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Abstract Methods for solving the multidimensional multiextremal optimization problems
using the nested optimization scheme are considered. A novel approach for solving the
multidimensional multiextremal problems based on the adaptive nested optimization has
been proposed. This approach enables to develop methods of the global optimum search
which are more efficient in comparison with the ones on the base of the traditional nested
optimization scheme. The new approach provides advantages due to better usage of the
information on the problem in the course of optimization. A general scheme of a adaptive
nested optimization is described. A theoretical substantiation of the method convergence is
given for the case when for solving the univariate subproblems within the nested scheme an
information algorithm of global search is used. Results of numerical experiments on the well-
known classes of the test multiextremal functions confirming the efficiency of the proposed
scheme are presented.

Keywords Multidimensional multiextremal optimization · Global search algorithms ·
Dimensionality reduction · Adaptive nested optimization scheme

1 Introduction

In the present article, methods for solving multiextremal problems widespread in the real life
applications are considered. The increasing complexity of mathematical models for more
adequate description of objects, phenomena, and systems under study results in a significant
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increase of the complexity in analysis of these models. Numerical experiments become the
primary tool for such an analysis. The increasing complexity of the problems results in the
necessity of a purposeful selection of the variants in the process of the optimal solution search.
The essence of the purposeful selection consists in eliminating from further consideration
many obviously unpromising cases on the base of the analysis of a small portion of the
variants in order to concentrate further search in the subdomains containing the best variants.
However, the development of the efficient optimization algorithms in the multidimensional
case is labor-consuming often. A possible way in this situation consists in applying different
schemes of dimensionality reduction for the development of the global search methods.

The multidimensional multiextremal (global) optimization problem without constraints
can be defined as a problem of finding the minimal value of a real function ϕ(x)

ϕ(y∗) = min{ϕ(y) : y ∈ D}, (1)

and its global minimizer y∗ ∈ D, where

D = {y ∈ RN : yi ∈ [ai , bi ], 1 ≤ i ≤ N } (2)

is the search domain, which is a hyperparallelepiped in the N -dimensional Euclidean space
RN .

The global optimization problems are the subject of the extensive research (see, for exam-
ple, comprehensive bibliography in [4,5,14–16,22–24,33,36–39]). At the same time, these
problems are very computation-consuming. Thus, if for the solution search the method of
full scanning the nodes of a uniform grid is used with the accuracy ε > 0 for each coordinate,
the total number of the grid nodes in the search domain can be estimated as

K = K (ε) ≈
N∏

j=1

[
(b j − a j )/ε

]
.

The decrease of the computational costs is possible only thanks to the highly efficient
global search algorithms, which generate the dense grids in the vicinity of the sought mini-
mum of the minimized function only. The design of such efficient algorithms directly for the
multidimensional case is a rather complex problem. As a result, using for this goal various
dimensionality reduction schemes is one of the directions in the field of global optimiza-
tion. Within the framework of this direction, the following three main approaches could be
outlined:

The first dimensionality reduction method is based on the well-known fundamental prop-
erty, according to which an N -hyperparallelepiped from (2) and the interval of the real axis
[0, 1] are the sets of equal cardinality, and the interval [0, 1] can be mapped onto the hyper-
parallelepiped D unambiguously and continuously (see [1,30,36]). The mappings of this
kind are usually referred to as Peano evolvents or curves.

Assume y(x), x ∈ [0, 1], to be a Peano curve and the function ϕ(y) from (1) to be a
continuous one. Then, the optimization problem for a multidimensional function ϕ(y) can
be reduced to a problem of optimization of a one-dimensional reduced function ϕ(y(x))

ϕ(y(x∗)) = min{ϕ(y(x)): x ∈ [0, 1]} = min{ϕ(y): y ∈ D}.
This approach has served a basis for the development of many efficient multidimensional
global search algorithms (see [9,11,13,30,34,36]).

In the framework of the second approach, the search domain is divided into the subdomains
by means of a partition strategy, each subdomain is estimated from the point of view of its
importance, or prospectivity for continuation of the search and the next iteration point is
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chosen in the subdomain of maximal importance. This approach is close to univariate scheme
of characteristical algorithms [11] and the methods based on multidimensional partitioning
are presented, for instance, in [17,19–24].

Finally, the well-known approach based on the usage of the one-dimensional optimization
methods for solving themultidimensional optimization problems consists in the application of
the nested optimization scheme. According to this scheme, the solving of a multidimensional
optimization problem could be obtained by means of solving a sequence of the recursively
nested one-dimensional problems (see, for example [2,3,8,12,25,28,31,36]). The core of
this approach is the relation

min
y∈D

ϕ(y) = min
y1∈[a1,b1]

. . . min
yN ∈[aN ,bN ] ϕ(y1, . . . , yN ). (3)

According to (3) the solving of a multidimensional multiextremal optimization problem
is reduced to the solving of the one-dimensional problem:

ϕ∗ = min
y∈D

ϕ(y) = min
y1∈[a1,b1]

ϕ̃1(y1), (4)

where

ϕ̃i (yi ) = ϕi (y1, . . . , yi ) = min
y1∈[ai+1,bi+1]

ϕi+1(y1, . . . , yi , yi+1), 1 ≤ i ≤ N , (5)

ϕN (y1, . . . , yN ) = ϕ(y1, . . . , yN ). (6)

The one-dimensional function ϕ̃1(y1) introduced in (4) is constructed according to general
recursive rule (5): in order to calculate the value ϕ̃1(y1) for given value of the variable y1 = ŷ1
it is necessary to perform the minimization of the function

ϕ̃2(y2) = ϕ2(ŷ1, y2).

When performing this optimization, the function ϕ̃2 is a one-dimensional one as well since
the value of the variable y1 is predefined and fixed. Next, in turn, in order to calculate the
value ϕ̃2(y2) at the point y2 = ŷ2 it is necessary to perform the minimization of the univariate
function

ϕ̃3(y3) = ϕ3(ŷ1, ŷ2, y3),

etc.
The scheme (4)–(6) in the case of the Lipschitzian one-dimensional functions ϕ̃i combined

with the one-dimensional algorithms [7,25,32,34–36] has served as the basis for designing
a number of the multidimensional methods [3,12,25,26,36].

Concluding the characterization of the nested optimization scheme, it should be noted
that this approach to the design of the multidimensional methods has also a number of
disadvantages.When solving the particular subproblem (5) the information on the behavior of
the objective function obtained during solving other subproblems is not used in any way. This
is the fundamental cause of the loss in the efficiency of the nested scheme. On the one hand,
this makes the computational scheme simpler because allows to avoid storing and processing
large amount of information. On the other hand, the refusal from the information worsens
the search process planning quality. Besides, when using this scheme, the precision in the
termination condition providing the termination of any recursively nested one-dimensional
problem like (5) should be defined a priori. If the accuracy appears to be not enough, it is
required to repeat the solving of the problem as a whole from the beginning with an increased
precision. At the same time, the use of too high precision can result in an essential increase in
the global search duration, and breaking the computations before the termination condition is
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satisfied (because of exceeding of the feasible computation time) in this case can lead to the
case when the estimate of the sought solution is obtained in some subdomain of the search
domain D only.

The rest of the paper is organized as follows. Section 2 describes a new generalization of
the nested optimization scheme. Section 3 is devoted to the theoretical substantiation of the
new scheme concerning convergence properties. Section 4 contains results of computational
experiments. The last section gives a succinct summary of the paper.

2 Adaptive nested optimization scheme

Let us give a generalization of the basic scheme of dimensionality reduction (3)–(6) allowing
to overcome some disadvantages of the approach mentioned above. The essence of this
generalization consists in the elimination of the principle of a strict subordination for the
minimization problems of the one-dimensional functions ϕ̃i (yi ), 1 ≤ i ≤ N , generated
within the framework of the nested optimization scheme. In the new approach all these
problems are supposed to be solved simultaneously.

The preliminary description of the proposed generalization is as follows.
Let us introduce the following notation for brevity

νi = (y1, . . . , yi ), 1 ≤ i ≤ N . (7)

Then, the one-dimensional functions ϕ̃i (yi ), 1 < i ≤ N , generated within the framework
of the nested optimization scheme can be rewrote in the form

ϕ̃i (yi ) = ϕi (νi−1, yi ), 1 < i ≤ N , (8)

where the vector νi−1 is a fixed one.
Let us describe inmore details the procedure of computations for the initial (basic) scheme

of dimensionality reduction.
At every global search iteration i, 1 ≤ i ≤ k, the optimization algorithm begins its

computations from a one-dimensional function of the first level ϕ̃1(y1). The algorithm selects
a current search point y1 = ŷ1 taking into account the search information obtained already. In
order to get the function value ϕ̃1(y1) at this point, a new one-dimensional function ϕ2(ŷ1, y2)
to be minimized is generated. To do so, the algorithm should suspend the minimization of
the function ϕ̃1(y1) and start minimizing the function ϕ2(ŷ1, y2). In the optimization process
of the function ϕ2(ŷ1, y2), the algorithm generates a sequence of the points

{y j
2 , 1 ≤ j ≤ k},

for each of which it is necessary to execute the minimization of the third level ϕ3(ŷ1, ŷ2, y3)
in the same strict order: when determining the next search point before the transition to the
next search iteration, the solving of a one-dimensional problem of the next dimensionality
reduction level should be carried out first. This process should be fulfilled recursively until
the last Nth level. The resulting hierarchical scheme of generating and solving the one-
dimensional problems is presented in Fig. 1.

The functions generated during the optimization process have a strict hierarchical structure
of subordination in the form of a tree. The structure of this tree changes dynamically in
the course of solving the multidimensional task. The computation of the function value
ϕi (ν̂i−1, yi ) of the i th level, 1 ≤ i < N , at some point requires solving all problems in one
of the subtrees of the (i + 1)th level. The functions ϕN (ŷN−1, yN ) of the Nth level are the
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Fig. 1 The hierarchical scheme of generating and solving the one-dimensional problems in the nested opti-
mization scheme

leaves of the problem tree, their values are the values of the objective function ϕ(y), y ∈ D,
and are computed directly without the nested optimization.

The proposed generalization of the basic scheme of the dimensionality reduction consists
in the elimination of the strict order of the subproblem solving according to their hierarchy
in the problem tree, when the solving of the problem of the i th level, 1 ≤ i < N , does
not require the complete solving of the nested problems of the (i + 1)th level. Within the
framework of the novel approach all generated problems are considered simultaneously and
are equal in rights. The proposed approach will be hereinafter referred to as the adaptive
nested optimization scheme.

For description of the approach, let us renumber problems (5) in the following way. Since
the nested optimization scheme starts from the solving of the problem

min
y1∈[a1,b1]

ϕ1(y1), (9)

let us assign to this problem the index l = 1. The solving of this problem begins with the
computation of the function ϕ̃1(y1) at some point ŷ1 that generates the problem

min
y2∈[a2,b2]

ϕ2(ŷ1, y2),

to which the index l = 2 is assigned, etc.
In general, when Q ≤ 1 subproblems (5) have been initiated already, the index Q + 1 is

assigned to a newly generated subproblem, and the number of subproblems Q is incremented
by 1.

Thus, at every moment of execution of the nested optimization scheme there is a set FQ

consisting of the problems of the kind

min
x∈[a,b] fl(x), 1 ≤ l ≤ Q, (10)

where the index l is connected with a recursion level, i.e., with the coordinate number i, 1 ≤
i ≤ N , which this problem belongs to. In this case x = yi , and the search domain [a, b] =
[a(l), b(l)] is the interval [ai , bi ]. When i = 1, fl(x) = ϕ1(y1). If i > 1, then the index
l is also connected with the vector νi−1 = νi−1(l) and fl(x) = ϕi (νi−1, yi ). Moreover,
any problem (10) except the problem fl(x) is associated with the “parent” one, i.e., with a
problem which has generated it.

Let us designate the operation of the computation of the objective function value at a given
point of the search domain as the trial. Consider the methods, which generate during solving
the problem (10) the sequence of trial coordinates x1l , x2l , . . . , xk

l , . . . and the sequence of
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the trial results (the function values) z1l , z2l , . . . , zk
l , . . . , where z j

l = fl(x j
l ), j ≥ 1. After

completing k ≥ 1 trials the set of the search information is formed

ωk
l = {

(x j
l , z j

l , λ
j
l ): 1 ≤ j ≤ k

}
, (11)

where λ
j
l , 1 ≤ j ≤ k, are the indices of the problems generated for the computation of the

values z j
l , 1 ≤ j ≤ k. Within the framework of the multidimensional scheme, it is reasonable

to form the search information separately for each problem of the family FQ under solving.
As a complete set of information for the multidimensional problem being solved one can
consider the set

ΩQ = {
ω

k(l)
l , 1 ≤ l ≤ Q

}
,

where k(l), 1 ≤ l ≤ Q, is the number of the search information elements for the problem
with the index l. It is important to note that the values z j

l , 1 ≤ j ≤ k(l), in the search
information for the function of the level less than N may vary since these values are the
estimates of the minimum values of the functions fl , and these estimates may be refined
during the computations.

Note that in traditional nested optimization scheme, in the course of solving a problem (10)
the information on the particular sets (11) is used only while in the adaptive generalization
the full set of information (12) is taken into consideration.

Before the detailed description of the general adaptive scheme let us introduce some
auxiliary terms. When a univariate subproblem generates for computing the value of its
objective function a subproblem of the next level we will call the generating subproblem as
parental one, or just a parent, and the generated subproblem as the upper one. Obviously, the
subproblem (9) of the first level can be parental only and subproblems of the level N have no
upper levels. Let us juxtapose to the subproblem with the index l from the set FQ (except the
subproblem (9) with the index l = 1) the number π(l) of its parent and the number ρ(l) of
a recursion level (number of coordinate) which this subproblem belongs to. Moreover, let us
consider a point x j

l being j-th trial in the course of solving the problem (10) with the number

l and connect with it the number λ
j
l of a subproblem generated for computing the function

value at this point. Let us introduce as well the designation ϕ∗
l for the current minimal value

of objective function fl from (10).

Step 1. Initialization.

1.1. Set the number of subproblems of the nested scheme Q = 0 and the number of coor-
dinate level l = 1. Accept the level number i = 1. Choose a point x11 in the interval
[a1, b1] as the starting point of solving the univariate subproblem (9). Increase Q by 1
and include this problem in the set FQ with the index l = 1.

1.2. For calculating at the level i the value of the objective function at the point x1i , pass to
the next coordinate (i = i + 1) for solving the univariate subproblem

min
yi ∈[ai ,bi ]

ϕi (ν̂i−1, yi ), (12)

where the components of the vector ν̂i−1 = (ν1, . . . , νi−1) are constants. Namely,
ν j = x1j , 1 ≤ j ≤ i − 1.

1.3. Choose a point x1i in the interval [ai , bi ] as the starting point for solving the subprob-
lem (12). Increase Q by 1 and include this problem in the set FQ with the index l = i .

1.4. Repeat operations 1.2 and 1.3 up to reaching the level i = N . At this level calculate the
value z1N of objective ϕ(y) function from (1) at the point y = (x11 , . . . , x1N ) instead of
generating a new univariate subproblem.
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1.5. For all subproblems from FQ with numbers l, 1 ≤ l ≤ Q:

1.5.1. If l ≤ N , then set λ1l = l + 1 (for the l = N number λ1l is undefined).

1.5.2. Accept z1l = z1N , k(l) = 1, and form the sets of search information ω
k(l)
l =

{(x1l , z1l , λ
1
l )} (except l = N where ω

k(l)
l = {(x1l , z1l )}).

1.5.3. Specify current minimal value ϕ∗
l = z1l , ρ(l) = l, and for l > 1 accept π(l) =

l − 1.

Step 2. Main procedure.
Let there be Q subproblems (10) for which sets (11) have been formed and the values

π(l), ρ(l), ϕ∗
l have been determined. The next iteration of the adaptive scheme is executed

in accordance with the following rules.

2.1. Choice of univariate subproblem.

2.1.1. Assign to each subproblem (10) with the index l, 1 ≤ l ≤ Q, the value R̃(l)
called the characteristic of this subproblem.

2.1.2. Find among the subproblems (10) a subproblemwith index σ, 1 ≤ σ ≤ Q, which
the maximal characteristic corresponds to

R̃(σ ) = max
{

R̃(l): 1 ≤ l ≤ Q
}
. (13)

2.2. New iteration.

2.1.1. Set l = σ, i = ρ(σ ) and determine a point xk(l)+1
l of the next trial in the

subproblem σ taking into account the search information (11). If i < N , then
accept λk(l)+1

l = Q + 1.

2.1.2. If i = N , then calculate the value zk(l)+1
l = ϕ(ν̂i−1, xk(l)+1

l ) where the vec-
tor ν̂i−1 has been determined in preceding parental subproblems. Renew the
current estimation of minimum ϕ∗

l and the search information adding the pair

(xk(l)+1
l , zk(l)+1

l ) to the set (11) and incrementing k(l) by 1. Then pass to Substep
2.3. In the opposite case (i < N ) go to 2.2.3.

2.1.3. For calculating at the level i the value of the objective function at the point xk(l)+1
l

take the next coordinate (i = i +1) for solving a new univariate subproblem (12)
(the components of the vector ν̂i−1 are fixed). Increase Q by 1 and assign to the
new subproblem the number l = Q in the set FQ .

2.1.4. Choose a point x1l in the interval [al , bl ] as the starting point for solving the new
subproblem (12). Define the set (11) as empty one and assign k(l) = 0. Accept
ϕ∗

l = +∞, ρ(l) = i , λ1l = Q + 1.
2.1.5. If the subproblem σ is parental for the current one, then set π(l) = σ , otherwise,

π(l) = Q − 1. Go to 2.2.2.

2.3. Renewing the search information in parental subproblems.

2.3.1. Return to the parental subproblem: new l = π(l).
2.3.2. If the set ω

k(l)
l is empty or l = σ , then accept the current minimal value of

subproblem with number λ
k(l)
l as the objective function value zk(l)

l at the new

trial point xk(l)
l , include in the set ωk(l)

l the triplet
(
xk(l)

l , zk(l)
l , λ

k(l)
l

)
, add unity to

k(l) and renew the estimate ϕ∗
l .

2.3.3. Repeat operations 2.3.1 and 2.3.2, if l �= σ . In the opposite case, go to 2.3.4.
2.3.4. Accept μ = π(l) and pass to the parental subproblem: new l = π(l).
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2.3.5. Find in the set ω
k(l)
l a triplet

(
x j

l , z j
l , λ

j
l

)
, 1 ≤ j ≤ k(l), for which λ

j
l = μ and

replace z j
l with ϕ∗

μ.
2.3.6. If ϕ∗

μ < ϕ∗
l , then replace ϕ∗

l with ϕ∗
μ and go to 2.3.4. In the opposite case,

complete the current iteration of the main procedure and return to Substep 2.1.

Description of the adaptive nested optimization scheme has been completed.
In the algorithmic scheme presented above the decision rules for choice of starting points

in univariate subproblems and for selection the best subproblem (characteristics R̃(l) in
2.2.1) are not defined. Generally speaking, this characteristic R̃(l) is determined by a one-
dimensional method that are used for solving the subproblem l.

In the present research, the global search algorithm developed within the framework of
the information approach (see [34–36]) has been applied for solving the one-dimensional
problems (10). Let us show how this method forms the subproblem characteristic R̃(l).
According to this algorithm, while solving a univariate problem (10) the first trial is executed
at some internal point of the interval [a, b]. For certainty, the starting point x1l is considered
to be the middle of the interval [a, b] where the value z1l = fl(x1l ) is computed.

The choice of the point xk+1
l , k > 1 of any subsequent (k + 1)-th trial is determined by

the following operations:

Step 1. Coordinates of the previous trials x1l , x2l , . . . , xk
l from (11) and the ends of the

interval [a, b] are renumbered by subscripts in increasing order:

a = x0 < x1 < · · · < xk < xk+1 = b, (14)

and the values z j = fl(x j ), 1 ≤ j ≤ k, are juxtaposed to them (besides x0 and
xk+1). Values z j , 1 ≤ j ≤ k, are taken from the set (11) because they are the
corresponding outcomes z j , 1 ≤ j ≤ k.

Step 2. For each interval (x j−1, x j ), 1 ≤ j ≤ k + 1, k = k(l), a value R( j) hereinafter
called the characteristic of the interval is calculated as follows

R(1) = 2m(x1 − x0) − 4z1, j = 1,

R( j) = m(x j − x j−1) + (z j − z j−1)
2

m(x j − x j−1)
− 2(z j + z j−1), 1 < j < k + 1,

R(k + 1) = 2m(xk+1 − xk) − 4zk, j = k + 1 (15)

Step 3. The interval (xt−1, xt ) with the index t = t (l), which the maximal characteristic
R(t) corresponds to is selected, i.e.,

R(t) = max
{

R( j): 1 ≤ j ≤ k + 1
}
, (16)

and the value R(t) is accepted as the characteristic R̃(l) of the subproblem l.
Step 4. The next trial points in the interval with the maximal characteristic is calculated as

xk+1 = xt + xt−1

2
− zt − zt−1

2m
, 1 < t < k + 1,

xk+1 = xt + xt−1

2
, t = 1, t = k + 1. (17)

Here the value m can be considered as an estimate of Lipschitz constant of the
minimized function. It can be calculated adaptively on the base of the trial results as

m =
{

r M, M > 0,

1, M = 0
(18)
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where

M = max
1<i≤k

|zi − zi−1|
xi − xi−1

,

and r > 1 is a parameter of the method.
The algorithm can be supplemented with a termination criterion:

Step 5. If
xt − xt−1 ≤ ε, (19)

where t from (16) is the index of the interval with the maximal characteristic, then
stop. In the opposite case, it is necessary to calculate zk+1

l = fl(xk+1
l ), to increment

k by 1 and to pass to Step 1. Here ε > 0 is the predefined search accuracy (for the
coordinates).

The univariate method describes above belongs to the class of the characteristical global
search algorithm (see [11,36]). This class includes many well known one-dimensional mul-
tiextremal optimization methods, such as, for example, algorithms [18,25,26,32,36] which
can be embedded into the adaptive nested scheme as well.

Using the rule (19) one can introduce a termination condition into the adaptive nested
scheme. It can be either a “strong” criterion when (19) is satisfied for all problems from the
set FQ or a weaker one when the inequality (19) holds for the problem (9) only.

3 Convergence of the adaptive nested optimization scheme

In order to prove the convergence of the proposed approach, let us note first that in the novel
generalized multistep scheme the current estimate of the minimum value of the function
ϕ̃i+1(yi+1) determined on the base of the completed global search iterations is used as the
sought function value ϕ̃i (yi ). The estimates used can be refined during the computations.
However, the estimates may differ from the values obtained by the exact solving of prob-
lems (4) essentially. More strictly, one can say that in the global search the computations
deal not with the “exact” one-dimensional functions ϕ̃i (yi ), 1 ≤ i < N , but with the approx-
imations ψ̃i (yi ), 1 ≤ i < N , of these ones. Therefore, after completing the optimization,
some estimate ψ∗ of the exact solution ϕ∗ from (4) will be obtained. In this connection,
an important question on the nearness of the estimates ψ∗ and ϕ∗ arises. It is worth noting
that the approximate computations of the one-dimensional function values are inherent in
the basic nested optimization scheme as well (see [34,35]). For this scheme, the following
theorem is true:

Theorem 1 (see [34]) Let the functions ϕi (νi ) be the Lipschitzian ones with the constants
Li for any i , 1 ≤ i ≤ N. Then, the following assertion is true for the approximation ψ∗
obtained in the minimization of the function ϕ(y), y ∈ D, by the information algorithm using
the basic scheme of nested optimization:

lim
εi →0

ψ∗ = ϕ∗,

if
εi+1 = O(εi ), 1 ≤ i < N ,

and besides, the inequality

mi ≥ 2Li + θ, 1 ≤ i < N , θ > 0, (20)
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holds after terminating the minimization for coordinate yi (i.e., after solving any problem (10)
with l = l(i)).

Here mi are estimates (18) applied in the solving of subproblems (10) for the correspond-
ing coordinates yi , εi are the accuracies for the solutions of these problems in termination
criterion (19), and O(εi ) are the infinitesimal in comparison with εi .

Theorem 1 is a theoretical substantiation of the applicability of the basic nested optimiza-
tion scheme. At the same time, it could be considered as the justification of the convergence
of the adaptive scheme as well if a “strong” termination condition is applied, i.e., when (19)
is satisfied for all one-dimensional subproblems. In this case, the order of computations is
changed in the realization of the scheme only.

In the case of using the adaptive schemewith the “weak” termination condition the applica-
bility of the theorem is limited. The one-dimensional problems fl(x), 1 ≤ l ≤ Q, of the
family FQ from (10) are considered simultaneously. A part of these ones [with large enough
values of the minimized function ϕ(y)] may be never solved with the required accuracy ε.
This is the initial idea for improvement efficiency of the adaptive scheme. As a result, the
error of the calculations of the functions ϕi (νi ) may appear to be considerable. This error
may remain unchanged even when ε tends to zero. In order to resolve this problem, one can
note that actually there is no need in the exact calculation of the functions ϕi (νi ) in all points
of the feasible domain. The necessary requirement is the condition of the exact calculation
of these functions in the nearness of the global minimum of the initial function ϕ(y) only.
Just because this requirement will be used further for the theoretical substantiation of the
adaptive nested optimization scheme.

Let us represent the search information ω
k(l)
l , 1 ≤ l ≤ Q, from (11)–(12) obtained during

the global search for the functions fl(x) = ϕi (νi , x), 1 ≤ l ≤ Q, where x = yi , i = i(l), in
the form

ω
k(l)
l = {(yl, j , zl, j (δl, j ), λl, j ): 1 ≤ j ≤ k(l)}, (21)

where yl, j , 1 ≤ j ≤ k(l), are the points of the completed l search trials, the index l corre-
sponds to the index of the problem in the family FQ , the index j corresponds to the increasing
order of the iteration points (14) in the search information, δl,k, 1 ≤ j ≤ k(l), are the errors
of the computation of the values zl, j , 1 ≤ j ≤ k(l), i.e.,

(zl, j − ϕλl, j (νλl, j , yl, j )) ≤ δl, j . (22)

Remind [see (9)] that λl, j , 1 ≤ j ≤ k(l), are the indices of the problems from the family
FQ , which were generated to calculate the values zl, j , 1 ≤ j ≤ k(l). It is important to
emphasize also that the errors δl, j , 1 ≤ j ≤ k(l), could appear to be different for different
points zl, j , 1 ≤ j ≤ k(l).

The possibility to obtain the estimates of the global minimum of the initial function
ϕ(y), y ∈ D, is defined by the conditions of the following theorem.

Theorem 2 Let the adaptive scheme using the information global search algorithm (14)–
(18) and the “weak” termination condition (19) for problem (9) with ε = 0 be applied to
solving problem (1). If

i) the objective function ϕ(y) of problem (1) satisfies the Lipschitz condition with a finite
constant L > 0 in domain (2);

ii) starting from some search step, the inequality

m > 2L , (23)

for the estimates m of Lipschitz constant from (18) holds;
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iii) for any function fl(x) = ϕi (νi , x), 1 ≤ l ≤ Q, i = i(l), of the family FQ from (10) the
following conditions for the errors of the function values’ calculation hold

δl,τ + δl,τ−1 ≤ 2ϕ(y∗) + L(yl,τ − yl,τ−1)

−(ϕλl,τ (νi , yl,τ ) + ϕλl,τ−1(νi , yl,t−1)), 1 < τ ≤ k(l), (24)

δl,τ ≤ ϕ(y∗) + L(yl,τ − yl,τ−1) − ϕλl,τ (νi , yl,τ ), τ = 1, (25)

δl,τ−1 ≤ ϕ(y∗) + L(yl,τ − yl,τ−1) − ϕλl,τ−1(νi , yl,τ−1), τ = k + 1, (26)

where τ, 1 ≤ τ ≤ k(l) + 1, is the index of the interval (determined in accordance with
the search information ω

k(l)
l ) containing the value of the i th coordinate y∗

i of the global
minimum point, y∗ i.e.,

yl,τ−1 ≤ y∗
i ≤ yl,τ . (27)

Then, the global minimizer y∗ of the function ϕ(y) in the domain D is the limit (accumu-
lation) point of the search trial sequence generated by the adaptive scheme.

Proof Since in termination condition (19) ε = 0, the algorithm of the adaptive scheme
will generate an infinite sequence of trials {ys}. Assume some global minimum point y∗ in
problem (1) not to be the limit one of this sequence, i.e., there is no subsequence of the
sequence {ys} converging to y∗. Because D is a bounded and closed set, a subsequence
converging to a limit point ȳ ∈ D can be always selected from the sequence {ys} and
ϕ(ȳ) ≥ ϕ(y∗).

As it follows [36] from the property of the bilateral convergence of the information algo-
rithms for the characteristics R(·) from (15), for the intervals containing the values of the
coordinates of the point ȳ holds

lim
q→0

R(t (q)) = −4ϕ(ȳ), (28)

where t is the index of the interval containing the values of the coordinates of the point ȳ, and
q is the index of the global search iteration. Let us estimate the characteristic R(τ ), τ = τ(q),
of the interval (27).

If 1 ≤ τ ≤ k(l), then according to (22), (24)

zl,τ−1 + zl,τ ≤ ϕλl,τ−1(νi , yl,τ−1) + ϕλl,τ (νi , yl,τ ) + δl,τ−1 + δl, τ

≤ 2ϕ(y∗) + L(yl,τ − yl,τ−1)

However,

R(τ ) = m(yl,τ − yl,τ−1) + (zl,τ − zl,τ−1)
2

m(yl,τ − yl,τ−1)
− 2(zl,τ + zl,τ−1)

≥ m(yl,τ − yl,τ−1) − 2L(yl,τ − yl,τ−1) − 4ϕ(y∗),

therefore because of (23)
R(τ ) > −4ϕ(y∗) (29)

If τ = 1 then taking into account (22), (25)

zl,τ ≤ ϕλl,τ (νi , yl,τ ) + δl,τ ≤ ϕ(y∗) + L(yl,τ − yl,τ−1),

the estimate
R(τ ) ≥ 2m(yl,τ − yl,τ−1) − 4L(yl,τ − yl,τ−1) − 4ϕ(y∗)
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is true and because of (23) inequality (29) holds again. The analogous estimates leading
to the truth of (29) are valid in the case τ = k + 1 as well.

Thus, taking into account that ϕ(y∗) ≤ ϕ(ȳ) the expressions (28) and (29) for sufficiently
great s contradict the assumption that the point ȳ is a limit one since the characteristics of the
intervals containing this point starting from some iteration of the global search become less
than the ones of the intervals with the global minimum point. According to rules (13), (16)
such intervals cannot be selected to place the trials inside these ones. 
�

The proof has been completed.
Computational experiments on test classes of multidimensional multiextremal problems

presented in the next section confirm the theoretical properties of the methods considered.

4 Numerical experiments

First, let us compare the character of the trial placement by the basic variant of the nested
optimization scheme and by the adaptive one for a function from the essentiallymultiextremal
test class (see [10,11]). The functions of this class have the form

ϕ(y1, y2) = −
{( 7∑

i=1

7∑

j=1

[
Ai j ai j (y1, y2) + Bi j bi j (y1, y2)

])2

+
( 7∑

i=1

7∑

j=1

[
Ci j ai j (y1, y2) + Di j bi j (y1, y2)

])2} 1
2

(30)

where ai j (y1, y2) = sin(π iy1) sin(π j y2) and bi j (y1, y2) = cos(π iy1) cos(π j y2) and are
considered in the domain y1, y2 ∈ [0, 1]. The parameters

Ai j , Bi, j , Ci, j , Di, j ∈ [−1, 1],
are the independent random numbers, distributed uniformly over the interval specified above.

In Fig. 2, the level curves of a function from the class (30) as well as the distributions of the
trials (marked by dark dots) in the course of optimization executed by the basic and adaptive
schemes are plotted. The numerical experiment has been carried out for both variants with the
parameter of the method r = 3 in the estimate (18) and the search accuracy in termination
condition (19) ε = 0.01. Note that according to the basic scheme, condition (18) should
be satisfied for each one-dimensional subproblem while in the adaptive generalization for
subproblem (9) only.

Both adaptive and basic schemes have provided the required accuracy of the problem
solution. However, the adaptive variant has carried out 257 search trials while the basic
scheme has computed 1139 objective function values.

The comparison of the efficiencies of the optimization algorithms using the examples of
solving particular test problems, obviously, is not a sufficiently convincing way for proving
the advantages of one or another method. Carrying out some multiple experiments in order
to obtain the statistically reliable results of the comparison is a more objective approach. For
this goal one can use the method of operating characteristics introduced in [10,36].

The operating characteristic is a set of pairs:

{〈k, p(k)〉},
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Fig. 2 The placement of the trials by the adaptive scheme (the left panel) and by the basic one (the right
panel)

where k is the number of search iterations and p(k) is the number of the problems from the
test class solved successfully in k iterations. An individual pair corresponds to a particular
set of the parameters of the method, which the test problems were solved by. Such indicators
can be calculated according to the results of numerical experiments for various parameters
of the methods and presented as a plot in the (k, p) axes. If for a given value k the operating
characteristic of a method is situated above the characteristic of another method, the first
method provides a better reliability, i.e., the possibility of the proper solution of the problem
at the same computational costs for the search. If for a given value p(k) the operating
characteristic of a method is located on the left of the characteristic of another method, the
first method requires less computational expenditures to achieve the same reliability. Thus,
the operating characteristics allow comparing the efficiencies of various methods visually.

Let us first consider the class of two-dimensional functions (30) consisting of 100 func-
tions. For a comparative experiment four global optimizationmethods have been taken. These
are the basic nested optimization scheme (BS), the adaptive one (AS) and two methods based
on other approaches to solving the global optimization problems: the partitioning method
DIRECT (see [17]) and the algorithm applying the dimensionality reduction by means of
Peano mappings (PMA) from [36]. In BS and AS the reliability parameter value r = 2.6
was used, for PMA r = 3.2 (these values provide sufficient conditions of convergence to
global minimum for these methods). The operating characteristics have been obtained by
varying the accuracy in the termination condition (19) for AS, BS and PMA and the number
of trials as the termination rule in DIRECT. The problem was considered to have been solved
successfully if the coordinates of the minimal value found in the course of optimization are
located in the circular neighborhood of the real minimum with the radius 0.01. The results
of the experiment are presented in Table 1 and Fig. 3. The number of trials is plotted on the
abscissa axis in the logarithmic scale.

The numerical experiments have demonstrated an appreciable advantage of the adaptive
scheme over the basic prototype and better performance of the adaptive scheme in providing
a better reliability in comparison with the method DIRECT and the algorithm based on Peano
curves.

The second series of the numerical experiments has been carried out using a well-known
class of test functions GKLS from [6] for the 5-dimensional problems. The testing has been
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Table 1 The number of the
problems solved successfully in
dependence on trials spent

Number of trials AS BS PMA DIRECT

60 40 42 25 13

100 51 61 52 31

150 72 73 71 52

200 87 84 80 66

250 88 87 88 75

300 89 90 92 83

400 94 94 96 89

500 99 96 96 92

700 100 98 97 94

800 100 99 99 97

1000 100 99 100 99

1100 100 100 100 100

Fig. 3 Operating characteristics on the class (30)

realized for a sample set of 100 GKLS functions belonging to the most complicated GKLS
class among the test classes described in [6].

Figure 4 presents the operating characteristics for the basic nested optimization scheme
(BS), the adaptive scheme (AS) and the Peano-mapping-based algorithm (PMA). All the
methods used the value of parameter r = 5. The choice of the value r = 5 was caused by
the necessity to satisfy the sufficient conditions of convergence for PMA. For this method,
the inequality m > 4L is the sufficient condition for the global convergence from [32]. The
number of trials is plotted on the abscissa axis in the logarithmic scale.

As it follows from Fig. 4, performance of the method BS is significantly worth than
performance of the algorithms AS and PMA. The explanation of this fact consists in the
phenomenon of the information loss by BS in the course of optimization as it was discussed
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Fig. 4 Operating characteristics using GKLS class

above. Concerning the comparison of AS and PMA, one can note that for small number
of iterations (and, as a result, for low reliability) the method using Peano curves has some
advantage. However, for achievement of a high reliability AS is more efficient than BS
because it spends less number of trials.

5 Conclusions

The work has been done in the framework of global optimization approach, according to
which in order to construct the efficient global search algorithms, various dimensionality
reduction schemes are applied. The reduction of the multidimensional problems to the one-
dimensional ones allows using a wide choice of the one-dimensional algorithms to solve the
multidimensional optimization problems.

In the present article, the nested optimization scheme of dimensionality reduction is con-
sidered. Along with a relative simplicity in its basic form, this scheme possesses a number
of disadvantages including the redundancy of the number of computations of the minimized
function values in the subdomains of the search domain. The authors have proposed a novel
method to increase the efficiency of the initial scheme by means of using the full informa-
tion on the problem in the course of global search. The novel adaptive scheme has been
described in the generalized characteristic form, within the framework of which many one-
dimensional global optimization algorithms can be employed. The generalized form has
been specified for the case of the information global search method, which the proving of
the convergence conditions has been done for. In order to confirm the efficiency of the devel-
oped approach, the results of the numerical experiments are presented justifying an essential
acceleration of the search for the adaptive generalization as compared to the basic prototype
and demonstrating the efficiency of the adaptive scheme as compared to the global optimiza-
tion method based on application of Peano space-filling curves and to the popular method
DIRECT.
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It is worth noting that because of using the characteristic decision rule for selection of
the coordinates for the next iteration, the adaptive scheme has a significant potential for the
parallelization that may be a promising direction for its further development.
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