^i , then v_l^i has at most 5 fully conflict vertices.

- (b) If v_kⁱ⁻¹ has at least two sons, and v_lⁱ is the leftmost son of v_kⁱ⁻¹, then v_lⁱ has at most 5 fully conflict vertices.
- (c) If v_k^{i-1} has at least two sons, and v_l^i is the rightmost son of v_k^{i-1} , then v_l^i has at most $\Delta + 1$ fully conflict vertices.
- (d) If v_kⁱ⁻¹ has at least three sons, and v_lⁱ is a middle son of v_kⁱ⁻¹, then v_lⁱ has at most Δ − 1 fully conflict vertices.

Fig. 3 Configurations a1–a6 in Claim 1(a), where *black squares* denote possible conflict vertices with v_i^l

Proof We first prove (a). Note that v_l^i has at most two neighbors in layer *i*. If v_l^i has exactly two neighbors in layer *i*, then Lemma 1(1) asserts that these two neighbors are v_{l-1}^i and v_{l+1}^i , and $v_l^i v_{l-1}^i$ and $v_l^i v_{l+1}^i$ are non-tree-edges. By Observation 1(ii), v_l^i and v_{l-1}^i have a common father, or v_l^i and v_{l+1}^i have a common father, which contradicts the hypothesis that v_l^i is the unique son of v_k^{i-1} .

Now assume that v_l^i has exactly one neighbor in layer *i*. We need to consider two subcases. If $v_l^i v_{l-1}^i \in E(H)$ and $v_l^i v_{l+1}^i \notin E(H)$, then the father of v_{l-1}^i is v_{k-1}^{i-1} by the outerplanarity of *G*, and $v_l^i v_{k+1}^{i-1} \notin E(G)$ for otherwise *G* will contain a separating cycle with v_k^{i-1} as an internal vertex, contradicting (P3). Hence v_l^i has at most 5 fully conflict vertices, as shown in Fig. 3a1. If $v_l^i v_{l-1}^i \notin E(H)$ and $v_l^i v_{l+1}^{i-1} \in E(H)$, then the father of v_{l+1}^i is v_{k+1}^{i-1} by Observation 1(i). Furthermore, if the father of v_k^{i-1} is v_h^{i-2} , and the father of v_{k+1}^{i-1} is v_s^{i-2} , then s = h, or s = h + 1 by the outerplanarity of *G*. First, we claim that v_l^i has at most two 2-neighbors in layer i - 2. Actually, by Lemma 1(2), v_k^{i-1} has at most two neighbors v_h^{i-2} and v_{k+1}^{i-2} in layer i - 2. If s = h, then v_l^i has at most two 2-neighbors v_h^{i-2} and v_{k+1}^{i-2} in layer i - 2. If s = h + 1, then $v_{k+1}^i v_{s+1}^{i-2} \notin E(G)$ because otherwise *G* contains a separating cycle with v_{h+1}^{i-2} as an internal vertex, which contradicts (P3). Then v_l^i also has at most two 2-neighbors v_h^{i-2} and v_{h+1}^{i-2} in layer i - 2. Hence, as shown in Fig. 3a2, a3, v_l^i has at most 5 fully conflict vertices.

Finally, assume that v_l^i has no neighbor in layer *i*, that is, $v_l^i v_{l-1}^i$, $v_l^i v_{l+1}^i \notin E(H)$. It is easy to see that there do not exist a vertex *x* in layer *i* – 1 and a vertex *y* in layer *i* + 1 such that xv_l^i and yv_l^i are non-tree-edges, for otherwise *G* will contain a separating cycle with v_k^{i-1} as

Fig. 4 Configurations b, d1 and d2 in Claim 1(b) and (d)

Fig. 5 Configurations c1-c3 in Claim 1(c)

an internal vertex. Then v_l^i has at most 5 fully conflict vertices as shown in Fig. 3a4–a6 by Remark 1.

Next we prove (b) and (d). It is easy to inspect from Lemma 1 that v_l^i has the desired properties whatever v_l^i is adjacent to v_{l+1}^i , as shown in Fig. 4b, d1, d2. It is worth noticing that in (b), when v_{l+1}^i has two neighbors in layer i - 1, then the second neighbor, other than v_k^{i-1} , must be v_{k+1}^{i-1} by Lemma 1(2).

Finally, we prove (c). First assume that v_l^i has exactly one neighbor in layer i - 1, i.e., v_k^{i-1} . Thus, $v_l^i v_{k+1}^{i-1} \notin E(G)$. If $v_l^i v_{l+1}^i \notin E(G)$, then v_l^i has obviously at most $\Delta - 1$ fully conflict vertices, since each such vertex must be a neighbor of v_k^{i-1} . So assume that $v_l^i v_{l+1}^i \in E(G)$. Then v_{l+1}^i also has exactly one neighbor in layer i - 1, i.e., v_{k+1}^{i-1} , by the outerplanarity of G. It turns out that v_l^i has at most $(\Delta - 1) + 1 = \Delta$ fully conflict vertices, as shown in Fig. 5c1.

Next assume that v_l^i has two neighbors in layer i - 1. By Lemma 1, these two neighbors are v_k^{i-1} and v_{k+1}^{i-1} . If $v_l^i v_{l+1}^i \in E(G)$, then the father of v_{l+1}^i is v_{k+1}^{i-1} by Observation 1(i). Let v_h^{i-2} and v_s^{i-2} be the father of v_k^{i-1} and v_{k+1}^{i-1} , respectively. Then s = h or s = h + 1 by the outerplanarity of G. If s = h, then v_l^i has at most $(\Delta - 1) + 2 = \Delta + 1$ fully conflict vertices, as shown in Fig. 5c2. If s = h + 1, then v_{k+1}^{i-1} has exactly one neighbor in layer i - 2 by the outerplanarity of G. Thus v_l^i has at most $(\Delta - 1) + 2 = \Delta + 1$ fully conflict vertices, as shown in Fig. 5c3. If $v_l^i v_{l+1}^i \notin E(G)$, with the similar argument, we can show that v_l^i has at most $(\Delta - 1) + 2 = \Delta + 1$ fully conflict vertices.

Since $\Delta \ge 5$, Claim 1 implies that v_l^i has at most $\Delta + 1$ fully conflict vertices in every case.

Our project is to legally color the edges in $E(u_j) \setminus \{zu_j | zu_j \in E_{j-1}\}$ in such an order if they exist: (1) $v_i^i v_{i+1}^i \in E(H)$; (2) $v_i^i v_{s+1}^{i+1} \in E(H)$; (3) other uncolored edges.

It should be pointed out that if $d_{G_j}(v_{l+1}^i) = d_G(v_{l+1}^i)$, then to construct a 2DVDE partial coloring of G on G_j , we must keep the legality of v_{l+1}^i , i.e., the color set of v_{l+1}^i is required to differ from those of its fully conflict vertices. To do this, let us estimate the number of fully conflict vertices of v_{l+1}^i or v_s^{i+1} , where $v_l^i v_s^{i+1}$ is a non-tree-edge.

Claim 2 If $v_l^i v_{l+1}^i \in E(H)$ and $d_{G_j}(v_{l+1}^i) = d_G(v_{l+1}^i)$, then $|\mathcal{F}(v_l^i) \cup \mathcal{F}(v_{l+1}^i)| \le |\mathcal{F}(v_l^i)| + 3$.

Proof If v_k^{i-1} is the root, then $v_k^{i-1}v_{l+1}^i \in E(T)$, and $\mathcal{F}(v_{l+1}^i)$ consists of at most one vertex v_{l-1}^i . Hence $|\mathcal{F}(v_l^i) \cup \mathcal{F}(v_{l+1}^i)| \le |\mathcal{F}(v_l^i)| + |\mathcal{F}(v_{l+1}^i)| \le |\mathcal{F}(v_l^i)| + 1$. So suppose that v_k^{i-1} is not the root. By Observation 1(i), the father of v_{l+1}^i is v_k^{i-1} or v_{k+1}^{i-1} .

- Assume that the father of v_{l+1}^i is v_k^{i-1} . If v_{l+1}^i has exactly one neighbor in layer i-1, i.e., v_k^{i-1} , then it is easy to see that $d_{G_j}(v_{l+1}^i) = d_G(v_{l+1}^i) = 2$. Note that every 2-neighbor of v_{l+1}^i in $N(v_k^{i-1}) \setminus \{v_{l-1}^i, v_l^i, v_{l+1}^i\}$ is also a 2-neighbor of v_l^i . This implies that $\mathcal{F}(v_{l+1}^i) \subseteq \mathcal{F}(v_l^i) \cup \{v_{l-1}^i\}$, and hence $|\mathcal{F}(v_l^i) \cup \mathcal{F}(v_{l+1}^i)| \leq |\mathcal{F}(v_l^i)| + 1$. Now suppose that v_{l+1}^i has exactly two neighbors in layer i-1, i.e., v_k^{i-1} and v_{k+1}^{i-1} . It follows that $v_{l+1}^i v_{k+1}^{i-1} \in E(H)$ and $d_{G_j}(v_{l+1}^i) = d_G(v_{l+1}^i) = 3$. Note that the sons of v_{k+1}^{i-1} are of degree at most 2 in G_j . Therefore, if $x \in \mathcal{F}(v_{l+1}^i) \setminus \mathcal{F}(v_l^i)$, then x is just v_{l-1}^i , or is the neighbor of v_{k+1}^{i-1} in layer i-1 or i-2. By Lemma 1, v_{k+1}^{i-1} has at most two neighbors in layer i-2, and at most two neighbors in layer i-1, whereas someone of these neighbors is v_k^{i-1} . Let v_t^{i-2} be the father of v_k^{i-1} , and v_s^{i-2} be the father of v_{k+1}^{i-1} . Then s = t or s = t+1 by the outerplanarity of G. If s = t, then $v_t^{i-2} \in \mathcal{F}(v_l^i) \cap \mathcal{F}(v_{l+1}^i)$, and hence $|\mathcal{F}(v_l^i) \cup \mathcal{F}(v_{l+1}^i)| \leq |\mathcal{F}(v_l^i)| + 3$. If s = t+1, then v_s^{i-2} as an internal vertex, contradicting (P3). We also get that $|\mathcal{F}(v_l^i) \cup \mathcal{F}(v_{l+1}^i)| \leq |\mathcal{F}(v_l^i)| + 3$.
- Assume that the father of v_{l+1}^i is v_{k+1}^{i-1} . Then v_{l+1}^i has exactly one neighbor in layer i-1, for otherwise G contains a separating cycle with v_{k+1}^{i-1} as an internal vertex. Hence $v_{l+1}^i v_{k+2}^{i-1} \notin E(G)$, and $d_{G_j}(v_{l+1}^i) = d_G(v_{l+1}^i) = 2$. Let v_l^{i-2} be the father of v_k^{i-1} , and v_s^{i-2} be the father of v_{k+1}^{i-1} . Then s = t or s = t+1 by the outerplanarity of G. We define

$$A = \left\{ v_{l-1}^{i}, v_{k}^{i-1}, v_{k+2}^{i-1}, v_{s}^{i-2}, v_{s+1}^{i-2} \right\},\$$

$$B = \left\{ z | z \text{ is a son of } v_{k+1}^{i-1} \text{ other than } v_{l+1}^{i} \text{ with } d_{G_{j}}(z) = d_{G}(z) = 2 \right\}$$

Then it is not difficult to see that $|B| \leq 1$ and $\mathcal{F}(v_{l+1}^i) \setminus \mathcal{F}(v_l^i) \subseteq A \cup B$. If |B| = 1, say $B = \{w\}$, then wv_{k+2}^{i-1} is a non-tree-edge by the outerplanarity of G. This implies that $v_{k+2}^{i-1} \notin \mathcal{F}(v_{l+1}^i) \setminus \mathcal{F}(v_l^i)$, for otherwise $v_{k+1}^{i-1}v_{k+2}^{i-1} \in E(G)$ and $d_G(v_{k+2}^{i-1}) \geq 3$. Thus, at most one vertex in $B \cup \{v_{k+2}^{i-1}\}$ belongs to $\mathcal{F}(v_{l+1}^i) \setminus \mathcal{F}(v_l^i)$. Assume that $d_{G_j}(v_k^{i-1}) \geq 3$. If at most one of v_s^{i-2} and v_{s+1}^{i-2} is in $\mathcal{F}(v_{l+1}^i) \setminus \mathcal{F}(v_l^i)$, then $|\mathcal{F}(v_l^i) \cup \mathcal{F}(v_{l+1}^i)| \leq |\mathcal{F}(v_l^i)| + 3$. Otherwise, $v_s^{i-2}, v_{s+1}^{i-2} \in \mathcal{F}(v_{l+1}^i) \setminus \mathcal{F}(v_l^i)$. Then $v_{k+1}^{i-1}v_{s+1}^{i-2}$ is a non-tree-edge. By the outerplanarity of G, s must be identical to t. Hence, $v_s^{i-2} = v_t^{i-2} \in \mathcal{F}(v_l^i)$, contradicting the assumption that $v_s^{i-2} \in \mathcal{F}(v_{l+1}^i) \setminus \mathcal{F}(v_l^i)$. Now assume that $d_{G_j}(v_k^{i-1}) = 2$. Then $v_l^i v_{l-1}^i \notin E(G)$, for otherwise *G* would contain a separating cycle with v_k^{i-1} as an internal vertex. Thus, $v_{l-1}^i \notin \mathcal{F}(v_{l+1}^i)$. If s = t, then $v_t^{i-2} \in \mathcal{F}(v_l^i) \cap \mathcal{F}(v_{l+1}^i)$, and henceforth $|\mathcal{F}(v_l^i) \cup \mathcal{F}(v_{l+1}^i)| \le |\mathcal{F}(v_l^i)| + 3$. If s = t+1, then v_{k+1}^{i-1} has exactly one neighbor in layer i-2, for otherwise *G* will contain a separating cycle with v_s^{i-2} as an internal vertex. Consequently, $|\mathcal{F}(v_l^i) \cup \mathcal{F}(v_{l+1}^i)| \le |\mathcal{F}(v_l^i)| + 3$.

Claim 3 If
$$v_l^i v_s^{i+1} \in E(H)$$
 and $d_{G_i}(v_s^{i+1}) = d_G(v_s^{i+1})$, then $|\mathcal{F}(v_s^{i+1})| \le 2$.

Proof By Lemma 1, v_{l-1}^i is the father of v_s^{i+1} . All the sons of v_{l-1}^i , other than v_s^{i+1} , are leaves in G_j , and $d_{G_j}(v_s^{i+1}) = d_G(v_s^{i+1}) = 2$. Every vertex in $\mathcal{F}(v_s^{i+1})$ is either a neighbor of v_l^i or v_{l-1}^i in layer i - 1 or i, or a vertex x_0 in layer i + 1 with $x_0v_{l-1}^i \in E(H)$. Notice that if x_0 exists, then v_{l-2}^i is the father of x_0 by Lemma 1. Hence, either $d_{G_j}(v_{l-2}^i) \ge 3$, or $d_{G_j}(v_{l-2}^i) = 2$ and v_{l-2}^i has distance 3 to v_s^{i+1} . Therefore, at most one of x_0 and v_{l-2}^i belongs to $\mathcal{F}(v_s^{i+1})$. It is easy to see that x_0 is unique if it exists by Lemma 1. We need to consider two situations as follows.

Case 1 v_k^{i-1} is the root.

If $d_{G_j}(v_k^{i-1}) = 2$, then v_k^{i-1} has exactly two neighbors v_l^i and v_{l-1}^i in layer 1. Thus, $\mathcal{F}(v_s^{i+1})$ contains at most one vertex, i.e., v_k^{i-1} , hence $|\mathcal{F}(v_s^{i+1})| \leq 1$. If $d_{G_j}(v_k^{i-1}) \geq 3$, then since v_l^i has at most two neighbors in layer 1 (including v_{l-1}^i), we have $|\mathcal{F}(v_s^{i+1})| \leq 2$. **Case 2** v_k^{i-1} is not the root.

Case 2.1 v_k^{i-1} is not the father of v_{l-1}^i .

Then v_{k-1}^{i-1} is the father of v_{l-1}^{i} , and $v_{l}^{i}v_{k+1}^{i-1} \notin E(G)$, for otherwise G contains a separating cycle with v_{k}^{i-1} as an internal vertex.

Case 2.1.1
$$v_l^i v_{l+1}^i \in E(H)$$
.

Then v_k^{i-1} is the father of v_{l+1}^i by the outerplanarity of G. Thus, $d_{G_j}(v_k^{i-1}) \ge 3$. If $d_{G_j}(v_{k-1}^{i-1}) \ge 3$, then $\mathcal{F}(v_s^{i+1}) \subseteq \{x_0, v_{l-2}^i, v_{l+1}^i\}$ and hence $|\mathcal{F}(v_s^{i+1})| \le 2$ by the above discussion. So suppose that $d_{G_j}(v_{k-1}^{i-1}) = 2$. If neither x_0 nor v_{l-2}^i is in $\mathcal{F}(v_s^{i+1})$, then $\mathcal{F}(v_s^{i+1}) \subseteq \{v_{k-1}^{i-1}, v_{l+1}^i\}$ and consequently $|\mathcal{F}(v_s^{i+1})| \le 2$. Otherwise, at least one of $x_0v_{l-1}^i$ and $v_{l-2}^iv_{l-1}^i$ belongs to E(H). Since $d_{G_j}(v_{k-1}^{i-1}) = 2$, v_{k-1}^{i-1} is not the father of v_{l-2}^i , and hence G contains a separating cycle with v_{k-1}^{i-1} as an internal vertex, contradicting (P3). **Case 2.1.2** $v_l^iv_{l+1}^i \notin E(H)$.

Then $v_{l+1}^i \notin \mathcal{F}(v_s^{i+1})$. If neither x_0 nor v_{l-2}^i is in $\mathcal{F}(v_s^{i+1})$, then $\mathcal{F}(v_s^{i+1}) \subseteq \{v_{k-1}^{i-1}, v_k^{i-1}\}$, and so $|\mathcal{F}(v_s^{i+1})| \leq 2$. Otherwise, at least one of $x_0 v_{l-1}^i$ and $v_{l-2}^i v_{l-1}^i$ belongs to E(H). Hence v_{k-1}^{i-1} is the father of v_{l-2}^i , for otherwise G contains a separating cycle with v_{k-1}^{i-1} as an internal vertex, contradicting (P3). Therefore, $d_{G_j}(v_{k-1}^{i-1}) \geq 3$, and hence $\mathcal{F}(v_s^{i+1}) \subseteq \{x_0, v_{l-2}^i, v_k^{i-1}\}$. Thus $|\mathcal{F}(v_s^{i+1})| \leq 2$ by the above discussion. **Case 2.2** v_k^{i-1} is the father of v_{l-1}^i .

It suffices to show that at most one of v_{l+1}^i and v_{k+1}^{i-1} is in $\mathcal{F}(v_s^{i+1})$. Assume the contrary, we have $v_l^i v_{l+1}^{i}$, $v_l^i v_{k+1}^{i-1} \in E(G)$. By Observation 1(i), v_{l+1}^i is the son of v_{k+1}^{i-1} . Hence $d_{G_j}(v_{k+1}^{i-1}) \ge 3$, and so $v_{k+1}^{i-1} \notin \mathcal{F}(v_s^{i+1})$, a contradiction. Consequently, $|\mathcal{F}(v_s^{i+1})| \le 2$.

Now we continue to construct a 2DVDE partial $(\Delta + 8)$ -coloring of G on G_j when $t \ge 1$. It suffices to discuss the following cases, depending on the size of t. **Case 1** t = 1. Let x be the neighbor of v_l^i not in G_{j-1} . There are two subcases to be disposed as follows: **Case 1.1** x is in layer *i*.

By Lemma 1, $x = v_{l+1}^i$. Note that xv_l^i has at most q + 2 adjacent edges in G_{j-1} , which are contained in $\{v_l^i v_{l-1}^i, v_l^i v_k^{i-1}, v_l^i v_{k+1}^{i-1}, xv_h^{i-1}, xv_{h+1}^{i-1}\}$, where v_k^{i-1} is the father of v_l^i, v_h^{i-1} is the father of x, and $k \le h$. By Observation 1(i), h = k or h = k + 1. Thus, xv_l^i has at most $q + 2 \le 5$ forbidden colors when it is considered for legal coloring at Step j.

If $d_G(x) > d_{G_j}(x)$, then we need only to legally color xv_l^l with some color in *C* to form a 2DVDE partial coloring of *G* on G_j . This can be done since $|C| - (q + 2 + |\mathcal{F}(v_l^i)|) \ge |C| - (q + 2 + (\Delta + 1)) = \Delta + 8 - (\Delta + 6) = 2$ by Claim 1. It is worth mentioning that, in this case, we do not need to consider the legality of the vertex *x*. Now suppose that $d_G(x) = d_{G_j}(x)$. Let us further handle two possibilities:

- Assume that h = k. Then $q \le 2$. If v_l^i is the leftmost son of v_k^{i-1} , then $|\mathcal{F}(v_l^i)| \le 5$ by Claim 1(b). Since $|\mathcal{F}(v_l^i) \cup \mathcal{F}(v_{l+1}^i)| \le |\mathcal{F}(v_l^i)| + 3 \le 8$ by Claim 2, and $|C| (q+2+8) \ge 1$, we can legally color xv_l^i with some color in *C* to get a 2DVDE partial coloring of *G* on G_j . Otherwise, v_l^i is a middle son of v_k^{i-1} , we have $|\mathcal{F}(v_l^i)| \le \Delta 1$ by Claim 1(d), and $|\mathcal{F}(v_l^i) \cup \mathcal{F}(x)| \le (\Delta 1) + 3 = \Delta + 2$ by Claim 2. Since $|C| (q+2+(\Delta+2)) \ge 2$, we can legally color xv_l^i with some color in *C* to form a 2DVDE partial coloring of *G* on G_j .
- Assume that h = k + 1. Then v_lⁱ is the rightmost son of v_kⁱ⁻¹, and x is the leftmost son of v_{k+1}ⁱ⁻¹. Then v_{l+1}ⁱv_{k+2}ⁱ⁻¹ ∉ E(G), for otherwise G has a separating cycle with v_{k+1}ⁱ⁻¹ as an internal vertex. Hence, xv_lⁱ has at most q + 1 adjacent edges in G_{j-1} and d_G(x) = d_{Gj}(x) = 2. If v_lⁱ is the unique son of v_kⁱ⁻¹, then |F(v_lⁱ)| ≤ 5 by Claim 1(a), |F(v_lⁱ) ∪ F(v_{l+1}ⁱ)| ≤ |F(v_lⁱ)| + 3 ≤ 8 by Claim 2, and |C| (q + 1 + 8) ≥ 1. We can legally color xv_lⁱ with some color in C. Otherwise, v_kⁱ⁻¹ has at least two sons, and v_lⁱ is the rightmost son of v_kⁱ⁻¹. By Claim 1(c), |F(v_lⁱ)| ≤ Δ + 1. We note that if q = 3, then v_lⁱv_{l-1}ⁱ is a non-tree-edge, which implies that |F(v_lⁱ)| ≤ Δ by the proof of Claim 1(c). Thus, we always have that |F(v_lⁱ)| +q ≤ Δ+3. Since |F(v_lⁱ) ∪ F(x)|+q ≤ |F(v_lⁱ)|+3+q ≤ Δ+3+3 = Δ+6 by Claim 2, and |C| ((Δ + 6) + 1) ≥ 1, we can legally color xv_lⁱ with some color in C

Case 1.2 x is in layer i + 1.

Then xv_l^i has at most $q + 1 \le 4$ forbidden colors. If $d_G(x) > d_{G_j}(x)$, then we can legally color xv_l^i with some color in C, because $|C| - (q+1+|\mathcal{F}(v_l^i)|) \ge |C| - (q+1+(\Delta+1)) \ge 3$ by Claim 1. Now assume that $d_G(x) = d_{G_j}(x)$. If $d_G(x) = d_{G_j}(x) = 1$, then we can give xv_l^i a legal coloring as in the previous case. Otherwise, $d_G(x) = d_{G_j}(x) = 2$. By Claim 1, $|\mathcal{F}(v_l^i)| \le \Delta + 1$. By Claim 3, $|\mathcal{F}(x)| \le 2$. Thus, $|C| - (|\mathcal{F}(v_l^i)| + |\mathcal{F}(x)| + q + 1) \ge |C| - ((\Delta + 1) + 2 + 4) = 1$, we can legally color xv_l^i with some color in C to get a 2DVDE partial coloring of G on G_j .

Case 2 t = 2.

Let x and y be the neighbors of v_l^i not in G_{j-1} . Note that at least one of x and y differs from v_{l+1}^i , say $y \neq v_{l+1}^i$. Our proof splits into the following two subcases. **Case 2.1** $x = v_{l+1}^i$.

Since xv_l^i has at most $q + 2 \le 5$ forbidden colors, and $|\mathcal{F}(x)| \le \Delta + 1$ by Claim 1, we can legally color xv_l^i with a color *a* in *C* (at the moment, we do not consider whether or not v_l^i has fully conflict vertices because yv_l^i has not been colored). Now yv_l^i still has at most

 $q + 1 + 1 \le 5$ forbidden colors. We assert that $|C| - (|\mathcal{F}(v_l^i)| + |\mathcal{F}(y)| + q + 2) > 0$, so that yv_l^i can be legally colored with some color in *C*. Otherwise, by Claims 2-3, we derive that $|\mathcal{F}(v_l^i)| = \Delta + 1$, $|\mathcal{F}(y)| = 2$, and q = 3. Since q = 3, we see that $v_l^i v_{l-1}^i \in E(H)$, hence $v_{l-1}^i \notin \mathcal{F}(v_l^i)$. Recalling the proof of Claim 1(c), we have $|\mathcal{F}(v_l^i)| \le \Delta$, a contradiction. **Case 2.2** $x \neq v_{l+1}^i$.

Both x and y are in layer i + 1, say $x = v_h^{i+1}$, $y = v_s^{i+1}$ with h > s. Indeed, h = s + 1 by Lemma 1. We first legally color yv_l^i with some color $a \in C$, since yv_l^i has at most $q + 1 \le 4$ forbidden colors, and $|\mathcal{F}(y)| \le 2$ by Claim 3. Then we color legally xv_l^i with some color in $C \setminus \{a\}$, since xv_l^i has at most $q + 1 \le 4$ forbidden colors, and $|\mathcal{F}(y)| \le 2$ by Claim 3. Then we color legally xv_l^i with some color in $C \setminus \{a\}$, since xv_l^i has at most $q + 1 \le 4$ forbidden colors, and $|\mathcal{F}(v_l^i)| \le \Delta + 1$ by Claim 1. **Case 3** $t \ge 3$.

Let x_1, x_2, \ldots, x_t be the neighbors of v_l^i not in G_{j-1} . Without loss of generality, we may assume that $x_1 = v_{l+1}^i$, $x_2 = v_s^{i+1}$, $\ldots, x_t = v_{s+t-2}^{i+1}$ by Lemma 1. (If $x_1 = v_{s-1}^{i+1}$, we have a similar discussion). First, since $x_1v_l^i$ has at most $q + 2 \le 5$ forbidden colors, and $|\mathcal{F}(x_1)| \le \Delta + 1$ by Claim 1, we may legally color $x_1v_l^i$. Second, since $x_2v_l^i$ has at most $q + 2 \le 5$ forbidden colors and $|\mathcal{F}(x_2)| \le 2$ by Claim 3, we may legally color $x_2v_l^i$. Finally, since $\binom{\Delta + 8 - q - 2}{t - 2} \ge \binom{\Delta + 3}{t - 2} \ge \Delta + 3$, there exists a subset C' of available colors in C with |C'| = t - 2, such that $v_l^i v_{s+1}^{i+1}, \ldots, v_l^i v_{s+t-2}^{i+1}$ can be legally colored with C'.

Using the result of Theorem 1, we can describe the following algorithm of finding a 2DVDE (Δ + 8)-coloring of an outerplanar graph *G* with $\Delta \ge 5$:

Algorithm: 2DVDE-Color Outerplanar Graphs (I).

Input: A connected outerplanar graph *G* with maximum degree $\Delta \ge 5$; **Output**: A 2DVDE ($\Delta + 8$)-coloring of *G*;

- 1. Choose a Δ -vertex u_1 and run an OBFT partition starting from u_1 .
- 2. Color properly $E(u_1)$ with colors $1, 2, \ldots, \Delta$.
- 3. Repeat for each vertex u_j , from left to right, from top to down: Coloring the edges in $E(u_j) \setminus (E(u_1) \cup E(u_2) \cup \cdots \cup E(u_{j-1}))$ according to Theorem 1.

Theorem 2 Let G be a connected outerplanar graph with $n \ge 2$ vertices and $\Delta \ge 5$. The algorithm **2DVDE-Color Outerplanar Graphs** (I) runs in $O(n^3)$ time.

Proof First, according to a result of [8], the algorithm of searching a spanning tree T in a graph G by using an OBFT partiton needs O(n) time. Next, the algorithm performed in Theorem 1 is iterated n times. At each iteration, we legally color the edge subset $E_j^* := E(u_j) \setminus E_{j-1}$. The time complexity to consider in this part includes performing the following four tasks.

- (a) Computing the total number τ_1 of forbidden colors for the edges in E_i^* ;
- (b) Computing the total number τ_2 of fully conflict vertices for at most three fixed vertices;
- (c) Selecting a subset C' of available colors from $C = \{1, 2, ..., \Delta + 8\};$
- (d) Coloring properly E_i^* with C'.

For (a), it follows from the proof of Theorem 1 that $\tau_1 \leq 5|E_j^*| \leq 5d_G(u_j) \leq 5\Delta$. For (b), Claims 1–3 showed that each vertex x has at most $\Delta + 1$ fully conflict vertices in G_{j-1} . Thus, $\tau_2 \leq 3(\Delta + 1)$. For (c), we need to eliminate at most $\Delta + 7$ color subsets from C, whereas every color subset has at most Δ elements. For (d), at most Δ edges are required for a legal coloring. The above analysis shows that the total running time of our algorithm is at most $n(5\Delta + 3(\Delta + 1) + \Delta(\Delta + 7) + \Delta) = n(\Delta^2 + 16\Delta + 3) = O(n\Delta^2)$. Since $\Delta \leq n - 1$, our algorithm runs in $O(n^3)$ time.

3 Outerplanar graphs with $\Delta \leq 4$

In this section, we will present a 2DVDE 10-coloring for an outerplanar graph with maximum degree at most 4 using the color set $C = \{1, 2, ..., 10\}$. The discussion is similar to the proof of Theorem 1.

Theorem 3 If G is an outerplane graph with $\Delta \leq 4$, then $\chi'_{d2}(G) \leq 10$.

Proof Let *G* be a connected outerplane graph with $\Delta \leq 4$. Carrying out an OBFT partiton, we edge-partition *G* into a rooted spanning tree *T* with *r* as its root and a subgraph *H* with $\Delta(H) \leq 4$, where $d_G(r) = \Delta$. Let u_j $(1 \leq j \leq |V(G)|)$ be the *j*-th vertex visited in OBFT, where $u_1 = r$. Define $E_j = E(u_1) \cup E(u_2) \cup \cdots \cup E(u_j)$, and $G_j = G[E_j]$, which is the subgraph of *G* induced by the edges in E_j .

At Step 1, we color $u_1u_2, u_1u_3, \ldots, u_1u_{\Delta+1}$ with colors $1, 2, \ldots, \Delta$, respectively. Then we color successively $u_2u_3, u_3u_4, \ldots, u_{\Delta}u_{\Delta+1}$ with 5, 6, 7 if existed. This is available since $G[\{u_2, u_3, \ldots, u_{\Delta+1}\}]$ contains at most three edges by Lemma 1.

At Step j, for $j = 2, 3, ..., \Delta + 1$, we properly color the uncolored edges in $E(u_j)$ from left to right such that the used colors are selected as follows:

- If j is even, the foregoing colors in the set $\{8, j, j+1, \dots, \Delta, 1, 2, \dots, j-2\}$ are used;
- If j is odd, the foregoing colors in the set $\{9, j, j + 1, \dots, \Delta, 1, 2, \dots, j 2\}$ are used.

Let $j \ge \Delta + 2$. Assume that E_{j-1} has been colored such that a 2DVDE partial coloring ϕ_{j-1} of G on G_{j-1} has been established. At Step j, we will color $E(u_j)$ to find a 2DVDE partial coloring of G on G_j . As soon as all $E(u_j)$'s, for $1 \le j \le |V(G)|$, have been colored, a 2DVDE coloring of G using at most 10 colors is constructed.

Let $u_j = v_l^i$. Then $i \ge 2$. Let v_k^{i-1} be the father of v_l^i , and v_h^{i-2} be the father of v_k^{i-1} . Set $d_{G_j}(v_l^i) = d_G(v_l^i) = p$, $d_{G_{j-1}}(v_l^i) = q$, and t = p-q. Then $q \le 3$ and $p = t+q \le \Delta \le 4$. Let us consider the following cases, depending on the size of t.

Case 1 t = 0.

Since all edges in $E(v_l^i)$ have been colored, we are done. Case 2 t = 1.

Let x be the neighbor of v_l^i not in G_{j-1} . Without loss of generality, assume that $d_{G_j}(x) = d_G(x)$. In fact, if $d_{G_j}(x) < d_G(x)$, the proof is easier since we do not need to consider whether or not x has fully conflict vertices. There are two subcases as follows: **Case 2.1** x is in layer *i*.

By Lemma 1, $x = v_{l+1}^i$. Note that xv_l^i has at most q + 2 adjacent edges in G_{j-1} . **Case 2.1.1** q = 3, i.e., $v_l^i v_{l-1}^i$, $v_l^i v_{k+1}^{i-1} \in E(H)$.

Then v_{k+1}^{i-1} is the father of x, and $v_{l-1}^{i}v_{k}^{i-1} \in E(T)$ by Observation 1. So $d_{G_{j}}(v_{k}^{i-1}) \ge 3$. Note that $vv_{k+2}^{i-1} \notin E(G)$ for else G contains a separating cycle with v_{k+1}^{i-1} as internal vertex, contradicting (P3). Let z^{*} be the forth neighbor of v_{k}^{i-1} if $d_{G_{j}}(v_{k}^{i-1}) = 4$. If $v_{l-1}^{i}v_{l-2}^{i} \in E(G)$, then $z^{*} = v_{l-2}^{i}$ for otherwise G will contain a separating cycle with v_{k}^{i-1} as internal vertex. Since v_{k+1}^{i-1} has at most two other neighbors except v_{l}^{i} and x, say y_{1} and y_{2} , by the fact that $\Delta \le 4$, we know that $\mathcal{F}(v_{l}^{i}) \subseteq \{v_{h}^{i-2}, z^{*}, y_{1}, y_{2}\}$ and $\mathcal{F}(x) \subseteq \{v_{l-1}^{i}, y_{1}, y_{2}\}$ by Remark 1. Since $|C| - (q + 1 + |\mathcal{F}(v_{l}^{i}) \cup \mathcal{F}(x)|) \ge 10 - (3 + 1 + 5) = 1$, we can legally color xv_{l}^{i} with some color in C to get a 2DVDE partial coloring of G on G_{j} . **Case 2.1.2** q = 2 with $v_{l}^{i}v_{k+1}^{i-1} \in E(H)$.

Then $v_l^i v_{l-1}^i \notin E(G)$, and v_{k+1}^{i-1} is the father of x by Observation 1. Again, $xv_{k+2}^{i-1} \notin E(G)$ by (P3). Similarly to the previous discussion, v_{k+1}^{i-1} has at most two other neighbors y_1

and y_2 , and v_k^{i-1} has at most two other neighbors z_1 and z_2 . This implies that $\mathcal{F}(v_l^i) \subseteq \{v_h^{i-2}, y_1, y_2, z_1, z_2\}$ and $\mathcal{F}(x) \subseteq \{v_k^{i-1}, y_1, y_2\}$. Since $|C| - (q + 1 + |\mathcal{F}(v_l^i) \cup \mathcal{F}(x)|) \ge 10 - (2 + 1 + 6) = 1$, we can legally color xv_l^i with some color in C to get a 2DVDE partial coloring of G on G_j .

Case 2.1.3 q = 2 with $v_l^i v_{l-1}^i \in E(H)$.

Then $v_l^i v_{k+1}^{i-1} \notin E(G)$. Now the proof splits into the following two cases. **Case 2.1.3.1** v_k^{i-1} is the father of x.

Suppose that $xv_{k+1}^{i-1} \notin E(G)$. Then every 2-neighbor of v_{l+1}^i in $N(v_k^{i-1}) \setminus \{v_{l-1}^i, v_l^i, v_{l+1}^i\}$ is also a 2-neighbor of v_l^i . This implies that $\mathcal{F}(x) \subseteq \mathcal{F}(v_l^i) \cup \{v_{l-1}^i\}$, and hence $|\mathcal{F}(v_l^i) \cup \mathcal{F}(x)| \leq |\mathcal{F}(v_l^i)| + 1$. Since $|\mathcal{F}(v_l^i)| \leq 5$ by Claim 1, and $|C| - (q+1+|\mathcal{F}(v_l^i) \cup \mathcal{F}(x)|) \geq 10 - (2+1+5+1) = 1$, we can legally color xv_l^i with some color in C to get a 2DVDE partial coloring of G on G_j .

Suppose that $xv_{k+1}^{i-1} \in E(G)$. Then $d_{G_j}(x) = 3$, and v_k^{i-1} is the father of v_{l-1}^i by (P3). Moreover, $v_{l-1}^i v_{l-2}^i \notin E(G)$ by (P3) and the assumption that $\Delta \leq 4$, which implies that $\mathcal{F}(v_l^i) \subseteq \{v_h^{i-2}, v_{k+1}^{i-1}\}$ by Remark 1. By Claim 2, $|\mathcal{F}(v_l^i) \cup \mathcal{F}(x)| \leq |\mathcal{F}(v_l^i)| + 3 \leq 5$. Since $|C| - (q+2+|\mathcal{F}(v_l^i) \cup \mathcal{F}(x)|) \geq 10 - (2+2+5) = 1$, we can legally color xv_l^i with some color in *C* to get a 2DVDE partial coloring of *G* on G_j .

Case 2.1.3.2 v_{k+1}^{i-1} is the father of *x*.

Then v_k^{i-1} is the father of v_{l-1}^i by Observation 1(ii), so $d_{G_j}(v_k^{i-1}) \ge 3$. Note that $xv_{k+2}^{i-1} \notin E(G)$ by (P3). Let z^* be the forth neighbor of v_k^{i-1} if $d_{G_j}(v_k^{i-1}) = 4$. If $v_{l-1}^i v_{l-2}^i \in E(G)$, then $z^* = v_{l-2}^i$ by (P3). By Claim 2, $|\mathcal{F}(v_l^i) \cup \mathcal{F}(x)| \le |\mathcal{F}(v_l^i)| + 3 \le 6$. Since $|C| - (q + 1 + |\mathcal{F}(v_l^i) \cup \mathcal{F}(x)|) \ge 10 - (2 + 1 + 6) = 1$, we can legally color xv_l^i with some color in C to get a 2DVDE partial coloring of G on G_j .

Case 2.1.4 q = 1, i.e., $v_l^i v_{k+1}^{i-1}$, $v_l^i v_{l-1}^i \notin E(G)$.

Suppose that v_k^{i-1} is the father of x. Let z^* be the forth neighbor of v_k^{i-1} if exists. Then $|\mathcal{F}(v_l^i)| \le |\{z^*, v_h^{i-2}, v_{k+1}^{i-1}\}| = 3$. By Claim 2, $|\mathcal{F}(v_l^i) \cup \mathcal{F}(x)| \le |\mathcal{F}(v_l^i)| + 3 \le 6$. Since $|C| - (q+2+|\mathcal{F}(v_l^i) \cup \mathcal{F}(x)|) \ge 10 - (1+2+6) = 1$, we can legally color xv_l^i with some color in C to get a 2DVDE partial coloring of G on G_j .

Suppose that v_{k+1}^{i-1} is the father of x. Then $v_{l+1}^{i}v_{k+2}^{i-1} \notin E(G)$, and $|\mathcal{F}(v_{l}^{i})| \leq |(N(v_{k}^{i-1}) \setminus \{v_{l}^{i}\}) \cup \{v_{k+1}^{i-1}\}| \leq 4$. By Claim 2, $|\mathcal{F}(v_{l}^{i}) \cup \mathcal{F}(x)| \leq |\mathcal{F}(v_{l}^{i})| + 3 \leq 7$. Since $|C| - (q + 1 + |\mathcal{F}(v_{l}^{i}) \cup \mathcal{F}(x)|) \geq 10 - (1 + 1 + 7) = 1$, we can legally color xv_{l}^{i} with some color in C to get a 2DVDE partial coloring of G on G_{j} .

Case 2.2 x is in layer i + 1.

Then xv_l^i has at most $q + 1 \le 4$ forbidden colors. If $d_G(x) = d_{G_j}(x) = 1$, then we can legally color xv_l^i with some color in C, because $|C| - (q + 1 + |\mathcal{F}(v_l^i)|) \ge 10 - (q + 1 + 5) \ge 1$ by Claim 1. Otherwise, $d_G(x) = d_{G_j}(x) = 2$, i.e., $xv_l^i \in E(H)$, and v_{l-1}^i is the father of x. **Case 2.2.1** $v_l^i v_{k+1}^{i-1} \in E(G)$.

Then v_k^{i-1} is the father of v_{l-1}^i by (P3), which implies that $d_{G_j}(v_k^{i-1}) \ge 3$. Let z^* be the forth neighbor of v_k^{i-1} if $d_{G_j}(v_k^{i-1}) = 4$.

Suppose that $d_{G_j}(v_{k+1}^{i-1}) = 2$. Let y^* be the neighbor of v_{k+1}^{i-1} other than v_l^i . Then $\mathcal{F}(v_l^i) \subseteq \{v_h^{i-2}, z^*, y^*, v_{l-1}^i\}$. Moreover, when q = 3, we have $v_l^i v_{l-1}^i \in E(G)$ and so $\mathcal{F}(v_l^i) \subseteq \{v_h^{i-2}, z^*, y^*\}$. Consequently, $q + |\mathcal{F}(v_l^i)| \le 6$. By Claim 3, $|\mathcal{F}(x)| \le 2$. Since $|C| - (q + 1 + |\mathcal{F}(v_l^i)| + |\mathcal{F}(x)|) \ge 10 - (6 + 1 + 2) = 1$, we can legally color xv_l^i with some color in C.

Suppose that $d_{G_j}(v_{k+1}^{i-1}) \ge 3$. By the proof of Claim 3, $|\mathcal{F}(x)| \le 1$. By Claim 1, $|\mathcal{F}(v_l^i)| \le 5$. Moreover, if q = 3, then $v_l^i v_{l-1}^i \in E(G)$ and $v_{l-1}^i \notin \mathcal{F}(v_l^i)$, implying $|\mathcal{F}(v_l^i)| \le 4$. Consequently, $q + |\mathcal{F}(v_l^i)| \le 7$. Since $|C| - (q+1+|\mathcal{F}(v_l^i)|+|\mathcal{F}(x)|) \ge 10 - (7+1+1) = 1$, we can legally color xv_l^i with some color in *C*. **Case 2.2.2** $v_l^i v_{k+1}^{i-1} \notin E(G)$.

Then $1 \le q \le 2$. Assume that q = 1. By Claim 1, $|\mathcal{F}(v_l^i)| \le 5$. By Claim 3, $|\mathcal{F}(x)| \le 2$. Since $|C| - (q + 1 + |\mathcal{F}(v_l^i)| + |\mathcal{F}(x)|) \ge 10 - (1 + 1 + 5 + 2) = 1$, we can legally color xv_l^i with some color in C to get a 2DVDE partial coloring of G on G_j .

Assume that q = 2, i.e., $v_l^i v_{l-1}^i \in E(G)$. We assert that $|C| - (q + 1 + |\mathcal{F}(v_l^i)| + |\mathcal{F}(x)|) \geq 1$, so that xv_l^i can be legally colored with some color in *C* to get a 2DVDE partial coloring of *G* on *G_j*. Otherwise, we derive that $|\mathcal{F}(v_l^i)| = 5$, $|\mathcal{F}(x)| = 2$, and $\phi_{j-1}(xv_{l-1}^i) \neq \phi_{j-1}(v_l^i v_k^{i-1})$. Hence $\phi_{j-1}(xv_{l-1}^i) \notin \{\phi_{j-1}(v_l^i v_{l-1}^i), \phi_{j-1}(v_l^i v_k^{i-1})\}$, which implies that $v_k^{i-1} \notin \mathcal{F}(x)$. In view of the proof of Claim 3, we have $|\mathcal{F}(x)| \leq 1$, a contradiction.

Case 3 t = 2.

Then $q \le 2$. Let x and y be the neighbors of v_l^i not in G_{j-1} . Note that at least one of x and y differs from v_{l+1}^i , say $y \ne v_{l+1}^i$. Our proof splits into the following two subcases. **Case 3.1** $x = v_{l+1}^i$.

Since xv_l^i has at most $q + 2 \le 4$ forbidden colors, and $|\mathcal{F}(x)| \le 5$ by Claim 1, we can legally color xv_l^i with a color *a* in *C* (at the moment, we do not consider whether or not v_l^i has fully conflict vertices because yv_l^i has not been colored). Now yv_l^i still has at most $q + 1 + 1 \le 4$ forbidden colors.

If $d_G(y) > d_{G_j}(y)$, then we can legally color yv_l^i with some color in *C*, because $|C| - (q + 1 + 1 + |\mathcal{F}(v_l^i)|) \ge 10 - (q + 2 + 5) \ge 1$ by Claim 1. Now assume that $d_G(y) = d_{G_j}(y)$. If $d_G(y) = d_{G_j}(y) = 1$, then we can give yv_l^i a legal coloring as in the previous case. Otherwise, $d_G(y) = d_{G_j}(y) = 2$, i.e., $yv_l^i \in E(H)$. Then v_{l-1}^i is the father of y. **Case 3.1.1** v_{k+1}^{i-1} is the father of x.

Then v_k^{i-1} is the father of v_{l-1}^i , and hence $d_{G_j}(v_k^{i-1}) \ge 3$. Let z^* be the forth neighbor of v_k^{i-1} if $d_{G_j}(v_k^{i-1}) = 4$.

Suppose that q = 1. Then $\mathcal{F}(v_l^i) \subseteq \{v_h^{i-2}, z^*, v_{l-1}^i, v_{k+1}^{i-1}\}$ by Remark 1. By Claim 3, $|\mathcal{F}(y)| \leq 2$. Since $|C| - (q+1+1+|\mathcal{F}(v_l^i)| + |\mathcal{F}(y)|) \geq 10 - (1+1+1+4+2) = 1$, we can legally color yv_l^i with some color in C.

Suppose that q = 2 and $v_l^i v_{l-1}^i \in E(G)$. If $v_{l-1}^i v_{l-2}^i \in E(G)$, then $z^* = v_{l-2}^i$ by (P3). So $\mathcal{F}(v_l^i) \subseteq \{v_h^{i-2}, z^*, v_{k+1}^{i-1}\}$ by Remark 1. By Claim 3, $|\mathcal{F}(y)| \leq 2$. Since $|C| - (q + 1 + 1 + |\mathcal{F}(v_l^i)| + |\mathcal{F}(y)|) \geq 10 - (2 + 1 + 1 + 3 + 2) = 1$, we can legally color yv_l^i with some color in *C*. If $v_{l-1}^i v_{l-2}^i \notin E(G)$, then we have a similar discussion.

Suppose that q = 2 and $v_l^i v_{k+1}^{i-1} \in E(G)$. Then $d_{G_j}(v_{k+1}^{i-1}) \ge 3$. Note that v_{k+1}^{i-1} has at most two other neighbors, say y_1, y_2 . Therefore, $\mathcal{F}(v_l^i) \subseteq \{v_h^{i-2}, v_{l-1}^i, z^*, y_1, y_2\}$. By Claim 3, $|\mathcal{F}(y)| \le 2$. Without loss of generality, assume that $\phi_{j-1}(v_l^i v_k^{i-1}) = 1$, $\phi_{j-1}(v_l^i v_{k+1}^{i-1}) = 2$, a = 3, and $\phi_{j-1}(v_{l-1}^i y) = \alpha$.

• $\alpha \in \{1, 2, 3\}$. Suppose that yv_l^i cannot be legally colored. It follows that $|\mathcal{F}(y)| = 2$ and $|\mathcal{F}(v_l^i)| = 5$. In this case, $x \in \mathcal{F}(y)$, and the second vertex in $\mathcal{F}(y)$ is v_{l-2}^i or a neighbor of v_{l-1}^i in layer i + 1, say u^* , with $d_{G_i}(v_{l-2}^i) = 2$ or $d_{G_i}(u^*) = 2$. If $v_{l-2}^i \in \mathcal{F}(y)$, then

 $v_{l-2}^{i}v_{l-1}^{i} \in E(H)$, and the father of v_{l-2}^{i} is v_{k}^{i-1} by (P3). That is $v_{l-2}^{i} \in \mathcal{F}(v_{l}^{i})$. Hence, $|\mathcal{F}(y) \cup \mathcal{F}(v_{l}^{i})| \leq |\mathcal{F}(y)| + |\mathcal{F}(v_{l}^{i})| - 1 = 6$. Since $|C| - (q + 1 + |\mathcal{F}(y) \cup \mathcal{F}(v_{l}^{i})|) \geq 10 - (2 + 1 + 6) = 1$, yv_{l}^{i} can be legally colored, a contradiction. Next suppose that $u^{*} \in \mathcal{F}(y)$. Then the father of u^{*} is v_{l-2}^{i} by Lemma 1, and v_{k}^{i-1} is the father of v_{l-2}^{i} by (P3). That is $z^{*} = v_{l-2}^{i}$, which implies that $v_{l-2}^{i} = z^{*} \in \mathcal{F}(v_{l}^{i})$. Without loss of generality, assume that $C_{\phi_{l-1}}(x) = \{3, 4\}$, $C_{\phi_{l-1}}(y_{l}) = \{1, 2, 3, i + 4\}$ for i = 1, 2, $C_{\phi_{l-1}}(v_{h}^{i-2}) = \{1, 2, 3, 7\}$, $C_{\phi_{l-1}}(z^{*}) = \{1, 2, 3, 8\}$, $C_{\phi_{l-1}}(v_{l-1}^{i}) = \{1, 2, 3, 9\}$, and $C_{\phi_{l-1}}(u^{*}) = \{\alpha, 10\}$. Then $10 \in C_{\phi_{l-1}}(v_{l-1}^{i})$, which is impossible.

• $\alpha \notin \{1, 2, 3\}$, say $\alpha = 4$. Then $x \notin \mathcal{F}(y)$, since when yv_l^i is properly colored, x and y have different color sets. Similarly, we can show that $v_{l-1}^i \notin \mathcal{F}(v_l^i)$. Therefore $|\mathcal{F}(y)| \le 1$ and $|\mathcal{F}(v_l^i)| \le 4$ by the proof of Claims 1 and 3. Since $|C| - (4 + |\mathcal{F}(y)| + |\mathcal{F}(v_l^i)|) \ge 10 - (4 + 1 + 4) = 1$, we can get a 2DVDE partial coloring of G on G_j .

Case 3.1.2 v_k^{i-1} is the father of *x*.

Then $d_{G_i}(v_k^{i-1}) \ge 3$. Let z^* be the forth neighbor of v_k^{i-1} when $d_{G_i}(v_k^{i-1}) = 4$.

If $xv_{k+1}^{i-1} \in E(G)$, then $z^* = v_{l-1}^i$, for else *G* contains a separating cycle with v_k^{i-1} as an internal vertex, contradicting (P3). Hence, $\mathcal{F}(v_l^i) \subseteq \{v_h^{i-2}, z^*, v_{k+1}^{i-1}\}$. Since $|C| - (q + 1 + 1 + |\mathcal{F}(y)| + |\mathcal{F}(v_l^i)|) \ge 10 - (2 + 1 + 1 + 2 + 3) = 1$ by Claim 3, we can get a 2DVDE partial coloring of *G* on *G_j*. If $xv_{k+1}^{i-1} \notin E(G)$, then $\mathcal{F}(v_l^i) \subseteq \{v_h^{i-2}, z^*, v_{l-1}^i\}$ when $v_l^i v_{l-1}^i \notin E(G)$, or $\mathcal{F}(v_l^i) \cup \mathcal{F}(y) \subseteq \{v_h^{i-2}, z^*, z_1, z_2, x\}$ when $v_l^i v_{l-1}^i \in E(G)$, where z_1, z_2 denote the other two neighbors of v_{l-1}^i . Since $|C| - (q + 1 + 1 + |\mathcal{F}(y)| + |\mathcal{F}(v_l^i)|) \ge 10 - (2 + 1 + 1 + 2 + 3) = 1$ by Claim 3, we can get a 2DVDE partial coloring of *G* on *G_j*. **Case 3.2** $x \neq v_{l+1}^i$.

Both x and y are in layer i + 1, say $x = v_h^{i+1}$, $y = v_s^{i+1}$ with h > s. Indeed, h = s + 1 by Lemma 1. We first legally color yv_l^i with some color $a \in C$, since yv_l^i has at most $q + 1 \le 3$ forbidden colors, and $|\mathcal{F}(y)| \le 2$ by Claim 3. Then we color legally xv_l^i with some color in $C \setminus \{a\}$, since xv_l^i has at most $q + 1 \le 3$ forbidden colors, and $|\mathcal{F}(y)| \le 5$ by Claim 1. **Case 4** t = 3.

Then q = 1. Let x_1, x_2, x_3 be the neighbors of v_l^i not in G_{j-1} . Without loss of generality, we may assume that $x_1 = v_{l+1}^i$, $x_2 = v_s^{i+1}$, $x_3 = v_{s+1}^{i+1}$ by Lemma 1. (If $x_1 = v_{s-1}^{i+1}$, we have a similar discussion). First, since $x_1v_l^i$ has at most $q + 2 \le 3$ forbidden colors, and $|\mathcal{F}(x_1)| \le 5$ by Claim 1, we may legally color $x_1v_l^i$. Second, since $x_2v_l^i$ has at most $q + 1 \le 2$ forbidden colors and $|\mathcal{F}(x_2)| \le 2$ by Claim 3, we may legally color $x_2v_l^i$. Finally, since $|C| - (q + 2) = 7 > |\mathcal{F}(v_l^i)|$, we color legally $x_3v_l^i$ with some color in C.

Using the result of Theorem 3, we now describe an algorithm of finding a 2DVDE 10coloring in an outerplanar graph G with $\Delta \leq 4$:

Algorithm: 2DVDE-Color Outerplanar Graphs (II).

Input: A connected outerplanar graph *G* with maximum degree $\Delta \le 4$; **Output**: A 2DVDE 10-coloring of *G*;

- 1. Choose a Δ -vertex u_1 and run an OBFT partition starting from u_1 .
- 2. Coloring $E(u_1)$ with colors $1, 2, \ldots, \Delta$.
- 3. Coloring the edges in $G[\{u_2, u_3, \ldots, u_{\Delta+1}\}]$ with colors 5, 6, 7.
- 4. Coloring the uncolored edges in $E(u_j)$ for $j = 2, 3, ..., \Delta + 1$ from left to right, where the used colors are selected as follows:

- If j is even, the foregoing colors in the set {8, j, j + 1, ..., ∆, 1, 2, ..., j − 2} are used;
- If j is odd, the foregoing colors in the set {9, j, j + 1, ..., ∆, 1, 2, ..., j − 2} are used.
- 5. Repeat for each vertex u_j with $j \ge \Delta + 2$, from left to right, from top to down: Coloring the edges in $E(u_j) \setminus (E(u_1) \cup E(u_2) \cup \cdots \cup E(u_{j-1}))$ according to Theorem 3.

Similarly to the proof of Theorem 2, we obtain the following algorithmic complexity:

Theorem 4 Let G be a connected outerplanar graph with $n \ge 2$ vertices and $\Delta \le 4$. The algorithm **2DVDE-Color Outerplanar Graphs** (II) runs in $O(n^3)$ time.

4 Conclusion

In this paper, we focus on the study of 2-distance vertex-distinguishing index of the class of outerplanar graphs. Combining Theorems 1 and 3, we have the following consequence:

Theorem 5 If G is an outerplane graph, then $\chi'_{d2}(G) \leq \Delta + 8$.

The upper bound $\Delta + 8$ in Theorem 5 seems not to be best possible. We like to conclude this paper by raising the following conjecture:

Conjecture 3 If G is an outerplane graph, then $\chi'_{d2}(G) \leq \Delta + 2$.

Note that if a graph G contains two Δ -vertices at distance 2, then $\chi'_{d2}(G) \ge \Delta + 1$. On the other hand, it is easy to construct infinitely many outerplanar graphs G with $\chi'_{d2}(G) = \Delta + 1$. These two facts imply that the upper bound $\Delta + 1$ is tight, if Conjecture 3 is true.

References

- Akbari, S., Bidkhori, H., Nosrati, N.: r-Strong edge colorings of graphs. Discrete Math. 306, 3005–3010 (2006)
- Balister, P.N., Győri, E., Lehel, J., Schelp, R.H.: Adjacent vertex distinguishing edge-colorings. SIAM J. Discrete Math. 21, 237–250 (2007)
- Bazgan, C., Harkat-Benhamdine, A.H., Li, H., Woźniak, M.: On the vertex-distinguishing proper edgecolorings of graphs. J. Comb. Theory Ser. B 75, 288–301 (1999)
- 4. Burris, A.C.: Vertex-distinguishingedge-colorings. Ph.D. Dissertation, Memphis State University (1993)
- Burris, A.C., Schelp, R.H.: Vertex-distinguishing proper edge-colorings. J. Graph Theory 26, 73–82 (1997)
- Calamoneri, T., Petreschi, R.: L(h, 1)-labeling subclasses of planar graphs. J. Parallel. Distrib. Comput. 64, 414–426 (2004)
- 7. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poincare Sect. B (N.S.) **3**, 433–438 (1967)
- Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)
- 9. Hatami, H.: Δ + 300 is a bound on the the adjacent vertex distinguishing edge chromatic number. J. Comb. Theory Ser. B **95**, 246–256 (2005)
- Horňák, M., Huang, D., Wang, W.: On neighbor-distinguishing index of planar graphs. J. Graph Theory 76, 262–278 (2014)
- 11. Kemnitz, A., Marangio, M.: d-Strong edge colorings of graphs. Graphs Comb. 30, 183–195 (2014)
- 12. Mockovčiakvá, M., Soták, R.: Arbitrarily large difference between *d*-strong chromatic index and its trivial lower bound. Discrete Math. **313**, 2000–2006 (2013)

- Wang, W., Wang, Y., Huang, D., Wang, Y.: 2-Distance vertex-distinguishing edge coloring of graphs. Discrete Appl. Math. (Submitted) (2015)
- Wang, W., Yue, X., Zhu, X.: The surviving rate of an outerplanar graph for the firefighter problem. Theor. Comput. Sci. 412, 913–921 (2011)
- Wang, Y., Wang, W., Huo, J.: Some bounds on the neighbor-distinguishing index of graphs. Discrete Math. 338, 2006–2013 (2015)
- Zhang, Z., Liu, L., Wang, J.: Adjacent strong edge coloring of graphs. Appl. Math. Lett. 15, 623–626 (2002)
- Zhang, Z., Li, J., Chen, X., Cheng, H., Yao, B.: D(β)-vertex-distinguishing proper edge-coloring of graphs. Acta Math. Sinica (Chin. Ser.) 49, 703–708 (2006)