
J Glob Optim (2016) 64:199–215
DOI 10.1007/s10898-015-0335-y

The computational complexity of the pooling problem

Dag Haugland1

Received: 11 December 2014 / Accepted: 2 July 2015 / Published online: 10 July 2015
© Springer Science+Business Media New York 2015

Abstract The pooling problem is an extension of the minimum cost flow problem defined
on a directed graph with three layers of nodes, where quality constraints are introduced at
each terminal node. Flow entering the network at the source nodes has a given quality, at
the internal nodes (pools) the entering flow is blended, and then sent to the terminal nodes
where all entering flow streams are blended again. The resulting flow quality at the terminals
has to satisfy given bounds. The objective is to find a cost-minimizing flow assignment
that satisfies network capacities and the terminals’ quality specifications. Recently, it was
proved that the pooling problem is NP-hard, and that the hardness persists when the network
has a unique pool. In contrast, instances with only one source or only one terminal can
be formulated as compact linear programs, and thereby solved in polynomial time. In this
work, it is proved that the pooling problem remains NP-hard even if there is only one quality
constraint at each terminal. Further, it is proved that the NP-hardness also persists if the
number of sources and the number of terminals are no more than two, and it is proved that the
problem remains hard if all in-degrees or all out-degrees are at most two. Examples of special
cases in which the problem is solvable by linear programming are also given. Finally, some
open problems, which need to be addressed in order to identify more closely the borderlines
between polynomially solvable andNP-hard variants of the pooling problem, are pointed out.

Keywords Pooling problem · Network flow · Computational complexity ·
Polynomial reduction

1 Introduction

Inmany industrial applications, conventional network flowmodels, such as theminimumcost
flowand themaximumflowproblems, need to be extended in order to havepractical relevance.

B Dag Haugland
dag.haugland@ii.uib.no

1 Department of Informatics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-015-0335-y&domain=pdf

200 J Glob Optim (2016) 64:199–215

An extension often seen in the process industry, is that the network sources supply flow of
unequal qualities, while flow satisfying quality requirements is demanded at the terminals
(sinks). Flow streams of unequal qualities are blended when they enter a node jointly, such
that the quality of the flow leaving the node is averaged over the entering qualities.

Qualities are typically defined as the proportions of various components in the flow, for
instance an undesired contaminant or a desired nutrition. With qualities being such propor-
tions, the formulas for computing quality updates become simple: The quality of the flow
leaving a node is the convex combination of the entering qualities, where the coefficients
are proportional to the flow values. Despite this simplicity, early industrial applications of
optimization revealed that, compared with the pure network flow models, the extension in
question represents a significant increase in computational challenge.

Referring to the above extension as the pooling problem, Haverly [16] recognized the
difficulty of solving it in terms of linear programming (LP). Haverly’s work was motivated
by problems related to optimal mixing of crude oils. Later, the industrial relevance of the
problem, notably in petroleum refining [6,8], the food industry [18], and in waste water
processing [12,22], has been acknowledged by many authors. The pooling problem survey
by Misener and Floudas [21] has a comprehensive list of references to work in this area.

Adding quality constraints to the traditional network flow models leads very naturally to
a bilinear model. Early works on inexact solution methods [6,8,16] take advantage of bilin-
earity, utilizing the advantage of facing an LP when the values of a subset of the variables are
fixed. The idea underlying successive linear programming (SLP) is to solve this LP, use the
solution as the base point of another linearization, and to repeat this procedure until a fixpoint
is reached. By means of small numerical examples, Haverly [16,17] demonstrates that the
solutions produced by different SLP-algorithms depend heavily on their initial linearization
point.

Floudas and Visweswaran [10] gave the first exact solution algorithm for the pooling
problem. Lower bounds (in a minimization problem) are computed by solving a Lagrangian
relaxation, and upper bounds are computed by solving a projection of the original problem.
By proving that the two bounds converge, convergence to the optimal solution is also proved.
Lagrangian relaxation is also used in various global optimization algorithms [1,4,7] sub-
sequent to [10], whereas the branch-and-bound algorithm by Foulds et al. [11] is based on
convex relaxations of each bilinear term [3,20]. A running time analysis of all these exact
methods will reveal exponential worst-case behavior. The above exact algorithms have later
been improved [5,9,23–25], and new and innovative methods, such as the mixed integer pro-
gramming techniques by Dey and Gupte [9] and Gupte et al. [15], are emerging. Although
these are capable of computing the global optimum of larger instances than the earliest algo-
rithms could solve, their exponential running times still confine their applicability to instances
of moderate size.

Based on practical experience, a general conception of the pooling problem as inapproach-
able by LP was early established. This has recently been confirmed in terms of a proof of
NP-hardness [2], and that the hardness persists even in network instances with only one
internal node (pool). Despite such a proof, many questions concerning the complexity of
the problem are left open. The goal of the current work is to enhance the understanding of
the intractability of the pooling problem further. To this end, the complexity result in [2]
is complemented by several new theorems. As the main contributions, it is proved in the
current text that the problem remains NP-hard even if there is only one quality parameter
(contaminant), and even if there are only two sources and two sinks. Further, NP-hardness of
the problem in the case of networks where all nodes have in-degree at most two is proved. By
a similar proof, it is also demonstrated that the problem remains NP-hard in the case where

123

J Glob Optim (2016) 64:199–215 201

all nodes have at most two out-neighbors. Thus, several questions left open in a recent study
[9] are answered in the current work.

The remainder of the text is organized as follows: In Sect. 2, the pooling problem is defined
in rigorous terms, necessary mathematical notation is introduced, and some preliminary
results are given. Section 3 is devoted to instances with only one pool, and for this instance
class, results extending [2] are given. In Sect. 4, hardness theorems for instanceswith only one
quality parameter are proved, while the complexity of instances with bounded node degree
is the topic of Sect. 5. Conclusions and some open problems that merit further investigation
are summarized in Sect. 6.

2 Preliminaries

2.1 Definitions

Let D = (S, P, T, A) be a directed graph, where the disjoint node sets S, P , and T consist
of sources, pools and terminals, respectively, and the arc set A ⊆ (S × P) ∪ (P × T) links
sources with pools and pools with terminals. Let K be a finite set, and refer to its elements
as quality parameters. In the sequel, components of vectors and matrices defined over the
sets S, P , T , and K , are identified by a subscript if they correspond to S, P , or T , and by a
superscript if they correspond to K . Define the vectors of unit cost c ∈ QA, node capacity
b ∈ QS∪P∪T+ , quality q ∈ QS×K , and quality bounds u ∈ QT×K . For all sources s ∈ S and
quality parameters k ∈ K , qks denotes the quality, as defined by k, of the flow entering D at
s, and for all terminals t ∈ T , ukt denotes the upper bound on the quality (smaller numerical
values indicate better quality) of the flow leaving D at t .

For each pool p ∈ P , the sets of neighbor sources and terminals are denoted by Sp =
{s ∈ S: (s, p) ∈ A} and Tp = {t ∈ T : (p, t) ∈ A}, respectively. For each source s ∈ S
and each terminal t ∈ T , respectively, the sets of neighbor pools are denoted by Ps =
{p ∈ P: (s, p) ∈ A}, and Pt = {p ∈ P: (p, t) ∈ A}. The arc set A has a partition (AS, AT),
where AS = A ∩ (S × P) and AT = A ∩ (P × T) denote the sets of arcs incident to some
source and to some terminal, respectively.

An x ∈ RA+ is said to be a flow in D if it satisfies the capacity and flow conservation
constraints:

∑

p∈Ps

xsp � bs s ∈ S, (1)

∑

s∈Sp
xsp � bp p ∈ P, (2)

∑

p∈Pt

x pt � bt t ∈ T, (3)

∑

s∈Sp
xsp − ∑

t∈Tp
xpt = 0 p ∈ P. (4)

Let a flow polytope be defined as F(D, b) = {x ∈ RA+: (1−4) are satisfied}. For each
x ∈ F(D, b), definew ∈ RP×K to be a quality matrix of x ifwk

p = ∑
s∈Sp q

k
s xsp/

∑
t∈Tp xpt

for all k ∈ K and for all p ∈ P for which
∑

t∈Tp xpt > 0. If
∑

t∈Tp xpt = 0, wk
p can

take an arbitrary value. That is, the quality vector (wk
p)k∈K of the flow blended at pool p,

is a convex combination of the source qualities (qks)k∈K , with coefficients xsp/
∑

t∈Tp xpt
(s ∈ Sp). This definition of w is referred to as the linear blending assumption. At a terminal

123

202 J Glob Optim (2016) 64:199–215

t ∈ T where
∑

p∈Pt x pt > 0, the upper quality bounds ukt apply, and linear blending at t

yields
∑

p∈Pt wk
pxpt/

∑
p∈Pt x pt � ukt . Therefore, x is said to be a feasible flow in D if

∑
p∈Pt wk

pxpt � ukt
∑

p∈Pt x pt (t ∈ T , k ∈ K) for any quality matrix w of x . This leads to
the problem definition:

Problem 1 The Pooling Problem: Find a feasible flow x in Dminimizing
∑

(i, j)∈A ci j xi j .

For a rational constant ζ , the decision version of Problem 1 is to decide whether there
exists a feasible flow x in D such that

∑
(i, j)∈A ci j xi j � ζ .

2.2 Preliminary results

The definition of Problem 1 gives directly a bilinear formulation in flow and quality variables
[16], often referred to as the P-formulation:

min
x,w

∑

(i, j)∈A
ci j xi j , (5)

∑

s∈Sp
qks xsp − wk

p
∑

t∈Tp
xpt = 0 p ∈ P, k ∈ K , (6)

∑

p∈Pt

wk
pxpt − ukt

∑

p∈Pt

x pt � 0 t ∈ T, k ∈ K , (7)

x ∈ F(D, b). (8)

It is readily observed that for a pool p ∈ P where
∑

t∈Tp xpt = 0 (a terminal t ∈ T where
∑

p∈Pt x pt = 0), constraints (6) [constraints (7)] are satisfied regardless of the value of w.
The assumption that there are no direct arcs from sources to terminals can bemadewithout

loss of generality, because any such arc can be replaced by a new pool along with two arcs
connecting the pool to the source and the terminal, respectively.

Lower quality bounds, that is constraints on the form
∑

p∈Pt wk
pxpt � �kt

∑
p∈Pt x pt ,

where �kt are given constants for all t ∈ T and k ∈ K , do not represent an extension of
(5)–(8). For all quality parameters k ∈ K subject to some lower bound, it is possible to
extend K by a new quality parameter k′, to let qk

′
s = −qks for all s ∈ S, and to define the

upper bounds uk
′

t = −�kt for all t ∈ T . Whenever relevant, instances of the problem where
(7) is replaced by �kt

∑
p∈Pt x pt �

∑
p∈Pt wk

pxpt � ukt
∑

p∈Pt x pt are therefore referred to
as instances of the Pooling Problem. When the number of quality parameters is an issue,
however, all quality parameters subject also to lower bounds have to be counted twice.

In later sections, it is made use of a bilinear formulation of Problem 1 that does not
involve quality variables. Let (PS, PT) be a partition of P , and define A′

S = AS ∩ (S × PS),
A′
T = AT ∩ (PT × T), and A′ = A′

S ∪ A′
T . For each (s, p) ∈ A′

S , let variable ysp be the
proportion of the flow through pool p that enters along (s, p), and for each (p, t) ∈ A′

T , let
ypt be the proportion of the flow through pool p that leaves along (p, t).

Below, it is proved formally that the Pooling Problem can be formulated as follows:

Problem 2

min
x,y

∑

(i, j)∈A
ci j xi j , (9)

ysp
∑

t∈Tp
xpt − xsp = 0 (s, p) ∈ A′

S, (10)

ypt
∑

s∈Sp
xsp − xpt = 0 (p, t) ∈ A′

T , (11)

123

J Glob Optim (2016) 64:199–215 203

∑

s∈Sp
ysp = 1 p ∈ PS, (12)

∑

t∈Tp
ypt = 1 p ∈ PT , (13)

∑

p∈Pt∩PS

∑

s∈Sp

(
qks − ukt

)
yspxpt

+ ∑

p∈Pt∩PT

∑

s∈Sp

(
qks − ukt

)
ypt xsp � 0 t ∈ T, k ∈ K , (14)

x ∈ F(D, b), y ∈ RA′
+ . (15)

Constraints (12)–(13) are redundant in the sense that they are implied by the conservation of
flow constraints (4) and (10)–(11) when the flow through p is non-zero. They are included
in Problem 2 in order to simplify some proofs below.

In the case where PS = P and PT = ∅, eliminating (12)–(13) from Problem 2 yields the
Q-formulation [7] of the Pooling Problem. Keeping the redundant constraints, adding the
redundant inequalities xsp � bp ysp ((s, p) ∈ AS), and choosing (PS, PT) = (P,∅), renders
Problem 2 identical to the PQ-formulation [24]. Likewise, (PS, PT) = (∅, P) gives a formu-
lation based uniquely on terminal proportions as suggested in [2]. Problem 2 thus generalizes
previously suggested formulations based exclusively on either variables ysp ((s, p) ∈ AS)
[24] or variables ypt ((p, t) ∈ AT) [2], in that it uses source proportions for the pools in PS
and terminal proportions for the pools in PT .

Lemma 1 Any x ∈ F(D, b) is a feasible flow in D if and only if there exists a y ∈ RA′
+ such

that (x, y) is feasible in Problem 2.

Proof Let x ∈ F(D, b). We first prove that if w ∈ RP×K satisfies (6) and y ∈ RA′
+ satisfies

(10)–(13), then inequalities (7) and (14) are identical. Let P+ =
{
p ∈ P: ∑

t∈Tp xpt > 0
}
,

P+
S = P+ ∩ PS , and P+

T = P+ ∩ PT . Utilizing ysp = xsp∑
s′∈Sp xs′ p

(p ∈ P+
S , s ∈ Sp), and

ypt = xpt∑
s′∈Sp xs′ p

(p ∈ P+
T , t ∈ Tp), yields yspxpt = xspxpt∑

s′∈Sp xs′ p
(p ∈ P+

S , s ∈ Sp), and

xsp ypt = xspxpt∑
s′∈Sp xs′ p

(p ∈ P+
T , t ∈ Tp), respectively. Plugging these products into (14) gives

∑
p∈Pt∩P+

xpt∑
s′∈Sp xs′ p

∑
s∈Sp

(
qks − ukt

)
xsp � 0 t ∈ T, k ∈ K . (16)

Because
∑

s∈Sp q
k
s xsp∑

s′∈Sp xs′ p
= wk

p (p ∈ P+, k ∈ K), (16) is identical to (7).

Assume now that x is a feasible flow, and choose w such that (6)–(7) are satisfied. Let
ysp = xsp∑

s′∈Sp xs′ p
for all p ∈ P+

S , s ∈ Sp and ypt = xpt∑
s′∈Sp xs′ p

for all p ∈ P+
T , t ∈ Tp ,

implying that (12)–(13) are satisfied for all p ∈ P+. For p ∈ P \ P+, the values of ysp
((s, p) ∈ A′

S) and ypt ((p, t) ∈ A′
T) can be chosen arbitrarily such that (12)–(13) are

satisfied. By the equivalence of (7) and (14), (x, y) is feasible in Problem 2, and the only-
if-part of the lemma follows. Finally, assume that (x, y) is feasible in Problem 2 for some

y ∈ RA′
+ , and choose wk

p =
∑

s∈Sp q
k
s xsp∑

s∈Sp xsp
for all p ∈ P+. Hence (6) is satisfied, (7) is satisfied

because it is identical to (14), and the if-part follows. �	
Proposition 1 For any partition (PS, PT) of P, Problem 2 is a valid formulation for the
Pooling Problem.

123

204 J Glob Optim (2016) 64:199–215

Proof Follows directly from Lemma 1. �	
Proposition 2 Given any αk ∈ Q+ and βk ∈ Q for all k ∈ K, the set of feasible flows in
D is invariant under affine transformations αkqks + βk and αkukt + βk of qks (s ∈ S) and ukt
(t ∈ T), respectively.

Proof Since the suggested operations do not alter the set of solutions satisfying constraints
(14), which are the sole constraints in Problem 2 where parameters q and u occur, the
proposition follows directly from Proposition 1. �	

By constraint (14), it is easily seen that if x ∈ F(D, b) is feasible, then
∑

p∈Pt x pt = 0 for

all t ∈ T forwhich there exists some k ∈ K where ukt < mk = mins∈S qks . Such terminals can
thus be removed from D. Also, if there exists some k ∈ K such that ukt > Mk = maxs∈S qks ,
then x remains feasible if the bound is tightened to have the value Mk . Consequently, it is
henceforth assumed that mk � ukt � Mk for all t ∈ T .

Without further loss of generality, all qks and u
k
t can be assumed to be in [0, 1]. This follows

immediately by choosing αk = 1/(Mk −mk) and βk = −mkαk in Proposition 2. Although
not adopted generally in the text, this assumption will be made without further justification
whenever it is useful.

In cases where |S| = |T | = 1, it is straightforward to formulate the Pooling Problem

as an LP [9]. By virtue of the valid formulation (9)–(15), a more general statement is proved:

Proposition 3 If min{|Sp|, |Tp|} = 1 for all p ∈ P, then the Pooling Problem can be
formulated as a compact linear program.

Proof Choose PS = {p ∈ P: |Sp| = 1} and PT = P\PS . Combined with y � 0, constraints
(12) and (13) then imply ysp = 1 for all (s, p) ∈ A′

S and ypt = 1 for all (p, t) ∈ A′
T ,

respectively. Substituting all y-variables by 1 in constraint (14) renders Problem 2 linear, and
the claim follows from Proposition 2 and the observation that the numbers of variables and
constraints are polynomial in the input size. �	
While Proposition 3 shows that restricting either the in- or the out-degree of all pools to 1
leaves us with an LP, it is shown in the next section that restricting the degrees of all sources
and terminals does not have such favorable computational benefits.

Subsequent sections make extensive references to the Pooling Problem defined over
the set of instances satisfying some condition C on D or its parameters. Such special cases
of the problem will be referred to as ‘the Pooling Problem with C’.

3 Single pool networks

Problem 3 Maximum Independent Set (MIS): Given a graph G = (V, E), find a vertex
set V ′ ⊆ V of maximum cardinality such that all pairs of vertices in V ′ are non-neighbors
in G.

For an integer z, the decision version of Problem 3 asks whether G has an independent vertex
set of cardinality z.

Theorem 1 The Pooling Problem with |P| = 1 is strongly NP-hard.

Proof See [2]. �	

123

J Glob Optim (2016) 64:199–215 205

For consistency, all hardness proofs in this article are cast in termsof polynomial reductions
from an NP-complete decision problem, to the decision version of the Pooling Problem.
Such a reduction provides a proof of NP-hardness of the original optimization version (Prob-
lem 1). The proof of Theorem 1 [2] is by a polynomial reduction from MIS. Its underlying
idea is to define the network D, with associated parameters, such that there is a one-to-one
correspondence between independent vertex sets V ′ in G and feasible flows of cost −|V ′| in
D. That is, ζ = −z.

For every vertex in V , the digraph D has one source and one terminal, both of which
have an arc to/from the unique pool. The sources and terminals corresponding to vertices
in V ′ send/receive unit flow in the feasible solution, whereas the flow at other sources and
terminals is zero. To this end, there is also one quality parameter for each vertex, and the
quality at source s ∈ S is the unit vector with a 1-entry in the position of k ∈ K if s and k
correspond to the same vertex.

At the terminals, there are both lower and upper quality bounds. If t ∈ T and k ∈ K
correspond to the same vertex v, a lower bound �kt = 1/|V | is imposed, implying that t
receives non-zero flow only if the source corresponding to v also supplies non-zero flow.
Further, terminal t cannot receive any flow originating from source s if s and t correspond
to v1 ∈ V and v2 ∈ V , respectively, where {v1, v2} ∈ E . This is accomplished by the upper
quality bound uk1t = 0, where k1 is the quality parameter corresponding to v1. Finally, unit
flow capacities are imposed at sources and terminals, and the arc costs are defined consistently
with flow maximization.

Theorem 2 If |P| = 1, then the Pooling Problem can be solved in terms of
min

{
(|T | + 1)|K |, 2|T |} compact linear programs.

Proof To show that (|T | + 1)|K | compact LPs are sufficient, see the proof of Proposition 2

in [2]. Consider any non-zero flow x ∈ F(D, b), and let wk
p =

∑
s∈S qks xsp∑
s∈S xsp

, where P = {p}
and k ∈ K . Since all terminals receive flow uniquely from the pool p, x is feasible if and
only if, for all t ∈ T , xpt = 0 or wk

p � ukt for all k ∈ K . Thus, the solution to Problem 1 is
min

{
z
(
T+) : T+ ⊆ T

}
, where

z
(
T+) = min

x

∑
(i, j)∈A ci j xi j ,

x ∈ F(D, b),
∑

s∈S
(
qks − ukt

)
xsp � 0 t ∈ T+, k ∈ K ,

xpt = 0 t ∈ T \T+.

Since the numbers of variables and constraints in all 2|T | linear programs hence defined are
polynomial in the input size, the proof is complete. �	

Although the single-pool instances in general are hard, Theorem 2 shows that algorithms
with polynomial running time exist for the subclasses where the size of either K or T
is bounded. This follows directly from the compactness of the corresponding LP, and the
existence of LP-algorithms with polynomial running time.

It is left as an open question whether polynomial algorithms exist when |P| = 1 and
|S| � smax for any smax � 2.

123

206 J Glob Optim (2016) 64:199–215

4 Instances with a single quality parameter

Recently, Dey andGupte [9] raised the questionwhether the Pooling Problem remainsNP-
hard if there is only one quality parameter. Below, their question is answered affirmatively.
Moreover, it is proved that the NP-hardness for |K | = 1 persists even if there are only two
sources and two terminals. If |K | = 1 and the conditions on S and T is relaxed such that
there are either two sources or two terminals, the NP-hardness becomes strong.

Problem 4 Packing in Two Bins: Given positive integers d, a1, . . . , an , does there exist
a set M ⊆ {1, . . . , n} such that ∑i∈M ai � d and

∑
i /∈M ai � d?

Packing in Two Bins is known to be NP-complete [13].

Theorem 3 The Pooling Problem with |K | = 1 and |S| = |T | = 2 is NP-hard.

Proof We prove that any instance of Packing in Two Bins can be reduced to an instance
of the decision version of the Pooling Problem with ζ = − ∑n

i=1 ai , |K | = 1 and
|S| = |T | = 2. Since |K | = 1, all superscripts denoting quality parameters are omitted. Let
S = {s0, s1}, T = {t0, t1}, P = {p1, . . . , pn}, A = (S × P) ∪ (P × T), bs0 = bs1 = bt0 =
bt1 = d , qs0 = ut0 = 0, and qs1 = ut1 = 1. For all i = 1, . . . , n, let bpi = ai , cs0 pi = 3,
cpi t0 = −4, cs1 pi = 1, and cpi t1 = −2.

Assume x ∈ F(D, b) is a feasible flow with cost − ∑n
i=1 ai , and define c[p] =∑

s∈Sp cspxsp + ∑
t∈Tp cpt x pt as the corresponding cost of the flow through pool p ∈ P .

Let P0 = {
i = 1, . . . , n: xpi t0 > 0

}
be the indices of pools sending positive flow to termi-

nal t0, and let P1 = {1, . . . , n}\ P0. For i ∈ P0, the quality constraint at t0 implies that
pi receives all its flow from s0. Because cs0 pi + cpi t0 = −1 and cs0 pi + cpi t1 > −1, we
get

∑
i∈P0 c[pi] � −∑

i∈P0 ai , and
∑

i∈P0 c[pi] = −∑
i∈P0 ai only if xpi t0 = ai and

xpi t1 = 0 for all i ∈ P0. For i ∈ P1, cs0 pi + cpi t1 > −1 and cs1 pi + cpi t1 = −1 imply∑
i∈P1 c[pi] � −∑

i∈P1 ai , with equality only if xs0 pi = 0 and xpi t1 = ai for all i ∈ P1.
Because the total costs equal ζ = −∑n

i=1 ai = ∑
i∈P0 c[pi] + ∑

i∈P1 c[pi], it is shown
that xpi t0 = ai (i ∈ P0) and xpi t1 = ai (i ∈ P1), and the capacity constraints at T prove∑

i∈P0 ai � d and
∑

i∈P1 ai � d . It follows that (d, a1, . . . , an) is a yes-instance.
Conversely, if (d, a1, . . . , an) is a yes-instance, then there exists a partition (P0, P1)

of {1, . . . , n} such that
∑

i∈P0 ai � d and
∑

i∈P1 ai � d , and a feasible flow with cost∑
(s,p)∈AS

cspxsp +∑
(p,t)∈AT

cpt x pt = −∑n
i=1 ai is obtained by letting xs0 pi = xpi t0 = ai

for all i ∈ P0 and xs1 pi = xpi t1 = ai for all i ∈ P1.
Thus, (d, a1, . . . , an) is a yes-instance if and only if there exists a feasible flow with cost

no more than ζ in the Pooling Problem, which completes the proof. �	
Since Packing in Two Bins is not proved to be strongly NP-complete, Theorem 3 is

also restricted to NP-hardness in the weak sense. When the condition on either the source or
the terminal set is relaxed, however, strongNP-hardness persists.We prove this by polynomial
reductions from the following problem:

Problem 5 Exact Cover by 3- Sets (X3C):Given positive integersm and n, where 3 | n,
and a set M of subsets X1, . . . , Xm ⊆ N = {1, . . . , n}, where |X1| = · · · = |Xm | = 3, is
there a subset M ′ ⊆ M such that |M ′| = n

3 and
⋃

Xi∈M ′ Xi = N?

Problem 5 is proved to be NP-complete [13].
The idea behind the first reduction is to introduce a pair of terminals, referred to as the

restrictive and the tolerant terminal, respectively, for each of the elements 1, . . . , n to be

123

J Glob Optim (2016) 64:199–215 207

(a) (b) (c)

Fig. 1 Pooling Problem instances corresponding to the X3C-instance with M =
{{A, B,C}, {A, E, F}, {C, D, E}, {D, E, F}}. a X3C-instance, b reduction to |S| = 2, c reduction to
|T | = 2

covered. The restrictive terminals demand perfectly clean flow, whereas any flow is accepted
at the tolerant terminals. For each 3-set, there is a pool, from which there are arcs to both
terminals in all three pairs corresponding to elements in the 3-set. All pools have capacity 3, all
restrictive terminals have unit capacity, and the capacity of the tolerant terminal corresponding
to element j ∈ N is one less than the number of 3-sets in which j occurs. Flow from a pool
to the restrictive terminal is to indicate that the corresponding 3-set covers the corresponding
element, whereas flow to the tolerant terminal indicates the converse (see Fig. 1a, b for an
example).

Further, there is one perfectly clean and one totally contaminated source, both of which
are linked with all pools. The capacity of the clean (contaminated) source equals the total
capacity of all restrictive (tolerant) terminals. In case of full capacity utilization, all the flow
from the clean source thus has to reach only restrictive terminals. To this end, the pools must
be partitioned into two subsets. Pools in the first subset transit flow from the clean source to
restrictive terminals, while the others pass contaminated flow on to tolerant terminals. Below,
it is shown formally that partitioning the pools this way, and such that all terminals receive
flow at their full capacity, is feasible if and only if M has an exact cover of N .

Theorem 4 The Pooling Problem with |K | = 1 and |S| = 2 is strongly NP-hard.

Proof Let S = {s0, s1} and T = T 0 ∪ T 1, where T ν = {tνj : j ∈ N }, let P = {p1, . . . , pm},
and let AS = S × P and AT = A0

T ∪ A1
T , where Aν

T = {(pi , tνj): j ∈ Xi }mi=1 (ν = 0, 1).
Let |K | = 1, and for the purpose of simplified notation, all superscripts referring to k ∈ K
are omitted in this proof. Let bp = 3 for all p ∈ P , let bs0 = n, bs1 = 3m − n, bt0j

= 1 and

123

208 J Glob Optim (2016) 64:199–215

bt1j
= ∣

∣Mj
∣
∣ − 1 for all j ∈ N , where Mj = {Xi ∈ M : j ∈ Xi }. Finally, let csp = 0 for all

(s, p) ∈ AS , cpt = −1 for all (p, t) ∈ AT , qs0 = 0, qs1 = 1, and ut =
{
0, t ∈ T 0

1, t ∈ T 1.

By the definition of the costs, the objective in this Pooling Problem instance is to
maximize f (x) = ∑

(p,t)∈AT
xpt , and for a given ζ , the decision version is to decide whether

there exists a feasible flow x such that f (x) � ζ . Since the total flow capacity at the pools
equals 3m, f (x) � 3m for all feasible flows x in D. We let ζ = 3m, and prove that f (x) = ζ

is achievable if and only if (M, N) is a yes-instance of X3C.
If: Assume M ′ ⊆ M covers N exactly. For all Xi ∈ M ′, define the arc flows xs0 pi = 3,

xs1 pi = 0, xpi t0j
= 1, xpi t1j

= 0, and for all Xi ∈ M\M ′, let xs0 pi = 0, xs1 pi = 3, xpi t0j
= 0,

xpi t1j
= 1 (j ∈ Xi). The pool qualities, wp (p ∈ P), are determined uniquely such that (6)

is satisfied. Obviously, x ∈ F(D, b), f (x) = 3m, and the quality bounds at T 1 are satisfied
since wp � 1 for all p ∈ P . It remains to prove that the quality bounds at all t0j are satisfied.
SinceM ′ is an exact cover of N , there is a unique Xi ∈ M ′ such that j ∈ Xi . Correspondingly,
t0j receives positive flow uniquely from pi , which receives all its flow from s0. It follows that

wpi = 0, proving that the quality bound at t0j is satisfied. Hence, x is a feasible flow in D.

Only if: Assume x is a feasible flow with f (x) = 3m, and define P0 =
{
p ∈ P:

∑
t∈Tp∩T 0 xpt > 0

}
as the set of pools sending flow to T 0. Since the total flow capacity at the

terminals equals
∑

t∈T bt = ∑
t∈T 0 1+∑

t1j ∈T 1

(|Mj | − 1
) = n+3m−n = 3m = bs0 +bs1 ,

f (x) = 3m implies that the capacity is fully utilized at every node. Consequently, all termi-
nals in T 0 receive positive flow, and M ′ = {Xi : pi ∈ P0} is a cover of N . It only remains
to prove that |M ′| � n

3 . Because the zero quality bounds at all t ∈ T 0 are satisfied, the pool
qualities, wp , are zero for all p ∈ P0, and thereby, xs1 p = 0 for all p ∈ P0. The capacity
constraints at P\P0 and full capacity utilization at s1 thus yield 3

∣
∣P\P0

∣
∣ = ∑

p∈P\P0 bp �
∑

p∈P\P0 xs1 p = bs1 = 3m − n. Hence, |M ′| = |P0| = |P| − |P\P0| � m − 3m−n
3 = n

3 .
To conclude that the problem is NP-hard in the strong sense, it suffices to observe that

the absolute values of all parameters in the instance sets in question, are integers bounded
by 3|M |, which is polynomial in the input size. �	

The idea of the above proof is easily carried over to a reduction from X3C to the decision
version of the Pooling Problem with |K | = 1 and |T | = 2 (see Fig. 1c for an example).
Throughout the proof, the roles of the sources and the terminals are swapped straightfor-
wardly, and the result is therefore stated without proof.

Theorem 5 The Pooling Problem with |K | = 1 and |T | = 2 is strongly NP-hard.

Corollary 1 The Pooling Problem with max{|Sp|, |Tp|} � 6 for all p ∈ P,
min{|S|, |T |} = 2, and |K | = 1, is strongly NP-hard.

Acomparison of Proposition 3, Theorem3, andCorollary 1 reveals an interesting evolution
in the intractability of the Pooling Problem as the in- and out-degrees of the pools grow.
From being solvable in polynomial time when min{|Sp|, |Tp|} = 1, the problem becomes
NP-hard (at least) in the weak sense when |Sp| = |Tp| = 2, and finally strongly NP-hard
when min{|Sp|, |Tp|} = 2.

123

J Glob Optim (2016) 64:199–215 209

Fig. 2 Polynomial reduction
from Maximum

2-Satisfiability to the Pooling
Problem

5 Degree-bounded instances

The results of the previous section show that the Pooling Problem remains NP-hard even
if the number of arcs incident to any pool is bounded. In this section, it is proved that if either
all sources and pools have two leaving arcs, or all pools and terminals have two entering
arcs, then the problem also remains strongly NP-hard. By virtue of the theorems proved here,
another question addressed by Dey and Gupte [9] is answered with affirmation.

5.1 Bounded out-degree

Problem 6 Maximum 2-Satisfiability: Given a set X = {X1, . . . , Xn} of Boolean vari-
ables, and a set C = {C1, . . . ,Cm} of disjunctive clauses of two literals of X , find a truth
assignment to X such that a maximum number of the clauses in C are satisfied.

For an integer z, the decision version of Problem6 askswhether there exists a truth assignment
to X such that at least z of the clauses in C are satisfied.

With an instance of Maximum 2-Satisfiability, a Pooling Problem network Dmax

is associated such that there are one-to-one correspondences between clauses and sources,
between Boolean variables and pools, and between literals and terminals. If the clause corre-
sponding to source s contains a literal of the variable corresponding to pool p, then there is
an arc from s to p. Each pool is connected to the two terminals corresponding to the literals
of the variable corresponding to the pool. Consequently, the out-degrees of all sources and
pools are 2 (see Fig. 2 for an example).

Further, the quality parameters are defined such that there is one k ∈ K for each literal.
For reasons of brevity, and whenever appropriate, the expression ‘Boolean variable p’ is used
when referring to the Boolean variable corresponding to pool p. Analogous nomenclature
for literals (corresponding to terminals or quality parameters) and clauses (corresponding to
sources) is adopted.

Let qks = 1 if clause s contains literal k, and qks = 0, otherwise. Quality bounds are
defined as follows: If terminal t and quality parameter k correspond to the same literal, then
�kt = ukt = 1. If they correspond to different literals of the same variable, then �kt = ukt = 0,
and if they correspond to literals of different variables, then �kt = 0 and ukt = 1. All source
capacities equal 1 (bs = 1, s ∈ S), whereas pools and terminals have capacities equal to

123

210 J Glob Optim (2016) 64:199–215

the number of clauses (bi = m, i ∈ P ∪ T). Arc costs are defined consistently with flow
maximization, e.g., csp = −1 if (s, p) ∈ AS and cpt = 0 if (p, t) ∈ AT .

Let t+ and t− (k+ and k−) denote the terminals (quality parameters) corresponding to,
respectively, the positive and the negative literal of the Boolean variable p. In the following,
we establish a one-to-one correspondence between sets of z satisfied clauses and feasible
flows in Dmax with costs ζ = −z.

Lemma 2 If x is a feasible flow in Dmax, then at least one of xpt+ and xpt− is zero.

Proof Assume xpt+xpt− > 0. Because t+ and k+ correspond to the same literal, and k+ and
t− correspond to different literals of the same variable, the definitions of the quality bounds
at t+ and t−, respectively, yield �k

+
t+ = 1 and uk

+
t− = 0. Since t+ and t− both receive non-zero

flow, but uniquely from pool p, the pool quality wk+
p respects the quality bounds at both t+

and t−. Hence, �k+
t+ � wk+

p � uk
+

t− , which is a contradiction. �	
Lemma 3 If

∑
s∈Sp xsp > 0 for a feasible flow x in Dmax, then, for any quality matrix w of

x, wk+
p = 1 and wk−

p = 0 if x pt+ > 0, and wk+
p = 0 and wk−

p = 1 if x pt− > 0.

Proof By Lemma 2, all flow leaving p enters exactly one of the terminals t+ and t−. Because
wk+

p satisfies the quality constraints at the receiving terminal, 1 = �k
+

t+ � wk+
p � uk

+
t+ = 1

and 0 = �k
−

t+ � wk−
p � uk

−
t+ = 0 if t+ receives the flow. The proof in the case where t−

receives the flow is analogous. �	

For any flow x ∈ F(D, b), let S[x] =
{
s ∈ S: ∑

p∈Ps xsp > 0
}
denote the set of sources

supplying non-zero flow.

Lemma 4 If x is a feasible flow in Dmax, then all clauses in S[x] can be satisfied simulta-
neously.

Proof Let P+ (P−) consist of all pools from which the leaving flow enters a terminal
corresponding to a positive (negative) literal. By Lemma 2, P+ ∩ P− = ∅. We prove that by
assigning the value true to all Boolean variables in P+ and the value false to those in
P−, all clauses in S[x] are satisfied. To this end, we prove that each clause in S[x] contains
either the positive literal of some Boolean variable in P+, or the negative literal of some
Boolean variable in P−. For all p ∈ P+, Lemma 3 shows that wk+

p = 1, and pool p receives

flow exclusively from sources s ∈ S[x] with quality qk
+

s = 1. Thus, all corresponding
clauses contain the positive literal k+ of Boolean variable p. Analogously, for all p ∈ P−,
wk−

p = 1, and p receives flow exclusively from sources s ∈ S[x] with quality qk
−

s = 1,
and the corresponding clauses contain the negative literal k− of Boolean variable p. By
conservation of flow (4), P+ ∪ P− covers all pools receiving flow from S[x], and the proof
is complete. �	
Lemma 5 If the clauses C∗ ⊆ C can be satisfied simultaneously, then there exists a feasible
flow x in Dmax such that

∑
(s,p)∈AS

xsp = |C∗|.
Proof Let P+ and P− be disjoint subsets of P such that the clauses C∗ are satisfied by
assigning the value true to all Boolean variables p ∈ P+ and false to all p ∈ P−. For
all clauses Ci ∈ C∗, define the pool pi ∈ P+ ∪ P− such that Ci is satisfied by the Boolean
variable pi (break ties arbitrarily).

123

J Glob Optim (2016) 64:199–215 211

Arcs incident to pool p ∈ P+ ∪ P− are assigned flow as follows: For sources s ∈ S
corresponding to clausesCi such that pi = p, the definition of Dmax implies that (s, p) ∈ AS .
Let xsp = 1 for such arcs (s, p). If p ∈ P+, let xpt+ = |{Ci ∈ C∗: pi = p}| and xpt− = 0,
and let xpt− = |{Ci ∈ C∗: pi = p}| and xpt+ = 0 if p ∈ P−. Arcs incident to P\P+\P−
are assigned zero flow. Consequently, x ∈ F(D, b) and

∑
(s,p)∈AS

xsp = |C∗|.
It remains to prove that the quality constraints at terminals receiving non-zero flow are

satisfied. The flow through a pool p ∈ P+ comes exclusively from sources s corresponding
to clauses Ci such that pi = p, and goes exclusively to terminal t+. Assigning true to
Boolean variable p satisfies clause Ci , and hence the clause contains the positive literal k+.
Therefore, qk

+
s = 1 and qk

−
s = 0, yielding the same qualities at pool p, which means that

wk+
p = 1 = �k

+
t+ = uk

+
t+ and wk−

p = 0 = �k
−

t+ = uk
−

t+ . For all k /∈ {k+, k−}, qks ∈ [0, 1], and
consequently, �kt+ = 0 � wk

p � 1 = ukt+ . Thus, �
k
t+ � wk

p � ukt+ for all k ∈ K , and since t+
receives flow exclusively from p, all quality constraints (7) at t+ are satisfied.

Analogous arguments apply to pools in P−, and by feasibility of x , the proof is complete.
�	

Theorem 6 The Pooling Problem with all out-degrees no greater than two is strongly
NP-hard.

Proof The proof is by a polynomial reduction from the decision version of Maximum 2-
Satisfiability, which is known to be NP-complete [14]. Let ζ = −z, and assume there
exists a feasible flow in Dmax with total cost no more than ζ . Then the total flow leaving S
in Dmax is at least z, and bs = 1 (s ∈ S) implies that it is feasible to assign positive flow to
at least z sources. Lemma 4 then shows that there exists a satisfiable C∗ ⊆ C with |C∗| � z.
Conversely, Lemma 5 shows that for any satisfiable C∗ ⊆ C , there exists a flow assignment
x to Dmax such that z = |C∗| flow units leave S. It follows that there exists a feasible flow
in Dmax with cost no more than ζ if and only if there exists a satisfiable subset of C with
cardinality at least z. Thus, the decision version of Maximum 2-Satisfiability has been
polynomially reduced to the decision version of the Pooling Problem in the network Dmax.
The proof is complete by observing that the absolute values of all parameters are integers
bounded by m. �	
5.2 Bounded in-degree

By a reduction similar to the one of the previous section, it is proved in this section that the
Pooling Problem remains stronglyNP-hard if all nodes have atmost two entering arcs. The
truth assignments that leave a disjunctive clause of two literals unsatisfied, are exactly those
that satisfy the conjunctive clause of the inverses of the same two literals. Consequently,
the problem of minimizing the number of satisfied clauses can be stated as the following
maximization problem:

Problem 7 Minimum 2-Satisfiability: Given a set X = {X1, . . . , Xn} of Boolean vari-
ables, and a set C̄ = {

C̄1, . . . , C̄m
}
of conjunctive clauses of two literals of X , find a truth

assignment to X such that a maximum number of the clauses in C̄ are satisfied.

For an integer z, the decision version of Problem7 askswhether there exists a truth assignment
satisfying at least z conjunctive clauses in C̄ .

The Pooling Problem network, Dmin, associated with an instance of Minimum

2- Satisfiability resembles Dmax, but with the roles of sources and terminals interchanged.
That is, the bijections are between literals and sources, literals and quality parameters,

123

212 J Glob Optim (2016) 64:199–215

Fig. 3 Polynomial reduction
from Minimum

2-Satisfiability to the Pooling
Problem

Boolean variables and pools, and conjunctive clauses and terminals. Source-to-pool and
pool-to-terminal connections follow the patterns of, respectively, pool-to-terminal and
source-to-pool connections explained in the previous section (see Fig. 3). Consequently,
the in-degrees of all pools and terminals are 2.

Following the nomenclature introduced in the previous section, the literal corresponding
to source s ∈ S or quality parameter k ∈ K will henceforth be referred to as literal s or literal
k, and analogous references to Boolean variables and clauses will be used. For any s ∈ S and
k ∈ K , define the source quality qks = 2 if source s and quality parameter k correspond to the
same literal, and let qks = 0, otherwise. If clause t ∈ T contains literal k, the quality bounds
at terminal t are �kt = ukt = 1, whereas �kt = ukt = 0, otherwise. The Pooling Problem

instance is completed by the node capacities bt = 2 (t ∈ T) and bi = 2m (i ∈ S ∪ P), and
the arc costs csp = 0 ((s, p) ∈ AS) and cpt = −1 ((p, t) ∈ AT).

Consider any terminal t ∈ T with in-neighbors Pt = {p, r}. By the definition of Dmin,
the clause t contains a literal of Boolean variable p. Denote by k and k′ (s and s′) the quality
parameters (sources) corresponding to this literal and its inverse, respectively.

Lemma 6 If Dmin is assigned feasible flow such that t receives non-zero flow, then the flow
on both arcs entering t is non-zero.

Proof Assume x is a feasible flow in Dmin such that xpt > 0 = xrt . Since �kt = ukt = 1, the
lower and upper quality bounds (7) become xptwk

p + xrtwk
r = xpt + xrt , which, by xrt = 0,

yields wk
p = 1. The flow enters p exclusively from sources s and s′, producing the quality

1 = wk
p = xspqks + xs′ pqks′

xsp + xs′ p
= 2xsp

xsp + xs′ p
,

since qks = 2 and qks′ = 0. Thus, xsp = xs′ p > 0. For parameter k′, the pool quality becomes

wk′
p = xspqk

′
s + xs′ pqk

′
s′

xsp + xs′ p
= qk

′
s + qk

′
s′

2
= 1.

Because �k
′

t = uk
′

t = 0, the quality bounds (7) corresponding to k′ at t read

xptw
k′
p + xrtw

k′
r = 0. (17)

123

J Glob Optim (2016) 64:199–215 213

But xptwk′
p > 0 and xrt = 0 imply that (17) is violated, contradicting the assumption that x

is feasible. �	
Lemma 7 If x pt + xrt > 0 for a feasible flow x in Dmin, then wk

p = 2 and wk′
p = 0 for any

quality matrix w of x.

Proof As t receives non-zero flow, Lemma 6 implies that xpt > 0 and xrt > 0. Since non-
negativity of the source qualities implies that also the pool qualities are non-negative, the
quality constraint (17) thus gives wk′

p = 0. Because qk
′

s′ > 0, pool p receives all its flow from

source s, implying also wk
p = qks = 2. �	

For any flow x ∈ F(D, b), let T [x] =
{
t ∈ T : ∑

p∈Pt x pt > 0
}
denote the set of terminals

receiving non-zero flow.

Lemma 8 If x is a feasible flow in Dmin, then the clauses T [x] can be satisfied simultane-
ously.

Proof We have to prove that there exist no two clauses in T [x] containing literals that are
each others’ inverse. Assume there exist t1, t2 ∈ T [x] and k1, k2 ∈ K such that literal kν is
in clause tν (ν = 1, 2), and such that literal k1 is the inverse of literal k2. Then there exists
some p ∈ P adjacent to both t1 and t2. Lemma 7 applied to t1 then gives w

k1
p = 2, whereas

the same lemma applied to t2 gives w
k1
p = 0, which is a contradiction. �	

Lemma 9 If the clauses C̄∗ ⊆ C̄ can be satisfied simultaneously, then there exists a feasible
flow x in Dmin such that

∑
(p,t)∈AT

xpt = 2
∣
∣C̄∗∣∣.

Proof Define the flow as follows: For all (s, p) ∈ AS , let xsp equal the number of clauses in
C̄∗ that contain literal s. For all (p, t) ∈ AT , let xpt = 1 if clause t is in C̄∗, and let xpt = 0,
otherwise.

Obviously, x satisfies all capacity constraints in Dmin. Since the total flows entering and
leaving pool p both equal the number of clauses in C̄∗ containing Boolean variable p or its
negation, conservation of flow is also satisfied.

Choose any t ∈ T corresponding to a clause in C̄∗, and denote its adjacent pools p1 and
p2, respectively. We need to show that the quality bounds (7) at t are satisfied, and because
xp1t = xp2t = 1, these constraints read

2�kt � wk
p1 + wk

p2 � 2ukt k ∈ K . (18)

Denote by s1 and s2 (k1 and k2) the sources (quality parameters) corresponding to the literals
in clause t . Adjacent to pν (ν ∈ {1, 2}) are the sources sν and s′

ν , where s
′
ν corresponds to the

inverse of literal sν . Since all clauses in C̄∗ are satisfied, and literal sν is in one such clause,
literal s′

ν is not in any clause in C̄∗. By definition of x , it follows that xspν = 0 for s = s′
ν ,

and thereby pν receives flow uniquely from sν . The quality at pν is hence identical to the
quality at sν , which means that wk

pν
= 2 if k = kν , and wk

pν
= 0, otherwise. Consequently,

wk
p1 + wk

p2 = 2 if k ∈ {k1, k2}, and wk
p1 + wk

p2 = 0, otherwise. By definition, �kt = ukt = 1

if k ∈ {k1, k2}, and �kt = ukt = 0, otherwise, proving (18), and thereby feasibility of x . The
proof is complete by observing that

∣
∣C̄∗∣∣ = |T [x]| and ∑

p∈Pt x pt = 2 for all t ∈ T [x]. �	

Theorem 7 The Pooling Problem with all in-degrees no greater than two is strongly
NP-hard.

123

214 J Glob Optim (2016) 64:199–215

Proof The proof is by a polynomial reduction from the decision version of Minimum 2-

Satisfiability. Let ζ = −2z. It follows fromLemma 9 that if there exists a truth assignment
rendering at least z conjunctive clauses in C̄ true, then there exists a flow in Dmin such that at
least 2z flowunits enter T . Conversely, if 2z flowunits can be sent from S to T in Dmin, at least
z terminals receive positive flow since bt = 2 (t ∈ T), and Lemma 8 shows that C̄ contains z
conjunctive clauses that can be satisfied simultaneously. It follows that at least z conjunctive
clauses can be satisfied simultaneously, if and only if there exists a feasible flow in Dmin with
cost at most ζ . The proof is complete by the NP-hardness of Minimum 2- Satisfiability

[19], and the observation that all Pooling Problem parameters are integers with absolute
values bounded by 2m. �	

6 Conclusions and open questions

The Pooling Problem is proved to remain NP-hard in the strong sense even for instances
with only one quality parameter. Adding the restriction that the networks cannot have more
than two sources and two terminals, still leaves us with an NP-hard problem. Strong hardness
is however not proved, and it is left as a challenge for further research to determine whether
pseudo-polynomial algorithms exist when |K | = 1 and |S| = |T | = 2. If only one of the
sets S and T is restricted to have only two elements, however, the Pooling Problem with
a single quality parameter is proved to be strongly NP-hard.

Instances with |S| = |T | = 2 belong obviously to the instance class where the minimum
of the in- and out-degrees of each pool is at most two. The implied NP-hardness of this class
contrasts the observation that the problem is an LP if the minimum degree of each pool is one.
Further, it has been proved that the Pooling Problem is strongly NP-hard if all sources
and pools have out-degree at most 2, or if all pools and terminals have in-degree at most two.

It is proved that for single-pool networks, the problem is solvable in terms of a polynomial
number of compact LPs if either |K | or |T | is bounded. However, the question whether a
bound on |S| also makes the problem solvable in polynomial time is left as a challenge
for future research. If that turns out to be the case, new related and interesting questions
arise: Do there exist polynomial algorithms for |P| � pmax in combination with a bound on
min{|S|, |T |, |K |} also for any pmax > 1? Future research should address questions of this
kind, in order to assess closely the border lines between polynomially solvable and NP-hard
instance classes of the Pooling Problem.

Acknowledgments This article was written while the author was visiting Department of Computer Archi-
tecture, University of Málaga, Spain. Invitation and support from Prof. Eligius M.T. Hendrix are gratefully
acknowledged.

References

1. Adhya, N., Tawarmalani, M., Sahinidis, N.V.: A Lagrangian approach to the pooling problem. Ind. Eng.
Chem. Res. 38(5), 1965–1972 (1999)

2. Alfaki, M., Haugland, D.: Strong formulations for the pooling problem. J. Glob. Optim. 56(3), 897–916
(2013)

3. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286
(1983)

4. Almutairi, H., Elhedhli, S.: A new Lagrangian approach to the pooling problem. J. Glob. Optim. 45(2),
237–257 (2009)

123

J Glob Optim (2016) 64:199–215 215

5. Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., Mladenović, N.: Pooling problem: alternate formu-
lations and solution methods. Manag. Sci. 50(6), 761–776 (2004)

6. Baker, T.E., Lasdon, L.S.: Successive linear programming at Exxon. Manag. Sci. 31(3), 264–274 (1985)
7. Ben-Tal, A., Eiger, G., Gershovitz, V.: Global minimization by reducing the duality gap. Math. Program.

63(1–3), 193–212 (1994)
8. DeWitt, C.W., Lasdon, L.S., Waren, A.D., Brenner, D.A., Melham, S.: OMEGA: an improved gasoline

blending system for Texaco. Interfaces 19(1), 85–101 (1989)
9. Dey, S., Gupte, A.: Analysis of MILP techniques for the pooling problem. Oper. Res. 62(2), 412–427

(2015)
10. Floudas, C.A., Visweswaran, V.: A global optimization algorithm (GOP) for certain classes of nonconvex

NLPs: I. Theory Comput. Chem. Eng. 14(12), 1397–1417 (1990)
11. Foulds, L.R., Haugland, D., Jörnsten, K.: A bilinear approach to the pooling problem. Optimization 24,

165–180 (1992)
12. Galan, B., Grossmann, I.E.: Optimal design of distributed wastewater treatment networks. Ind. Eng.

Chem. Res. 37(10), 4036–4048 (1998)
13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.

W.H. Freeman, New York (1979)
14. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Com-

put. Sci. 1, 237–267 (1976)
15. Gupte, A., Ahmed, S., Dey, S., Cheon, M.: Pooling problems: an overview. In: Furman, K., Song, J. (eds.)

Optimization and Analytics in the Oil and Gas Industry, International Series in Operations Research and
ManagementScience. Springer, Berlin (2015)

16. Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bull. 25,
19–28 (1978)

17. Haverly, C.A.: Behavior of recursion models—more studies. ACM SIGMAP Bull. 26, 22–28 (1979)
18. Kallrath, J.: Solving planning and design problems in the process industry using mixed integer and global

optimization. Ann. Oper. Res. 140(1), 339–373 (2005)
19. Kohli, R., Krishnamurti, R., Mirchandani, P.: The minimum satisfiability problem. Discrete Math. 7,

275–283 (1994)
20. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part 1—Convex

underestimating problems. Math. Program. 10(1), 147–175 (1976)
21. Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global optimization, and com-

putational studies. Appl. Comput. Math. 8, 3–22 (2009)
22. Misener, R., Floudas, C.A.: Global optimization of large-scale generalized pooling problems: quadrati-

cally constrained MINLP models. Ind. Eng. Chem. Res. 49, 5424–5438 (2010)
23. Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and

extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35,
876–892 (2011)

24. Sahinidis, N.V., Tawarmalani,M.:Accelerating branch-and-bound through amodeling language construct
for relaxation-specific constraints. J. Glob. Optim. 32(2), 259–280 (2005)

25. Visweswaran, V., Floudas, C.A.: Computational results for an efficient implementation of the GOP algo-
rithm and its variants. In: Grossmann, I.E. (ed.) Global Optimization in Chemical Engineering, pp.
111–153. Kluwer, Dordrecht (1996)

123

	The computational complexity of the pooling problem
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Preliminary results

	3 Single pool networks
	4 Instances with a single quality parameter
	5 Degree-bounded instances
	5.1 Bounded out-degree
	5.2 Bounded in-degree

	6 Conclusions and open questions
	Acknowledgments
	References

