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Abstract A key element for the global optimization of non-convex mixed-integer bilinear
problems is the computationof a tight lower bound for the objective functionbeingminimized.
Multiparametric disaggregation is a technique for generating amixed-integer linear relaxation
of a bilinear problem that works by discretizing the domain of one of the variables in every
bilinear term according to a numeric representation system. This can be done up to a certain
accuracy level that can be different for each discretized variable so as to adjust the number
of significant digits to their range of values and give all variables the same importance.
We now propose a normalized formulation (NMDT) that achieves the same goal using a
common setting for all variables, which is equivalent to the number of uniform partitions in
a closely related, piecewise McCormick (PCM) approach. Through the solution of several
benchmark problems from the literature involving four distinct problem classes, we show
that the computational performance of NMDT is already better than PCM for ten partitions,
with the difference rising quickly due to the logarithmic versus linear growth in the number of
binary variableswith the number of partitions. The results also show that a global optimization
solver basedon the proposed relaxation compares favorablywith commercial solversBARON
and GloMIQO.

Keywords Mixed-integer nonlinear programming · Quadratic optimization · Disjunctive
programming · Algorithm · Process networks

List of symbols

ai jq Scalar multiplying bilinear term xi x j in constraint q
Bq Matrix with coefficients for variables x in constraint q
Cq Matrix with coefficients for variables y in constraint q
dq Constant term in constraint q
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f0 Optimal value of objective function for problem (P)
f ′
0 Optimal value of objective function for problem (P’) that is equivalent to (P)
f R0 Optimal value of objective function for problem (PR), lower bound for (P)
f ∗
0 Upper bound for problem (P)
fq (x, y) Function of continuous variables x and binary variables y defining constraint

q
k Digit in decimal numerical representation system, ∈ {0, . . . , 9}
l Position in decimal numerical representation system, ∈ {p, . . . ,−1}
n Partition in piecewise McCormick relaxation, ∈ {1, . . . , N }
N Number of partitions specified for piecewise McCormick relaxation
p Parameter defining the accuracy level of discretized variables, ∈ Z

−
xL Vector of lower bounds of continuous variables x
xU Vector of upper bounds of continuous variables x
xi Variable of bilinear term xi x j to be disaggregated
x̂i jkl Disaggregated variable from linearization of xi z jkl
x̂i jn Disaggregated variable in piecewise McCormick relaxation
x̂ jn Disaggregated variable in piecewise McCormick relaxation
x j Variable of bilinear term xi x j to be discretized
wi j Variable replacing bilinear term xi x j
z jkl Binary variable assigning to λ j digit k to position l
z jn Binary variable assigning partition n to variable x j
ε Targeted relative optimality tolerance

λ j = Discretized variable linked to original variable x j , ∈ [0, 1]
λ jl Value of λ j in position l of discretized representation, ∈ {

0, 10l , . . . , 9 · 10l}
νi j Variable replacing bilinear term xiλ j

τ Parameter for comparing performance of a solver with respect to its competitors
�λ j Slack variable ensuring continuous domain for λ j ,∈

[
0, 10p

]

�νi j Variable replacing bilinear term xi · �λ j(
xR, yR

)
Optimal solution for problem (PR)

(x∗, y∗) Best-known solution for problem (P)

1 Introduction

The problem considered in this paper can be classified as a nonconvex,mixed-integer quadrat-
ically constrained problem (MIQCP) with the following general form:

min f0 (x, y)

subject to

fq (x, y) ≤ 0 ∀q ∈ Q\ {0}
fq (x, y) =

∑

(i, j)∈BL
ai jq xi x j + Bq x + Cq y + dq ∀q ∈ Q

0 ≤ xL ≤ x ≤ xU

x ∈ R
m, y ∈ {0, 1}r (P)

where x is a vector of continuous non-negative variables and y are binary variables. BL is
an (i, j)-index set that defines the bilinear xi x j and quadratic terms (i = j) present in the
problem and it is assumed that it is possible to infer finite upper bounds xU on variables xi
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and x j . Set Q includes all functions fq , the objective function f0 and all the constraints, ai jq
and dq are scalars whereas Bq and Cq are matrices.

Problem (P) is frequently encountered in engineering. An example is the optimization of
process networks in process systems engineering [1]. Nodes involve equipment units that
are connected by streams, which can be characterized by a flowrate and a set of properties.
Whenever there are multiple input streams to a node, mixing is involved, with the properties
of the output stream being estimated as a weighted sum by flowrates of the properties of the
input streams. As a consequence, nonconvex bilinear terms appear.

Process network problems are considerably more general than generalized pooling prob-
lems [2,3] and include blending of crude oil [4–6] or refined products in refineries [7–9], and
reducing freshwater consumption and wastewater treatment cost in industrial water networks
[10–14]. Researchers started looking into the steady-state design or operation of the sys-
tem, typically considering solely continuous variables. Exceptions leading to mixed-integer
bilinear problems were due to constraints allowing a connecting stream only if the flowrate
is above a given minimum value [3], and the selection of one of alternative technologies
for a unit [10]. A recent trend made possible by the advancements in computer hardware
and optimization algorithms, is the incorporation of the scheduling component through the
consideration of multiple time periods [6,9]. This is also the case of the thermal unit com-
mitment [15] and hydroelectric scheduling problems [16], which divide a 24-h horizon into
hourly intervals. Note that no mixing is involved in the latter systems, with the bilinear terms
appearing to compute either the production cost from a generator or the power output from
a reservoir. In all mentioned cases, the binary variables appear linearly in the constraints.
In contrast, the trim loss problem features bilinear terms with integer variables [17,18].
While it is not of type (P) the relaxation approaches discussed in this paper can also be
applied [19].

Global optimization solvers [20–22] rely on linear or mixed integer linear program-
ming relaxations of (P). A tight relaxation is crucial to achieve fast convergence and this
is highly dependent on the bounds of the variables involved in the bilinear terms, improv-
ing as their domain is reduced. In optimality-based bound contraction [23,24], two LPs or
MILPs are solved for each such variable. Spatial branch-and-bound can also be seen as an
iterative procedure acting on a single variable at a time (when branching). Simultaneous vari-
able partitioning using piecewiseMcCormick envelopes [3,11,13,25–28] or multiparametric
disaggregation [19,29,30] provide better approximations but may be too demanding compu-
tationally since additional binary, continuous variables and constraints, are part of the MILP
relaxation.

Piecewise McCormick (PCM) involves ab initio partitioning of the domain of variables
x j in (P), being uniform partitioning the most common. Since the number of binary vari-
ables added is related to the number of partitions N , this is an important tuning parameter.
Experiments in [31] used N = 2, 4 and 8 up to a maximum of 30 partitioned variables. For
a water network problem, Castro [24] proposed a formula to compute N as a function of
problem size, to avoid generating intractable MILPs [26]. However, even though it increases
the chances that the bilinear problemwill solve to global optimality within a given time limit,
the piecewise relaxation option in GloMIQO is turned off by default [20] since convergence
is generally faster that way. One way to improve the quality of the piecewise McCormick
relaxation for a given N is to use partition-dependent bounds also for variables xi , which can
be obtained by optimality-based bound contraction [24].

Multiparametric disaggregation (MDT) is a closely related but conceptually different type
of MILP relaxation approach. It works by first discretizing variables x j in (P) to a specified
accuracy level p [29] and then adding slack variables to achieve continuous domains [30]. In
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very special cases, the accuracy parameter of MDT can be directly related to the number of
uniform partitions N of PCM with the latter allowing for a better control of the complexity
of the resulting MILP. As an example, for x j ∈ [0, 1], N can be any integer greater than
one, whereas the full set of values for p ∈ {. . . ,−3,−2,−1} corresponds to the subset
N ∈ {10, 100, 1000, . . .}. Accuracy inMDT can thus only change by one order of magnitude
since partitioning is based on a numeric representation system. Yet, for MDT, the number
of added binary variables grows logarithmically with N rather than linearly (for a common
implementation of piecewise McCormick [30,32], other piecewise linear schemes are not as
harsh [33]). As a consequence, MDT may reach considerably smaller optimality gaps, due
to a computational performance that is often orders of magnitude faster [32].

In the context of a spatial branch-and-bound algorithm with frequent domain reduction,
PCM has another advantage overMDT. Besides also benefiting from tighter variable bounds,
it can generate consistently shorter partitions while keeping the value of N constant. In
contrast, MDT will require fewer discrete points (i.e. fewer binary variables) to include the
reduced domain, but the location of those still required will be exactly the same. In other
words, we have with PCM a double impact in relaxation quality with the same problem size
whereas in MDT we have a smaller impact with a reduced size. Since the ultimate goal is to
prove global optimality, the former is preferable.

In this paper, we bring multiparametric disaggregation closer to uniform piecewise
McCormick. The main novelty is to consider a dimensionless domain for the discretized
variables in MDT. More specifically, rather than discretizing all possible values that a vari-
able can assume, we discretize the range [0, 1] between the lower (LB) and upper bound
(UB). One immediate consequence is that the accuracy level parameter p can now be
directly related to the number of partitions N , regardless of the LB and UB values, allow-
ing for a better comparison between the two alternative relaxation methods for (P). Note
that its most important feature of scaling logarithmically with the number of partitions
is kept.

2 Normalized multiparametric disaggregation

Given a nonconvex bilinear term wi j = xi x j , multiparametric disaggregation works by
discretizing x j over a set of powers l ∈ {p, . . . , P}, where P = �log10 xUj � and p is chosen
by the user so as to reach a certain accuracy level [23,29,30]. The formula for P assumes
discretization with base 10, preferred in this paper over bases 2 and 16 because it makes
the approach easier to describe and illustrate (the interested reader can find in references
[9,19,23,32,34] the full set of constraints for a generic base and extensive computational
results for the binary representation system).

We now propose a normalized version of multiparametric disaggregation that discretizes
λ j ∈ [0, 1], an auxiliary variable that is used to compute x j as a linear combination of its
lower x Lj and upper xUj bounds:

x j = x Lj + λ j

(
xUj − x Lj

)
∀ j (1)

The exact representation of λ j can be achieved by considering an infinite number of
positions l ∈ Z

− in the decimal system,

λ j =
∑

l∈Z−
λ jl ∀ j (2)
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and by picking the appropriate digit k ∈ {0, 1, . . . , 9} for each power l. This can be stated as
a disjunction [35,36], where binary variables z jkl take the value of one if digit k is selected
for position l for discretized variable λ j :

9∨

k=0

[
z jkl

λ jl = 10l · k
]

∀ j, l ∈ Z
− (3)

The convex hull reformulation [37] of the disjunction in (3) can be simplified so as to
generate a sharp formulation without disaggregated variables [38].

λ j =
∑

l∈Z−

9∑

k=0

10l · k · z jkl ∀ j (4)

9∑

k=0

z jkl = 1 ∀ j, l ∈ Z
− (5)

Multiplying variable xi by (1) and substituting xi x j and xiλ j with bilinear variables wi j

and νi j leads to,

wi j = xi x
L
j + νi j

(
xUj − x Lj

)
∀ (i, j) (6)

Substituting (4) into the definition of νi j leads to the appearance of bilinear terms involving
the product of a continuous and a binary variable.

νi j =
∑

l∈Z−

9∑

k=0

10l · k · xi z jkl ∀ (i, j) (7)

We can now perform an exact linearization [39] by introducing new continuous variables
x̂i jkl = xi z jkl so that:

νi j =
∑

l∈Z−

9∑

k=0

10l · k · x̂i jkl ∀ (i, j) (8)

z jkl x
L
i ≤ x̂i jkl ≤ z jkl x

U
i ∀ (i, j) , k ∈ {0, . . . , 9} , l ∈ Z

− (9)

Finally, multiplying (5) by xi and replacing the bilinear terms by the new continuous
variables results in,

xi =
9∑

k=0

x̂i jkl ∀ (i, j) , l ∈ Z
− (10)

The full set ofmixed integer linear constraints for the exact representation of bilinear terms
wi j = xi x j is thus given by Eqs. (1), (4–6) and (8–10), leading to optimization problem (P’).

min f ′
0 (x, y)

subject to

f ′
q (x, y) ≤ 0 ∀q ∈ Q {0}
f ′
q (x, y) =

∑

(i, j)∈BL
ai jqwi j + Bqx + Cqy + dq ∀q ∈ Q

x j = x Lj + λ j

(
xUj − x Lj

)

λ j = ∑
l∈Z−

∑9
k=0 10

l · k · z jkl

}

∀ j ∈ { j | (i, j) ∈ BL}
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wi j = xi x Lj + νi j

(
xUj − x Lj

)

νi j = ∑
l∈Z−

∑9
k=0 10

l · k · x̂i jkl

}

∀ (i, j) ∈ BL

xi =
9∑

k=0

x̂i jkl ∀ (i, j) ∈ BL , l ∈ Z
−

9∑

k=0

z jkl = 1 ∀ j ∈ { j | (i, j) ∈ BL} , l ∈ Z
−

z jkl x
L
i ≤ x̂i jkl ≤ z jkl x

U
i ∀ (i, j) , k ∈ {0, . . . , 9} , l ∈ Z

−

0 ≤ xL ≤ x ≤ xU

x ∈ R
m, wi j , λ j , νi j , x̂i jkl ∈ R

y ∈ {0, 1}r , z jkl ∈ {0, 1} (P′)

The following property can be readily established from the derivation of (P’).

Property 1 Problem (P’) is equivalent to problem (P), i.e. f ′
0 = minx,y f ′

0 (x, y) =
minx,y f0 (x, y) = f0.

2.1 Lower bounding formulation

Since it is impossible to compute the infinite sums over all negative integers, we represent
λ j to a finite accuracy level by replacing l ∈ Z

− with l ∈ {p, p + 1, . . . ,−1}, where p is a
negative integer chosen by the user. In order to close the gap between discretization points so
as to allow for all possible values for λ j , we introduce slack variables �λ j that are bounded
between 0 and 10p , see Fig. 1. The continuous representation of λ j is then given by:

λ j =
∑−1

l=p

∑9

k=0
10l · k · z jkl + �λ j ∀ j (11)

0 ≤ �λ j ≤ 10p ∀ j (12)

As an example, to obtain λ j = 0.4385 for p = −2, we need z j,4,−1 = 1, z j,3,−2 = 1 and
�λ j = 0.0085 ≤ 0.01 = 10−2. To generate λ j = 1 for p = −1, the non-zero variables are
z j,9,−1 = 1 and �λ j = 0.1.

For the continuous representation of the bilinear term νi j = xiλ j , and following the same
reasoning as before, we get:

νi j =
∑−1

l=p

∑9

k=0
10l · k · x̂i jkl + xi · �λ j ∀ (i, j) (13)

Notice the appearance of new bilinear terms xi ·�λ j that are going to be relaxed using the
McCormick envelopes [40], which in this case coincide with the reformulation linearization

Fig. 1 The continuous representation of variable λ j is achieved by discretizing the domain up to a certain
level p and adding a bounded variable �λ j
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technique bound factor products xi − x Li ≥ 0, xUi − xi ≥ 0, �λ j ≥ 0 and 10p − �λ j ≥ 0
[41,42]. Variables �νi j replace xi · �λ j in Eq. (13).

x Li · �λ j ≤ �νi j ≤ xUi · �λ j ∀ (i, j) (14)
(
xi − xUi

)
· 10p + xUi · �λ j ≤ �νi j ≤

(
xi − x Li

)
· 10p + x Li · �λ j ∀ (i, j) (15)

Replacing Eqs. (4) and (8) in (P’) by (11–15), we obtain the new optimization problem
(PR) that is a relaxation of (P). In other words, (PR) is feasible for values of wi j , xi and x j
that do not satisfy wi j = xi x j .

min f R0 (x, y)

subject to

f Rq (x, y) ≤ 0 ∀q ∈ Q\ {0}
f Rq (x, y) =

∑

(i, j)∈BL
ai jqwi j + Bqx + Cqy + dq ∀q ∈ Q

x j = x Lj + λ j

(
xUj − x Lj

)

λ j = ∑−1
l=p

∑9
k=0 10

l · k · z jkl + �λ j

0 ≤ �λ j ≤ 10p

⎫
⎪⎬

⎪⎭
∀ j ∈ { j | (i, j) ∈ BL}

wi j = xi x Lj + νi j

(
xUj − x Lj

)

νi j = ∑−1
l=p

∑9
k=0 10

l · k · x̂i jkl + �νi j

x Li · �λ j ≤ �νi j ≤ xUi · �λ j

�νi j ≤ (
xi − x Li

) · 10p + x Li · �λ j

�νi j ≥ (
xi − xUi

) · 10p + xUi · �λ j

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

∀ (i, j) ∈ BL

xi =
9∑

k=0

x̂i jkl ∀ (i, j) ∈ BL , l ∈ {p, . . . ,−1}

9∑

k=0

z jkl = 1 ∀ j ∈ { j | (i, j) ∈ BL} , l ∈ {p, . . . ,−1}

z jkl x
L
i ≤ x̂i jkl ≤ z jkl x

U
i ∀ (i, j) , k ∈ {0, . . . , 9} , l ∈ {p, . . . ,−1}

0 ≤ xL ≤ x ≤ xU

x ∈ R
m, wi j , λ j , νi j , x̂i jkl ,�λ j ,�νi j ∈ R

y ∈ {0, 1}r , z jkl ∈ {0, 1} (PR)

The following property can be stated from the above derivation and discussion:

Property 2 The solution of problem (PR) yields a lower bound for problem (P), i.e.
f R0 = minx,y f R0 (x, y) ≤ f0.

2.2 Algorithm for global optimization

All algorithms for global optimization work by approaching a lower bound from the solution
of a relaxation problem to an upper bound typically obtained from solving a constrained ver-
sion of the original problem. Spatial branch and bound is an iterative procedure for raising the
lower bound that acts on a single variable at a time. In contrast, the proposedMILP relaxation
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(PR) of the original MINLP problem (P) involves simultaneous variable partitioning and so
can be made as tight as desired simply by acting on accuracy level parameter p.

Property 3 As p approaches −∞, f R0 approaches f0.

Proof As p approaches −∞ in (PR) we get from Eq. (12):

lim
p→−∞ �λ j = lim

p→−∞ 10p = 0

Then, from Eq. (14):

lim
p→−∞ �νi j = lim

p→−∞
(
x Li · �λ j

)
= lim

p→−∞
(
xUi · �λ j

)

= xUi · lim
p→−∞ �λ j = xUi · 0 = 0

And from Eq. (15):

lim
p→−∞ �νi j = lim

p→−∞
[(

xi − xUi

)
· 10p + xUi · �λ j

]

= lim p→−∞
[(

xi − x Li

)
· 10p + x Li · �λ j

]

=
(
xi − x Li

)
· lim
p→−∞ 10p + lim

p→−∞
(
x Li · �λ j

)

=
(
xi − x Li

)
· 0 + 0 = 0

Variables �λ j and �νi j are thus eliminated. Since the domain of l in the summations and
constraints of (PR) becomes the set of negative integers Z−, (PR) becomes (P’) and hence
f R0 approaches f ′

0. Then, from Property 1, f R0 approaches f0. �

The optimal solution from (PR) provides a good initialization point for the solution of
(P). An efficient method to generate a feasible solution for (P) that will be an upper bound, is
to fix all binary variables and solve the resulting NLP with a fast local solver [30,32]. Note
however, that this may render the problem infeasible, which is more likely to occur for higher
p values.

The global optimization algorithm resulting from the aforementioned lower and upper
bounding methods is as follows. Starting with the lowest accuracy level, we solve (PR) and
(P) in sequence. If the difference between the values of the objective function is smaller than
the given relative optimality tolerance ε, then the algorithm terminates; otherwise, accuracy
is increased to the next level and the problems are solved once more.

Algorithm

Step 0. Choose p = −1 and let f ∗
0 = +∞.

Step 1. Solve (PR) to obtain f R0 and point
(
xR, yR

)
.

Step 2. Add constraint y = yR to (P) reducing it to an NLP. Using xR as a starting point,
solve the NLP with a local solver. If the NLP is feasible and a lower value is obtained
for the objective function, update the upper bound f ∗

0 and best solution (x∗, y∗).
Step 3. If

(
f ∗
0 − f R0

)
/ f R0 ≤ ε, STOP, the solution (x∗, y∗) is globally optimal.Otherwise,

set p = p − 1 and return to step 1.
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3 Motivation for normalized multiparametric disaggregation

The difference between the standard and normalized multiparametric disaggregation comes
down to the choice of either discretizing the values of the variables or the range between
their lower and upper bounds. Discretized variables will typically have dissimilar domains,
perhaps even of a different order of magnitude, and it is difficult to predict which will lead to
the largest error between the exact representation of the bilinear term and its mixed-integer
linear relaxation. While it is straightforward to alter the formulations to consider a variable
dependent accuracy parameter p, given the large number of discretized variables that may
be involved it is highly desirable to keep the number of tuning parameters to a minimum and
consider a global value instead.

If this is done for the standardMDT, we are effectively giving a different importance to the
discretized variables, as can be seen in the simple example in Fig. 2. Assuming accuracy in
the units level (p = 1), MDT generates 11 discrete points for variable x1 ∈ [0, 10], whereas
variable x2 ∈ [3, 5] gets only three. In contrast, our newNMDT approach generates the same
relaxation for x1 using p = −1, while x2 gets the same number of discrete points as x1.
Compared to MDT, variable x2 is now partitioned in uniform intervals that are five times
shorter, potentially leading to a tighter relaxation.

The normalized multiparametric disaggregation can also take further advantage of infor-
mation resulting from bound contracting procedures that are frequently called in spatial
branch and bound algorithms, as can be seen from the solution of problem (P1). This has
been adapted from Problem 106 in Hock and Schittowski [43] so as to facilitate comparison.
More specifically, the lower bounds for variables x4 to x8 have been lowered from 10 to 0,
but this has no effect in the value of the objective function: 7049.248. Of the different choices
available concerning the discretized variables, we select to discretize x4, . . . , x8.

min x1 + x2 + x3

s.t. 0.0025 (x4 + x6) − 1 ≤ 0

0.0025 (−x4 + x5 + x7) − 1 ≤ 0

0.01 (−x5 + x8) − 1 ≤ 0

100x1 − x1x6 + 833.33252x4 − 83,333.333 ≤ 0

x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0

x3x5 − x3x8 − 2500x5 + 1,250,000 ≤ 0

100 ≤ x1 ≤ 10,000, 1000 ≤ x2, x3 ≤ 10,000, 0 ≤ x4, . . . , x8 ≤ 1000 (P1)

MDT NMDT

Fig. 2 Unlike the standard approach (MDT), the normalized multiparametric disaggregation (NMDT) gen-
erates the same number of discrete points for all discretized variables using a global accuracy parameter p
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MDT

NMDT

Afteroptimality-based
bound contractionNo bound contraction

Fig. 3 Discrete points generated for variable x5 of (P1) by standard (MDT) and normalized multiparametric
disaggregation (NMDT) for the cases of original and tightened variable bounds

Table 1 Comparison between standard (MDT) and normalized multiparametric disaggregation (NMDT) for
problem (P1)

Relaxation preceded by
bound contraction?

No Yes No Yes No Yes

Approach p Gap (%) Binary variables CPUs

MDT 2 56.1 55.1 60 26 0.38 0.25

NMDT −1 56.1 28.1 50 50 0.38 0.37

MDT 1 6.95 3.39 110 76 1.13 0.73

NMDT −2 6.95 1.66 100 100 1.15 1.82

MDT 0 0.711 0.268 160 126 5.36 5.25

NMDT −3 0.711 0.156 150 150 6.41 10.7

MDT −1 0.0713 0.0261 210 176 81.7 41.9

NMDT −4 0.0713 0.0160 200 200 49.4 133

MDT −2 0.0071 0.0026 260 226 1172 756

NMDT −5 0.0071 0.0016 250 250 626 2736

Assume for illustrative purposes that discrete points are placed at the hundreds, which
corresponds to a coarse accuracy level, as can be seen in Fig. 3 for variable x5. It corresponds
to p = −1 for discretized variable λ5 in NMDT and to p = 2 for discretized variable x5 in
MDT [30], leading respectively to the definition of 10 and 12 binary variables for this variable.
The two extra binaries for MDT result from the way it was coded, and is due to discrete point
1000 that is part of the domain of x5. In contrast, in NMDT, x5 = 1000 is achieved bymaking
z5,9,−1 = 1 and �λ5 = 0.1, recall Eq. (11). Despite this minor difference, the quality of the
relaxation is the same for both approaches.

If we now apply optimality based bound contraction [23] using theMcCormick envelopes
[40] to generate the relaxation, the domain can almost be cut by half to x5 ∈ [107.78, 580.22] .
Asa consequence,MDTreduces the number of discrete points tofive,with thefirst (x5 = 100)
being actually placed outside the variable domain so as to obtain values up to 200 by adding
the contribution of the slack variable. Due to the tighter bounds, the relative optimality

gap, gap = f0− f R0
f R0

,decreases by a factor between 1.02 and 2.74 from p = 2 to p = −2

(Table 1). In contrast, NMDT keeps the same ten discrete points, but since these are now
closer together, the optimality gap can be reduced further by a factor between 2.00 (p = −1)
and 4.48 (p = −5).
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With the increase in problem size, it becomes apparent from the results in Table 1 that
the relaxation problems generated from the new approach can be solved faster. However,
this is no longer the case if their solution is preceded by bound contraction. In fact, there
is a reduction in computational time for MDT, which was expected due to the fewer binary
variables, but for NMDT the effort typically increases, reaching a factor of 4.37 for p = −5.
Thus, there is a clear tradeoff between relaxation quality and computational effort.

4 Piecewise McCormick relaxation

Piecewise McCormick envelopes [2,11,25] also provide a MILP relaxation for problem (P).
Of at least 15 alternatives that have been proposed [26,27], we consider the one below that
relies on uniform partitioning, noting that others may perform better. The basic principle is
to divide the domain of variable x j in bilinear term wi j = xi x j into N partitions and apply
the McCormick envelopes [40] on each, taking advantage that the partition bounds x Ljn and

xUjn are tighter than the global bounds x
L
j and xUj , see Fig. 4. Binary variables z jn select the

best partition.
The complete lower bounding formulation (PR-PCM) is given below.

min f R0 (x, y)

subject to

f Rq (x, y) ≤ 0 ∀q ∈ Q\ {0}
f Rq (x, y) =

∑

(i, j)∈BL
ai jqwi j + Bqx + Cqy + dq ∀q ∈ Q

wi j ≥
N∑

n=1

(
x̂i jn x Ljn + x̂ jn x Li − zjnx Li x

L
jn

)

wi j ≥
N∑

n=1

(
x̂i jn xUjn + x̂ jn xUi − zjnxUi xUjn

)

wi j ≤
N∑

n=1

(
x̂i jn x Ljn + x̂ jn xUi − zjnxUi x Ljn

)

wi j ≤
N∑

n=1

(
x̂i jn xUjn + x̂ jn x Li − zjnx Li x

U
jn

)

xi =
N∑

n=1
x̂i jn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀(i, j) ∈ BL

x j = ∑N
n=1 x̂ jn∑N

n=1 z jn = 1

}
∀ j ∈ { j | (i, j) ∈ BL}

z jnx
L
i ≤ x̂i jn ≤ z jnx

U
i ∀ (i, j) , n ∈ {1, . . . , N }

z jnx Ljn ≤ x̂ jn ≤ z jnxUjn
x Ljn = x Lj +

(
xUj − x Lj

)
· (n − 1) /N

xUjn = x Lj +
(
xUj − x Lj

)
· n/N

⎫
⎪⎪⎬

⎪⎪⎭
∀ j ∈ { j | (i, j) ∈ BL}, n ∈ {1, . . . , N }

0 ≤ xL ≤ x ≤ xU

x ∈ R
m, wi j , x̂ jn, x̂i jn ∈ R

y ∈ {0, 1}r , z jn ∈ {0, 1} (PR − PCM)
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Fig. 4 In the piecewise McCormick approach, variable xj is divided into N partitions, with binary variables
zjn selecting the optimal one

5 Normalized multiparametric disaggregation versus piecewise
McCormick

The new normalized multiparametric disaggregation approach can also be viewed as par-
titioning the domain of variable x j . However, every single decrease in p corresponds to a
ten-fold increase in N .

Remark 1 The partitioning (accuracy) level parameters N , of the piecewise McCormick,
and p, of normalized multiparametric disaggregation technique, are related as follows: N =
10−p .

Piecewise McCormick is thus better at controlling the tightness of the MILP relaxation
of the original MINLP problem, which may be an important point when dealing with large
bilinear problems. The advantage ofmultiparametric disaggregation is that it that scalesmuch
more favorably with the accuracy level [30,32].

Remark 2 The number of binary variables required per partitioned variable x j is equal to
N for piecewise McCormick formulation (PR-PCM), and to 10 log N for normalized mul-
tiparametric disaggregation.

From Remarks 1 and 2, one can claim that piecewise McCormick is the only option
for N ∈ {2, . . . , 9} and predict that normalized multiparametric disaggregation will have a
stronger computational performance for N ∈ {100, 1000, . . .}. But which approach is better
when the same number of binary variables is involved (N = 10)? This question will be
answered in Sect. 6.1.

5.1 The special case of quadratic terms

Previous research has shown [30] that if (P) is restricted to strictly bilinear terms, the quality of
the relaxation frommultiparametric disaggregation is the same as frompiecewiseMcCormick
(for the same accuracy level). This is no longer the case if quadratic terms are involved, with
the latter approach leading to a tighter relaxation.

For illustration purposes, consider the very simple nonlinear problem (P2) taken from
[44], for which the global optimal solution is equal to 58.383672 at (2.555772, 3.130169).

min 6x21 + 4x22 − 2.5x1x2
s.t. x1x2 − 8 ≥ 0
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Table 2 Value of objective function f R0 for motivating example (P2) with quadratic terms

Relaxation approach Partitions (N )

10 100 1000

Piecewise McCormick (PR-PCM) 46.96421 57.25218 58.27026

Normalized multiparametric disaggregation (PR) 43.25053 56.83288 58.19587

1 ≤ x1, x2 ≤ 10 (P2)

As can be seen in Table 2, the value of the lower bound from (PR-PCM) is always higher
than from (PR), with the absolute difference decreasing with an increase in the number of
partitions.

6 Numerical experiments

The performance of the new normalized multiparametric disaggregation approach is evalu-
ated through the solution of 43 benchmark problems from the literature. These involve four
distinct sets of process network problems of type (P) featuring solely strictly bilinear terms.
More specifically, we have: (i) 18 water-using network design problems [34]: WUN_2-18
and 20; (ii) 15 distributed wastewater treatment networks [34]: WTN_2-16; (iii) 7 multi-
period blending problems [9]: MPBP_029, 146, 480, 531, 718, 721, 852; (iv) 3 hydroelectric
scheduling problems considering a subset of reservoirs [23]: HYD_2, 4 and 7.

In the given problems, bilinear terms involve the multiplication of two different sets of
variables: flowrates by concentrations in (i)–(iii) and flowrates by volumes in (iv). Of the two
alternatives available to generate the relaxationMILP, we choose to discretize concentrations
in (i)–(iii) and flowrates in (iv). Note that problem types (i)–(ii) are NLPs, whereas (iii)–(iv)
are MINLPs. The latter are freely available in www.minlp.org and also include the model for
the standard multiparametric disaggregation approach. Statistics related to problem size and
number of nonlinear terms for problems (i)–(iii) can be found in [45] since all these problems
are part of the GloMIQO 2.2 [20] test suite.

All mathematical formulations and algorithms were implemented in GAMS 24.3 and
solved on an Intel i7-4790 (3.6 GHz) processor with 8 GB of RAM, solid-state drive and
running Windows 7, 64-bit operating system. The MILP relaxation problems (PR) and (PR-
PCM) were solved by CPLEX 12.6 running in parallel deterministic mode using up to 8
threads. The termination criteria were a relative optimality tolerance equal to 10−6 or a
maximum computational effort equal to 3600 CPUs for problems (i)–(iii) and 18,000 CPUs
for themost difficult problems (iv). TheNLPs arising from either the complete problem (P) or
its constrained version without the binary variables (recall step 2 of the algorithm presented
in Sect. 2.2), where tackled by local optimization solver CONOPT 3.16C [46]. Problem (P)
was also tackled by global optimization solvers BARON 14.0.3 [21,47] and GloMIQO 2.3
[20], a MIQCP standalone solver that is also part of the general MINLP solver ANTIGONE
[22].

Optimality-based bound contraction, illustrated in Fig. 3, was used exclusively in problem
(P1).
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Fig. 5 Performance profile for computational time when considering 10 partitions for all discretized variables

6.1 Which approach is best for 10 partitions?

We start by solving the MILP relaxation problems from normalized multiparametric dis-
aggregation (NMDT) and piecewise McCormick (PCM), using respectively p = −1 and
N = 10 in all 43 benchmark problems. We know from the discussion in Sect. 5 that the
MILPs from NMDT and PCM feature the same number of binary variables (the number of
total variables and constraints is very similar) and give rise to the exact same relaxation f R0 ,
and so the computational time is the obvious choice for performance measure. To get the
overall assessment of the performance of a solver compared to the other solvers in a test
group, one can generate the performance profiles of Dolan andMoré [48], a widely used tool
for benchmarking and comparing optimization software. We plot the cumulative distribution
as a function of τ , a parameter that tells us that the performance ratio of a solver with respect
to the best solver is below 2τ . As an example, the results for τ = 0 give the probability that
a solver is the fastest, while for τ = 1 we have the probability that a solver is at most 2 times
slower than the fastest solver.

From the results in Fig. 5, one can see that the new approach is clearly superior, being the
fastest 88.3% of the times vs. 20.9% for PCM (note that ties count for both solvers and so the
sum can be greater than one). Nevertheless, it should be highlighted that the computational
times are typically of the same order ofmagnitude, themost notable exception beingWTN_9,
which took 1360 CPUs to solve to optimality by NMDT and 14,436 CPUs by PCM. It is the
reason why the two curves meet around τ = 3.4 (23.4 ≈ 14,436

1360 ).
The above comparison is important in the context of convex hull reformulations of gen-

eralized disjunctive programming (GDP) models [24,35–37,49]. While for multiparametric
disaggregation there is noneed to definedisaggregatedvariables associated to discretizedvari-
able x j [as discussed in Sect. 2, Eqs. (3–4)], these can be found in (PR-PCM) in the form of
continuous variables x̂ jn .We do require disaggregated variables x̂i jkl in (PR), which for N =
10 have a direct correspondence with x̂i jn in (PR-PCM). Overall, when alternatives exist to
model a particular problem as a GDP, one should look for the one leading to themost compact
convex hull reformulation, since this will typically lead to the best performance, see also [49].

6.2 Comparison to commercial solvers

The algorithmdiscussed inSect. 2.2 for normalizedmultiparametric disaggregation is capable
of finding feasible solutions to problem (P) and proving global optimality if sufficient com-
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putational resources are provided. It has also been implemented for piecewise McCormick,
after replacing p = −1with N = 10 in step 0, (PR) with (PR-PCM) in step 1, and p = p−1
with N = 10N in step 3 [32]. Note that it has been verified experimentally that for a par-
ticular iteration both NMDT and PCM lead to the same value for the objective function f R0 ,
if enough time is given for the MILP solver (CPLEX) to converge. The total computational
time listed is the sum over all iterations and does not exceed the maximum limits defined
in Sect. 6. Since the focus is on relaxation quality, the value of f ∗

0 used to compute the
optimality gap was the best known solution and not necessarily the best value found in step
2. The same is also true for the outputs of commercial global optimization solvers BARON
and GloMIQO that are used for comparative purposes.

Table 3 provides an overview of computational performance by listing key performance
indicators. While one can see that a particular algorithm is the best performer in at least two
problems, the newmethod and GloMIQO have the most wins. Note that the first criteria used
for this metric was the optimality gap, ultimately leading to solutions that are proven global
optimal, followed by computational time. GloMIQO actually proved global optimality the
most, while BARON was the most successful in finding the actual optima. All algorithms
returnedworse solutions inHYD_4 andHYD_7 than the outer approximation solverDICOPT
[50] (the values in column 2 of Table 4 are taken from [23]). The other two failures for NMDT
and GloMIQO came from the multiperiod blending problems. Interestingly, BARON could
solve all multiperiod blending problems in less than half an hour (see detailed results in
Table 4). On the other hand, and considering the comparison between the commercial solvers,
GloMIQO did a better job solving the NLPs resulting from the two types of water network
problems.

Another aspect worth highlighting from the results in Table 3, is related to the ability of
the NMDT algorithm to find optimal solutions. Note that unlike the commercial algorithms
that solve constrained versions of (P) in many nodes of the spatial branch and bound tree,
the new algorithm solves (P) just a few times but still manages to find the optima. This is
a direct consequence of having a tight relaxation that provides excellent starting points for
the solution of (P) with a local solver (recall step 2 in Sect. 2.2) and is consistent with our
previous work. In that sense, and due to the worse scaling of problem size, PCM cannot go
to accuracy levels as deep as NMDT (see p values in Table 4), returning lower f R0 values
and inferior initialization points that sometimes lead to failure.

While the key performance indicators are useful, they do not tell the whole story. The
detailed results in Table 4 are needed for a more thorough analysis, which is now performed

Table 3 Key performance indicators for the different global optimization algorithms

Algorithm Optimal solutions Suboptimal solutions No solutions Best performer

Proven Found

Normalized
multiparametric
disaggregation
(NMDT)

21 39 4 0 21

GloMIQO 23 39 4 0 18

BARON 17 41 2 0 2

Piecewise
McCormick (PCM)

12 34 8 1 2

Total 43
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Fig. 6 Performance profile for optimality gap

with the help of the performance profiles of Dolan and Moré [48]. The optimality gap is
selected as the performance measure, leading to the chart in Fig. 6.

Interestingly, there is a clear ranking amongst the global optimization algorithms tested:
NMDT>GloMIQO>BARON>PCM, which remains constant throughout the x-axis. Note
that the chosen upper bound (τ = 10) will count problems for which the optimality gap is at
most three orders of magnitude the gap returned by the best algorithm. Thus, if an algorithm
can solve a problem to global optimality, that problem will only contribute to the cumulative
distribution function of the other algorithms if they return a gap below 0.1%. In this case,
the probability that a solver is within such region is equal to 93% for NMDT, 76.7% for
GloMIQO and 65.1% for BARON, which is an indication that the NMDT and commercial
algorithms have complementary strengths (the gap for NMDT was always at least as good
as the one for PCM). Overall, NMDT can obtain consistently low optimality gaps, with
a 72.1% probability that it will return the lowest gap amongst all algorithms within the
given maximum computational time. The highest gap (3.57%) is obtained for MPBP_480,
which can actually be reduced to just 0.30% if more time is given (5877 CPUs). In contrast,
GloMIQO and BARON return gaps as high as 41.4 and 72.3%.

7 Conclusions

This paper has presented a mixed integer linear programming model for the relaxation of
mixed-integer quadratically constrained problems. It can be viewed as an upgrade of the
computationally efficient multiparametric disaggregation technique that relies of the concept
of discretizing one of the variables in every bilinear term to a certain accuracy level. The
novel aspect concerns the discretization of the range between the variable’s bounds rather
than its actual values, leading to a normalized approach that is more suitable for integration
with bound contracting procedures that are part of spatial branch and bound algorithms.

It has been shown that accuracy levels in normalized multiparametric disaggregation can
be related to the number of uniformpartitions of a piecewiseMcCormick relaxation approach,
thus allowing for a direct comparison. Through the solution of four sets of NLP and MINLP
problems from the literature involving strictly bilinear terms, we have seen that the relaxation
quality for a given number of partitions is the same. For the lowest possible accuracy setting,
the new approach already outperforms the particular piecewise McCormick formulation
presented in the paper, becoming significantly faster with the increase in the number of
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partitions due to the logarithmic vs. linear increase in problem size. This is translated into an
ability to generate optimality gaps that can be orders of magnitude narrower.

The relaxation problem has been used as basis for a rigorous global optimization algorithm
that was compared to commercial solvers BARON and GloMIQO. It has been shown that
the proposed simple algorithm outperforms its state-of-the-art counterparts in forty-three
benchmark problems, clearly indicating that multiparametric disaggregation should be used
to a greater extent.
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