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Abstract We propose a hierarchy of semidefinite programming (SDP) relaxations for poly-
nomial optimization with sparse patterns over unbounded feasible sets. The convergence of
the proposed SDP hierarchy is established for a class of polynomial optimization problems.
This is done by employing known sums-of-squares sparsity techniques of Kojima and Mura-
matsu Comput Optim Appl 42(1):31–41, (2009) and Lasserre SIAM J Optim 17:822–843,
(2006) together with a representation theorem for polynomials over unbounded sets obtained
recently in Jeyakumar et al. J Optim Theory Appl 163(3):707–718, (2014). We demonstrate
that the proposed sparse SDP hierarchy can solve some classes of large scale polynomial opti-
mization problems with unbounded feasible sets using the polynomial optimization solver
SparsePOP developed by Waki et al. ACM Trans Math Softw 35:15 (2008).
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1 Introduction

The optimal value of a polynomial optimization over a compact semialgebraic set can be
approximated as closely as desired by solving a hierarchy of semidefinite programming
(SDP) relaxations and the convergence is finite generically under a mild assumption called
Archimedean condition which requires the compactness of the feasible region (see [19,20,
24,27,28,30,31]). It is known that the size of the SDP relaxations of the hierarchy, known
now as the Lasserre hierarchy, rapidly grows as the number of variables and the relaxation
order increase, preventing applications of the hierarchy to large scale polynomial optimization
problems as the size of the SDP relaxations are too large to solve. A great deal of attention has
recently been focused on reducing the size of these SDP relaxations. This has led to a sparse
variant of the Lasserre hierarchy that allowed applications to various large scale polynomial
optimization problems over compact semialgebraic feasible sets [5,8,16,18,36] such as the
sensor network localization problems [17,25], hybrid system identification problems [7],
optimal power flow problems [9], robust optimization problems [1], portfolio optimization
problems [15] and filter design problems [22].

More recently, the standard Lasserre hierarchy of SDP relaxations has been shown to
extend to polynomial optimization over unbounded semialgebraic feasible sets via suitable
modifications [11]. The purpose of this paper is to present a convergent sparse SDP hierarchy
for solving polynomial optimization problems with sparse patterns and unbounded semial-
gebraic feasible sets, extending the unbounded version of the Lasserre hierarchy [11]. More
specifically, we make the following contributions to global polynomial optimization.

(1) We present a sparse SDP hierarchy for solving polynomial optimization problems with
unbounded feasible sets incorporating the objective function in the construction of
quadratic modules that generate the sequence of SDP relaxations. This approach extends
the relaxation scheme, developed for convex polynomial optimization over noncompact
sets [12]. This is done by employing known sums-of-squares sparsity techniques [18,21]
together with a representation theorem for polynomials over unbounded sets, established
recently in [11].

(2) By solving some numerical test problems, we illustrate that our sparse SDP hierarchy
can easily be adaptedwith the current large scale polynomial optimization solver Sparse-
POP [37] to solve some classes of large scale polynomial optimization problems with
unbounded feasible sets. We also apply our SDP hierarchy to solve a class of sparse
polynomial optimization problems with unbounded feasible sets and hidden coercivity.

The organization of the paper is as follows. In Sect. 2, we fix the notation and recall some
basic facts on polynomial optimization. In Sect. 3, we present our sparse SDP hierarchy
for polynomial optimization with unbounded feasible sets and establish its convergence. In
Sect. 4,we illustrate howour proposed schemeworks by solving various large scale numerical
test problems.

2 Preliminaries

Throughout this paper, Rn denotes the Euclidean space with dimension n. The inner product
inRn is defined by 〈x, y〉 := xT y for all x, y ∈ R

n . The non-negative orthant ofRn is denoted
by R

n+ and is defined by R
n+ := {(x1, . . . , xn) ∈ R

n | xi ≥ 0}. The closed ball with center x
and radius r is denoted byB(x, r).Weuse en to denotes the vector inRn whose elements are all
one. For a multi-index α = (α1, . . . , αn), the monomial xα is defined by xα = xα1

1 , . . . , xαn
n .
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Denote by R[x] the ring of polynomials in x := (x1, x2, . . . , xn) with real coefficients. The
degree of a real polynomial f is denoted by deg f . We say that a real polynomial f ∈ R[x]
is a sum of squares (SOS) polynomial if there exist real polynomials f j , j = 1, . . . , r, such
that f = ∑r

j=1 f 2j . The set of all sum of squares real polynomials with variable x is denoted

by �2[x]. The set of all sum of squares real polynomial with variable x and degree at most
d is denoted by �2

d [x]. An important property of SOS polynomials is that checking a given
polynomial with degree d is a sum of squares polynomial with degree d or not is equivalent
to solving a semidefinite linear programming problem (see [10,13,14,20,24,28,32]).

The quadratic moduleM(g; h) = M(−g1, . . .−gm; h1, . . . , hq) ⊂ R[x] associated with
the semi-algebraic set K , defined by

K := {x : g j (x) ≤ 0, j = 1, . . . ,m; hs(x) = 0, s = 1, . . . , q}, (2.1)

is given by

M(g; h) :=
⎧
⎨

⎩
σ0 −

m∑

j=1

σ j (x)g j (x) +
q∑

s=1

φ(x)hs(x) :

σ j ∈ �2[x], j = 0, 1, . . . ,m; φs ∈ R[x], s = 1, . . . , q

⎫
⎬

⎭
.

We note that any member of the quadratic module M(g; h) is a polynomial which is non-
negative over the set K . The quadratic module M(g; h) is called Archimedean [20,24] if
there exists a polynomial ψ ∈ M(g; h) such that {x : ψ(x) ≥ 0} is compact. A necessary
condition for the quadratic moduleM(g; h) to be Archimedean is that the set K is a compact
set.

Lemma 2.1 (Putinar positivstellensatz) [29] Let f, g j , hs , j = 1, . . . ,m, s = 1, . . . , q, be
real polynomials with K := {x : g j (x) ≤ 0, j = 1, . . . ,m, hs(x) = 0, s = 1, . . . , q} �= ∅.
LetM(g; h) be Archimedean. If f (x) > 0 for all x ∈ K, then f ∈ M(g; h).

We now introduce a sparse version of Putinar positivestellensatz which was derived by
Lasserre [21] and improved later on by Kojima and Muramatsu [18]. To do this, we need
the definitions of the support of a polynomial and the running intersection property. Recall
that, for a polynomial f (x) = ∑

α fαxα on R
n with degree d , the support of f is denoted

by supp f and is defined by

supp f =
{
α ∈ (N ∪ {0})d : fα �= 0

}
.

Definition 2.1 (Running intersection property) Let Il , l = 1, . . . , p be index sets such
that

⋃p
l=1 Il = {1, . . . , n}. We say that the running intersection property holds for Il , l =

1, . . . , p, if for each l = 1, . . . , p − 1, there exists s ≤ l such that

Il+1 ∩
⎛

⎝
l⋃

j=1

I j

⎞

⎠ ⊆ Is .

Wenote that the running intersection property has its roots in graph theory, and can be satisfied
for many polynomial optimization problems with structured sparsity patterns. In particular,
It is known that maximal cliques of a chordal graph (after possible reordering) satisfy the
running intersection property [35, Theorem 3.5]. For a detailed discussion, see [18].
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Lemma 2.2 (SparseversionofPutinarpositivstellensatz [18,21]) Let f (x)=∑p
l=1 f l(x),

g j (x) = ∑
α(g j )αxα , j = 1, . . . ,m, and hs(x) = ∑

α(hs)αxα , s = 1, . . . , q, be polynomi-
als on R

n with degree d. Let Il be a set of indexes such that supp f l ⊆ Il ⊆ {1, . . . , n}, l =
1, . . . , p and

⋃p
l=1 Il = {1, . . . , n}. Suppose that for each j = 1, . . . ,m and s = 1, . . . , q,

suppg j ∪ supphs ⊆ Il for some l ∈ {1, . . . , p}, and the running intersection property holds
for Il , l = 1, . . . , p. Let K := {x : g j (x) ≤ 0, j = 1, . . . ,m, hs(x) = 0, s = 1, . . . , q} �= ∅
and let M(g; h) be Archimedean. If f (x) > 0 on K , then

f =
p∑

l=1

⎛

⎝σ0l −
m∑

j=1

σ jl g j +
q∑

s=1

φslhs

⎞

⎠

where σ jl , j = 0, 1, . . . ,m, are SOS polynomials with variables {xi : i ∈ Il}, and φsl ,
s = 1, . . . , q, are real polynomials with variables {xi : i ∈ Il}.

Wenote that, the assumption “for each j = 1, . . . ,m and s = 1, . . . , q , suppg j∪supphs ⊆
Il for some l ∈ {1, . . . , p}” and the running intersection property are automatically satisfied
in the special case where p = 1 and I1 = {1, . . . , n}. So, in this case, the sparse version of
Putinar positivstellensatz reduces to Putinar positivstellensatz.

2.1 Coercivity of polynomials

We now recall the definitions for coercive polynomials. This definition plays an important
role in our analysis for positivity over noncompact sets later on.

Definition 2.2 (Coercivity and strong coercivity) Let f (x) = ∑
α fαxα be a polynomial

on R
n with degree d . Let f (x) = ∑d

i=0 fi (x) where each fi is a homogeneous polynomial
of degree i , i = 0, 1, . . . , d . We say the polynomial f is

• coercive if f (x) → +∞ whenever ‖x‖ → +∞;
• s-strongly coercive for some s ∈ {1, . . . , d} if fs(x) > 0 for all x �= 0 and fi (x) ≥ 0

for all s + 1 ≤ i ≤ d and x ∈ R
n ;

• strongly coercive if f is d-strongly coercive.

It follows from the definition that an s-strongly coercive polynomial, s = 1, . . . , d , must
be coercive. On the other hand, the converse is not true. As an example, the 2-dimensional
Rosenbrock function

f (x1, x2) = 1 + (
x2 − x21

)2 + (1 − x2)
2

is a coercive polynomial which is not s-strongly coercive for s = 1, 2, 3, 4. We also note
that it was shown in [11] that the strong coercivity can be numerically checked by solving
semidefinite programming problems. Furthermore, any polynomial of the form

∑n
i=1 ai x

d
i +∑

|α|≤d−1 hαxα where |α| = ∑n
i=1 αi with α = (α1, . . . , αn) ∈ (N ∪ {0})n , d ∈ 2N and

ai > 0, i = 1, . . . , n, is a strongly coercive polynomial.
The following proposition shows that a coercive polynomial is always level-bounded.

Moreover, the corresponding bound for the lower level set can be computed using the coef-
ficients of the underlying polynomial if the polynomial is assumed to be s-strongly coercive
for some s = 1, . . . , d .

Proposition 2.1 (Boundness of the lower level set via coercivity) Let f (x) = ∑
α fαxα

be a coercive polynomial on R
n with degree d. Let f (x) = ∑d

i=0 fi (x) where each fi is a
homogeneous polynomial with degree i , i = 0, 1, . . . , d. Then, for each c ∈ R, the lower
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level set {x : f (x) ≤ c} is a compact set. Furthermore, if f is s-strongly coercive for some
s = 1, . . . , d, then {x : f (x) ≤ c} ⊆ B(0, r) where

r = max

{

1,
c + ∑

0≤|α|≤s−1 | fα|
ρs

}

and ρs = min{ fs(x) : ‖x‖ = 1}.

Proof Fix any c ∈ R. Then, the lower level set {x : f (x) ≤ c} is a compact set. To see this,
we suppose on the contrary that there exists {xn}∞n=1, with f (xn) ≤ c and {xn} is unbounded.
By passing to subsequence if necessary, wemay assume that ‖xn‖ → +∞. As f is a coercive
polynomial, we must have f (xn) → +∞. This contradicts the fact that f (xn) ≤ c for all
n ∈ N.

To see the second assertion,we assume that f is s-strongly coercive for some s = 1, . . . , d .
Let a ∈ R

n be any point such that f (a) ≤ c. Then,

ρs‖a‖s ≤ fs(a)≤
d∑

j=s

f j (a)= f (a) −
s−1∑

j=0

f j (a) ≤ c −
s−1∑

j=0

f j (a) ≤ c+
∑

0≤|α|≤s−1

| fα| |aα|.

This gives us that either ‖a‖ ≤ 1 or

ρs‖a‖s ≤ c +
∑

0≤|α|≤s−1

| fα| |aα| ≤ c +
∑

0≤|α|≤s−1

| fα|‖a‖|α|

≤
⎛

⎝c +
∑

0≤|α|≤s−1

| fα|
⎞

⎠ ‖a‖s−1,

where the second inequality follows from the fact that |xα| ≤ ‖x‖|α| for all ‖x‖ ≥ 1 and the
last inequality is from the fact that ‖x‖|α| ≤ ‖x‖s−1 for all |α| ≤ s − 1 and ‖x‖ ≥ 1. So, we
have

‖a‖ ≤ max

{

1,
c + ∑

0≤|α|≤s−1 | fα|
ρs

}

,

and hence, the conclusion follows. ��
Corollary 2.1 Let f (x) = ∑

α fαxα and g j (x) = ∑
α(g j )αxα , j = 1, . . . ,m, be polyno-

mials on R
n with degree d.

(i) If there exist μ j ≥ 0, j = 0, 1, . . . ,m, such that μ0 f + ∑m
j=1 μ j g j is coercive, then,

for each c ∈ R, the set {x : g j (x) ≤ 0, j = 1, . . . ,m, f (x) ≤ c} is a compact set.
(ii) If μ0 f + ∑m

j=1 μ j g j is s-strongly coercive for some s ∈ {1, . . . , d}, then
{x : g j (x) ≤ 0, j = 1, . . . ,m, f (x) ≤ c} ⊆ B((0, r),

where

r = max

{

1,
μ0c + ∑

0≤|α|≤s−1 |μ0 fα + ∑m
j=1 μ j (g j )α|

ρs

}

and

ρs = min

⎧
⎨

⎩

⎛

⎝μ0 f +
m∑

j=1

μ j g j

⎞

⎠

s

(v) : ‖v‖ = 1

⎫
⎬

⎭
.
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Proof Note that {x : g j (x) ≤ 0, j = 1, . . . ,m, f (x) ≤ c} ⊆ {x : μ0 f (x) +∑m
j=1 μ j gi (x) ≤ μ0c}. The conclusion follows by applying the Proposition 2.1 with f

replaced by μ0 f + ∑m
j=1 μ j gi . ��

3 A sparse hierarchy for optimization over unbounded sets

Consider the polynomial optimization problem

(P) min
p∑

l=1

f l(x)

s.t. g j (x) ≤ 0, j = 1, . . . ,m,

hs(x) = 0, s = 1, . . . , q,

where f l , g j , hs are (nonconvex) polynomials on R
n , l = 1, . . . , p, j = 1, . . . ,m and

s = 1, . . . , q . Let the feasible set be denoted by K , that is, K = {x : g j (x) ≤ 0, j =
1, . . . ,m, hs(x) = 0, s = 1, . . . , q}.

Let f (x) = ∑p
l=1 f l(x), g j (x) = ∑

α(g j )αxα , j = 1, . . . ,m and hs(x) = ∑
α(hs)αxα ,

s = 1, . . . , q , be polynomials on R
n with degree d . For simplicity, here we assume that

the objective polynomial functions and the constraint polynomial functions have the same
degree because one can let d be the maximum of the degree of f , g j , j = 1, . . . ,m and hs ,
s = 1, . . . , q , and regard f , g j and hs as polynomials with degree d .

Let Il be a set of indices such that supp f l ⊆ Il ⊆ {1, . . . , n}, l = 1, . . . , p and
⋃p

l=1 Il =
{1, . . . , n}. Let x0 ∈ {x : g j (x) ≤ 0, j = 1, . . . ,m} and let c be a number such that
c > max1≤l≤p{ f l(x0)}. For each integer k, we define the truncated sparse version of the
quadratic module M̄k by

M̄k :=
⎧
⎨

⎩

p∑

l=1

(

σ0l −
m∑

j=1

σ jl g j + σ̄l(c − f l) +
q∑

s=1

φslhs

)

| σ0l , σ jl , σ̄l ∈ �2[xl ], φs ∈ R[xl ]

deg σ0l ≤ 2k, deg σ jl g j ≤ 2k, deg σ̄l(c − f l) ≤ 2k, degφsl hs ≤ 2k

}

,

where for each l = 1, . . . , p, �2[xl ] denotes the set of all SOS polynomials with variable
{xi : i ∈ Il} and R[xl ], denotes the set of all real polynomials with variable {xi : i ∈ Il}.

Consider the following relaxation problem

f̄ ∗
k := sup

{
μ ∈ R | f − μ ∈ M̄k

}
. (3.1)

By construction, f̄ ∗
k ≤ f̄ ∗

k+1 ≤ · · · ≤ min(P). Note that, if we set σ̄l ≡ 0, l = 1, . . . , p,
then the hierarchy (3.1) reduces to the known sparse SDP hierarchy proposed in [17,18].

Theorem 3.1 (Convergence of sparse SDP hierarchy) Let f (x) = ∑p
l=1 f l(x), g j (x) =∑

α(g j )αxα , j = 1, . . . ,m and hs(x) = ∑
α(hs)αxα , s = 1, . . . , q, be polynomials on R

n

with degree d. Let Il be a set of indexes such that supp f l ⊆ Il ⊆ {1, . . . , n}, l = 1, . . . , p
and

⋃p
l=1 Il = {1, . . . , n}. Consider the SDP hierarchy (3.1) and denote its optimal value

by f̄ ∗
k . Let K = {x : g j (x) ≤ 0, j = 1, . . . ,m, hs(x) = 0, s = 1, . . . , q}, x0 ∈ K and

c > max1≤l≤p{ f l(x0)}.
Suppose that for each j = 1, . . . ,m and s = 1, . . . , q, suppg j ∪supphs ⊆ Il for some l ∈

{1, . . . , p}, and the running intersection property holds for Il , l = 1, . . . , p. If, for each l =
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1, . . . , p, there existμ0l ≥ 0, l = 1, . . . , p,μ j ≥ 0, j = 1, . . . ,m and τs ∈ R, s = 1, . . . , q,
such that

∑p
l=1 μ0l f l +∑m

j=1 μ j g j +∑q
s=1 τshs is coercive, then limk→∞ f̄ ∗

k = min(P).

Proof Let ε > 0. Then, we have f − min(P) + ε > 0 over the feasible set K .
As there exist μ0l ≥ 0, l = 1, . . . , p, μ j ≥ 0, j = 1, . . . ,m and τs ∈ R,
s = 1, . . . , q , such that

∑p
l=1 μ0l f l + ∑m

j=1 μ j g j + ∑q
s=1 τshs is coercive, we see that

∑p
l=1 μ0l( f l − c) +∑m

j=1 μ j g j +∑q
s=1 τshs is also coercive. It follows from Proposition

2.1 that {x : ∑p
l=1 μ0l(c − f l(x)) + ∑m

j=1 μ j (−g j )(x) + ∑q
s=1(−τs)hs ≥ 0} is compact.

So, by definition,M(−g1, . . . ,−gm, c− f 1, . . . , c− f p; h1, . . . , hq) is Archimedean. Note
that f − min(P) + ε > 0 over K̂ where

K̂ ={x : g j (x) ≤ 0, j = 1, . . . ,m, f l(x) − c ≤ 0, l = 1, . . . , p, hs(x) = 0, s = 1, . . . , q}.
Hence, by Lemma 2.2, we obtain that

f − min(P) + ε =
p∑

l=1

⎛

⎝σ0l −
m∑

j=1

σ jl g j + σ̄l(c − f l) +
q∑

s=1

φslhs

⎞

⎠ ,

for some sum-of squares polynomials σ0l , . . . , σml , σ̄l with variables {xi : i ∈ Il} and real
polynomials φsl with variables {xi : i ∈ Il}, l = 1, . . . , p. Thus, for each ε > 0, there
exists k0 ∈ N such that f̄ ∗

k0
≥ min(P) − ε. On the other hand, from the construction of the

hierarchy, we see that f̄ ∗
k ≤ f̄ ∗

k+1 ≤ · · · ≤ min(P). Therefore, the conclusion follows. ��

Remark 3.1 It isworth noting that, if a polynomial f onRn is convex in the sense that∇2 f (x)
is positive semi-definite for all x ∈ R

n and there exists x∗ ∈ R
n such that∇2 f (x∗) is positive

definite, then it is coercive (for example see [12]). Therefore, our coercivity assumption of
Theorem 3.1 that, “there exist μ0l ≥ 0, l = 1, . . . , p μ j ≥ 0, j = 1, . . . ,m and τs ∈ R,
s = 1, . . . , q such that

∑p
l=1 μ0l f l + ∑m

j=1 μ j g j + ∑q
s=1 τqhq is coercive” is satisfied, if

one of the polynomials f l , g j , hs , l = 1, . . . , p, j = 1, . . . ,m, s = 1, . . . , q , is convex and
has a positive definite Hessian at some point x∗ ∈ R

n .

In the special case where p = 1, I1 = {1, . . . , n} and each hs ≡ 0, s = 1, . . . , q , the
optimization problem (P) reduces to

minx∈Rn f (x)

s.t. g j (x) ≤ 0, j = 1, . . . ,m.

In this case, the sparse truncated quadratic module M̄k reduces to the truncated quadratic
module Mk generated by the polynomials c − f and −g1, . . . ,−gm given by

Mk :=
⎧
⎨

⎩
σ0 +

m∑

j=1

σ j g j + σ̄ (c − f )
∣
∣ σ0, σ, σ̄ ∈ �2[x] ⊂ R[x],

deg σ0 ≤ 2k, deg σ j g j ≤ 2k, and deg σ̄ (c − f ) ≤ 2k

⎫
⎬

⎭
,

and the corresponding relaxation problem collapses to

f ∗
k := sup {μ ∈ R | f − μ ∈ Mk} . (3.2)
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So, Theorem 3.1 collapses to the convergence result of the dense SDP hierarchy for
polynomial optimization problem with noncompact sets proposed in [11].

Remark 3.2 (Locating a globalminimizer) It is worth noting that, in addition to the assump-
tions of Theorem 3.1, if we further assume that problem (P) has a unique solution x̄ , then
we can also find the global minimizer x̄ by solving a sequence of semidefinite programming
problems which are the dual problems of the equivalent SDP reformulation of (3.2). The
details are omitted here and they can be found in [20,21].

4 Numerical experiments

In this Section, we show the effectiveness of the proposed sparse SDP hierarchy in Sect. 4 by
solving some numerical test problems with unbounded feasible sets. All the numerical tests
were conducted on a computer, with a 2.8 GHz Intel Core i7 and 8 GB RAM, equipped with
Matlab 7.14 (R2012a).

The purpose of the numerical experiments is to illustrate how our proposed sparse SDP
hierarchy works for solving polynomial optimization problems with unbounded feasible
sets. Therefore, we first select some known test problems which are nonconvex coercive
polynomials and test them by minimizing them over unbounded feasible sets. The selected
test problems are:

(1) a nonconvex quadratic programming problem with an unbounded feasible set, in which
Lasserre’s hierarchy is known to fail;

(2) the Rosenbrock function over the nonnegative orthant;
(3) the Chain-wood function over the nonnegative orthant;

For the numerical tests, we first form the proposed sparse SDPhierarchy (3.1) for the above
test problems. Then, we use a Matlab software SparsePOP [37] to solve the corresponding
sparse SDP problems. Let f (x) = ∑q

l=1 f l(x). We note that the proposed sparse SDP
hierarchy (3.1) can be obtained from the existing sparse SDP hierarchy used in [18,36,37]
designed for problemswith compact feasible sets by adding additional constraints f l(x) ≤ c,
l = 1, . . . , q , to the test problemswith unbounded feasible sets, where c is appropriately cho-
sen. SparsePOPcan solve polynomial optimization problems exploiting the sparsity described
in Sect. 4 by setting the parameter sparseSW = 1, and can also implement Lasserre’s hier-
archy by setting the parameter sparseSW = 0. In addition, a parameter, called the relaxation
order, can be chosen in SparsePOP, depending on the degree of the polynomial optimization
problem. The larger value for the relaxation order is used, the better approximation to the
optimal value of the polynomial optimization problem can be expected.

In SparsePOP, the accuracy of an obtained objective value is computed by

Relative objective error (Rel.Er) = POP.objValue − SDP.objValue

max{1, |POP.objValue|} ,

where POP.objValue means the value of the objective function of a polynomial optimization
problem computed using a candidate for the optimal solution, and SDP.objValue the value
of the objective function of the SDP relaxation of the polynomial optimization problem.
Moreover, CPU time reported in the subsequent discussion is measured in seconds. For
details, we refer to [37].
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Table 1 Numerical test on problem (QP2)

RelaxOrder c Optimal val. Optimal sol. Rel.Er CPU

DenseHierarchy (3.2) 2 40 1.1729 – 3.9e+0 0.27

DenseHierarchy (3.2) 3 40 27.9626 (5.1924,1.000) 5.6e−5 0.31

4.1 A 2-dimensional QP with an unbounded feasible set

Consider the following nonconvex quadratic optimization problem:

(QP) min(x1,x2)∈R2 x21 + x22
s.t. x22 − 1 ≥ 0

x21 − Mx1x2 − 1 ≥ 0

x21 + Mx1x2 − 1 ≥ 0.

(4.1)

It was shown in [23,26] that the global minimizers are (±M+√
M2+4
2 ,±1) and its global

minimum is 1 +
√

2M2+4+2M
√
M2+4

4 . For instance, if M = 5, then, the global minimizers
are (±5.1926,±1) and its global minimum is 27.9629.

Let M = 5. It was shown in [26] that Lasserre’s hierarchy only provides a lower bound 2,
no matter how large the relaxation order k is chosen. As explained in [26], the main reason
why the Lasserre’s hierarchy fails to achieve the global minimum of this quadratic problem
is that the feasible set of this nonconvex quadratic problem is unbounded.

Notice that the objective f (x1, x2) := x21 + x22 is coercive. Thus, we can apply the
proposed sparse hierarchy. Since the problem has only two variables without sparsity, we
test the problem using our dense SDP hierarchy (3.2) with c = 40. Note that c > f (6, 1)
and the point (6, 1) is feasible for this quadratic optimization problem.

As shown inTable 1, by running the sparsePOPwith sparseSW=0 and the relaxation order
4, the relaxation problem in the dense hierarchy (3.2) solves the original problem and returns
a good approximation to the true global minimizer (5.1926, 1.000). Table 1 summarizes the
optimal values for the dense SDP hierarchy (3.1) with relaxation order k = 2, 3, 4, which
illustrates the effectiveness of our approach.

4.2 The Rosenbrock function over nonnegative orthant

The Rosenbrock function is described as

fR(x1, . . . , xn) = 1 +
n∑

i=2

(
(xi − x2i−1)

2 + (1 − xi )
2), n ≥ 2.

Clearly, fR is a SOS nonconvex polynomial, and is coercive. We add constraints to the
Rosenbrock function to have a polynomial optimization problem with an unbounded region
as follows:

(EPR) minx∈Rn fR(x)

s.t. xi ≥ 0, i = 1, . . . , n.

It can be easily verified that this problem has a unique global minimizer en := (1, . . . , 1
︸ ︷︷ ︸

n

).
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Table 2 Numerical tests on the problem (EPR)

n RelaxOrder c Optimal sol. Rel.Er CPU

SparseHierarchy (3.1) 500 2 2 e500 4.1e−5 81.8

SparseHierarchy (3.1) 5000 2 2 e5000 1.0e−3 148.5

SparseHierarchy (3.1) 10,000 2 2 e10,000 2.1e−3 308.5

SparseHierarchy (3.1) 20,000 2 2 e20,000 4.3e−3 772.2

Let Il = {l, l+1}, l = 1, . . . , n−1 and g j (x) = x j , j = 1, . . . , n. Then, the assumptions
in Theorem 3.1 are satisfied as

suppg j = { j} ⊆
{
I j , if j = 1, . . . , n − 1,
In−1, if j = n,

and for each l = 1, . . . , n − 1,

Il+1 ∩
⎛

⎝
l⋃

j=1

I j

⎞

⎠ = {l} ⊆ Il .

Therefore, according to Theorem 3.1, the optimal value of the proposed sparse SDP hierarchy
(3.1) converges to the optimal value of the global minimum of (EPR).

We now test our proposed sparse SDP hierarchy (3.1) using the global optimization prob-
lem (EPR) for different dimension n with c = 2. From Table 2, we see that for n = 10,000
or n = 20,000, the sparsePOP returns an accurate solution for the relaxation order 2 in the
proposed sparse hierarchy Sparse SDP hierarchy (3.1).

When the dimension n of the problem is large, directly applying the dense SDP hierarchy
proposed in [11] without exploiting the sparsity leads to very large SDP problems which
cannot be handled by a SDP solver such as SeDuMi [34] . Indeed,we confirm in our numerical
computation that the dense SDP hierarchy proposed in [11] can only be used to solve (EPR)

up to dimension 20. The larger problems than dimension 20 resulted in out-of-memory error.

4.3 Chained-wood function over nonnegative orthant

Let n ∈ 4N where N denotes the set of integers. Consider the Chained-wood function given
by

fC (x1, . . . , xn) = 1 +
∑

i∈J

(
(xi+1 − x2i )

2 + (1 − xi )
2 + 90(x2i+3 − xi+2)

2 + (xi+2 − 1)2

+ 10(xi+1 + xi+3 − 2)2 + 1

10
(xi+1 − xi+3)

2),

where J = {1, 3, 5, . . . , n − 3}. The function fC is a SOS nonconvex polynomial, and is
coercive. Adding nonnegative constraints for the variables xi , i = 1, . . . , n results in the
following polynomial optimization problem:

(EPC ) minx∈Rn fC (x)

s.t. xi ≥ 0, i = 1, . . . , n.
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Table 3 Numerical tests on the problem (EPC )

n RelaxOrder c Optimal sol. Rel.Er CPU

SparseHierarchy (3.1) 1000 2 1001 (e1000) 2.4e−4 38.9

SparseHierarchy (3.1) 5000 2 5001 (e5000) 1.2e−3 175.2

SparseHierarchy (3.1) 10,000 2 10,001 (e10,000) 2.4e−3 392.3

SparseHierarchy (3.1) 20,000 2 20,001 (e20,000) 4.8e−3 1049.8

Clearly, the feasible set of this polynomial optimization is unbounded, and this problem
has a unique global minimizer en := (1, . . . , 1

︸ ︷︷ ︸
n

).

Note that fC can be equivalently rewritten as

fC (x1, . . . , xn) = 1 +
n
2 −1∑

l=1

(
(x2l − x22l−1)

2 + (1 − x2l−1)
2 + 90(x22l+2 − x2l+1)

2

+ (x2l+1 − 1)2 + 10(x2l + x2l+2 − 2)2 + 1

10
(x2l − x2l+2)

2).

For each l = 1, . . . , n
2 −1, let Il = {2l−1, 2l, 2l+1, 2l+2} and g j (x) = x j , j = 1, . . . , n.

Then, the assumptions in Theorem 3.1 are satisfied as suppg j = { j} ⊆ I[ j
2 ], where [ j

2 ] is the
largest integer that is smaller than j

2 , and for each l = 1, . . . , n − 1,

Il+1 ∩
⎛

⎝
l⋃

j=1

I j

⎞

⎠ = {2l + 1, 2l + 2} ⊆ Il .

Therefore, Theorem 3.1 implies that the optimal value of the proposed sparse SDP hierarchy
(3.1) converges to the optimal value of the global minimum of (EPR).

We now test our proposed sparse SDP hierarchy (3.1) on (EPC ) for different values of n
with c = n + 1. From Table 3, we see that for dimension n = 10,000 or n = 20,000, the
sparsePOP with the relaxation order =2 returns an accurate solution in the proposed sparse
hierarchy Sparse SDP hierarchy (3.1).

The numerical experiment using the dense SDP hierarchy proposed in [11] could solve
(EPC ) up to only n = 10. We observe again that much larger problems can be solved by the
sparse SDP hierarchy.

4.4 Further examples

In this part, for further illustration, we consider the following polynomial optimization prob-
lem:

(P0) min
(xl ,wl )∈Rnl ×R

nl ,l=1,...,q

q∑

l=1

∑

i∈Il
(wl

i )
2

s.t. glj (x
l) ≤ 0, j = 1, . . . ,m, l = 1, . . . , q

(1 − wl
i )x

l
i = 0, i ∈ Il , l = 1, . . . , q,

‖xl‖22 ≤ Ml , l = 1, . . . , q,
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where Il ⊆ {1, . . . , n}, l = 1, . . . , q ,
⋃q

l=1 Il = {1, . . . , n}, nl = |Il |, that is, nl is the
cardinality of Il , l = 1, . . . , q , Il = {i1, . . . , inl } and glj are polynomials, j = 1, . . . ,m, l =
1, . . . , q .

Note that problem (P0) is a polynomial optimization reformulation of the sparse optimiza-
tion problem with polynomial inequality constraints. Problems of this kind arise in signal
processing and statistics [3,4] and have received a great deal of attention in the literature. For
a recent comprehensive survey, see [2]. Other related references can be found in [33]. The
relationship between problem (P0) with the sparse optimization problem has been briefly
outlined in the Appendix.

We also note that, there are other efficient approaches for solving the problem (P0) (or
the corresponding equivalent sparse optimization problem) such as the branch and bound
approach and the techniques of mathematical programming with equilibrium constraints (for
example see [6]). Due to the limitation of the SDP solvers, our approach cannot compete with
these ad-hoc but numerically tractable approaches. The purpose of this section is to illustrate
that our proposed sparse SDP hierarchy can be used to solve problem (P0) with large size
where the usual dense SDP hierarchy may not be directly applicable.

We now introduce a SDP hierarchy for problem (P0) using the results in Sect. 3. It is
worth noting that, problem (P0) is a minimization problem with variables (x, w) ∈ R

n ×R
n .

Thus, the feasible set of (P0) can be unbounded in general (for example, simply take g j ≡ 0.
Then, (w, 0) is feasible for problem (P0) for any w ∈ R

n).
Let f (x, w) = ∑q

l=1 fl(xl , wl), where fl(xl , wl) = ∑
i∈Il (w

l
i )
2 and x = (x1, . . . , xq) ∈

R

∑q
l=1 nl and w = (w1, . . . , wq) ∈ R

∑q
l=1 nl . For each l = 1, . . . , q , define ḡil(xl , wl) =

(1 − wl
i )x

l
i , i ∈ Il and Gl(xl , wl) := ‖xl‖22 − Ml . Let c be a number such that c > nl ,

l = 1, . . . , q . For each integer k, we define the following sparse truncated quadratic module
M̂k generated by the polynomials c− f l ,−glj , j = 1, . . . ,m, ḡil , i ∈ Il andGl , l = 1, . . . , q ,
as follows:

M̂k :=
⎧
⎨

⎩

q∑

l=1

(

σ0l −
m∑

j=1

σ jl g
l
j +

Il∑

i=1

hil ḡil + σl(−Gl) + σ̄l

(
c − f l

))

| σ0l , σil , σl , σ̄l ∈ �2
[
xl , wl

]
,

hil ∈ R

[
xl , wl

]
, deg σ0l ≤ 2k, deg σ jl g jl ≤ 2k deg hil ḡil ≤ 2k, and

deg σlGl ≤ 2k, deg σ̄
(
c − f l

)
≤ 2k

}

.

Consider the following relaxation problem

f ∗
k := sup

{
μ ∈ R | f − μ ∈ M̂k

}
. (4.2)

Then, one can show that limk→∞ f ∗
k = min(P0) if the running intersection property

holds.

Proposition 4.1 (Convergence of the sparse SDP hierarchy value for (P0)) For problem
(P0) and the SDP hierarchy (4.2), assume that the running intersection property holds for
Il , l = 1, . . . , p. Then, limk→∞ f ∗

k = min(P0).
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Table 4 Numerical tests on the polynomial optimization problem with hidden coercivity

Problem q, n c M Optimal val. Rel.Er CPU

SparseHierarchy (4.2) 200, 1600 5 100 200 3.3e−9 173.9

SparseHierarchy (4.2) 1000, 8000 5 100 1000 1.1e−5 470.2

n is the number of variables. The relaxation order 2 was used

Proof Note that the problem (P0) can be equivalently rewritten as

min
(xl ,wl )∈R|Il |×R

|Il |

q∑

l=1

f l(xl , wl) =
q∑

l=1

∑

i∈Il
(wl

i )
2

s.t. glj (x
l) ≤ 0, j = 1, . . . ,m, l = 1, . . . , q

h̄il(x
l , wl) := (1 − wl

i )x
l
i = 0, i ∈ Il , l = 1, . . . , q

Gl(x
l , wl) := ‖xl‖22 − Ml ≤ 0.

As
⋃p

l=1 Il = {1, . . . , n},∑p
l=1 f l(xl , wl)+∑p

l=1 Gl(xl , wl) is strongly coercive. So, the
assumptions in Theorem 3.1 are satisfied. Therefore, Theorem 3.1 implies that limk→∞ f ∗

k =
min(P0). ��

We now illustrate the SDP hierarchy using a numerical example. For the numerical test
on the effectiveness of the proposed SDP hierarchy, we let q ∈ N. For each l = 1, . . . , q , we
generate a 3-by-4 matrix Al containing random values drawn from the uniform distribution
on the interval [0, 1] and define bl = 4Al(:, 1), where Al(:, 1) denotes the first column of
Al . Let Il = {4l − 3, 4l − 2, 4l − 1, 4l}, l = 1, . . . , q . Denote xl = (xli )i∈Il ∈ R

4 and
wl = (wl

i )i∈Il ∈ R
4, l = 1, . . . , q . Consider the problem:

(EP) min
x=(x1,...,xq )∈R4q

w=(w1,...,wq )∈R4q

q∑

l=1

∑

i∈Il
(wl

i )
2

s.t. Al x
l = bl , l = 1, . . . , q

(1 − wl
i )x

l
i = 0, i ∈ Il , l = 1, . . . , q,

‖xl‖22 ≤ 100, l = 1, . . . , q.

It is not hard to see that the optimal solution of (EP) is (x∗, w∗) with optimal value
q , where x∗ := [x1∗, . . . , xq∗] with xl∗ = [4, 0, 0, 0] and w∗ := [w1∗, . . . , wq∗] with
wl∗ = [1, 0, 0, 0], l = 1, . . . , q . Moreover, it can be verified that the running intersection
property holds. So, the optimal value of the proposed sparse SDP hierarchy (4.2) converges
to the optimal value of (EP).

As shown in Table 4, for q = 200 and q = 1000, in our numerical experiment, sparsePOP
with the relaxation order 2, c = 5 and M = 100, returns an accurate optimal value and an
accurate optimal solution x∗ in the proposed Sparse SDP hierarchy (4.2).

We also notice that the numerical experiment using the dense SDP hierarchy proposed in
[11] could solve the above problem with number of blocks q up to only 5. We observe again
that much larger problems can be solved by the sparse SDP hierarchy.
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Table 5 Numerical tests on the polynomial optimization problem with hidden coercivity

Problem q, n c M Optimal val. Rel.Er CPU

SparseHierarchy (4.2) 200, 1600 5 100 200 5.9e−6 107.6

SparseHierarchy (4.2) 1000, 8000 5 100 1000 1.8e−6 493.5

n is the number of variables. The relaxation order 2 was used

Finally, we note that we can obtain optimal solution for (EP) using the solver sparsePOP.
For example, consider problem (EP) where q = 200,

Al = A :=
⎛

⎝
2 −1 30 3
3 3 44 2
−2 7 −40 −6

⎞

⎠ ,

bl = b := 4A(:, 1) =
⎛

⎝
8
12
−8

⎞

⎠ for all l = 1, . . . , 200.

Then, the true unique solution of this problem is (x∗, w∗) where x∗ := [x1∗, . . . , xq∗] with
xl∗ = [4, 0, 0, 0], and w∗ := [w1∗, . . . , wq∗] with wl∗ = [1, 0, 0, 0] l = 1, . . . , 200. In our
numerical experiment, sparsePOP with the relaxation order 2 and c = 5, returns an accurate
optimal value 200 and an accurate optimal solution (x∗, w∗), in the proposed Sparse SDP
hierarchy (4.2), as shown in Table 5.

Appendix

The polynomial optimization problem (P0) has a close relationship with the problem of
finding the solution with the least number of nonzero components which satisfies a system
of polynomial inequalities and simple bounds. Mathematically, the problem of finding the
solution with the least number of nonzero components which satisfies a system of polynomial
inequalities and simple bounds, can be formulated as

(P ′
0) min

(x1,...,xq )∈Rn1×...×R
nq

q∑

l=1

‖xl‖0

s.t. glj (x
l) ≤ 0, j = 1, . . . ,m, l = 1, . . . , q,

‖xl‖22 ≤ Ml , l = 1, . . . , q,

where nl ∈ N, l = 1, . . . , q , and ‖x‖0 denotes the l0-seminorm of the vector x ∈ R
n , which

gives the number of nonzero components of the vector x .
In the case where q = 1, I1 = {1, . . . , n}, g j (x) = aTj x − b j , j = 1, . . . ,m, g j (x) =

−(aTj x − b j ), j = m + 1, . . . , 2m, the problem (P ′
0) collapses to the sparse optimization

problem which finds the solution with the least number of nonzero components satisfying
simple bounds as well as linear equations Ax = b with more unknowns than equalities:

(P1) minx∈Rn ‖x‖0
s.t. Ax = b,

‖x‖22 ≤ M,
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where A = (a1, . . . , am)T ∈ R
m×n (m ≤ n), b = (b1, . . . , bm)T ∈ R

m . We note that the
standard sparse optimization problem which is given by

(P2) minx∈Rn ‖x‖0
s.t. Ax = b,

arises in signal processing and was examined, for example, [2–4,33]. Moreover, problems
(P1) and (P2) have the same optimal value if M > ‖x∗‖22 for some solution x∗ of problem
(P2).

In fact, the problem (P0) and problem (P ′
0) are equivalent in the sense that min(P0) =

min(P ′
0) and (x1∗, . . . , xq∗) ∈ R

n1 × · · · × R
nq is a solution of problem (P0) if and

only if (xl∗, wl∗) ∈ R
nl × R

nl , l = 1, . . . , q , is a solution of problem (P ′
0) where

wl∗ = (wl∗
i1

, . . . , wl∗
inl

) ∈ R
nl is defined by

wl∗
i =

{
1 if xl∗i �= 0,

0 if xl∗i = 0.
i ∈ Il , l = 1, . . . , q. (4.3)
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