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Abstract This paper deals with the advantages of using variable-fidelity metamodeling
strategies in order to develop a valid metamodel more rapidly than by using traditional
methods. In our mechanical assembly design, we use the term “variable-fidelity” in reference
to the convergence (or accuracy) level of the iterative solver being used. Variable-fidelity
metamodeling is a way to improve the prediction of the output of a complex system by
incorporating rapidly available auxiliary lower-fidelity data. This work uses two fidelity
levels, but more levels can be added. The LATIN iterative algorithm is used along with a
“multiparametric” strategy to calculate the various data and their different fidelity levels by
means of an error indicator. Three main categories of variable-fidelity strategies are currently
available. We tested at least one method from each of these categories, which comes to a
total of five methods for calculating a valid metamodel using low- and high-fidelity data.
Here, our objective is to compare the performances of these five methods in solving three
mechanical examples.

Keywords Metamodel · Variable-fidelity · Partially converged data · Kriging · Cokriging

List of symbols

D The design space
n The dimension of D
xi A point ∈ D
y(x) The objective function at point x
ŷ(x) An approximation of the objective function at point x obtained

through a metamodel
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X The matrix of all the calculated points X = [ x1 · · · xp ]T
yi The objective function at point xi

Y The vector of all the objective function Y = [ y1 · · · y p ]T
• f cv Any of the above in the case of fully converged data
•pcv Any of the above in the case of partially converged data

f(x) The regression function.
(
If one chooses a mean regression,

f(x) = 1; for a linear regression, f(x) = [ 1 x1 · · · xn
]T )

β The parameters of the regression function.
(
For a linear regres-

sion, β = [β1 · · · βn+1
]T )

F = [ f(x1) · · · f(xp) ]T The matrix of the regression functions at the calculation points
(for universal kriging case)

z(x) A stochastic function
Z The stochastic vector of the calculated approximations Z =[

z(x1) · · · z(xp) ]T
C The covariance matrix
R The correlation matrix

1 Introduction

Over the past few years, the development of new mechanical models and numerical tools has
led to improvements in the design of complex systems. In many disciplines, optimizations
must be carried out using these increasingly complex models which can represent the actual
physics of the problem very closely. In general, however, the high cost of these models
makes direct optimization impossible. In the last two decades, metamodeling (also known
as metamodeling or response surface modeling) has gained popularity. A metamodel is an
approximation of the real model being studied. The optimization can be carried out on this
metamodel, which becomes a suitable tool for an optimization strategy. This approximation
is defined through an interpolation or a regression of some specific output data of a computer
code [1]. The work which is presented here focuses on parameterized assembly design. The
main numerical difficulties and high computation costs are related to contact between parts
with or without friction and gaps. In this context, the use of metamodels is mandatory.

More generally, as mentioned in [2,3], metamodels can be classified into three categories:

– Response surfaces: a response surface is a functionalmapping of several input parameters
to a single output feature. The mapping can be of polynomial form, whose regression
coefficients are determined using the least-squares method, or can resort to more com-
plex techniques, such as kriging or RBFs modeling. Typically, the properties of interest
of a response surface are those which characterize the model’s representativeness, the
contribution of an individual variable to the variance of the whole model, the model’s
resolution, etc. A taxonomy of the various processes used to create a surface is given in
[1].

– Reduced models derived from Proper Orthogonal Decomposition (POD) or Proper Gen-
eralizedDecomposition (PGD). Details can be found in [4,5]. Recently, PGDwas applied
to parametric problems such as parametric optimization, inverse identification and real
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time simulation. Some examples of parametric modeling can be found in [6,7]. PGD has
also been used in the multiparametric strategy context [8].

– Hierarchical models, also known asmultifidelity, variable-fidelity or variable-complexity
models. In the particular case of two fidelity levels, corrections can be carried out from
the low-fidelity model to the high-fidelity model, such as in [9], which uses a kriging
model to correct the low-fidelity model based on the available high-fidelity model. This
type of correction corresponds to what is called a scaling model or a correction response
surface [10,11]. The low-fidelity model can be the same as the high-fidelity model, but –
as in the case of this work—converged to a different accuracy level [3,12] , or calculated
using a coarser grid [13]. Alternatively, as mentioned in [2], the low-fidelity model can
be a simple engineering model in which some of the physics taken into account by the
high-fidelity method is disregarded.

Computational metamodeling is widely used in fluid dynamics simulation and optimiza-
tion. The techniques presented in this paper are derived from that domain of mechanics,
but can be used in numerous other disciplines. The purpose of this metamodel is to help
locate the zone of interest, which is updated using specific methods to refine the search of
the minimum [1,14]. Then, the mathematical model associated with the metamodel plays
an important role. Several construction approaches can be used, such as kriging [15,16],
gradient-enhanced kriging [17–19] or RBFs [20,21]. Kriging is a popular metamodel con-
structionmethodwhichwas introduced byKrige [15] and further developed by, among others,
Matheron [16], who laid out its mathematical foundations.

The computation cost of the data which are necessary to build the metamodel remains
a major stumbling block. The use of a metamodel based only on high-fidelity data can be
too expensive. Metamodels can be improved by introducing additional information, e.g.
concerning the gradients as in the GEK method [17].

In order to reduce computation times, one can use auxiliary variables (cokriging), leading
to new computing frameworks [22–24]. It is because of these developments that the focal
point of this work is the variable-fidelity model. The main goal of this paper is to develop a
metamodel which can be used to perform an optimization and find the global optimum. The
savings in computation time obtained thanks to these methods are discussed in the paper.

In the context of Variable-Fidelity Modeling (VFM), as mentioned in [25], three main
approaches can be followed:

– the use of an additive, multiplicative or hybrid bridge function (also called a correction
response surface) which corrects the discrepancy between the low-fidelity model and the
high-fidelity model [3,10,12,26]

– cokriging, which establishes a relation between the primary and auxiliary variables (the
high-fidelity and low-fidelity data) [22,27,28]

– hierarchical kriging, which is an extension of kriging with the same computational com-
plexity [25,29,30].

The originality of this work is that, as in [3], the high-fidelity and low-fidelity levels are
calculated using an iterative solver (the LATIN solver [31]) in a solid mechanical context.
The main goal of this work is to compare the performances of several of VFM approaches
in the context of non-linear structural computations. Let us recall that the low-fidelity and
high-fidelity models are based on the same mechanical model, the only difference being that
in the low-fidelity model the iterations of the solver are stopped prematurely, leading to only
partially converged data. The high-fidelity model is defined after the iterative algorithm has
converged completely, hence the reference to fully converged data. Such an approach would
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Fig. 1 The evofusion algorithm used in this work

be impossible if one used the classical incremental algorithm. In this paper, we test a variety
of techniques from the three previous categories of strategies:

– an additive bridge function along with the evofusion algorithm [12] to construct the final
metamodel

– three cokriging methods with different ways of calculating the cross correlation [22,23,
27]

– the hierarchical kriging technique [30].

According to [26], an additive bridge function works better than a multiplicative function;
the use of a hybrid function could be interesting, but the coding would be more difficult
and would lead to an iterative process. Therefore, we used an additive bridge function along
with the evofusion algorithm to enrich our final metamodel. So, a first metamodel based
on partially converged data is computed. Then, the difference between partially and fully
converged data is calculated in some specific points. The additive bridge function is estimated
thanks to ametamodel called “errormetamodel” and to get our finalmetamodel or “evofused”
metamodel we add the first metamodel computed based on partially converged data and the
error metamodel. The principle of evofusion, as presented in [3], is described in Fig. 1.

Cokrigingmethodswere first developed in geostatistics [32] in order to enable the incorpo-
ration of auxiliary variables. In computer experiments, the information from the low-fidelity
model is added to the high-fidelity data to build a final metamodel. In our case, the partially
converged points are used to construct an interpolation metamodel among the fully con-
verged points. One of the main difficulties is in finding the relation between the partially and
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Fig. 2 The algorithm of the construction of a metamodel based on the cokriging method

Fig. 3 The algorithm of the construction of a metamodel based on the hierarchical kriging method

fully converged data (i.e. the low-fidelity and high-fidelity models). We will compare three
different methods. We used the algorithm in Fig. 2, which is similar to the one described
previously.

Hierarchical kriging is an easier way to use partially converged data to build a metamodel
because it is very similar to kriging. Indeed, the low-fidelity metamodel based on partially
converged data is used as a regression function of the high-fidelity metamodel. The algorithm
used in this paper is described in Fig. 3.

In order to improve the computation time, we use a specific feature of the LATIN iterative
solver, called the “multiparametric strategy”,which enables one to reuse previously calculated
data when performing new calculations [33].

123



582 J Glob Optim (2016) 64:577–613

The combination of VFM and multiparametric computing can be very efficient in terms
of computation time. The main purposes of this paper is to use partially converged data as
an auxiliary data layer and more especially to compare the performances and robustness of
several VFM methods on different mechanical examples. A Matlab toolbox was developed
to compute all of these methods with several correlation functions. This toolbox have also
the possibility to take into account the gradient informations [17]. Section 2 is a review of
the multiparametric LATINmethod. In Sect. 3, kriging and cokriging are presented in matrix
form. In Sect. 4, several tools used in this work are introduced. Section 5 introduces the
examples used for comparing the various methods and presents the results of the comparison.

2 The LATIN method [31]

Frictional contact laws involve a nonlinear and nonsmooth behavior at the boundary of
the body. To solve this mechanical problem, the nonincremental LArge Time INcrement
(LATIN) method is used. This method is well-known for its ability to solve difficult nonlin-
ear large problems (nonlinear material, contact problems…) [31] with a global time–space
approach. This method is close to augmented Lagrangian methods. Its great advantages are
non refactorization of matrices (stiffness matrix remains constant through LATIN iterations).
Moreover, as it proceeds in a global space–time approach, an approximation of the solution
controlled by a stopping criterion is obtained at each iteration. Depending of the value of
this stopping criterion, the approximation of the solution can be considered as a low fidelity
model as it is based on a partially converged run, or a high fidelity model evaluated using
a fully converged run. Such variable-fidelity models can be readily constructed using the
LATIN method as iterative solver. This remarkable property makes it a suitable computation
method for our purpose of building a metamodel based on partially and fully converged
data.

2.1 Principle

The first concept underlying the LATIN method is domain decomposition, in which the
interfaces are mechanical entities in their own right, with their unknowns and constitutive
relations. An evolution law which depends on the problem being studied (friction, contact,
etc.) is associated with each interface. The second main point is that the difficulties are
separated by considering two sets of equations: the local (possibly nonlinear) equations, and
the linear (possibly global) equations.

In order to simplify the presentation, let us consider only two substructures ΩE and ΩE ′
connected by an interface Γ EE ′

. The interface variables are two force fields (fE , fE
′
) and two

dual velocity fields (ẇE , ẇE ′
), as shown in Fig. 4. By convention, (fE , fE

′
) are the actions

of the interface onto the substructures and (ẇE , ẇE ′
) are the velocities of the substructures

observed from the interface. In the case of an assembly, each of the parts is considered to
be a substructure. Therefore, the interfaces describe the behavior of the assembly (including
friction, gaps, etc.)

Let uE (M, t) be the displacement field at point M of ΩE and at time t in [0, T ], and
let U [0,T ]

ad be the associated space. Then, the problem to be solved in each substructure is:
find the evolutions of the displacement field uE (M, t) and of the stress field σ E (M, t). One
introduces the kinematic variable wE (M, t) defined by uE (M, t)|∂ΩE = wE (M, t). In our
case, since the problem is quasi-static, we use the quantity ẇE (M, t).
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Fig. 4 Decomposition of an assembly; interface variables

Fig. 5 Schematic representation of the iterations of the LATIN method

2.2 The algorithm

The solution s is described a priori as a set of time-dependent fields relative to the interface
and the substructures. Here, the substructures have linear elastic behavior and the interior
solution, (i.e. the displacement uE (M, t) and the stress σ E (M, t), can be easily calculated
from the boundary quantities ẇE (M, t) and fE (M, t). The solution s can be represented
using only the force and velocity fields on both sides of the interface:

s =
∑

E

sE , sE =
{
ẇE (M, t), fE (M, t)

}
, ∀t ∈ [0, T ] (1)

Assuming that the substructures are elastic and that all the nonlinearities are concentrated
at the interface, the equations can be divided into two groups:

– the setAd of the solutions sE which satisfy the linear equations relative to the substruc-
tures, and

– the setΓ of the solutions sE which satisfy the local (possibly nonlinear) equations relative
to the interface.

Then, the solution of the problem is determined iteratively by seeking successive approx-
imations s which satisfy the two groups of equations alternatively, using search directions
E+ and E− (Fig. 5). Thus, the two steps of the iterative algorithm are:

– (local step) given sn ∈ Ad , find ŝ such that:

ŝ ∈ Γ (interfaces) (2)

ŝ − sn ∈ E+ (search direction) (3)

– (global step) given ŝ ∈ Γ , find sn+1 such that:

sn+1 ∈ Ad (substructures) (4)

sn+1 − ŝ ∈ E− (search direction) (5)
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Fig. 6 Illustration of the error indicator of the LATIN method

Here, we use conjugate search directions which depend on a single scalar parameter k0:

ŝ − sn ∈ E+ ⇐⇒
(
f̂E − fEn

)
= k0

(
̂̇wE − ẇE

n

)
(6)

sn+1 − ŝ ∈ E− ⇐⇒
(
fEn+1 − f̂E

)
= −k0

(
ẇE
n+1 − ̂̇wE

)
(7)

The solution of the problem is independent of the value of parameter k0, which affects
only the convergence rate of the algorithm. In our case of quasi-static calculations, k0 is given
by:

k0 = ET

Lc
(8)

where E is the Young’s modulus, [0, T ] the time interval being considered and Lc the largest
dimension of the structure.

2.3 Global error indicator

Since the LATIN algorithm is iterative, it is important to have an error indicator in order to
be able to identify full or partial convergence. This error indicator is defined by:

η =
∑ ‖sEn − ŝ E ‖2

∑ ‖sn E‖2 + ‖ ŝ E‖2 with: (9)

‖s‖2 =
∫

∂ΩE
fT k0fdS +

∫

∂ΩE
ẇT k0ẇ dS (10)

This is a global error indicator, which is what one uses to determine the accuracy of a
solution. The error η is a relative distance between spaces Ad and Γ (Fig. 6).

Definition A fully converged quantity is an approximate quantity whose estimated error is
smaller than a reference value; a partially converged quantity is a quantity whose error is
greater than the reference. Thus, the choice of this reference level is important. As we use
an iterative algorithm that gives us an approximation of the solution of the problem at each
iteration, we could stop the algorithm after a certain number of iterations. Moreover, at each
iteration, we have an energy error indicator that qualifies the quality of the solution and is
used as a stopping criterion. The reference level is set when the quantities of interest do not
change. In our study, the reference levels were set, based on common engineering practice,
at 1 × 10−4 for plane 2D problems. In this work, the partially converged data are computed
for differents values of η from 6×10−2 or 5×10−2 to 1×10−2. The idea is to have in some
iterations a trend of the result (around 10 iterations for a partially computation against 300
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Fig. 7 Illustration of the multiparametric strategy

for a fully computation, 4 s of computation for partially converged data and 120 s for fully
converged data for the third case test). The auxiliary data level (called partially converged
data as the iterative algorithm is stopped before convergence) is chosen based on the study
described in [3]. These levels have been chosen to have the best compromise possible between
computational time, and robustness.

2.4 Multiparametric strategy

A parametric optimization involves many calculations, each carried out with a different set
of the parameters of the problem. In our case, the changing parameters are the gap and the
friction coefficient. Therefore, the problems to be solved are mathematically very similar.
The method we use, called the MultiParametric Strategy (MPS), was introduced in [34] and
applied to the construction of metamodels in [17].

This method uses the fact that, at each iteration, a solution is available over the whole
loading path and at all points of the structure. In our case, space Γ alone is affected by a
change in a friction coefficient or a gap. Thus, as shown in Fig. 7, it is possible to restart a
resolution using a previous solution.

With this schematic representation, the number of iterations required in order to reach the
converged solution Sre f 1 is greater than that required for Sre f 2 and Sre f 3. The main problem
with this method is to decide which restarting point to use: for example, in order to obtain the
solution Sre f 3, one can choose to restart from solution Sre f 1 or from solution Sre f 2. In this
work, the restarting point is chosen to be the nearest point in a Euclidean space. For further
details, see [35].

3 The equations of the variable-fidelity model

Asmentioned previously, this paper uses several variable-fidelitymodeling techniques. In the
first case (the use of a correction surface), we used the kriging principle in order to create the
various metamodels. Therefore, we begin with a presentation of the kriging equation. Then,
we introduce the cokriging equations (used for our second variable-fidelity case study) along
with several cross correlations of the correlation matrix. Finally, we conclude this section
with a presentation of hierarchical kriging.

3.1 The kriging equation

The following equations were developed for universal kriging and, therefore, can be applied
to ordinary kriging (see [15,16,36]).
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Let us assume that the objective function has the form:

y(x) = f(x)Tβ + z(x) (11)

z(x) is a stochastic process with the following properties:

E[z(x)] = 0

E[z(x)2] = σ 2
(12)

We define the predictor by means of a linear combination:

ŷ(x) = cT (x)Y (13)

For this error indicator to be unbiased, we set:

E[ŷ(x) − y(x)] = 0 (14)

Thus, the unbiased condition can be written as:

E[ŷ(x) − y(x)] = 0 ⇐⇒ FT c(x) − f(x) = 0 (15)

In order to create the metamodel, we seek to minimize the mean square error:

MSE = σ 2 + cTCc − 2cT E[Zz]
(16)

The covariance matrix is defined as:

C =
⎡

⎢
⎣

Cov(z(x1), z(x1)) · · · Cov(z(x1), z(xp))
...

. . .
...

Cov(z(xp), z(x1)) · · · Cov(z(xp), z(xp))

⎤

⎥
⎦ (17)

The calculation of this covariancematrix is themain difficulty of this strategy. In order to do
that, one can use a correlation function (see [36]). Therefore, the only important parameter
is the distance between the points. One can define the covariance between two points as:
Cov(z(xi ), z(x j )) = σ 2R(xi , x j ), where R is a correlation function. We chose to use a
generalized exponential correlation function EXPG = exp(

∑n
i=1 −θi | wi − xi |θn+1) with

1 < θn+1 < 2.
Consequently, one has:

C = σ 2

⎡

⎢
⎣

R(x1, x1) · · · R(x1, xp)
...

. . .
...

R(xp, x1) · · · R(xp, xp)

⎤

⎥
⎦ (18)

C is a symmetric matrix due to the symmetry properties of function R. Therefore, one can
rewrite Eq. 16 as:

MSE = σ 2 + σ 2cTRc − 2σ 2cT r (19)

r(x) = [ R(x1, x) . . . R(xp, x)
]T

Now, the objective is to minimize the mean square error under the unbiased constraint.
The Lagrangian has the expression:

L(c,λ) = σ 2(1 + cTRc − 2cT r) + λT (FT c − f) (20)
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Therefore to find the optimum parameter the following system has to solved:

[
R F
FT 0

][ c
λ

2σ 2

]

=
[
r
f

]
(21)

Then:

λ

2σ 2 = (FTR−1F)−1(FTR−1r − f)

c = R−1
(
r − F

λ

2σ 2

) (22)

Finally, the solution takes the form:

ŷ(x) = c(x)TY

ŷ(x) = f(x)Tβ + r(x)TR−1(Y − Fβ)
(23)

with β = (FTR−1F)−1(FTR−1Y).
The difficulty consists in determining the parameter of function R. In order to do that, we

seek the maximum of the likelihood function:

1√
(2π)n | C |e

−(Y−Fβ)T C−1(Y−Fβ)
2 (24)

⇐⇒ 1
√

(2πσ 2)n | R |e
−(Y−Fβ)T R−1(Y−Fβ)

2σ2 (25)

Since R is positive definite, so is its inverse R−1. Thus, one has:

β = (FTR−1F)−1(FTR−1Y) (26)

σ 2 = (Y − Fβ)TR−1(Y − Fβ)

n
(27)

Finally, we obtain the error indicator of the mean square error as:

MSE = σ 2
(
1 + uT (FTR−1F)−1u − rTR−1r

)

with u = FTR−1r − f
(28)

3.2 The cokriging equation

We tested three different variable-fidelity cokriging methods. Their general construction is
similar, but they differ in the covariance matrix C, especially in the cross correlation term
[22,23,27].

3.2.1 Cokriging in general

In our work, we used only two fidelity levels, but one could use more. We have two types of
data: low-fidelity data and high-fidelity data. Since we are using an iterative solver, the high-
fidelity data are obtained after full convergence of the calculation, whereas the low-fidelity

data correspond to a partially converged calculation. LetXpcv =
[
x1pcv · · · xn pcv

pcv

]T
andYpcv

denote respectively the points of the partially converged design spaceD and the corresponding
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evaluations. Similarly, letX f cv =
[
x1f cv · · · xn f cv

f cv

]T
andY f cv denote respectively the points

of the fully converged design space D and the corresponding evaluations. Of course, in our
case, n pcv 	 n f cv where n pcv and n f cv are respectively the number of evaluated points for
the partially and fully converged data.

With these two different evaluations, one can write two different formulations:

y f cv(x) = fTf cv(x)β f cv + z f cv(x)

ypcv(x) = fTpcv(x)β pcv + z pcv(x)
(29)

Thus, if the regression is linear, we get the following matrices: Fpcv

= [
fpcv(x1) · · · fpcv(xn pcv )

]T ∈ R
n pcv×n+1 and F f cv = [

f f cv(x1) · · · f f cv(xn f cv )
]T ∈

R
n f cv×n+1

The objective now is to build a metamodel based on these two sources of information:

ŷ f cv(x) = cTf cv(x)Y f cv + cTpcv(x)Ypcv (30)

Let us seek the unbiased condition:

ŷ f cv(x) − y f cv(x) = cTf cv(x)Y f cv + cTpcv(x)Ypcv − y f cv(x) (31)

This unbiased condition can be written as:

FT
f cvc f cv − f f cv = 0 (32)

cTpcvFpcv = 0 (33)

As we did previously, we can calculate the mean square error:

MSE(ŷ f cv(x) − y f cv(x)) = E[(ŷ f cv(x) − y f cv(x))2] (34)

Then we define the Lagrangian:

L(c f cv, cpcv,λ1,λ2) = MSE + λT
1 (FT

f cvc f cv − f f cv) + λT
2 (FT

pcvcpcv) (35)

Finally we obtain the system of equations:
⎡

⎢⎢
⎣

σ f cv
2R f cv σ f cvσpcvR f −pcv F f cv 0

σ f cvσpcvR f −pcv
T σpcv

2Rpcv 0 Fpcv

FT
f cv 0 0 0
0 FT

pcv 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

c f cv

cpcv
λ1/2
λ2/2

⎤

⎥⎥
⎦ = r (36)

with

r = [σ f cv
2r f cv σ f cvσpcvr f −pcv f f cv 0

]T

r f cv(x) =
[
R
(
x1f cv, x

)
. . . R

(
x
n f cv
f cv , x

) ]T

r f −pcv(x) =
[
R f −pcv

(
x1pcv, x

)
. . . R f −pcv

(
x
n pcv
pcv , x

) ]T
(37)

3.2.2 The first cross correlation strategy

This method is described more precisely in [22]. In this strategy, we assume that the primary
and secondary data have the same spatial intercorrelation, which means that:

E[z f cv(x), z f cv(x̂)] = E[z pcv(x), z pcv(x̂)] ∀x, x̂ (38)
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This is equivalent to σpcv
2Rpcv(x, x̂) = σ f cv

2R f cv(x, x̂). Thus, if x = x̂, then σpcv =
σ f cv = σ . This final relation requires that Rpcv(x, x̂) = R f cv(x, x̂) = R(x, x̂). [22]
introduced an additional parameter γ ∈ [0, 1] in order to model the cross correlation
R f −pcv(x, x̂) = γR(x, x̂).
⎡

⎢
⎢
⎣

σ 2R(x f cv, x f cv) γ σ 2R(x f cv, xpcv) F f cv 0
γ σ 2R(xpcv, x f cv) σ 2R(xpcv, xpcv) 0 Fpcv

FT
f cv 0 0 0
0 FT

pcv 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

c f cv

cpcv
λ1/2
λ2/2

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

σ 2r f cv(x)
σ 2r f −pcv(x)

f f cv
0

⎤

⎥
⎥
⎦

(39)

We end up with the following linear system:
⎡

⎢
⎢
⎣

R(x f cv, x f cv) γR(x f cv, xpcv) F f cv 0
γR(xpcv, x f cv) R(xpcv, xpcv) 0 Fpcv

FT
f cv 0 0 0
0 FT

pcv 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

c f cv

cpcv
λ1/(2σ 2)

λ2/(2σ 2)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

r f cv(x)
r f −pcv(x)

f f cv
0

⎤

⎥
⎥
⎦ (40)

One can see that this system can be written in exactly the same form as Eq. 21:
[

R̃ F̃

F̃
T
0

][
c̃
λ̃

]
=
[
r̃
f̃

]
(41)

Finally, this leads to the following predictor:

ŷ(x) = f̃(x)Tβ + r̃(x)T R̃
−1

(Ỹ − F̃β) (42)

with β = (F̃
T
R̃

−1
F̃)−1(F̃

T
R̃

−1
Ỹ) and Ỹ = [Y f cv Ypcv

]T
.

With these notations, the mean square error can be written exactly as in Eq. 28:

MSE = σ 2
(
1 + ũT (F̃

T
R̃

−1
F̃)−1ũ − r̃T R̃

−1
r̃
)

with ũ = F̃
T
R̃

−1
r̃ − f̃

(43)

An important point is the way to tune the parameter γ . To do this, the likelihood function
is used and γ is an extra parameter to optimize. The equation of the likelihood function has
the same form as Eq. 25.

3.2.3 The second cross correlation strategy

This method is more general than the previous one, but some choices had to be made (see
[23,37]).

⎡

⎢⎢
⎣

σ f cv
2R(x f cv, x f cv) σ f cvσpcvR(x f cv, xpcv) F f cv 0

σ f cvσpcvR(xpcv, x f cv) σpcv
2R(xpcv, xpcv) 0 Fpcv

FT
f cv 0 0 0
0 FT

pcv 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

c f cv

cpcv
λ1/2
λ2/2

⎤

⎥⎥
⎦ = r (44)

This matrix can be modified into:
⎡

⎢⎢
⎣

R f cv R f −pcv F f cv 0
R f −pcv

T Rpcv 0 Fpcv

FT
f cv 0 0 0
0 FT

pcv 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

c f cv
σpcv
σ f cv

cpcv
λ1/(2σ f cv

2)

λ2/(2σ f cvσpcv)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

r f cv

r f −pcv

f f cv
0

⎤

⎥⎥
⎦ (45)
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Let us use the notations c̃ f cv = c f cv, c̃pcv = σpcv

σ f cv
cpcv, λ̃1 = λ1/(2σ f cv

2) and λ̃2 =
λ2/(2σ f cvσpcv). We also write c̃ = [ c̃ f cv c̃pcv

]T
and λ̃ = [ λ̃1 λ̃2

]T

Equation 30 becomes:

ŷ f cv(x) = c̃ f cv(x)Y f cv + c̃pcv(x)
σ f cv

σpcv
Ypcv (46)

We define Ỹs =
[
Y f cv

σ f cv

σpcv
Ypcv

]T
.

Finally, we get the system:
[

R̃ F̃

F̃
T
0

][
c̃
λ̃

]
=
[
r̃
f̃

]
(47)

and we get the same interpolator as previously:

ŷ(x) = f̃(x)Tβ + r̃(x)T R̃
−1

(Ỹs − F̃β) (48)

with β = (F̃
T
R̃

−1
F̃)−1(F̃

T
R̃

−1
Ỹs).

The mean square error is defined as before:

MSE = σ 2
f cv

(
1 + ũT

(
F̃
T
R̃

−1
F̃
)−1

ũ − r̃T R̃
−1

r̃
)

with ũ = F̃
T
R̃

−1
r̃ − f̃

(49)

Moreover, we defineR f cv = 0.9999R f −pcv = Rpcv . The parameter 0.9999 is introduced
to avoid singularity in the correlation matrix. Again, the main difficulty is to obtain the ratio
σ f cv

σpcv
. In order to do that, one also uses the likelihood function L as in[23]. We precise that

further details can be found in [37].

L

(
β,

σ f cv

σpcv
, σ 2

pcv, θ f cv, θpcv, θ f −pcv

)
= 1
√

(2πσ 2
f cv)

n f cv+n pcv | R̃ |
e

−(Ỹs−F̃β)T R̃−1
(Ỹs−F̃β)

2σ2f cv (50)

By taking logarithm and derivatives, it is possible to find the optima of the parametersβ,
σ f cv

σpcv

and σ 2
pcv . We find respectively :

β =
(
F̃
T
R̃

−1
F̃
)−1 (

F̃
T
R̃

−1
Ỹs

)
(51)

σ f cv

σpcv
=
([

0
Ypcv

]T
R̃

−1
[

0
Ypcv

])−1 [
0

Ypcv

]T
R̃

−1
[
F f cvβ f cv − Y f cv

Fpcvβ pcv

]
(52)

and

σ 2 = (Ỹs − F̃β)T R̃
−1

(Ỹs − F̃β)

n f cv + n pcv
(53)

Equations 51, 52 and 53 allow to compute values of the parameters. For example, in [37]
an iterative strategy is used to determined these parameters. The others parameters θ f cv, θpcv
and θ f −pcv can be found by maximizing the log-likelihood function.
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3.2.4 The third cross correlation strategy: the autoregressive method

In this method, we use an autoregressive model as described in [38]. The predictor used is
defined by Forrester [27], which is slightly different from the others. The difference is that
we assume that β pcv = β f cv , so the regression terms are equal. This method is based on an
auto-regressive model based on the assumption that cov(Y f cv(xi )), Ypcv(x) | Ypcv(xi )) =
0, ∀x 
= xi . This Markov property means that nothing more can be learned about Y f cv(xi )
from the less expensive model if the value of the more expensive function at xi is known (see
[38]).

The auto-regressive model we use approximates the fully converged model using the
partially converged model with a scaling factor γ plus a Gaussian process ŷcor :

ŷ f cv(x) = γ ŷpcv(x) + ŷcor (x) (54)

We assume that ŷcor and ŷpcv are independent, which leads to Cov(ŷcor (x), ŷpcv(x̂)) =
0 ∀(x, x̂)

This relation leads to the following terms:

Cov(Y f cv(x f cv),Y f cv(x f cv)) = Cov(Z f cv(x f cv),Z f cv(x f cv))

= γ 2σ 2
pcvRpcv(x f cv, x f cv) + σ 2

corRcor (x f cv, x f cv)

(55)

Cov(Y f cv(x f cv),Ypcv(xpcv)) = Cov(Z f cv(x f cv),Zpcv(xpcv))

= γ σ 2
pcvRpcv(x f cv, xpcv) (56)

Cov(Ypcv(xpcv),Ypcv(xpcv)) = Cov(Zpcv(x f cv),Zpcv(xpcv))

= σ 2
pcvRpcv(xpcv, xpcv) (57)

The final matrix is:

C =
(

σ 2
pcvRpcv(xpcv, xpcv) γ σ 2

pcvRpcv(xpcv, x f cv)

γ σ 2
pcvRpcv(x f cv, xpcv) γ 2σ 2

pcvRpcv(x f cv, x f cv) + σ 2
corRcor (x f cv, x f cv)

)

(58)

The final predictor and its mean square error are:

ŷ(x) = f̃(x)Tβ + c̃(x)TC−1(Ỹ − F̃β)

MSE = σ 2
cor + γ σ 2

pcv +
(
uT (FTC−1F)−1u − c̃TC−1c̃

)

with c̃(x) =
(

γ σ 2
pcvRpcv(xpcv, x)

γ 2σ 2
pcvRpcv(x f cv, x) + σ 2

corRcor (x f cv, x)

)

with u = FTC−1c̃ − f

(59)

The parameter γ is defined as an extra paramater of the likelihood function of the meta-
model ŷcor .

3.3 Hierarchical kriging

Hierarchical kriging is a very attractive method because it is very simple to use. The only
difference between kriging and hierarchical kriging is in the regression function. Rather than
using a basis of functions, one uses the low-fidelity metamodel. As shown in [30], y(x) can
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be expressed as:

y(x) = ŷpcv(x)β + z(x) (60)

The regression term is replaced by the low-fidelity model (in this case, the model derived
from partially converged points). Thus, the only change compared to kriging is that F is
replaced by Ŷpcv ∈ R

n f cv×1, with:

Ŷpcv = ( ŷpcv(x1) . . . ŷpcv(xn f cv )
)T

(61)

So, the important parameter of this method is β. This parameter is defined thanks to the
likelihood function defined in 25 with the only change that F is replaced by Ŷpcv :

L(β, σ f cv, θ f cv) = 1
√

(2πσ 2
f cv)

n f cv | R |
e

−(Y−Ŷpcvβ)T R−1(Y−Ŷpcvβ)

2σ2f cv (62)

By taking the logarithm of this expression and derivating we find :

β =
(
Ŷ
T
pcvR

−1Ŷpcv

)−1 (
Ŷ
T
pcvR

−1Y
)

(63)

σ 2
f cv =

(
Y − Ŷpcvβ

)T
R−1

(
Y − Ŷpcvβ

)

n f cv
(64)

So, it is now possible to define the predictor of the metamodel and its mean square error :

ŷ(x) = ŷpcv(x)β + r(x)TR−1(Y − Ŷpcvβ)

MSE = σ 2
f cv

(
1 + uT (Ŷ

T
pcvR

−1Ŷpcv)
−1u − rTR−1r

)

with u = Ŷ
T
pcvR

−1r − ŷpcv

(65)

The implementation of this method is not quite difficult, it is similar to ordinary kriging
except that the regression function f(x) is no more equal to 1 but is equal to the estimation of
the metamodel constructed thanks to the partially converged points.

3.4 Characterizations of the methods

Evofusion: the correction-based VFMwith additive bridge function [39]. It is well suited for
the case when the low fidelity data is sufficiently correlated with high-fidelity data (or have
the similar variation trend). But when the correlation is relatively small, we get less benefit.
The risk of using this kind of method is that when the low-fidelity data misses the correct
trend of high-fidelity data, it can be even worse than the method of building surrogate model
only using the high-fidelity data (the test case 3 of this manuscript also validate this point).

First cokriging method: it also assumes that the low- and high-fidelity data are sufficiently
correlated to each other, and then have the same risk as the first method does. But the
introduction of an additional parameter called γ makes it more flexible and could be more
accurate that method 1.

Second cokriging method: theoretically, it can be viewed as a generalization of the first
cokriging method. It provides an additional parameter called σ f cv/σpcv which can act as an
indicator of how the low- and high-fidelity data are correlated to each other. The introduction
of this parameter helps to automatically adjust the influence of low-fidelity data on the
resulting VFM prediction, which in turn helps to avoid the risk of building VFM.

123



J Glob Optim (2016) 64:577–613 593

Third cokriging method: it differs from the 1st and 2nd cokrigings for the way of how
to calculate the so-called cross variance. This is a well-accepted method and theoretically it
should be as accurate as the 1st and 2nd cokrigings. A restriction of this method is that the
high-fidelity sample sites have to be the subset of the low-fidelity sample sites; otherwise
interpolation has to be performed. There is a parameter called γ which is an scaling factor
of low-fidelity data to the prediction of high fidelity data.

Hierarchical kriging: a simple and robust method. Compared to the cokrigings, the for-
mulation as well as the implementation is much simpler. The correlation matrix is much
smaller and there is no need to calculate the so-called cross correlation or cross covariance
as a cokriging does. A parameter called β is introduced to account for the influence of low-
fidelity data on VFM prediction. Theoretically, it should be almost as accurate as methods
of cokrigings 1–3, and should not be worse than evofusion.

The main interest of this work is to test these methods in a engineering contest, and
some results differ from theoretical results and some results found in the literature. Two
explanations can be given, the first one is that the parameters which control the different
methods are not well tuned because of the genetic algorithm used to optimize the likelihood
which miss the optimum parameters. Indeed, even for an example in 1D, this function can
be difficult to optimize. The second reason for the differences is that for a large part of the
test performed even the fully converged points give a poor metamodel describing not well
the high-fildelity model, contrary to example in [27] where only with the high-fidelty data a
kriged metamodel has a correlation r2 equal to 0.949 whereas with a cokriged metamodel we
have a correlation of 0.96. There is also the fact that the partially converged data are not very
well correlated with the high-fidelity model contrary as for example in [22].And between the
partially and fully converged data there is no simple relation as for the analytical example as
: ŷ f cv = γ ŷpcv + ŷcor .

3.5 Validation of the methods

In this section, we illustrate the cokriging and hierarchical kriging techniques on analytical
example. We use two examples the first on comes from [27], the second one from [22]. The
first example has its high-fidelity and its low-fidelity models defined by:

HF : x �−→ yh f (x) = (6x − 2)2 × sin(12x − 4)

LF : x �−→ yl f (x) = A × (6x − 2)2 × sin(12x − 4) + 10(x − 0.5) − 5
(66)

The factor A can take several values, here we have used A = 0.5, A = 0.08 or A = 100.
The second analytical example is defined by:

HF : x �−→ yh f (x) = sin

(
2πx

5

)
− 0.5x + 5

LF : x �−→ yl f (x) = 0.9 sin

(
2πx

5

)
− 0.3x + 5

(67)

To check the implementation of these methods (especially the cokriging one), we chose
to use the same correlation function as in the original paper dedicated to the cokriging
technique. The red points correspond to the low-fidelity model evaluations and the green
square correspond to the high-fidelity model evaluations (see Fig. 8).

So for the first cokrigingmethod used in this paper, as in the original paper [22], the second
analytical example is treated. The correlation function used is the gaussian function. As in
[22], ordinary cokriging (OCK), universal kriging with a regression function at the order one
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(a) (b)

Fig. 8 Illustration of the first cokriging method. a First analytical example, b second analytical example,
OCK: θ = 0.1609 and γ = 0.8040, UCK: θ = 0.1609 and γ = 0.9990 [22]

(a) (b)

Fig. 9 Results for the second cokriging method. a Second cokriging method, b comparison of estimated and
true value of σ f cv/σpcv

(UCK) are computed. The parameters of cokriging are the ones written in [22] and the same
response as in the original paper is obtained. We have also tested the first example to show
that this cokriging method is not well suited on this specific example (see Fig. 8).

The second cokriging method is tested with the first example for several values of A.
The correlation function used is the spline function [37]. The comparison of the estimated
σ f cv/σpcv and the “true” σ f cv/σpcv is shown in Fig. 9. As in [37], the estimated σ f cv/σpcv

is obtained by the model fitting method, while the “true” σ f cv/σpcv is calculated based
on a σ 2

f cv/σ
2
pcv obtained by fitting kriging models based on a large number of high- and

low-fidelity samples.
The third cokriging method is used with the generalized exponentional [27].The hierar-

chical kriging is illustrated on the Fig. 10.
The results obtained are the same as in the original paper.

4 The tools we used

4.1 Sampling plans

In developing these strategies, an important parameter is whether x f cv ⊂ xpcv or not. Indeed,
in the case of the evofusion principle, x f cv ⊂ xpcv .
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(a) (b)

Fig. 10 Implementation of the third cokriging and hierarchical kriging. a Third cokriging method, b hierar-
chical kriging with A = 0.5

The equations of the auto-regressive model (the third cokriging method) assume that
x f cv ⊂ xpcv (see [27]). One can also write these equations if x f cv 
⊂ xpcv , in which case one
can evaluate ypcv(x f cv) as ŷpcv(x f cv). The other two cokriging strategies as well as hierar-
chical kriging work the same in both cases x f cv ⊂ xpcv and x f cv 
⊂ xpcv . Therefore, in this
paper, we compare three strategies (the first and second cokriging methods and hierarchical
kriging) on the basis of whether property x f cv ⊂ xpcv is used or not.

An important aspect of this work was to build a good data set. The partially converged
points were generated by a Latin Hypercube method (LHS) [40] using the function “lhsde-
sign” in Matlab. This approach is quite classical, but an important point was the selection
of a subset x f cv of xpcv . This had to be a “smart” selection because we needed to span
the whole parameter space. Thus, as in [27], we selected these points using a Morris–
Mitchell criterion [41] (i.e. the minimum of φp = [∑ j d

−p
j ]1/p , with j being a pair of

points and d j the distance between these points). This is nothing but a combinatorial prob-
lem, but the difficulty is in the number of possible selections of point pairs. For example, if
n pcv = 30 and n f cv = 9 (which is a rather small example), the number of possibilities is
n pcvCn f cv = n pcv !/n f cv!(n pcv −n f cv)!, n pcvCn f cv ≈ 14×106. Thus, it can be difficult to test
all the possibilities. In this work, we used an exchange algorithm similar to that proposed in
[27] to make a selection. We worked with a random selection subset x f cv . We calculated the
Morris–Mitchell criterion. The first point x1f cv was exchanged with each of the remaining
points in xpcv/x f cv and we retained the case which gave the minimum Morris–Mitchell
criterion. The process was repeated for each remaining point. With this exchange algorithm,
the number of possibilities tested is n f cv ∗ (n pcv − n f cv) + 1, which, in our example, equals
190 (Fig. 11).

4.2 The correlation coefficient

In this study, for the stopping criterion of our updating strategies described in Figs. 1, 2 and 3,
we needed a correlation coefficient which takes into account both the amplitude and the shape
of the metamodels. We used the concordance correlation coefficient, defined by [42], in the
case of two observers for one experiment:

rccc =
2.SF̂app F̂re f

S2
F̂app

+ S2
F̂re f

+
( ¯̂Fapp − ¯̂Fref

)2 (68)
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Fig. 11 Illustration of an LHS and the selection of some points

with

¯̂F = 1

Ns

Ns∑

n=1

F̂, S2
F̂

= 1

Ns

Ns∑

n=1

(
F̂ − ¯̂F

)2

SF̂app F̂re f = 1

Ns

Ns∑

n=1

(
F̂app − ¯̂Fapp

) (
F̂re f − ¯̂Fref

)
(69)

where Ns is the number of points to be correlated, which is the number of points used to
compute the reference metamodel F̂re f . These points are taken from an independent set
and are numerous. F̂app are approximate values of the objective function taken from the
metamodels at the locations of F̂re f .

We are also interested in the correlation taking into account only the shape, but not the
amplitude. Indeed, the shape is the dominant parameter when it comes to locating the min-
imum of the function of interest. We used the coefficient defined by [43] and also used in
[3,12,44]:

r2 =

⎛

⎜⎜⎜⎜
⎝

Ns
∑

F̂re f F̂app −∑ F̂re f
∑

F̂app√[
Ns
∑

F̂2
re f −

(∑
F̂re f

)2] [
Ns
∑

F̂2
app −

(∑
F̂app

)2]

⎞

⎟⎟⎟⎟
⎠

2

(70)

One can note that, in our case, the correlation coefficient is exactly the same as that defined
by Bravais-Paerson.

4.3 The stopping criterion

The updating strategywas illustrated in Figs. 1, 2 and 3. In this work, we use stopping criteria,
one of which consists in calculating the correlation of the μ previously constructed meta-
models. First, let us define the criterion proposed by [12,44], which measures the evolution
of the construction of the metamodel:

rcccμ =
2.SF̂app−μ F̂app

S2
F̂app−μ

+ S2
F̂app

+ (
¯̂Fapp−μ − ¯̂Fapp)2

(71)
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Table 1 The bounds of the three
design parameters

Parameters Min Max

CfStr2/Str3 0.0 0.95

CfStr2/Str4 0.0 0.95

J2 (in mm) −0.028 0.048

where F̂app denotes the latest calculated metamodel and F̂app−μ denotes the μth previously
calculated metamodel. As stated in [12,44], “this is similar to a leave-one-out cross correla-
tion, but in this case it is an add-one-in validation”.

Then, let us define the criterion:

r̄ν
ccc = 1

ν

ν∑

μ=1

rcccμ (72)

This criterion, with ν = 4, was used as the stopping criterion. In order to guarantee good
results, the updating strategy was stopped once the condition r̄ν

ccc > 0.99 had been satisfied
three consecutive times. The advantage of this criterion is that it is based solely on known
metamodels. Thus, it can be used even in the absence of a reference model.

5 The problems studied

In this section, we present comparisons based on three different mechanical problems. We
used the five methods described above to construct a valid metamodel. To compare the meth-
ods for each treated example, a reference model is computed. The results given under the
form of correlation is the correlation between the reference model and the VFM metamodel
computed. The firstmethod consists in using a correction function defined through an additive
bridge function and the evofusion algorithm. The next three methods are based on the cok-
riging principle using three different cross correlation techniques. Let us recall that the first
strategy assumes that the covariances of the fully and partially converged data are identical;
the second strategy is more general and is based on the ratio of the covariances of the fully
and partially converged data; the last strategy is based on an auto-regressive model between
the fully and partially converged data. The last method used is based on hierarchical kriging.
To search the maximum of the likelihood function for our mechanical examples described in
Sect. 5, a genetic algorithm is used. Two stopping criteria were considered. The first criterion
consists in stopping the procedure once the correlation with respect to some reference model
exceeds 95%. The second criterion is the one described in Sect. 4.3, which does not require
a reference.

5.1 The first problem

The first problem (Fig. 12) is a three-parameter problem (Table 1) which consists in finding
the reaction load F(x) of a cube (Str2) against a wall.

This is a typical problem involving contact with friction.We constructed a first metamodel
using partially converged points. We carried out the analyses for 10 × n initial partially
converged points (with n = 3 in this example) and (as in [3]) for several error levels and 20
different draws. Thus, for the case being studied, we first calculated 30 partially converged
points.
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Fig. 12 The reference problem
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Fig. 13 Initial correlations for the first case test. a Initial amplitude correlation, b initial shape correlation

In order to prove that all these methods can be efficient, one must show that the first meta-
model (built from only partially converged data) has a low correlation (or a lower correlation
than what would be obtained using any of these strategies). As a reminder, η is the LATIN
error indicator.

Figure 13a and b show that the initial amplitude correlation and the initial shape correlation
have the same order of magnitude.

For each cokrigingmethod and for the hierarchicalmethod,we calculated 2×n, 3×n, 4×n
and 5 × n fully converged points. In this section, we used the exchange algorithm to select
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Fig. 14 Correlations with 9 additional fcv points for the first case test. a Correlation, b shape correlation

the fully converged points. For the evofusion method we calculated 2 × n, 3 × n, 4 × n and
5× n additional partially and fully converged data. Thus, the computation time was slightly
greater than for the other methods, but one can ignore this small difference. The first study
is based on the comparison of the correlations using these fully converged points. The use
of 3× n fully converged points leads to an good result in term of accuracy and computation
time. In order to show the interest of each of these methods, we also compare the correlations
obtained with only fully converged points. The notations used are the following:

– Evofusion: as described in Fig. 1
– 1st method: as described in Fig. 2 and in Sect. 3.2.2
– 2nd method: as described in Fig. 2 and in Sect. 3.2.3
– 3rd method: as described in Fig. 2 and in Sect. 3.2.4
– Hier. krg: as described in Fig. 3 and and in Sect. 3.3
– fcv: refers to the case where only fully converged data are used to create a metamodel.

Figure 14 shows that the most promising methods are: evofusion, the first cokriging
method, the third cokriging method and the hierarchical kriging method. The use of the
fully converged points alone leads to a clearly inferior correlation, especially in term of
shape. Therefore, the methods which include partially converged data are definitely the best
methods.

In order to show the advantage of using fully converged points in addition to the partially
converged points, let us examine the cases where x f cv ⊂ xpcv and x f cv 
⊂ xpcv . As before,
this comparison is based on 3 × n fully converged points (Fig. 15)

Even though the metamodels which include a selection of fully converged points among
the partially converged points performed slightly better, one can note that, except for the
second cokriging method, the correlations are almost identical. In the case of this example,
the second cokriging method seems to be unsuitable for our metamodel construction.

Another study which we carried out with this mechanical example consisted in assessing
whether these methods are efficient when it comes to achieving 95% correlation. We found
the best method to be the first cokriging method.

To complete the study, we also included in the comparison the use of only fully converged
points from the updating strategy of the first cokriging method (Fig. 16)

This example shows that if one considers only the fully converged points obtained from
the updating strategy of the first cokriging method, this stopping criterion can be satisfied
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Fig. 15 Comparison of the correlations with 9 additional fcv points for the first case test. a Correlation,
b shape correlation
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Fig. 16 The number of points and the time necessary to reach 95% correlation for the first case test. aNumber
of fcv points to reach 95% correlation, b time to reach 95% correlation (in hundredths of a second)

slightly more rapidly than with the other strategies (especially for the error level of 0.06
which is the most attractive). This can be explained by the fact that the response surface
consists of planes.

The last studywecarried outwith thismechanical example consisted in testing the stopping
criterion presented in Sect. 4.3. One can clearly see, on the Fig. 17, that the stopping criterion
tested is well suited for the construction of a valid metamodel. Moreover, using the first
cokriging method, this metamodel can be obtained rapidly.

One can observe that if one takes into account only the fully converged point issued from
the first cokriging method the criterion is satisfied slightly more rapidly, which pinpoints
the quality of the chosen points and explains the efficiency of the first cokriging method.
However, the evofusion method and the hierarchical kriging method are efficient, too.

One should note that for the first cokriging method and for hierarchical kriging (Fig. 18)
the fact that x f cv 
⊂ xpcv or x f cv ⊂ xpcv has no serious impact on the number of fully
converged calculated points. Concerning the second cokriging method, a smaller number of
points was used, resulting in a poorer-quality solution.
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Fig. 17 The study carried out with the second stopping criterion for the first case test. a Number of fcv points
to reach the stopping criterion, b final correlation
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Fig. 18 Comparison of the methods with and without the exchange algorithm for the first case test. a Number
of fcv points to reach the second stopping criterion, b final correlation

Conclusion Our study shows that, in order to create a valid metamodel rapidly, evofusion,
the first cokriging method, the third cokriging method and the hierarchical kriging method
work equally well. All these strategies, especially evofusion and the first cokriging method,
are totally suitable for the purpose of achieving a high final correlation at a small number of
points. Moreover, the proposed stopping criterion described in Sect. 4.3 appears to be a good
criterion which enables a high correlation level to be achieved in the absence of a reference.

5.2 The second problem

The second test case concerns a more industrial problem. A shrink disk (Fig. 19) is a techno-
logical component which consists of a biconical inner ring which is fitted to the pinion and
two external conical pressure flanges, one of which is threaded. A clamping load is applied
between the external flanges through a series of screws distributed along the circumference.
The tightening of the screws presses the conical surfaces against each other and generates
radial forces which create the adhesion binding which is necessary to transmit the torque Ma
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Table 2 The bounds of the
design parameters

Parameters Min Max

Cfsha f t/gear ,Cfgear/ inner ,Cf inner/outer 0.05 0.5

Jsha f t/gear (μm) 0 50

Jgear/ inner (μm) 36 106

GEAR SHAFT

SHAFT

GEAR

OUTER RING

INNER RING

(a)

(b)

Fig. 19 The shrink disk problem. a A shrink disk, b the axisymmetric mesh

and the axial load Fa from the shaft to the pinion. The quantity of interest which is to be
studied is the torque Ma .

This problem has 5 parameters as shown in Table 2. In this case, our objective is to check
whether the previously described strategies are suitable for this mechanical example. Again,
we used 10×n (in this case, 50) initial partially converged points and 3×n (in this case, 15)
fully converged points. Only the results obtained using the exchange algorithm are reported
here. First, Fig. 20 shows the initial correlations. Timewise, the most interesting correlation
level is 0.05, but this level is very low.

Then, as in Sect. 5.1, we look at the correlation after the introduction of 3× n additional,
fully converged points to the model.

One can observe (Fig. 21) that none of these methods is more efficient in achieving a
good correlation than the simple use of only fully converged points (15 in this case). The
evofusion strategy even leads to the worst results in terms of the level of accuracy of the
partially converged points at 0.05. This is due to the poor initial correlation for both the
amplitude and the shape. Conversely, one can note in Fig. 22 that if our updating strategy
is stopped at 95% correlation all the strategies are suitable except for the third cokriging
method, which is the least performing method.
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Fig. 20 Initial correlations for the second test case. a Initial amplitude correlation, b initial shape correlation
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Fig. 21 The correlations with 15 additional fcv points for the second test case. a Correlation, b shape corre-
lation
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Fig. 22 The number of points and the time necessary to reach 95% correlation for the second test case. a
Number of fcv points to reach 95% correlation, b the time to reach 95% correlation (in hundredths of second)
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Table 3 The bounds of the
design parameters

Parameters Min Max

X (in mm) 35 208

L (in mm) 1 30

Fig. 23 The reference problem for the third test case

Conclusion As in the previous example, the first cokriging method, the hierarchical kriging
method and evofusion are the most efficient strategies. In both mechanical examples, the
second and third cokriging methods did not appear to work well. One can consider that the
use of a larger error indicator is appropriate, even though, in the case of evofusion, an error
indicator equal to 0.01 leads to an approximate 15% saving in computation time compared
to an error indicator equal to 0.05. Figure 21 shows that Evofusion is the worst method,
especially for η = 0.05, 0.04, even if on Fig. 22, the results are good. Two reasons can
explain this situation. The first one is that for the evofusion, points are added one by one up
to have 15 fully converged points, and it sometimes happens that one reaches the correlation
of 0.95 before having computed 15 points. The second reason is that when the correlation
with the reference model is computed (so, when 15 fully converged points are available), the
process of evofusion is not very stable, because the 15 fully converged points are often on
the edge of the space domain (due the enrichment based on the maximum of mean square
error) and can be not representative of the design space (dimension 5 in this example). So
in this context the genetic algorithm can miss the maximum likelihood. On our 20 design of
experiments, 3 of them have this problem, if the results are computed without these one, the
results on the Fig. 21 are comparable with the first cokriging method.

5.3 The third problem

In order to further test the efficiency of these three methods, we studied a third example. This
time, we considered a two-dimensional, multimodal problem with two parameters (Fig. 23;
Table 3).

The objective function is the mean pressure along the dotted line in Fig. 23. The response
surface is shown in Fig. 24.
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Fig. 24 The response surface of the groove problem
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Fig. 25 Initial correlations for the third case test. a Initial amplitude correlation, b initial shape correlation

We can note that the response surface is multimodal and, therefore, more complex than
the simple superposition of several planes as was the case of the other examples. With this
problem, the initial correlations show that only the shape correlation is good (see Fig. 25),
but, globally, there is an offset between the high-fidelity and low-fidelity levels.

As before, after having calculated 3 × n fully converged points, we calculated the corre-
lation and the shape correlation (Fig. 26).

For thismechanical example, theVFMmethodswere found to be very efficient in reaching
the first stopping criterion (i.e. 95% correlation) as we can see on Fig. 27.

It is interesting to compare the cases x f cv ⊂ xpcv and x f cv 
⊂ xpcv in order to assess the
impact of this property. Figure 28 shows that it is better to have x f cv ⊂ xpcv .

Finally, we tested our second stopping criterion defined in 4.3. The results are very inter-
esting (Fig. 29) because evofusion and the first cokriging method satisfied this stopping
criterion with about 20 fully converged points for a final 97% correlation, while with 20
fully converged Latin Hypercube points the correlation was only about 86%! Moreover, in
this case, the multiparametric strategy is attractive because it reduces the computation time
by a factor of about 2.5. This example clearly shows that, using the same number of points,
the VFM techniques lead to a better correlation, even when x f cv /∈ xpcv (see Fig. 30).

Moreover the area of the global minimum is found for 16 different initial draws on 20
(global minimum: X = 89.9 mm L = 22.9 mm for a value of 1.49). The 4 other draws leads
to the local minimum (local minimum: X = 207 mm L = 13.1 mm for a value of 1.50).
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Fig. 26 The correlations with 6 additional fcv points for the third case test. a Correlation, b shape correlation
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Fig. 27 The number of points and the time necessary to reach 95% correlation for the third case test.
a Number of fcv points to reach 95% correlation, b time to reach 95% correlation (in hundredths of a second)

So these strategies enable to find the global minimum of a problem even if the local and
global minimum are close in term of value. For the two other examples treated previously,
the minimum or the maximum of the function have been found.

6 Optimization with VFM methods

Wecan notice that threemethods are clearly promising, efficient and robust on ourmechanical
examples, these methods are Evofusion, 1st cokriging method and hierarchical kriging. We
purpose in this paragraph to show the interest to use the variable-fidelity methods in the
context of optimization. To illustrate this point, an EGO approach [14] is performed on the
test case 3 defined in paragraph 5.3. Thismechanical example get twominima (one global and
one local) which have almost the same value (see Fig. 24). In this section, the comparison
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Fig. 28 Comparison of the methods with and without the exchange algorithm for the third case test.
a Correlation after the introduction of 6 additional fcv converged points, b comparison of the number of
additional fcv points to reach 95% correlation
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Fig. 29 The study with the stopping criterion for the third case test. a Number of fcv points to satisfy the
stopping criterion, b final correlation

of the position of the minima found thanks to the EGO approach is given as well as the
convergence history of the optimization process.

The previous cited methods are used to construct a metamodel to lead the optimization.
As previously 20 different sampling sets are used for each multi-fidelity method. For the
EGO approach, the same schemes of construction of the metamodel as previously are kept,
the only made change is the enrichment of the points. To do this enrichment, the maximum
of expected improvement [14] is the method used.

6.1 Expected improvement

The goal of the expected improvement criterion is to locate the area where an improvement
relative to the best computed optimum can be consider. To have more details about this
famous technique please see [14].
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Fig. 30 The study with the second stopping criterion and the influence of the exchange algorithm for the third
case test. a Number of fcv points to satisfy the stopping criterion, b final correlation

We note s(x) the value of the mean square error at the point x. The expected improvement
can be expressed in a kriging context as:

E I (x) ={
(min(Y ) − ŷ(x))


(
min(Y ) − ŷ(x)

s(x)

)
+ s(x)φ

(
min(Y ) − ŷ(x)

s(x)

)}
if s > 0

{0} if s = 0

(73)

In the cokriging and hierarchical kriging context as in [27] the expected improvement is
expressed as:

E I (x) =
{
(min(Y f cv) − ŷ f cv(x))


(
min(Y f cv) − ŷ f cv(x)

s(x)

)
+ s(x)φ

(
min(Y f cv) − ŷ f cv(x)

s(x)

)}
if s > 0

{0} if s = 0

(74)

Another question is how the expected improvement of the metamodel constructed by
Evofusion can be expressed. Indeed, to obtain the high-fidelity metamodel, a first low-fidelity
metamodel is constructed and corrected by an error metamodel (see Fig. 1), so it is not simple
to determine themean square error of the high-fidelitymetamodel. In this workwe have taken
the same option as in [12,44]: all the points used to create the high-fidelity metamodel are
considered with a null error. Moreover all the added points are enriched with the maximum
expected improvement, so contrary at the other methods there is no fully converged points
when starting the enrichment. The main reason of this decision is that we wanted to compare
proposed methods in the literature. These three methods are compared to a more traditional
one based on kriging of fully converged points. First, for this approach, 20 LHS points are
computed and then enriched thanks to maximum of expected improvement.

For all the methods we decide to stop the enrichment when three times in a row the value
max E I

max Y f cv−min Ypcv
is inferior to 0.001 see [45].
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Fig. 31 Result of the optimization. a Number of points to reach the stopping criterion, b quality of the final
result, distance in (%) to the global minimum

6.2 Comparison of the VFM methods

The results presented in Fig. 31 show clearly that for a same computation effort the accuracy
of the position of the minimum is better with cokriging and hierarchical kriging than with
kriging of fully converged data. The distance in %, is defined as:

‖ xEGO
min − xmin ‖

max
x∈D {‖ x − xmin ‖} × 100

with xmin the global minimum and xEGO
min the minimum provided by the metamodel. One

can note that the computation time of partially converged data can be neglected, because the
computation time of one partially converged data is 30 times less expensive than one fully
converged data. We can notice that on the twenty tests performed, the Evofusion results are
not good. Several solutions can be considered to improve the results.

– A first enrichment of a few points based on the maximum mean square error can be
done to improvement the quality of the response surface. After, the enrichment based on
expected improvement can be computed. (The results obtained are better for the same
number of computed points.)

– The second solution is to modify the evaluation of the mean square error and used the
one proposed by [26] as for example.

6.3 Convergence of the results

Since the local and the global minima have almost the same value it is interesting to see which
method is the best one at fixed computation time. The results presented on Fig. 32 show the
speed convergence of the found minimum thanks to the metamodels.These results show the
mean of the minimum found for the 20 numerical experiments run for each method.

We can notice that all the multi-fidelity strategies are better than the classical strategy
based only on the fully converged data. It is worth noting that the localisation of the global
minimum is not reached with the Evofusion method. Nevertheless, as the local minima is
very close from the global one, the final result obtained is still very useful. For information,
the convergence history as a function of the distance to the global minimum is given in
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Fig. 32 Convergence history of the found minimum. a Mean value of minimum for the 20 numerical exper-
iments as a function of the number of fully converged points computed, b mean value of minimum for the 20
numerical experiments as a function of the CPU time

10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

Number of tot. fully conv. points

D
is

ta
nc

e 
to

 th
e 

gl
ob

al
 m

in
im

um

Evofusion
Ckrg. Inter.
Hier. krg.
fcv

500 1000 1500 2000
10

20

30

40

50

60

70

80

Time of computation (in s)

Evofusion
Ckrg. Inter.
Hier. krg.
fcv

(in
 %

)

D
is

ta
nc

e 
to

 th
e 

gl
ob

al
 m

in
im

um
(in

 %
)

(a) (b)

Fig. 33 Convergence history of the found minimum, a Mean distance to the global minimum as a function
of the number of fully converged points, b mean distance to the global minimum as a function of CPU time

Fig. 33 and shows again that the Evofusion strategy is less efficient to locate the real global
minimum.

7 Conclusion

In this paper, we tested several variable-fidelity methods in an attempt to create a valid
metamodel which would be appropriate for optimization purposes. Three main types of
strategies were compared: the additive bridge function, cokriging and hierarchical kriging.
Out of the five methods tested, these three were found to be very efficient for creating a
metamodel:

– the additive bridge function
– cokriging using the first cross correlation method
– hierarchical kriging

The results are slightly different that the ones found in the literature, but this can be
easily explained. The first reason is that the correlation between low-fidelity model and high-
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fidelity model are low and even very low in some cases. The second reason is that the kriging
metamodel is constructed with a low number of fully converged points (3× dim), so that i
has a low level of correlation with the reference solution. So in our engineering context, the
previousmethods cited are themost robust: other methods are less accurate (even though they
may have certain advantages in other contexts). So tuning, the parameter scaling the low-
fidelity data for the second and third cokriging method can be difficult. The same observation
was performed in [22] which shows that the first cokrigingmethod is very efficient in real-life
applications.

It is important to note that in our examples all three main families of methods turned out
to be efficient. We were able to create a very accurate metamodel using only a few fully
converged points (3× n). These methods are more efficient than using only fully converged
data when it comes to reaching 95% correlation. Moreover, one should note that with the
stopping criterion based on the constructed metamodel alone as defined in Sect. 4.3, a very
high final correlation was obtained with fewer points than the usual rule which says that
a metamodel should be constructed with 10 × n fully converged points. If, as in the third
example, the number of points used corresponds to that rule, the correlation is even higher
and, therefore, the resulting metamodel is better.

In conclusion, these three techniques were found to be efficient for the construction of
a valid metamodel, which can be enriched through a variety of techniques. Our review of
several types of techniques shows that they can be used efficiently along with our mechanical
model. One can note that all the techniques developed in this paper can take into account some
gradient information with which the multiparametric strategy can be applied rapidly. Once
the metamodel has been obtained, one can seek the global optimum using an enrichment
method such as the “expected improvement” method since it has been show (especially for
the third example) that these strategies enable to find the area of this one. These methods also
lend themselves well to the introduction of constraints or the resolution of multiobjective
optimization problems.
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