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Abstract We further develop our phi-function technique for solving Cutting and Packing
problems. Here we introduce quasi-phi-functions for an analytical description of non-
overlapping and containment constraints for 2D- and 3D-objects which can be continuously
rotated and translated. These new functions can work well for various types of objects,
such as ellipses, for which ordinary phi-functions are too complicated or have not been
constructed yet. We also define normalized quasi-phi-functions and pseudonormalized
quasi-phi-functions for modeling distance constraints. To show the advantages of our new
quasi-phi-functionswe apply them to the problem of placing a given collection of ellipses into
a rectangular container of minimal area. We use radical free quasi-phi-functions to reduce it
to a nonlinear programming problem and develop an efficient solution algorithm.We present
computational results that compare favourably with those published elsewhere recently.

Keywords Quasi-phi-functions ·Object continuous rotations ·Non-overlapping ·Distance
constraints · Ellipse packing · Mathematical model · Nonlinear optimization

1 Introduction

Optimal placement problem is a part of operational research and computational geometry. It
is also known as Packing and Cutting problem [1–6]. It has multiple applications in modern
biology, mineralogy, medicine, materials science, nanotechnology, robotics, coding, pattern
recognition systems, control systems, space apparatus control systems, aswell as in the chemi-
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cal industry, power engineering, mechanical engineering, shipbuilding, aircraft construction,
civil engineering, etc. At present, the interest in finding effective solutions for placement
problems is growing rapidly. This is due to a large and growing number of applications (e.g.
see http://smartimtech.com) and an extreme complexity of methods used to handle many of
them.

Our approach is based on mathematical modeling of relations between geometric objects
and thus reducing the Packing and Cutting problem to a nonlinear programming problem. To
this end we have introduced phi-functions (see e.g. [7,8]) that for the past 2–3 decades have
been our working tool: we used them for analytic description of objects placed in a container
taking into account their continuous rotations and translations. At present, a complete class
of ready-to-use basic phi-functions is derived in [9], which allows us to construct radical free
phi-functions for arbitrary shaped 2D-objects, bounded by circular arcs and line segments
[8,10]. Phi-functions for the simplest 3D-objects, such as parallelepipeds, convex polytopes
and spheres are considered in [11,12]. But our attempts to construct phi-functions for more
general types of continuously rotated objects, such as ellipses, cylinders, cones have been
futile. In addition some of phi-functions (especially for 3D-objects) happen to be rather
complicated, analytically (involve a lot of radicals, operations of maximum), and difficult
in practical use (to apply NLP-solvers, e.g. IPOPT). It seems that further progress requires
conceptually new approaches.

In this paper we further develop the concept of phi-functions, extending their domains by
including auxiliary variables. The new functions, called quasi-phi-functions, can be described
by analytical formulas that are substantially simpler than those used for phi-functions, for
some types of objects. They also are simple enough for some types of objects for which phi-
functions could not be constructed. In particular, we find convenient quasi-phi-functions for
ellipses and for certain 3D-objects. The use of quasi-phi-functions, instead of phi-functions,
thus allows us to handle new types of objects, but there is a price to pay: now the optimization
has to be performed over a larger set of parameters, including the extra variables used by our
new functions, but this is a small price.

To demonstrate high efficiency of our quasi-phi-functions we consider a practical problem
of placing a set of given non-identical ellipses into a rectangular container of minimal area.
We construct quasi-phi-functions for ellipses and develop an efficient optimization algorithm
that finds a nearly optimal solution.

We came to realize that the brilliant concept used for packing circles and convex polygons
by Kallrath in [13], as well as its extension to ellipses by Kallrath and Rebennack [14], is the
most powerful approach to the problems within the field of Packing and Cutting.

We applied our algorithm to several test cases studied in [14], and in each case it found a
better solution than those published elsewhere.

The paper is organized as follows: Sect. 2 provides definitions of phi-functions, normal-
ized and pseudonormalized phi-functions; in Sect. 3 we define our quasi-phi-functions for
an analytical description of non-overlapping and containment constraints and discuss their
general properties; we also introduce normalized and pseudonormalized quasi-phi-functions
to describe the given minimal allowable distances between geometric objects. In Sect. 4 we
construct quasi-phi-functions for certain types of 2D- and 3D-objects needed in applications.
In Sect. 5 we formulate the ellipse packing problem taking into account distance constraints,
propose a mathematical model as a nonlinear programming problem by means of quasi-phi-
functions, and develop a new solution algorithm, which involves a fast starting point and
efficient local optimization procedures. In Sect. 6 we present our computational results for
some new instances and several instances studied in [14]. In Sect. 7we give some conclusions.
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2 The concept of phi-functions

Let A ⊂ Rd and B ⊂ Rd be closed phi-objects, d = 2, 3; see a precise definition of phi-
objects in e.g. [7,8]. We assume that at least one of these objects is bounded. Sizes of objects
may change according to homothetic coefficients λA,λB > 0. Position of the object A is
defined by vector of placement parameters (vA, θA), where: vA = (xA, yA) is a translation
vector and θA is a rotation angle for d = 2, vA = (xA, yA, zA) is a translation vector and
θA = (θz, θx , θy) are rotation angles (from axisOX to OY, from axis OY to OZ and from axis
OX toOZ) for d = 3.We denote the vector of variables for the object A by uA = (vA, θA,λA)

and the vector of variables for the object B by uB = (vB , θB ,λB). The object A, rotated
by angle θA (or angles θz, θx , θy , in this order), translated by vector vA, and rescaled by
homothetic coefficient λA, will be denoted by A(uA).

In order to describe non-overlapping and containment constraints in cutting and packing
problems analytically we apply the concept of phi-functions [7,8].

Definition 1 A continuous and everywhere defined function �AB(uA, uB) is called a phi-
function for objects A(uA) and B(uB) if

�AB < 0, if int A(uA) ∩ int B(uB) �= ∅;
�AB = 0, if int A(uA) ∩ int B(uB) = ∅ and f r A(uA) ∩ f r B(uB) �= ∅;

�AB > 0, if A(uA) ∩ B(uB) = ∅,

provided that we fix the homothetic multipliers λA = λ0
A and λB = λ0

B .

Here f r(·) means the boundary (frontier) and int(·) means the interior of object (·).
A phi-function �AB must be defined for all position vectors and all rotation angles. The

phi-function �AB describes analytically the relation between the objects A and B in such
a way that �AB > 0 if the objects do not have common points; �AB = 0 if the objects
just touch each other, and �AB < 0 if the objects have common interior points. Thus,
�AB ≥ 0 ⇔ int A(uA) ∩ int B(uB) = ∅. We employ phi-functions for the description of
the contaiment relation A ⊆ B as follows: �AB∗ ≥ 0, where B∗ = Rd\int B, d = 2, 3. We
emphasize that according to the definition 1, the phi-function�AB for a pair of objects A and
B can be constructed by many different formulas, and we can choose the most convenient
ones for our optimization algorithms.

The concept of phi-functions is used for the purpose of modeling distance constraints. To
this end we define normalized and pseudonormalized (adjusted) phi-functions (see e.g., [8]).

Let dist(A, B) = mina∈A,b∈B dist(a, b),where dist(a, b) stands for theEuclidean distance
between points a, b ∈ Rd , d = 2, 3, and let ρ− > 0 denote minimal allowable distances
between objects A(uA) and B(uB).

Definition 2 A phi-function �̃AB(uA, uB) for objects A(uA) and B(uB) is said to be a
normalized phi-function if

�̃AB(uA, uB) = dist(A, B) whenever int A(uA) ∩ int B(uB) = ∅.

Thus, �̃AB ≥ ρ− ⇔ dist(A, B) ≥ ρ−.

Definition 3 Acontinuous and everywhere defined function
�

�
AB

(uA, uB) is called a pseudo-
normalized (adjusted) phi-function for objects A(uA) and B(uB), if
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�

�
AB

< 0, if dist(A, B) < ρ−;
�

�
AB = 0, if dist(A, B) = ρ−;

�

�
AB

> 0, if dist(A, B) > ρ−.

Thus,
�

�
AB ≥ 0 ⇔ dist(A, B) ≥ ρ−. The function may be derived as an ordinary phi-

function for the equidistant object
�

A = A ⊕ C(ρ−) and the object B (or the object A and
the equidistant object

�

B = B ⊕ C(ρ−)). Here ⊕ is a symbol of the Minkowski sum, C(ρ−)

is a circle of the radius ρ− and the center point located at the origin of the local coordinate
system of the object A (or the object B). “Appendix 1” provides the simplest examples of
phi-functions.

3 Quasi-phi-functions and their properties

Now we extend domains of phi-functions by including auxiliary variables u′, which take
values in some domainU ⊂ Rn (it depends on the shapes of objects A and B), and introduce

a function �
′ AB

(uA, uB , u′). The function must be defined for all values of uA and uB . It
must be continuous in all its variables.

Definition 4 A function�
′ AB

(uA, uB , u′) is called a quasi-phi-function for two phi-objects
A(uA) and B(uB) if maxu′∈U �

′ AB
(uA, uB , u′) is a phi-function for the objects, provided

that we fix the homothetic multipliers λA = λ0
A and λB = λ0

B .

Our definition of quasi-phi-functions gives us additional “degrees of freedom”, as we can
choose the auxiliary variables u′ as we please.

Next we discuss general properties of quasi-phi-functions. Let �
′ AB

(uA, uB , u′) be a
quasi-phi-function for two phi-objects A(uA) and B(uB).

Theorem 1 If �
′ AB

(uA, uB , u′) ≥ 0 for some u′, then int A(uA) ∩ int B(uB) = ∅.

Proof Let us introduce two subsets M1 = {(uA, uB , u′) ∈ Rm :int A(uA) ∩ int B(uB) �=
∅}, M2 = {(uA, uB , u′) ∈ Rm : int A(uA)∩ int B(uB) = ∅}. It is clear that M1 ∪ M2 = Rm ,

since �
′ AB

(uA, uB , u′) is defined for all values of its variables. From definition 4 it follows

that maxu′∈U �
′ AB

(uA, uB , u′) < 0 if int A(uA) ∩ int B(uB) �= ∅. It should be noted that

a quasi-phi-function �
′ AB

(uA, uB , u′) may take negative values not only on the subset M1

but also at some points of the subset M2. However, if p0 = (u0A, u0B , u′0) ∈ M1 then

�
′ AB

(p0) < 0. Therefore, if �
′ AB

(p0) ≥ 0 then p0 ∈ M2. 
�

Next, assume, that A and B are convex objects. In addition, we assume that λA and λB

take values in (0,+∞).
Let P(uP ) = {(x, y, z):ψP = α · x + β · y + γ · z + μP ≤ 0} be a half-space (for

t = 2 it will be a half-plane; see below); here uP = (θx P , θyP ,μP ), α = sin θyP , β =
− sin θx P · cos θyP , γ = cos θx P · cos θyP (note that α2 + β2 + γ2 = 1). If A, B ⊂ R2, then
P(uP ) = {(x, y): ψP = α · x + β · y + μP ≤ 0}, where uP = (θP ,μP )α = cos θP , β =
sin θP . Suppose �AP (uA, uP ) is a phi-function for A(uA) and P(uP ) and �BP∗

(uB , uP ) is
a phi-function for B(uB) and P∗(uP ) = Rd\int P(uP ), d = 2, 3.
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Theorem 2 A function defined by

�
′ AB

(uA, uB , uP ) = min{�AP (uA, uP ),�BP∗
(uB , uP )}, (1)

is a quasi-phi-function for the pair of bounded objects A(uA) and B(uB). Here u′ = uP .

Proof We need to show that the function (1) meets all the requirements of definition 4.

First, the function�
′ AB

is defined everywhere and is continuous in all its variables, since the
phi-functions�AP and�BP∗

enjoy the same properties. Nextwe need to verify the following:

(1) maxu′∈U �
′ AB

< 0, if int A(uA) ∩ int B(uB) �= ∅;

(2) maxu′∈U �
′ AB = 0, if int A(uA) ∩ int B(uB) = ∅ and f r A(uA) ∩ f r B(uB) �= ∅;

(3) maxu′∈U �
′ AB

> 0, if A(uA) ∩ B(uB) = ∅.

Indeed, if int A(uA) ∩ int B(uB) �= ∅, then for each uP we have �
′ AB

< 0, and there-

fore maxuP∈U �
′ AB

< 0. Now if A(uA) ∩ B(uB) = ∅, then due to the convexity of our
objects A and B there exists a separating hyperplane with parameters uP ∈ R2 or uP ∈ R3

(depending on whether our objects are in 2D or 3D); then we have �AP (uA, uP ) > 0 and

�BP∗
(uB , uP ) > 0, and therefore maxuP∈U �

′ AB
> 0. Lastly, if int A(uA) ∩ int B(uB) =

∅ but f r A(uA) ∩ f r B(uB) �= ∅, then �
′ AB = 0, since �AP (uA, uP ) = 0 and

�BP∗
(uB , uP ) = 0. 
�

Corollary 1 If �
′ AP

(uA, uP , u′
1) is a quasi-phi-function for A(uA) and P(uP ),

�
′ BP∗

(uB , uP , u′
2) is a quasi-phi-function for B(uB) and P∗(uP ), then function

�
′ AB

(uA, uB , u′) = min

{
�

′ AP
(uA, uP , u′

1),�
′ BP∗

(uB , uP , u′
2)

}
, (2)

is a quasi-phi-function for the pair of bounded objects A(uA) and B(uB). Here u′ =
(uP , u′

1, u
′
2).

The concept of quasi-phi-functions may be adapted for the purpose of modeling distance
constraints. To this end we define normalized and pseudonormalized quasi-phi-functions,
based on similar terms for phi-functions.

Definition 5 A quasi-phi-function �̃′AB(uA, uB , u′) is called a normalized quasi-phi-
function for objects A(uA) and B(uB), if a function maxu′∈U �̃′AB(uA, uB , u′) is a
normalized phi-function for the objects.

Thus, maxu′∈U �̃′AB ≥ ρ− ⇔ dist(A, B) ≥ ρ−.

Definition 6 Function
�

�
′AB

(uA, uB , u′) is called a pseudonormalized quasi-phi-function

for objects A(uA) and B(uB), if function maxu′∈U
�

�
′AB

(uA, uB , u′) is a pseudonormalized
(adjusted) phi-function for the objects.

Thus, maxu′∈U
�

�
′AB ≥ 0 ⇔ dist(A, B) ≥ ρ−.

Let a quasi-phi-function have a form

�
′ AB

(uA, uB , uP ) = min
{
�̃AP (uA, uP ), �̃BP∗

(uB , uP )
}

, (3)

where �̃AB(uA, uP ), �̃BP∗
(uB , uP ) are normalized phi-functions.
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Then a quasi-phi-function

�̃′AB(uA, uB , uP ) = 2�′AB(uA, uB , uP ),

is a normalized quasi-phi-function, and a quasi-phi-function

�

�
′AB

(uA, uB , uP ) = �′AB(uA, uB , uP ) − 0.5ρ−,

is a pseudonormalized quasi-phi-function.
Let A(uA) = ⋃nA

i=1 Ai (uA) and B(uB) = ⋃nB
j=1 Bj (uB) be non-convex phi-objects,

and �′Ai B j (uA, uB , u′
i j ) be a quasi-phi-function for convex objects Ai (uA) and Bj (uB),

i = 1, 2, . . . , nA, j = 1, 2, . . . , nB .

Theorem 3 A function defined by

�′AB(uA, uB , uP )=min
{
�′Ai B j (uA, uB , u′

i j ), i=1, 2, . . . , nA, j =1, 2, . . . , nB

}
, (4)

is a quasi-phi-function for A(uA) and B(uB), uP = (u′
i j , i = 1, 2, . . . , nA, j = 1, 2, . . . ,

nB).

Proof To justify our formula (4) we note that the auxiliary variables u′
i j for each pair of

objects Ai (uA) and Bj (uB) are defined independently from other pairs of objects; therefore
the domain of the whole auxiliary vector uP = (u′

i j , i = 1, 2, . . . , nA, j = 1, 2, . . . , nB)

is a direct product of the domains of u′
i j ’s. This implies

max
uP∈U �′AB(uA, uB , uP )

= max
uP∈U

(
min

{
�′Ai B j (uA, uB , u′

i j ), i = 1, 2, . . . , nA, j = 1, 2, . . . , nB

})

= min

{
max
u′
i j∈U

�′Ai B j (uA, uB , u′
i j ), i = 1, 2, . . . , nA, j = 1, 2, . . . , nB

}
.


�
Replacing quasi-phi-functions �

′ Ai B j in (4) by normalized �̃′Ai B j (or pseudonormalized
�

�
′Ai B j

) quasi-phi-functions for i = 1, 2, . . . , nA, j = 1, 2, . . . , nB , we get a normalized
(resp., a pseudonormalized) quasi-phi-function for objects A(uA) and B(uB).

4 Construction of quasi-phi-functions

Here we construct quasi-phi-functions for certain 2D- and 3D-objects, based on our general
formulas (1)–(3).

A quasi-phi-function for convex polytopes. Let K1(u1) and K2(u2) be convex polytopes,
given by their vertices λ1 p1i , i = 1, . . . .,m1, and λ2 p2j , j = 1, . . . ,m2, respectively. Then

�K1P (u1, uP ) = min1≤i≤m1 ψP (λ1 p1i ) and �K2P∗
(u2, uP ) = min

1≤ j≤m2
(−ψP (λ2 p2j )) are

phi-functions for K1 and P(K2 and P∗), respectively.
Now the function

�′K1K2(u1, u2, uP ) = min
{
�K1P (u1, uP ),�K2P∗

(u2, uP )
}

, (5)

is a quasi-phi-function for K1(u1) and K2(u2).
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Note that the function 2�′K1K2(u1, u2, uP ) is a normalized quasi-phi-function.
A pseudonormalized quasi-phi-function for convex polytopes K1(u1) and K2(u2) is

defined by

�

�
′K1K2

(u1, u2, uP ) = min
{
�K1P (u1, uP ),�K2P∗

(u2, uP )
}

− 0.5ρ−. (6)

A quasi-phi-function for a convex polytope K (u1) and a sphere C(u2). Let K (u1) be a
convex polytope given by its vertices λ1 pi , i = 1, . . . .,m. Let pC and λ2rC be the center and
radius of a sphere C(u2). Then �K P (u1, uP ) = min1≤i≤m ψP (λ1 pi ) and �CP∗

(u2, uP ) =
−ψP (pC ) − λ2rC are phi-functions.

Now a quasi-phi-function for K(u1) and C(u2) may be defined in the form

�′CK (u1, u2, uP ) = min{�K P (u1, uP ),�CP∗
(u2, uP )}. (7)

It should be noted that the function 2�′CK (u1, u2, uP ) is a normalized quasi-phi-function.

Remark Quasi-phi-functions defined by (5)–(7) can be easily adapted to convex polygons
and circles.

A quasi-phi-function for circular segments D1(u1) and D2(u2). Let D1(u1) = T1(u1) ∩
C1(u1), D2(u2) = T2(u2)∩C2(u2) be two circular segments, where T1(u1) (T2(u2)) denotes
a triangle given by its vertices λ1 p1i (λ2 p2i ), i = 1, 2, 3, (we note that two sides of T have to
be tangents to C and one side is a horde of C) and p1C = (x1, y1) (p2C = (x2, y2)) and λ1r1C
(λ2r2C ) denote the center and radius of C1(u1) (resp., C2(u2)).

Then, following (1), a quasi-phi-function for D1(u1) and D2(u2) may be defined by

�
′ D1D2

(u1, u2, uP ) = min
{
�D1P (u1, uP ),�D2P∗

(u2, uP )
}

, (8)

where �D1P (u1, uP ) = max{�T1P ,�C1P },�D2P∗
(u2, uP ) = max{�T2P∗

,�C2P∗ }, are
phi-functions, and �T1P (u1, uP ) = mini=1,2,3 ψP (λ1 p1i ), �C1P (u1, uP ) = ψP (p1C ) −
λ1r1C ,�C2P∗

(u2, uP ) = −ψP (p2C ) − λ2r2C ,�T2P∗
(u2, uP ) = mini=1,2,3(−ψP (λ2 p2i )).

We can also define a quasi-phi-function for D1(u1) and D2(u2) using formula (2):

�
′ D1D2

(u1, u2, u′) = min

{
�

′ D1P
(u1, uP , u′

1),�
′ D2P∗

(u2, uP , u′
2)

}
,

where u′ = (uP , u′
1, u

′
2), u

′
1 ∈ [0, 1] ⊂ R1, u′

2 ∈ [0, 1] ⊂ R1.

To this end, first, we construct quasi-phi-functions �
′ D1P

(u1, uP , u′
1) and

�
′ D2P∗

(u2, uP , u′
2). Let �C1P (u1, uP ) be a phi-function for C1(u1) and P(u p). We intro-

duce function

�
′ D1P

(u1, uP , u′
1) = min

{
ψP (λ1 p

1
1),ψP (λ1 p

1
2),χ1(u1, uP , u′

1)
}
,

χ1(u1, uP , u′
1) = ψP (λ1 p

1
3) − u′

1ψP (λ1 p
1
3) + u′

1�
C1P (u1, uP ),

where u′
1 ∈ [0, 1] ⊂ R1,λ1 p1i , i = 1, 2, are the endpoints of the chord of D1(u1).

By analogy we have

�
′ D2P∗

(u2, uP , u′
2) = min

{−ψP (λ2 p
2
1),−ψP (λ2 p

2
2),χ2(u2, uP , u′

2)
}
,

χ2(u2, uP , u′
2) = −ψP (λ2 p

2
3) − u′

2(−ψP (λ2 p
2
3)) + u′

2�
C2P∗

(u2, uP ),

where u′
2 ∈ [0, 1] ⊂ R1, λ2 p2i , i = 1, 2, are the endpoints of the chord of D2(u2).
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Fig. 1 The arrangement of non-overlapping ellipses E1 and E2

Remark The quasi-phi-function defined by (8)may be adapted to a pair of spherical segments
defined as intersections of right circular T1(u1) and T2(u2) with solid spheres (3D balls)
C1(u1) and C2(u2), respectively cones. (We note that a spherical segment D can be bisected
into two equal halves by a plane Pz passing through the center of the sphere; that plane
would intersect D in a circular segment Dz , which itself is the intersection of a circle Cz and
a triangle Tz lying in the plane Pz ; now two sides of the triangle Tz have to be tangent to the
circle Cz and the third side has to be a chord of Cz .) In that case we can use �T1P (�T2P∗

),
which is a phi-function for a right circular cone and a half space.

A quasi-phi-function for ellipses. Let E1(u1) and E2(u2) be two ellipses with semi-axes
λi ai and λi bi , ai > bi i = 1, 2.

Then, a quasi-phi-function for E1(u1) and E2(u2) may be defined as follows

�′E1E2(u1, u2, u
′) = min

{
χ(θ1, θ2, u

′),χ+(u1, u2, u
′),χ−(u1, u2, u

′)
}
, (9)

where θ1 and θ2 are rotation angles and u′ = (t1, t2) is a vector of auxiliary parameters,
0 ≤ ti ≤ 2π, i = 1, 2; functions χ,χ+,χ− are defined below.

The parameter ti specifies a point on ellipse Ei . In the canonical coordinate systemattached
to ellipse Ei that point is (xti , y

t
i ) = (λi ai cos ti ,λi bi sin ti ), and after rotation and translation

its coordinates are (x ′
i , y

′
i ) = vi +M(θi ) · (xti , yti ), where M(θ) denotes the standard rotation

matrix, vi = (xi , yi ) is a translation vector of ellipse Ei .
Note that an outer normal vector to ellipse Ei at point (x ′

i , y
′
i ) can be defined by N ′

i =
(α′

i , β
′
i ) = M(θi )(αi , βi ), αi = cos ti

λi ai
, βi = sin ti

λi bi
. Note also that the equation of the tangent

line to the ellipse Ei (ui ) passing through the point q ′
i = (x ′

i , y
′
i ) is ψi (x, y) = α′

i x + β′
i y −

1 = 0.We choose two points q±
2 on the second tangent line, with coordinates (x±

2 , y±
2 ) =

(x ′
2, y

′
2) ± η(−β′

2, α
′
2), where η = (λ2a2)2.

Now we define the three functions mentioned in (9):

χ = − 〈
N ′
1, N

′
2

〉 = −α′
1α

′
2 − β′

1β
′
2,χ

± = ψ1(x
±
2 − x1, y

±
2 − y1)

= α′
1(x

±
2 − x1) + β′

1(y
±
2 − y1) − 1.

Figure 1 illustrates the idea of our quasi-phi-function (9).
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Alternatively, a quasi-phi-function for E1(u1) and E2(u2) may be defined according to
(2):

�
′ E1E2

(u1, u2, u
′) = min

{
�

′ E1P
(u1, uP , u′

1),�
′ E2P∗

(u2, uP , u′
2)

}
.

It remains to define a quasi-phi-function for an ellipse E(uE ) and a halfplane P(uP ). This
can be done as follows:

�
′ EP

(uE , uP , t) = min
{
χ(θE , θP , t),ψ+

P (uE , uP , t),ψ−
P (uE , uP , t)

}
, (10)

where uP = (θP ,μP ), 0 ≤ t ≤ 2π is auxiliary parameter.
Here the half-plane is defined by ψP (x, y) = αP x + βP y + μP ≤ 0, where α =

cos θP , β = sin θP .
Note that NP = (αP , βP ) is the corresponding outer normal vector for the half-plane. For

ellipse E(uE ) we adopt our previous formulas introduced for E2(u2), such as N ′
2 = (α′

2, β
′
2)

and (x±
2 , y±

2 ), we just replace the subscript 2 with E in those formulas.

Thus ψ±
P (x±

E , y±
E ) = αP x

±
E + βP y

±
E + μP ≤ 0.

Lastly we define χ = − 〈
NP , N ′

E

〉
, which completes our construction of (10).

Now let a minimal allowable distance between two ellipses E1 and E2 be given,

we denote it by ρ−. Assume that
�

�
′E1P

(u1, uP ),
�

�
′E2P∗

(u2, uP ) are pseudonormalized

quasi-phi-functions provided maxuP∈U
�

�
′E1P

(u1, uP ) ≥ 0 if dist(E1, P) ≥ 0.5ρ− and

maxuP∈U
�

�
′E2P∗

(u2, uP ) ≥ 0 if dist(E2, P∗) ≥ 0.5ρ−. Then function

�

�
′E1E2

(u1, u2, uP ) = min
{

�

�
′E1P

(u1, uP ),
�

�
′E2P∗

(u2, uP )
}

, (11)

is a pseudonormalized quasi-phi-function for a distance constraint dist(E1, E2) ≥ ρ−.
A quasi-phi-function for ellipse E(u1) and the complement of the interior of a rectangular

container �. Let E(u1) be an ellipse with variable parameters u1 = (x1, y1, θ1,λ1), and let
� be a rectangular container with appropriate vertices p1 = (0, 0), p2 = (l, 0), p3 =
(l, w), p4 = (0, w). Let �∗ = R2\int�.

We take an arbitrary parameter t = t ′1
1

, 0 ≤ t ′1
1

≤ 2π, and consider the line L1 =
{(x, y) ∈ R2: ϕ1 = A1x + B1y + C1 = 0} with A1 = α1 · cos θ1 + β1 · sin θ1 and

B = −α1 · sin θ1 + β1 · cos θ1, where α1 = cos t1
′

1
λ1a

, β1 = sin t1
′

1
λ1b

. We put C1 = −A1x1 − B1y1,
so that the line L1 passes though the center v1 = (x1, y1) of the ellipse.

Now the two lines

L11 = {
(x, y) ∈ R2: ϕ11 = A1x + B1y + C1 − 1 = 0

}
,

L12 = {
(x, y) ∈ R2: ϕ12 = −A1x − B1y − C1 − 1 = 0

}
,

are parallel to L1 and tangent lines to the ellipse E (see Fig. 2).
Also, we take another arbitrary parameter t = t ′1

2
, 0 ≤ t ′1

2
≤ 2π, t ′1

2
�= t ′1

1
, and consider

similar lines (see Fig. 2)

L2 = {
(x, y) ∈ R2: ϕ2 = A2x + B2y + C2 = 0

}
,

L21 = {
(x, y) ∈ R2: ϕ21 = A2x + B2y + C2 − 1 = 0

}
,

L22 = {
(x, y) ∈ R2: ϕ22 = −A2x − B2y − C2 − 1 = 0

}
.
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y
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v1 
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p2 

p3 p4 

+

+

+ +

L11 

L21 L22 L12 

Fig. 2 The arrangement of E(u1) within �

Now a quasi-phi-function for E and �∗ is defined by

�E�∗
(u) = min {ϕ11(p1),ϕ11(p2),ϕ12(p3),ϕ12(p4),

ϕ21(p2),ϕ21(p3),ϕ22(p1),ϕ22(p4)} , (12)

where u = (x1, y1, θ1,λ1, t1′1 , t1′2 ) ∈ R6.
Let a minimal allowable distance ρ− between an ellipse E(u1) and the frontier of the

rectangle � be given. Then function

�

�
E�∗

(u) = min
{
ϕ11(p

−
1

),ϕ11(p
−
2

),ϕ12(p
−
3

),ϕ12(p
−
4

),

ϕ21(p
−
2

),ϕ21(p
−
3

),ϕ22(p
−
1

),ϕ22(p
−
4

)
}
, (13)

is a pseudonormalized quasi-phi-functions enforcing the distance constraint dist(E1,�
∗) ≥

ρ−, where p−
i

, i = 1, 2, 3, 4, are vertices of region �∗ ⊕ C(ρ−),C(ρ−) is circle of radius
ρ−, i.e. p−

1
= (ρ−, ρ−), p−

2
= (l−ρ−, ρ−), p−

3
= (l−ρ−, w−ρ−), p−

4
= (ρ−, w−ρ−),⊕

is a symbol of Minkowski sum.

5 Application of quasi-phi-functions for optimal packing of rotating
ellipses

We consider here a packing problem in the following setting. Let � denote a rectangular
domain of length l and width w. Both of these dimensions may be variable, or one may be
fixed and the other variable. Suppose a set of ellipses Ei , i ∈ {1, 2, . . . , n} = In , is given
to be placed in � without overlaps. Each ellipse Ei is defined by its semi-axes ai and bi ,
whose values are fixed. With each ellipse Ei we associate its eigen coordinate system whose
origin coincides with the center of the ellipse and the coordinate axes are aligned with the
ellipse’s axes. In that system the ellipse is described by parametric equations x = a cos t, y =
b sin t, 0 ≤ t ≤ 2π. We also use a fixed coordinate system attached to the container �. The
position of ellipse Ei in the fixed coordinates is specified by the coordinates (xi , yi ) of its
center and the rotation angle θi . We call (xi,yi , θi ) the vector of placement parameters of Ei .
Minimal allowable distances between ellipses Ei and E j , j > i ∈ In , as well as, between
each ellipse Ei , i ∈ In , and the frontier (border) of � may be given.

Ellipse packing optimization problem. Place the set of ellipses Ei , i ∈ In , within a rectan-
gular domain� = {(x, y) ∈ R2: 0 ≤ x ≤ l, 0 ≤ y ≤ w} of minimal area taking into account
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distance constraints. If one of the two dimensions (l or w) is fixed, we need to minimize the
other one. If both are variable, it is natural to minimize the area F = l · w of the container.

One way to tackle the packing problem for ellipses is to approximate the latter with line
segments and/or circular arcs [8] and then use the existing phi-functions described in [9].
However, the complexity of such a solution would depend on the number of lines/arcs used
to approximate the ellipses, and it will grow fast if one tries to increase the accuracy of the
approximation. In any case, this approach would only give an approximate solution.

Our approach, which is based on quasi-phi-functions, is capable of handling precise
ellipses (without approximations) and thus finding an exact local optimal solution. The only
other method of that sort was developed very recently by Josef Kallrath and Steffen Reben-
nack; see [14]. We learned about their remarkable paper after our work was completed and
our manuscript was ready for submission. In view of similarities between [14] and our work,
we postponed the submission of our manuscript and investigated the results of [14] more
closely.

The paper [14] is entirely devoted to the problem of cutting ellipses from a rectangular
plate of minimal area. Incidentally, it offers a good overview of related publications. The
key idea of [14], just like ours, is to use separating lines to ensure that the ellipses do not
overlap with each other. But their implementation of this idea is technically different. For
a small number of ellipses they are able to compute a globally optimal solution subject to
the finite arithmetic of global solvers at hand. However, for more than 14 ellipses none of
the nonlinear programming (NLP) solvers available in GAMS can even compute a locally
optimal solution. Therefore, the authors of [14] develop polylithic approaches, in which the
ellipses are added sequentially in a strip-packing fashion to the rectangle restricted in width
but unrestricted in length. The rectangle’s area is minimized at each step in a greedy fashion.
The sequence in which they add ellipses is random; this adds some GRASP flavor to the
approach. The polylithic algorithms allow the authors to compute good solutions for up to
100 ellipses. A number of examples are presented in the paper.

We believe our quasi-phi-functions (pseudonormalized quasi-phi-functions) and our opti-
mization algorithm described below are more flexible and efficient than the techniques of
[14]. In order to compare the performance of the two methods, we applied our algorithm to
some instances of the ellipse packing problem as used in [14].

5.1 Mathematical model

First we assemble a complete set of variables for our optimization problem. At this stage
we do not include the homothetic coefficients λi for ellipses Ei into our list of variables, we
assume that they are fixed, in fact we assume that λi = 1 for all i = 1, 2, . . . , n.

The vector u ∈ Rσ of all our variables can be described as follows: u =
(l, w, u1, u2, . . . , un, τ ), where (l, w) denote the variable dimensions (length and width)
of the rectangular container � and ui = (xi , yi , θi ) is the vector of placement parame-
ters for the ellipse Ei , i ∈ In . Lastly, τ denotes the vector of additional variables, defined
as follows: τ = t = (t1

1
, t1

2
, . . . , tm

1
, tm

2
, t ′1

1
, t ′1

2
, . . . , t ′n

1
, t ′n

2
), if there are no distance con-

straints, where tk
1
, tk

2
are additional variables for the k-th pair of ellipses, according to (9), here

k = 1, . . . ,m,m = (n−1)n
2 , and t ′i

1
, t ′i

2
are additional variables for each ellipse Ei , i ∈ In ,

according to (12). If minimal allowable distances are specified, we have to use pseudonor-
malised quasi-phi-functions (11) and (13), instead of quasi-phi-functions (9) and (12). In
that case τ = (t, uP ), where uP = (u1

P
, . . . , um

P
), uk

P
= (θk

P
, μk

P
). Lastly, Rσ denotes the σ -

dimensional Euclidean space, where σ = 2+3n+n(n−1)+2n = n2+4n+2 is the number
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of the problemvariables if there are no distance constraints, andσ = 2+3n+2n(n−1)+2n =
2n2 + 3n + 2 if minimal allowable distances are given.

A mathematical model of the ellipse packing optimization problem may now be stated in
the form:

min
u∈W⊂Rσ

F(u), (14)

W =
{
u ∈ Rσ : �

�
′
i j ≥ 0,

�

�
′
i ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , n, j > i

}
, (15)

where F(u) = l · w,
�

�
′
i j is a radical free pseudonormalized quasi-phi-function (11) defined

for the pair of ellipses Ei and E j , taking into account minimal allowable distance ρ−
i j ,

�

�
′
i is

a pseudonormalized quasi-phi-function (13) defined for the ellipse Ei and the object �∗ (to
hold the containment constraint), also taking into account minimal allowable distance ρ−

i .

If ρ−
i j = 0 and ρ−

i = 0 we replace a pseudonormalized quasi-phi-function
�

�
′
i j by a

radical free quasi-phi-function �′
i j defined by (9) for each pair of ellipses to enforce the

non-overlapping constraint and a quasi-phi-function
�

�
′
i with a radical free quasi-function�′

i
defined by (12) for each ellipse and the domain �∗ to enforce the containment constraint.

Our constrained optimization problem (14)–(15) is NP-hard nonlinear programming prob-
lem [15]. The feasible setW has a complicated structure: it is, in general, a disconnected set,
the frontier of W is usually made of nonlinear surfaces containing valleys, ravines. A matrix
of the inequality system which specifies W is strongly sparse and has a block structure.

Problem (14)–(15) is an exact formulation for the ellipse packing optimization problem.
Our objective function is a quadratic; each quasi-phi-function inequality in (15) is described
by a system of inequalities with infinitely differentiable functions. Our model is a different
formulation for the ones presented in Section 2.2 of [14]. Both our models have in common
that they are exact, non-convex and continuous.

5.2 A solution strategy

Our solution strategy consists of three major stages:

(1) First we generate a number of starting points from the feasible set of the problem (14)–
(15). We employ a new starting point algorithm (SPA). See Sect. 5.2.1.

(2) Then starting from each point obtained at Step 1 we search for a local minimum of the
objective function F(u) of problem (14)–(15). We employ a new Local Optimization
with Feasible Region Transformation (LOFRT) procedure. See Sect. 5.2.2.

(3) Lastly, we choose the best local minimum from those found at Step 2. This is our best
approximation to the global solution of the problem (14)–(15).

An essential part of our local optimization scheme (Step 2) is the LOFRT procedure that
reduces the dimension of the problem and computational time. It is due to this reduction that
our strategy can process large sets of non-identical ellipses (100 and more, see examples
below). The reduction scheme used by our LOFRT algorithm is described below. The actual
search for a local minimum is performed by a standard IPOPT algorithm [16], which is
available at an open access noncommercial software depository (https://projects.coin-or.org/
Ipopt) .
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5.2.1 Starting point algorithm (SPA)

In order to find a starting point u0 that belongs to the feasible set W we apply the following
algorithm based on homothetic transformation of ellipses. We assume here that homothetic
coefficients λi are variable provided that λi = λ, for i = 1, 2, . . . , n, and 0 ≤ λ ≤ 1.

The algorithm consists of the following steps:

1. First we choose starting dimensions (length and width) for the container �0. They must
be sufficiently large to allow for a placement of all our ellipses with required distance
constraints within �0. For example, we can choose

l0 = w0 = 2
n∑

i=1

ai + (n − 1)ρ−, ρ− = max
i, j∈In

ρ−
i j .

2. Then we set λ = λ0 = δ
max ai i

, where δ = 0.01(mini bi )

3. Then we generate randomly, within�0, a set of n non-overlapping equal circles of radius
δ with randomly chosen centers (x0i , y

0
i ), i = 1, 2, . . . , n

4. Next we generate, randomly, a set of rotation parameters θ0i ∈ [0, 2π), i = 1, 2, . . . , n
5. Then we find starting values for the additional variables τ 0 by a special optimiza-

tion procedure that solves an auxiliary problem of finding maxu′
i∈R2 �

′
i (u0i , u

′
i ) (or

maxu′
i∈R2

�

�
′
i (u

0
i , u

′
i )) andmaxu′

i j∈R2 �
′
i j (u0i , u

0
j , u

′
i j ) (ormaxu′

i j∈R4
�

�
′
i j (u

0
i , u

0
j , u

′
i j )) for

each quasi-phi-function (or, respectively, pseudonormalised phi-function) that is involved
in (15), under fixed parameters ui = (x0i , y

0
i , θ

0
i , λ0) for each ellipse.

To solve the above auxiliary problem we use the following model:

maxμ, s.t.u′ ∈ W ′
μ,

where W ′
μ = {(u′, μ):�′(u0, u′) ≥ μ}, μ ∈ R1 is a new auxiliary variable, func-

tion �
′
(u0, u′) may take form of �

′
i (u0i , u

′
i ) (or

�

�
′
i (u

0
i , u

′
i )) and �

′
i j (u0i , u

0
j , u

′
i j ) (or

�

�
′
i j (u

0
i , u

0
j , u

′
i j ) }), u

′ is the vector of auxiliary variables and u0 is the vector of fixed para-
meters for our quasi-phi-functions (respectively, pseudonormalised phi-functions).

Thus all our quasi-phi-functions (or pseudonormalised quasi-phi-functions) at the point
u0 = (l0, w0, u01, u

0
2, . . . , u

0
n, τ

0) take non-negative values, where τ 0 = (t0) (or, respec-
tively, τ 0 = (u0P , t0)).

6. Nowwe take the starting point u0 under fixed l = l0 andw = w0, and solve the following
auxiliary optimization problem:

κ(u′0) = max
u′∈W ′

κ(u′), κ(u′) = λ, (16)

W ′ =
{
u′ ∈ Rσ+1: �

�
′
i j ≥0,

�

�
′
i ≥0, i< j =1, 2, . . . , n, l = l0, w=w0, 1 − λ≥0, λ≥0

}
,

(17)

where u′ = (u, λ) denotes an extended vector of variables and u denotes the original vector
of variables for the problem (14)–(15).

Remark We note that if an optimal global solution is found, then λ = 1. The solution
automatically respects all the non-overlapping, containment and distance constraints.
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Thus, the point u′0 = (l0, w0, u′0
1 , u′0

2 , . . . , u′0
n , τ ′0, 1) of global maximum of the problem

(16)–(17) guarantees that point u0 = (l0, w0, u′0
1 , u′0

2 , . . . , u′0
n , τ ′0) belongs to feasible set

W of problem (14)–(15).
Our use of homothetic transformations of ellipses here is similar to the use of variable

radii for optimal packing of n D-spheres, which was proposed in [17].
It should be noted that our algorithm by construction always finds the global solution

of the problem (16)–(17). It is clear that the optimal solution to the above problem will
automatically comply with all the non-overlapping, containment and distance constraints.

7. Lastly, our algorithm returns the vector u0 = (l0, w0, u′0
1 , u′0

2 , . . . , u′0
n , τ ′0) as a starting

point for a subsequent search for a local minimum of the problem (14)–(15).

5.2.2 Algorithm of local optimization with feasible region transformation (LOFRT) in
the ellipse packing problem

Let u(0) ∈ W be one of the starting points found by the previous method. The main idea of
the subsequent LOFRT algorithm is as follows.

First we circumscribe a circle Ci of radius ai around each ellipse Ei , i = 1, 2, . . . , n.
Then for each circle we construct an “individual” rectangular container �i ⊃ Ci ⊃ Ei with
equal half-sides of length ai + ε, i = 1, 2, . . . , n, so that Ci , Ei and �i have the same center
(x0i , y

0
i ) subject to the sides of�i being parallel to those of� (see Fig. 3a). We take the fixed

value of ε of the LOFTR procedure as ε = ∑n
i=1 bi/n (see “Appendix 2”). Further we fix

the position of each individual container �i and let the local optimization algorithm move
the corresponding ellipse Ei only within the container �i . It is clear that if two individual
containers �i and � j do not have common interior points for ρ−

i j = 0, i.e. ��i� j ≥ 0,

(or dist(�i ,� j ) ≥ ρ−
i j for ρ−

i j > 0, i.e.
�

�
�i� j ≥ 0), then we do not need to check the

non-overlapping (or distance) constraint for the corresponding pair of ellipses Ei and E j

(see, e.g., the ellipses E1 and E7, E4 and E8, E1 and E8 in Fig. 3b).
The above key idea allows us to extract subsets of our feasible set W of the problem

(14)–(15) at each step of our optimization procedure as follows.
We create an inequality system of additional constraints on the translation vector vi of

each ellipse Ei in the form: �Ci�
∗
1i ≥ 0, i = 1, 2, . . . , n, where

i

iE iC

Ω

(a) (b)

Fig. 3 Rectangular containers: a forming a rectangular container �i ⊃ Ci ⊃ Ei , b an initial placement of
ellipses and their individual containers
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�Ci�
∗
1i = min

{−xi + x0i + ε,−yi + y0i + ε, xi − x0i + ε, yi − y0i + ε
}
,

is the phi-function for the circle Ci and �∗
1i = R2\int�1i .

The inequality �Ci�
∗
i ≥ 0 is equivalent to the system of four linear inequalities −xi +

x0i + ε ≥ 0, −yi + y0i + ε ≥ 0, xi − x0i + ε ≥ 0, yi − y0i + ε ≥ 0.
Then we form a new subset defined by

W1 =
{
u ∈ Rσ−σ1 :��′

i j ≥ 0, (i, j) ∈ 
1,
�

�
′
i ≥ 0,�Ci�

∗
1i ≥ 0, i = 1, 2, . . . , n

}
,

where 
1 = {(i, j):���1i�1 j
< 0, i > j = 1, 2, . . . , n}.

In other words, we delete from the system, which describes feasible set W , quasi-phi-
function inequalities for all pairs of ellipses whose individual containers do not overlap for
ρ−
i j = 0 (or dist(�i ,� j ) ≥ ρ−

i j for ρ−
i j > 0) and we add additional inequalities �Ci�

∗
1i ≥ 0,

which describe the containment of the circles Ci in their individual containers �1i , i =
1, 2, . . . , n. Eo ipso we reduce the number of additional variables by σ1. Then our algorithm
searches for a point of local minimum u∗

w1
of the subproblem

min
uw1∈W1⊂Rσ−σ1

F(uw1).

When the point u∗
w1

is found, it is used to construct a starting point u(1) for the second iteration
of our optimization procedure (note that the σ1 previously deleted additional variables τ1 have
to be redefined by a special procedure used in SPA; see item 5, assuming λ0 = 1).

At that iteration we again identify all the pairs of ellipses with non-overlapping individual
containers, form the corresponding subset W2 (analogously to W1) and let our algorithm
search for a local minimum u∗

w2
∈ W2. The resulting local minimum u∗

w2
is used to construct

a starting point u(2) for the third iteration, etc.
Then we solve the k-th subproblem with starting point u(k−1) on a subset Wk :

min
uwk ∈Wk⊂Rσ−σk

F(uwk ),

Wk =
{
u ∈ Rσ−σk :��′

i j ≥ 0, (i, j) ∈ 
k,
�

�
′
i ≥ 0,�Ci�

∗
ki ≥ 0, i = 1, 2, . . . , n

}
,


k =
{
(i, j): �

�
�ki�k j

< 0, i > j = 1, 2, . . . , n
}

.

If the point u∗
wk

of local minimum of the k-th subproblem belongs to the frontier of an
“artificial” subset

�ε
k =

{
u ∈ Rσ−σk : −xi + x (k−1)

i + ε ≥ 0,−yi + y(k−1)
i + ε ≥ 0,

xi − x (k−1)
i + ε ≥ 0, yi − y(k−1)

i + ε ≥ 0, i = 1, . . . , n
}

,

(i.e.u∗
wk

∈ f r�ε
k), we take the point u∗

wk
= u(k) as a center point for a new subset �ε

k+1
and continue our optimization procedure, otherwise (i.e. u∗

wk
∈ int�k

ε) we stop our LOFRT
procedure (see “Appendix 3”).

We note that dist(u∗
wk

, u∗
wk+1

) ≥ ε, if u∗
wk+1

∈ f r�k
ε , and the value of ε is considerably

greater than the accuracyof IPOPT (10−8). Thus,wemayconclude that the stopping condition
of the LOFRT procedure is always reached in a finite number of iterations.

We claim that the point u∗ = u(k)∗ = (u∗
wk

, τ ∗
k ) ∈ Rσ is a point of local minimum of

the problem (14)–(15), where u∗
wk

∈ Rσ−σk is the last point of our iterative procedure and
τ ∗
k is a vector of redefined values of the previously deleted additional variables τk ∈ Rσk
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(the values can be redefined by the special procedure used in SPA; see item 5). The assertion
comes from the fact that any arrangement of each pair of ellipses Ei and E j subject to
(i, j) ∈ 
\
k guarantees that there always exists a vector τk of additional variables such

that
�

�
′
i j ≥ 0, (i, j) ∈ 
\
k at the point u(k)∗. Here 
 = {(i, j), i > j = 1, 2, . . . , n}.

Therefore the values of additional variables of the vector τk have no effect on the value of our
objective function, i.e F(u∗

wk
) = F(u(k)∗). That is why, indeed, we do not need to redefine

the deleted additional variables of the vector τk at the last step of our algorithm.
So, while there are O(n2) pairs of ellipses in the container, our algorithm may in most

cases only actively controls O(n) pairs of ellipses (this depends on the sizes of ellipses and
the value of ε), because for each ellipse only its “ε-neighbors” have to be monitored.

The parameter ε provides a balance between the number of inequalities in each nonlinear
programming subproblem and the number of the subproblems which we need to generate and
solve in order to get a local optimal solution of problem (14)–(15). The LOFTR procedure
allows us to reduce considerably computational costs (time and memory).

Thus our LOFRT algorithm allows us to reduce the problem (14)–(15) withO(n2) inequal-
ities and a O(n2)-dimensional feasible set W to a sequence of subproblems, each with O(n)

inequalities and a O(n)-dimensional solution subset Wk . This reduction is of a paramount
importance, since we deal with nonlinear optimization problems.

6 Computational results

Here we present a number of examples to demonstrate the high efficiency of our method-
ology. We have run our experiments on an AMD Athlon 64 X2 5200+ computer, and for
local optimization we used the IPOPT code (https://projects.coin-or.org/Ipopt) developed
by [15]. Our web page https://app.box.com/s/yst9fuacyrscv85qdxrz provides more detailed
descriptions of the instances presented below, as well as a number of other examples not
included here.

We present two groups of instances: new instances (Examples 1–6 below) and those taken
from the recent paper [14]. We set a time limit for each example to search for at least 10 local
minima.

Example 1 Placing n = 32 ellipses into a rectangular container of minimal area. The sizes
of the ellipses are specified as follows: {(ai , bi ) = (222, 180), i = 1, . . . , 9}, {(ai , bi ) =
(260, 170), i = 10, . . . , 18}, {(ai , bi ) = (360, 270), i = 19, . . . , 24}, {(ai , bi ) =
(350, 70), i = 25, . . . , 32}. The local optimal placement is shown in Fig. 4, the container has
dimensions (l∗, w∗)= (2406.3104, 2400.8160) and area F(u∗) = 5777108.5092864. Time
limit is 12h.

Example 2 Placing n = 33 ellipses into a rectangular container of minimal area. The sizes
of the ellipses are specified as follows: {(ai , bi ) = (222, 180), i = 1, . . . , 15}, {(ai , bi ) =
(260, 170), i = 16, . . . , 30}, {(ai , bi ) = (360, 270), i = 31, 32, 33}. The local optimal
placement is shown inFig. 5, the container has dimensions (l∗, w∗)=(2597.4554, 2212.6591)
and area F(u∗) = 5747283.32765414. Time limit is 12h.

Example 3 Now we set minimal allowable distances between ellipses, as well as between
each ellipse and the object �∗: a) ρ−

i j = 0.1, ρ−
i = 0 and b) ρ−

i j = 0.1, ρ−
i = 0.2. Oth-

erwise this example is similar to the previous ones: n = 20, {(ai , bi ), i = 1, . . . , 6} =
(2, 1.5, 1.5, 1, 1, 0.8, 0.9, 0.75, 0.8, 0.6, 0.7, 0.3), {(ai , bi ) = (1, 0.8), i = 7, . . . , 20}. The
local optimal packing is shown in Fig. 6, the container has dimensions: (l∗, w∗) =
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Fig. 4 Local optimal placement of ellipses in Example 1

Fig. 5 Local optimal placement of ellipses in Example 2

(7.033623, 10.187241) and area F(u∗) = 71.653212604143 for case a) and (l∗, w∗) =
(9.1797648.568622) and area F(u∗) = 78.6579 for case b). Time limit is 12h.

Example 4 Placing a large set of n=120 ellipses into a rectangular container of mini-
mal area. The sizes of the ellipses are specified as follows: {(ai , bi ), i = 1, . . . , 6} =
(2, 1.5, 1.5, 1, 1, 0.8, 0.9, 0.75, 0.8, 0.6, 0.7, 0.3), {(ai , bi ), i = 7, . . . , 12} = (2, 1.5, 1.5,
1, 1, 0.8, 0.9, 0.75, 0.8, 0.6, 0.7, 0.3), {(ai , bi ), i =13, . . . , 18}= (2, 1.5, 1.5, 1, 1, 0.8, 0.9,
0.75, 0.8, 0.6, 0.7, 0.3), {(ai , bi ) = (1, 0.8), i = 19, . . . , 120}. The local optimal placement
is shown in Fig. 7, the container has dimensions (l∗, w∗) = (18.880110, 20.085018) and
area F(u∗) = 379.2073492. Time limit for this large example was set to 48h.

Example 5 We apply our methodology for n = 5 objects: a circle C of radius r = 3; a
polygon K with vertices {(0, 0), (2,−3), (2, 0)}; a circular segment D formed by a circle
of radius r = 5 with the center point (0,0), and the horde with the end points (5,0) and
(0,5); two equal ellipses E1 and E2 of sizes {(a1, b1), (a2, b2)} = {(2, 1), (2, 1)}, to pack
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Fig. 6 Local optimal placement of ellipses in Example 3 taking into account the given minimal allowable
distance between ellipses: a ρ−

i j = 0.1, ρ−
i = 0, b ρ−

i j = 0.1, ρ−
i = 0.2

Fig. 7 Local optimal placement of ellipses in Example 4

into a rectangle � of the minimal area l · w. For the problem we use: quasi-phi-functions
to describe non-overlapping constraints for each pair of the objects; quasi-phi-functions to
describe containment constraints for pairs of objects E and �∗, D and �∗; ordinary phi-
functions to describe containment constraints for pairs of objects C and �∗, K and �∗. To
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Fig. 8 Local optimal placement of n = 5 objects in Example 5: a without distance constraints; b ρ−
i j =

0.3, ρ−
i = 0

describe distance constraints we use pseudonormalized quasi-phi-functions instead of quasi-
phi-functions for the appropriate pairs of objects. Inmathematicalmodel (14)–(15) a vector of
variables is defined as u = (l, w, u1, u2, . . . , u5, τ ) ∈ R56. Figure 8 shows the local optimal
placement of the objects: (a) the container has dimensions (l∗, w∗) = (8.562049, 7.234445)
and area F(u∗) = 61.943253. Time limit is 1 hour; (b) the container has dimensions
(l∗, w∗) = (5.999999, 11.996817) and area F(u∗) = 71.982703 taking into acount minimal
allowable distance ρ−

i j = 0.3 between each pair of objects. Time limit is 1 hour.

Example 6 We apply our methodology to pack n = 30 convex polytopes into a box
� = {(x, y, z) ∈ R3 : 0 ≤ x ≤ l, 0 ≤ y ≤ w, 0 ≤ z ≤ h} of the minimal vol-
ume l · w · h. For the problem we use a quasi-phi-function of the form (5) for describing
non-overlapping constraints and an ordinary phi-function for object �∗ and a convex poly-
tope for containment constraints. We set in mathematical model (14)–(15): F = l · w · h,
u = (l, w, h, u1, u2, . . . , un, τ ) ∈ Rσ , ui = (xi , yi , zi , θ1i , θ2i , θ3i ), i = 1, 2, . . . , 30,

τ = (uP ), uP = (u1
P
, . . . , um

P
), uk

P
= (θkx P , θkyP , μk

P ), k = 1, . . . ,m,m = (n−1)n
2 =

435, σ = 3+6n+3m = 1488. Figure 9 shows the local optimal placement of n = 30 convex
polytopes, the container has dimensions (l∗, w∗, h∗) = (40.671324, 39.178921, 28.515067)
and volume F(u∗) = 45437.578454475. Computational time is 216.671 sec

Further we applied our method to some instances used in recent paper [14] by Kallrath
and Rebennack and compare our local optimal solutions to theirs.

We set computational time for the group of instances: up to 20 objects—time limit 2h, up
to 50—time limit 5h, 100 objects—time limit 12h.

Table 1 lists some examples presented in [14]. For each the example the minimal area
of the container found by our method (the middle column) happens to be smaller than the
best solution reported in [14]. The improvement is not so big (1–2%) for smaller sets of
ellipses, but it becomes significant (8–9%) for larger sets of ellipses. It should be noted that
for examples TC02, TC03 and TC04 presented in [14] our method found the same results.
Example “TC20” from [14]. Placing n = 20 ellipses into a rectangular container of min-
imal area. The sizes of the ellipses are specified as follows: {(ai , bi ), i = 1, . . . , 6} =
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Fig. 9 Local optimal placement of polytopes in Example 6

Table 1 Comparison of our results to those in [14]

Name Our result The best from [14] Improvement (%)

TC05a 24.553679 25.29557 3.0215

TC05b 30.84870 31.28873 1.4264

TC06 25.47173 25.51043 0.1520

TC11 57.1783 57.24034 0.1085

TC14 24.25099 24.84634 2.4550

TC20 66.13647 67.83459 2.5676

TC30 95.36535 103.45212 8.4798

TC50 154.470487 166.91505 8.0563

TC100 297.73798 322.64663 8.3660

Fig. 10 Local optimal placement of ellipses in Example TC20

(2, 1.5, 1.5, 1, 1, 0.8, 0.9, 0.75, 0.8, 0.6, 0.7, 0.3), {(ai , bi ) = (1, 0.8), i = 7, . . . , 20}. The
local optimal placement is shown in Fig. 10, the container has dimensions (l∗, w∗) =
(9.2819628623, 7.1252676425) and area F(u∗) = 66.136469641633.
Example “TC50; from [14]. Placing n = 50 ellipses into a rectangular container of min-
imal area. The sizes of the ellipses are specified as follows: {(ai , bi ), i = 1, . . . , 6} =
(2, 1.5, 1.5, 1, 1, 0.8, 0.9, 0.75, 0.8, 0.6, 0.7, 0.3), {(ai , bi ) = (1, 0.8), i = 7, . . . , 50}. The
local optimal placement is shown in Fig. 11, the container has dimensions (l∗, w∗) =
(11.853222, 12.993055) and area F(u∗) = 154.470487.
Example “TC100” from [14]. Placing n = 100 ellipses into a rectangular container of min-
imal area. The sizes of the ellipses are specified as follows: {(ai , bi ), i = 1, . . . , 6} =
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Fig. 11 Local optimal placement of ellipses in Example TC50

Fig. 12 Local optimal placement of ellipses in Example “TC100”
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(2, 1.5, 1.5, 1, 1, 0.8, 0.9, 0.75, 0.8, 0.6, 0.7, 0.3), {(ai , bi ) = (1, 0.8), i = 7, . . . , 100}.
The local optimal placement is shown in Fig. 12, the container has dimensions (l∗, w∗) =
(17.579199, 16.936948) and area F(u∗) = 297.738.

7 Concluding remarks

Here we introduce quasi-phi-functions for an analytical description of non-overlapping,
containment and distance constraints for some types of 2D- and 3D-objects which can be con-
tinuosly rotated and translated. These new functions can work well: for new types of objects,
such as ellipses, cones, cylinders for which phi-functions have not been constructed yet; for
objects for which ordinary phi-functions are too complicated, e.g. for polytopes. Now, using
our radical free quasi-phi-functions we can extend a class of packing and cutting problems
for which we can develop exact nonlinear programming models and applied our methodol-
ogy to search for “good” local optimal solutions. We may reasonably combine phi-functions
and quasi-phi-functions in our models. We are constantly working on the improvement of
our algorithms. The computational time reported in Sect. 6 for several examples is achieved
presently, but we expect that it will be reduced in the future. We plan in the near future to
solve a packing problem for ellipsoids, using quasi-phi-functions.

Acknowledgments T. Romanova, Yu. Stoyan and A. Pankratov acknowledge the support of the Science and
Technology Center in Ukraine and the National Academy of Sciences of Ukraine, Grant 5710.

Appendix 1: Examples of phi-functions

Example 7 We consider the simplest example of phi-functions for two circles Ci of radii ri
and center points (xCi , yCi ), i = 1, 2. An ordinary phi-function, a normalized phi-function
and a pseudonormalized phi-function for circles C1 and C2 may be defined in the following
forms respectively:

�C1C2 = (xC1 − xC2)
2 + (yC1 − yC2)

2 − (r1 + r2)
2,

�̃C1C2 =
√

(xC1 − xC2)
2 + (yC1 − yC2)

2 − (r1 + r2),

�

�
C1C2 = �

�

C1C2 = (xC1 − xC2)
2 + (yC1 − yC2)

2 − (r1 + ρ− + r2)
2.

Example 8 Let p1i = (x ′
i , y

′
i ), i = 1, . . . ,m1, be the vertices of K1(u1), and p2j =

(x j ′′, y j ′′), j = 1, . . . ,m2, those of K2(u2), and K1(u1) = {(x, y):ϕi ≤ 0, i = 1, . . . ,m1},
ϕi = α′

i x+β′
i y+γ′

i , and K2(u2) = {(x, y):ψ j ≤ 0, j = 1, . . . ,m2}, ψ j = α′′
j x+β′′

j y+γ′′
j ,

where u1 = (x1, y1, θ1) and u2 = (x2, y2, θ2) are placement parameters of polygons K1 and
K2. It should be noted that each point (x̃, ỹ) ∈ K (0, 0, 0) in the local coordinate system of
a convex polygon K is transformed into point (x, y):

x = x̃ · cos θK + ỹ · sin θK + xK , y = −x̃ · sin θK + ỹ · cos θK + yK .

A phi-function for two convex polygons K1 and K2 can be defined in the form

�K1K2 = max

{
max

1≤i≤m1
min

1≤ j≤m2

ϕi j , max
1≤ j≤m2

min
1≤i≤m1

ψ j i

}
, (18)

where ϕi j = ϕi (p2j ) = α′
i x

′′
j + β′

i y
′′
j + γ′

i , ψ j i = ψ j (p
1
i ) = α′′

j x
′
i + β′′

j y
′
i + γ′′

j .
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In general, each of our phi-functions (ordinary, normalized, pseudonormalized) is formed
by operations of minimum and maximum of continuous and everywhere defined functions.
The more operations of maximum take part in forming of a phi-function the more nonlinear
programming subproblems we need to solve.

For example, in order to reach the global minimum for the problem of packing of two
convex polygons K1 and K2 in a rectangle of minimum area, using phi-function (18), we
need to solve m1 + m2 nonlinear programming subproblems optimally. See details in [10].

Alternatively, in order to reach the global minimum of the latter problem, using quasi-phi-
function (5), we need to solve only one nonlinear programming problem optimally. However,
in the case the problem dimension is increased by two.

Wemay reasonably combine phi-functions and quasi-phi-functions in ourmodels depend-
ing on types of our objects.

Appendix 2: The motivation of the epsilon parameter of the LOFTR pro-
cedure

We study the effect of the value of the parameter ε on the computational time in our compu-
tational experiments.We take the value of ε from the collection {0.1, 0.2, 0.4, 0.6, . . . , 3.8,
4.0, . . . , ε∗}, where ε∗ = max{l0, w0}, and apply our algorithm to our instances, starting
from the same feasible point u0 (point u0 is obtaned by SPA algorithm).

From our computational experiments follows that there always exists an interval [ε−, ε+],
where the computational time reaches its “minimal” value and ε weakly effects to the compu-
tational time.We take ε = 1

n ·∑n
i=1 bi in our LOFRT algorithm since 1

n ·∑n
i=1 bi ∈ [ε−, ε+]

for our computational experiments. It shold be noted that the value of ε is taken significantly
greater than the computational accuracy of IPOPT.

As an example we provide a diagram for the instance “TC50”. The diagram given in
Figure 13 shows the dependence of the computational time on the value of ε, where [ε− =
0.6, ε+ = 1.6].

0,1 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4 full

time

0

1000

2000

3000

4000

5000

6000

Fig. 13 Dependence of the computational time on ε for the instance “TC50”
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Appendix 3: A diagram of the LOFRT procedure

Figure 14 illustrates our LOFRT procedure. In fact on k-th step of the iterative procedure we
solve the k-th subproblem on a subset Wk = W ∩ �ε

k , provided that we ignore redundant

inequalities
�

�
′
i j ≥ 0, (i, j) ∈ 
\
1, and fix variables of τk , that have no effect on the value

of our objective function in the “ε-neighborhood” of point u(k)∗ by variables xki , y
k
i , i =

1, 2, . . . , n. If u∗
wk

belongs to the frontier of the “artificial” subset �ε
k , then we take the point

as a center point for a subset�ε
k+1 ⊂ Rσ and continue our optimization procedure, otherwise

we stop our LOFRT procedure. Figure 14 shows that each point of local minima u∗
wk

is the

Fig. 14 A diagram of the LOFRT procedure
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frontier point of the appropriate “artificial” subset �ε
k for k = 1, 2, 3, 4, and the point u∗

w5
is

the interior point of subset �ε
5. We note that dist(u∗

wk
, u∗

wk+1
) ≥ ε for k = 1, 2, 3.
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