
J Glob Optim (2016) 64:249–272
DOI 10.1007/s10898-015-0322-3

The extended supporting hyperplane algorithm
for convex mixed-integer nonlinear programming

Jan Kronqvist1 · Andreas Lundell1 ·
Tapio Westerlund1

Received: 16 January 2015 / Accepted: 5 June 2015 / Published online: 25 June 2015
© Springer Science+Business Media New York 2015

Abstract A new deterministic algorithm for solving convex mixed-integer nonlinear pro-
gramming (MINLP) problems is presented in this paper: The extended supporting hyperplane
(ESH) algorithm uses supporting hyperplanes to generate a tight overestimated polyhedral
set of the feasible set defined by linear and nonlinear constraints. A sequence of linear or
quadratic integer-relaxed subproblems are first solved to rapidly generate a tight linear relax-
ation of the original MINLP problem. After an initial overestimated set has been obtained the
algorithm solves a sequence of mixed-integer linear programming or mixed-integer quadratic
programming subproblems and refines the overestimated set by generating more supporting
hyperplanes in each iteration. Compared to the extended cutting plane algorithm ESH gen-
erates a tighter overestimated set and unlike outer approximation the generation point for the
supporting hyperplanes is found by a simple line search procedure. In this paper it is proven
that the ESH algorithm converges to a global optimum for convex MINLP problems. The
ESH algorithm is implemented as the supporting hyperplane optimization toolkit (SHOT)
solver, and an extensive numerical comparison of its performance against other state-of-the-
art MINLP solvers is presented.

Keywords Convex MINLP · Extended supporting hyperplane (ESH) algorithm ·
Extended cutting plane (ECP) algorithm · Supporting hyperplanes · Cutting planes ·
Supporting hyperplane optimization toolkit (SHOT)

B Jan Kronqvist
jan.kronqvist@abo.fi

Andreas Lundell
andreas.lundell@abo.fi

1 Optimization and Systems Engineering, Åbo Akademi University,
Turku, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-015-0322-3&domain=pdf

250 J Glob Optim (2016) 64:249–272

1 Introduction

Mixed-integer nonlinear programming (MINLP) is a challenging field of optimization since
the problem class can contain both continuous and discrete variables as well as linear and
nonlinear functions. MINLP has received a great deal of interest both from the scientific and
industrial communities due to its ability to accurately model complex systems. Even though
the first algorithm for solving MINLP problems was presented as early as in the 1960s [7],
general MINLP problems are still considered difficult and some classes of MINLP problems
are even proven undecidable [14]. Here we will consider a subclass of MINLP problems
where the feasible set is defined by linear and convex nonlinear constraints. Note that a
MINLP problem is referred to as convex if the integer-relaxed problem is convex.

There are several versatile algorithms for solving convex MINLP problems, e.g., gen-
eralized Benders decomposition [13], outer approximation (OA) [8], branch-and-bound
techniques using nonlinear programming (NLP) subsolvers [7,17] and the extended cutting
plane (ECP) algorithm [28]. However, solving convex MINLP problems efficiently is still a
difficult task as shown in the solver comparisons later on. Some global solution techniques for
nonconvex MINLP solve sequences of overestimated convex MINLP subproblems in order to
find global optima of nonconvex problems [18–20]. For these global solution techniques the
ability to efficiently solve convex MINLP problems is of paramount importance. A thorough
review of deterministic global MINLP is given in [10]. Overall the ability to efficiently solve
MINLP problems is of great importance, due to the huge amount of real-world applications
with both economical and environmental impact.

In this paper, a new algorithm called the extended supporting hyperplane (ESH) algorithm
for convex MINLP is presented. Like the ECP algorithm and OA, the method uses lineariza-
tions of the nonlinear functions to generate an overestimated set of the feasible domain.
Unlike the ECP algorithm the linearizations form supporting hyperplanes to the feasible set,
and should therefore generate tighter linear approximations. The linearization point is found
by a simple line search procedure unlike OA, where the linearization point is obtained from
an NLP subproblem. The ESH algorithm is described in detail in Sect. 2, where it is also
proven convergent under mild assumptions.

To evaluate the performance of the ESH algorithm it has been implemented as a solver
utilizing several of the subprojects in the open source Computational Infrastructure for Oper-
ations Research (COIN-OR) project. The solver implementation has been compared against
several state-of-the-art deterministic MINLP solvers available in the General Algebraic Mod-
eling System (GAMS). All problem instances classified as convex and containing at least one
discrete variable in MINLP Library 2 (MINLPLib 2) were used in the comparison. MINLPLib
2 is a problem library containing a large variety of both theoretical and real-world optimiza-
tion problems [22]. As of May 2015 the total number of instances in the library was 1359 and
333 of these are classified as convex and contain discrete variables. The following solvers
were used in the comparison: AlphaECP, ANTIGONE, BARON, BONMIN, DICOPT, SBB
and SCIP.

Since AlphaECP is based on the ECP algorithm, it creates a linear approximation of the
original MINLP problem by solving a sequence of mixed-integer linear programming (MILP)
problems and generating cutting planes in the solution point obtained. Additional features are
also incorporated in the solver improving the convergence and ensuring global optimality for
MINLP problems with both pseudoconvex objective function and pseudoconvex constraint
functions [16,29]; the solver has a pure convex strategy as well which was used in the com-
parison. Algorithms for coNTinuous/Integer Global Optimization of Nonlinear Equations

123

J Glob Optim (2016) 64:249–272 251

(ANTIGONE) is a general optimization framework for nonconvex MINLP. It uses several
reformulation techniques and a branch-and-cut global optimization algorithm [23]. BARON
(Branch And Reduce Optimization Navigator) is another global solver for nonconvex MINLP.
It combines a conventional branch-and-bound algorithm with a wide variety of range reduc-
tion tests [25]. Although ANTIGONE and BARON are solvers for nonconvex MINLP, they
both have convexity identification procedures increasing the performance on convex prob-
lems. DICOPT (DIscrete and Continuous OPTimizer) is an MINLP solver based on OA
and finds global optima to MINLP problems with convex objective functions and convex
constraint functions. DICOPT generates iteratively improving linear approximations of the
original problem and solves a sequence of MILP and NLP subproblems [15]. Simple Branch-
and-Bound (SBB) implements a branch-and-bound algorithm and solves an NLP problem in
each node [4]. SBB is a convex solver and cannot guarantee optimal solutions to nonconvex
MINLP problems. Basic Open-source Nonlinear Mixed INteger programming (BONMIN)
is an open source MINLP solver implementing branch-and-bound, branch-and-cut and outer
approximation algorithms [3,6]. Like DICOPT and SBB, BONMIN is a convex solver and
can only guarantee optimal solutions to convex MINLP problems. Solving Constraint Inte-
ger Programs (SCIP) implements a spatial branch-and-bound algorithm and utilizes linear
relaxations for the bounding step [6]. SCIP can handle nonconvex MINLP problems by
implementing convex relaxations but the solver has a convex strategy as well.

The ESH algorithm is described in more detail in the next section, where a proof of
convergence for convex MINLP problems and two illustrative examples are also provided.
In Sect. 3 the solver implementation is briefly described and a numerical comparison with
the MINLP solvers mentioned above is given in Sect. 4. Finally, some ideas for future work
and conclusions are given in Sects. 5 and 6.

2 The ESH algorithm

The ESH algorithm is intended for solving convex MINLP problems of the type

find x∗ ∈ arg min
x∈L∩C∩Y

cT x, (P-MINLP)

where x = [x1, x2, . . . , xN]T is a vector of continuous variables in a bounded set

X = {
x

∣
∣ xi ≤ xi ≤ xi , i = 1, . . . , N

}
(1)

and the feasible set L ∩ C ∩ Y is defined by

L = {x | Ax ≤ a, Bx = b, x ∈ X } ,

C = {x | gm(x) ≤ 0, m = 1, . . . , M, x ∈ X } ,

Y = {x | xi ∈ Z, ∀i ∈ IZ, x ∈ X } . (2)

X is a compact subset of an N -dimensional Euclidean space X ⊂ R
N restricted by the

variable bounds. The sets L and C are defined by the regions satisfying the linear and
nonlinear constraints respectively. The linear equalities and inequalities are defined by the
matrices A and B together with the vectors a and b. In this paper, it is assumed that all of
the constraint functions gm : RN → R are bounded, continuously differentiable and convex
within X . If all the functions gm are convex it is obvious that the set C is convex since convex
functions have convex level sets. If some variables xi in (P-MINLP) are restricted to integer
values their corresponding indices are included in the index set IZ ⊂ {1, 2, . . . N }, and the

123

252 J Glob Optim (2016) 64:249–272

set Y defines the space of all integer values of these variables. In case no discrete variables
are present, (P-MINLP) is simply an NLP problem. Although the ESH algorithm is capable
of handling convex NLP problems, it is intended for solving MINLP problems, and it is
from now on assumed that some variables in (P-MINLP) are restricted to integer values. The
objective function in (P-MINLP) is written in linear form and it is defined as cT x , where c is
a vector of constants; nonlinear convex objective functions are further discussed in Sect. 2.7.

The ESH algorithm solves a sequence of linear programming (LP) and MILP subproblems
where the convex set C is overestimated by a finite number of hyperplanes. The linear
approximation of C is improved in each iteration by generating new supporting hyperplanes.
In order to minimize the number of MILP subproblems required for solving the original
MINLP problem, integer-relaxed MILP problems are solved. Supporting hyperplanes are
rapidly generated from the integer-relaxed problems creating an initial linear overestimation
of the set C . An interior point of the convex set C is required in order to find the generation
point of the supporting hyperplanes and can, e.g., be found by solving a nonlinear minimax
problem. The different steps and subproblems in the algorithm are summarized in Algorithm 1
and described in more detail in the following subsections.

2.1 The NLP step

In the ESH algorithm an interior point xNLP is first obtained by solving the following convex
NLP problem

find xNLP ∈ arg min
x∈X∩L

F(x), (P-NLP)

where
F(x) := max

m
{gm(x)} (3)

using a suitable method. Note that xNLP is not necessarily a feasible solution to (P-MINLP).
However, in this paper a point within the interior of C is referred to as an interior point.
Observe that a valid interior point can also be obtained by minimizing F within X , which
might be an easier problem and therefore favorable in some cases. Since F is defined as
the pointwise maximum of all the nonlinear constraint functions gm , it is convex if all gm
are convex functions. Note that (P-NLP) may be a nonsmooth problem if M > 1 even if
all functions gm are smooth. Therefore a standard gradient based method might fail to solve
(P-NLP) and instead a nonsmooth approach, e.g., a bundle method, can be used [2]. A survey
of nonsmooth bundle methods is given in [21].

However, since all the functions gm are convex, (P-NLP) can also be formulated as an
equivalent smooth NLP problem by adding an auxiliary variable xN+1 and defining the
variable vector y = [xNLP, xN+1]T . An interior point xNLP can then be obtained by solving
the following smooth NLP problem

find y ∈ arg min
y∈X∩L∩C∗

xN+1, (P-NLP*)

where
C∗ = {y | gm(x) − xN+1 ≤ 0, m = 1, . . . , M, x ∈ X, xN+1 ∈ R } .

Note that the functions gm(x) − xN+1 are still convex and hence (P-NLP*) can be solved
with any suitable convex NLP solver. Assuming that (P-MINLP) has a solution, there exist at
least one point xNLP ∈ X ∩ L ∩C∗ such that F(xNLP) ≤ 0. For the line search procedure it is
required that the point xNLP is within the interior of the convex setC and not on the boundary,

123

J Glob Optim (2016) 64:249–272 253

Algorithm 1 Basic steps of the ESH algorithm

Define accepted tolerances εLP, εMILP and maximum number of iterations allowed in the LP step KLP.

1. Solve the NLP problem (P-NLP*) or (P-NLP) to obtain xNLP.
2. Define Ω0 and set iteration counter k = 1.
3. Repeat until F(xkLP) ≤ εLP or k = KLP.

3.1 Solve (P-LP) to obtain xkLP.

3.2 Perform a line search between xkLP and xNLP to obtain xk .

3.3 Generate supporting hyperplanes at xk and update the set Ωk .
3.4 Increase iteration counter k by 1.

4. Repeat until F(xkMILP) ≤ εMILP.

4.1 Solve (P-MILP) to obtain xkMILP.

4.2 Perform a line search between xkMILP and xNLP to obtain xk .

4.3 Generate supporting hyperplanes at xk and update the set Ωk .
4.4 Increase iteration counter k by 1.

5. Return the last solution xMILP as the optimal solution and terminate the algorithm.

otherwise the line search can result in identical solutions in each iteration. Therefore it is from
here on assumed that C has a nonempty interior and there exists a point xNLP ∈ X ∩ L ∩C∗
such that F(xNLP) < 0, see Remark 1. Note that it is not necessary to solve the previously
mentioned NLP problems to optimality as long as a feasible solution fulfilling F(xNLP) < 0
is obtained.

2.2 The LP step

After the solution to (P-NLP) is obtained, a tight overestimated set Ωk of the convex set C
can be generated by iteratively solving a sequence of simple LP problems and conducting
line searches for the boundary of C . Initially the counter k = 1, the set Ω0 = X ∩ L ,
and the following relaxation of (P-MINLP) only considering the variable bounds and linear
constraints, is solved:

find xkLP ∈ arg min
x∈Ωk−1

cT x . (P-LP)

The set Ω0 can also be defined simply as Ω0 = X , which might simplify the solution of
problem (P-LP). The linear constraints could then be ignored in the LP step or added to Ωk

after some iterations. However, since the goal is to obtain a tight linear relaxation of the set
C within L ∩ C it is usually favorable to immediately add the linear constraints to (P-LP).
Assuming there exists a solution to (P-MINLP), then (P-LP) has to be feasible. If F(xkLP) ≤ 0,
then the integer relaxation of (P-MINLP) is bounded only by the linear constraints and the LP
step can be terminated. Otherwise, i.e., if F(xkLP) > 0, F(xNLP) and F(xkLP) have different
signs and it is possible to update the set Ωk by generating new supporting hyperplanes through
a line search procedure.

After solving (P-LP), a line search is performed between xNLP and xkLP, i.e., the equation

xk = λk xNLP + (1 − λk)x
k
LP, (4)

is used to find the value of λk ∈ [0, 1] such that F(xk) = 0. Since F is a continuous function
there exists a solution to Eq. (4) according to the intermediate value theorem and due to the

123

254 J Glob Optim (2016) 64:249–272

Fig. 1 A sketch of the main
principle of the ESH algorithm: a
line search for the point xk such
that F(xk) = 0 is performed
between the point obtained from
the (MI)LP relaxation x(MI)LP
and the interior point xNLP. A
supporting hyperplane lk is
generated at the point xk . (Color
figure online)

F(x)< 0

F(x) = 0

xk

xk(MI)LP

xNLP

lk

convexity of F only one such solution exists. At the point xk supporting hyperplanes defined
by

lk,m = ∇gm
(
xk

)T (
x − xk

)
≤ 0 (5)

are generated for all functions gm active at xk (functions such that gm(xk) = F(xk)). The
line search and supporting hyperplane generation are illustrated in Fig. 1. Note that all the
gradients ∇gm(xk) of the active functions are valid subgradients of the functions F at the
point xk . The LP step generates at least one supporting hyperplane and at most M supporting
hyperplanes in each iteration. Thus, the set Ωk is updated to

Ωk =
{
x

∣
∣
∣ lk,m(x) ≤ 0 ∀m : gm

(
xk

)
= 0, x ∈ Ωk−1

}
. (6)

The problem (P-LP) is solved repeatedly (increasing the counter k in the next iteration) until
a maximum number of iterations has been reached, or until

F
(
xkLP

)
≤ εLP (7)

where εLP is a desired tolerance for the nonlinear constraints in the LP step.
In Sect. 2.6, it will be proved that the solution to the LP step converges to a point within

the set C . Although the LP step actually solves an integer relaxation of (P-MINLP) with the
supporting hyperplane method [26], the actual solution to the integer-relaxed problem is of
little interest and can merely be used as a lower bound for the original problem. Instead, the
goal is to obtain an initial overestimated set Ωk to reduce the number of MILP iterations
required to solve the original problem.

2.3 The MILP step

Once a linear approximation of the nonlinear constraints has been obtained through the
LP step the integer requirements in (P-MINLP) are also included. These are considered by
solving MILP relaxations of (P-MINLP) in Ωk ∩ Y . The problems solved in this step are,
thus, defined as

find xkMILP ∈ arg min
Ωk−1∩Y

cT x . (P-MILP)

Similarly to the LP step, the termination criterion is defined as

F
(
xkMILP

)
≤ εMILP, (8)

where εMILP is a given tolerance for the nonlinear constraints, i.e., the maximum allowed
violation of the nonlinear constraints. If the current solution xkMILP does not fulfill the termi-

123

J Glob Optim (2016) 64:249–272 255

5 10 15 20

5

10

15

20

x1

x2

5 10 15 20

5

10

15

20

x1

x2

Fig. 2 Left the linear, nonlinear and integer constraints in problem (9). Right the feasible region, objective
function and optimal solution. The objective function contours are indicated with light gray lines. (Color figure
online)

nation criterion, more supporting hyperplanes are generated and added to Ωk by the same
procedure as in the LP step. After the new hyperplanes have been added to Ωk the iteration
counter k is increased and (P-MILP) is resolved. The procedure is repeated until the termi-
nation criterion is fulfilled. If F(xkMILP) ≤ εMILP then xkMILP is an optimal solution to the
original problem (P-MINLP) with the given tolerance εMILP, since it is an optimal solution
within Ωk−1 ∩ Y which encloses the entire feasible set of (P-MINLP). In case the tolerance
εMILP = 0, then the ESH algorithm will generate a solution sequence which converges to a
global optimum of (P-MINLP) as shown in Theorem 2. In Theorem 3, it is also proven that
an arbitrary tolerance εMILP > 0 is achieved after a finite number of iterations.

Note that it is not necessary to solve (P-MILP) to optimality in each iteration, although
the final MILP iteration has to be solved to optimality to guarantee that the solution is an
optimal solution of (P-MINLP). Intermediate MILP solutions to generate new supporting
hyperplanes need only be feasible MILP solutions in Ωk ∩ Y and not in L ∩ C ∩ Y . If the
current nonoptimal solution satisfies the nonlinear constraints the MILP solver can continue
without rebuilding the branch-and-bound tree, this strategy was presented in [29] and is
discussed further in Sect. 3.2.

Next, a simple MINLP problem is solved with the ESH algorithm to exemplify the NLP,
LP and MILP steps.

2.4 Example 1

The ESH algorithm is now applied to the following MINLP problem

minimize − x1 − x2

subject to g1(x1, x2) = 0.15(x1 − 8)2 + 0.1(x2 − 6)2 + 0.025ex1x−2
2 − 5 ≤ 0

g2(x1, x2) = 1/x1 + 1/x2 − x0.5
1 x0.5

2 + 4 ≤ 0

2x1 − 3x2 − 2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈ R, x2 ∈ Z.

(9)

The objective function and feasible set are shown in Fig. 2. The termination tolerances for
the LP and MILP steps are set to εLP = 0.5 and εMILP = 0.001.

123

256 J Glob Optim (2016) 64:249–272

2.4.1 The NLP step

First an interior point xNLP to be used as the end point for the line searches is needed.
According to Sect. 2.1, it is defined as

xNLP ∈ arg min
(x1,x2)∈L

F(x1, x2), (10)

where

F(x1, x2) = max{g1(x1, x2), g2(x1, x2)}
= max

{
0.15(x1 − 8)2 + 0.1(x2 − 6)2 + 0.025ex1x−2

2 − 5,

1/x1 + 1/x2 − x0.5
1 x0.5

2 + 4
}
.

Since the functions g1 and g2 are both convex, the NLP problem is reformulated into the
following smooth NLP problem

minimize μ

subject to 0.15(x1 − 8)2 + 0.1(x2 − 6)2 + 0.025ex1x−2
2 − 5 ≤ μ

1/x1 + 1/x2 − x0.5
1 x0.5

2 + 4 ≤ μ

2x1 − 3x2 − 2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, μ, x1, x2 ∈ R.

(11)

The solution to problem (11) is μ = −3.72 with x1 = 7.45 and x2 = 8.54, hence xNLP =
(7.45, 8.54) and F(xNLP) = −3.72.

2.4.2 The LP step

After the interior point has been obtained, LP and MILP relaxations of the original MINLP
problem are solved and new supporting hyperplanes are added iteratively to the reduced
feasible set denoted by Ωk in the kth iteration.

Iteration 1 Initially the feasible region of the relaxations is the domain defined by the variable
bounds and linear constraint, i.e., Ω0 = X ∩ L . A solution to the initial relaxed LP problem
in the first (k = 1) iteration is then obtained by

find x (1)
LP ∈ arg min

x∈Ω0

cT x
⇒ x (1)
LP = (20.0, 20.0).

Since F
(
x (1)

LP

) = 30, 359 > εLP = 0.5, the LP step continues. Now, a line search is performed

between the points xNLP and x (1)
LP , i.e., a value for λ(1) ∈ [0, 1] such that F(x (1)) = 0, where

x (1) = λ(1)xNLP + (1 − λ(1))x (1)
LP , is sought. Using Eq. (5), the supporting hyperplane

l1(x) = 3.26x1 + 0.313x2 − 33.9

is generated in x (1) = (9.40, 10.3) and added to Ω1 = {x |l1(x) ≤ 0, x ∈ Ω0}.

Iteration 2 After this the new tighter LP relaxation is solved:

find x (2)
LP ∈ arg min

x∈Ω1

cT x
⇒ x (2)
LP = (8.47, 20.0).

123

J Glob Optim (2016) 64:249–272 257

Table 1 The solution progress in the different iterations when solving problem (9) with the ESH algorithm

Type Iteration Obj. funct. x1 x2 F(x1, x2)

LP 1 −40.0000 20.0000 20.0000 30,359

LP 2 −28.4720 8.47199 20.0000 14.9321

LP 3 −21.6378 9.19722 12.4406 0.957382

LP 4 −21.1639 8.56022 12.6037 0.229455

MILP 5 −20.9065 8.90647 12 0.00442134

MILP 6 −20.9036 8.90362 12 4.22619 × 10−6

The maximal constraint value F
(
x (2)

LP

) = 14.93 > εLP = 0.5. A line search between the

points xNLP and x (2)
LP gives the point x (2) = (7.83, 12.8) on the boundary of C , and in this

point the supporting hyperplane

l2(x) = 0.332x1 + 1.30x2 − 19.2

is generated and added to Ω2 = {x |l2(x) ≤ 0, x ∈ Ω1}.

Iterations 3 and 4 The same procedure is repeated resulting in the two supporting hyperplanes

l3(x) = 1.66x1 + 0.951x2 − 26.2 and l4(x) = 1.16x1 + 0.962x2 − 22.6.

Since F(x (4)
LP) = 0.23 < εLP = 0.5, the LP step is terminated and the integer restrictions are

included in the next iteration.

2.4.3 The MILP step

Iterations 5 and 6 The variable x2 is now required to be integer-valued, i.e., MILP problems
are solved. The solution in iteration 5 is x (5)

MILP = (8.91, 12) with F
(
x (5)

MILP

) = 0.004 >

εMILP = 0.001 and the supporting hyperplane

l5(x) = 1.55x1 + 0.986x2 − 25.7

is added in the fifth iteration. The next iteration yields the solution x (6)
MILP = (8.90, 12) with

F
(
x (6)

MILP

) = 4 · 10−6, which fulfills the termination criterion given by εMILP.
The solution to problem (9) is thus (8.90362, 12) with the objective value −20.9036. The

iteration results are given in Table 1 and the LP and MILP relaxations are illustrated in Fig. 3.
It can be noted that it requires 17 iterations, i.e., 17 MILP problems solved to optimality, for
the ECP algorithm to solve problem (9) with the same tolerance requirement, compared to
four LP and two MILP problems for the ESH algorithm. An illustration of the cutting planes
added with the ECP algorithm is given in Fig. 4. Finally a comparison of the solution times
of some different convex MINLP solvers is provided in Table 2. The solution times were
obtained using GAMS 24.4.1.

2.5 Example 2

For MINLP problems where the relaxed MILP problem is not bounded by linear constraints
and variable bounds are excessive or poorly defined the ESH method should have a clear
advantage over both the ECP algorithm and OA. In such problems the MILP solutions might

123

258 J Glob Optim (2016) 64:249–272

5 10 15 20

5

10

15

20

x1

x2

Iteration 1

5 10 15 20

5

10

15

20

x1

x2

Iteration 2

5 10 15 20

5

10

15

20

x1

x2

Iteration 3

5 10 15 20

5

10

15

20

x1

x2

Iteration 4

5 10 15 20

5

10

15

20

x1

x2

Iteration 5

5 10 15 20

5

10

15

20

x1

x2

Iteration 6

Fig. 3 The feasible regions, line searches performed and supporting hyperplanes generated in each iteration
when solving Example 1 with the ESH algorithm. The interior point is represented by the white point, the
solutions to the subproblems by the black points, the points given by the line searches by the red points and
the optimal solution to the MINLP problem by the green point. (Color figure online)

be far from the feasible set making cutting planes inefficient and causing a large number of
the NLP problems in OA to become infeasible, as demonstrated by the following example:

minimize − x1 − x2

subject to g1(x1, x2) = x4
1 + x4

2 − 8 ≤ 0

− 107 ≤ x1 ≤ 107, −107 ≤ x2 ≤ 107, x1 ∈ Z, x2 ∈ R.

(12)

The problem was solved with the ESH algorithm, AlphaECP and DICOPT and the result is
shown in Table 3. When considering the problem size, it is clear that both AlphaECP and
DICOPT fails to solve the problem efficiently.

2.6 Proof of convergence

In this section, it is proven that the ESH algorithm either converges to a global optimum of (P-
MINLP) in a finite number of iterations or generates a sequence which converges to a global
optimum. Furthermore it is shown that the problem (P-MINLP) can be solved with the ESH
algorithm to an arbitrary positive tolerance for the nonlinear constraints in a finite number of
iterations. Although the convergence proof for the MILP step also applies to the LP step it
will not be dealt with specifically; the convergence of the ESH algorithm is independent of
the LP step and the LP step will terminate after k iterations due to the termination criterion of
the LP step. The convergence proof for the ESH algorithm has some similarities with the one
for the ECP method, cf. [9,28]. However, since the supporting hyperplanes are not generated
at xkMILP the convergence proof for the ECP method does not apply to the ESH algorithm.

123

J Glob Optim (2016) 64:249–272 259

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10

Iteration 11 Iteration 12 Iteration 13 Iteration 14 Iteration 15

Iteration 16 Iteration 17

Fig. 4 The cutting planes generated at the black points in iterations 1–17 when solving problem (9) using the
ECP algorithm. The green point indicates the optimal solution. (Color figure online)

Table 2 Comparison of the solution times of solving problem (9) using different convex MINLP solvers

Solver Subproblems solved Time (s) Implementation

ESH 4 LP + 2 MILP (2 OPT) 0.04 SHOT (IPOPT, CPLEX)

AlphaECP 22 MILP (9 OPT) + 12 NLP 1.51 GAMS (CONOPT, CPLEX)

DICOPT 11 NLP + 10 MILP 1.00 GAMS (CONOPT, CPLEX)

SBB 4 NLP 0.41 GAMS (CONOPT)

In order to prove the convergence it is assumed that all MILP subproblems are solved to
optimality. It is also assumed that there exists a solution xNLP to (P-NLP) such that F(xNLP) <

0, the special case with F(xNLP) = 0 is discussed further in Remark 1. Since all the functions
gm are convex, both the max function F and the set C are also convex. Due to the convexity,
the supporting hyperplanes defined by Eq. (5) are all valid underestimators of the function F
and hence the set Ωk overestimates the convex set C . Because more supporting hyperplanes

123

260 J Glob Optim (2016) 64:249–272

Table 3 Comparison of the solution times of solving problem (12) using ESH, AlphaECP and DICOPT.
DICOPT failed to find the optimal solution in 180 s

Solver Iterations Time (s) Implementation

ESH 8 LP + 4 MILP 0.1 SHOT (IPOPT, CPLEX)

AlphaECP 67 MILP + 2 NLP 3.7 GAMS (CONOPT, CPLEX)

DICOPT >420 major iterations >180 GAMS (CONOPT, CPLEX)

are added in each iteration, the algorithm creates a sequence of overestimated sets Ω with
the property

L ∩ C ∩ Y ⊂ L ∩ C ⊂ Ωk ⊂ Ωk−1 ⊂ · · · ⊂ Ω0 ⊆ X. (13)

Theorem 1 If the ESH algorithm stops after a finite number of K iterations and the last
solution xKMILP fulfills all the constraints in the original problem (P-MINLP), the solution is
also an optimal solution to the original problem.

Proof Since the ESH algorithm stops at iteration K , xKMILP is an optimal solution to (P-
MILP) and xKMILP gives the optimal value to the objective function of (P-MINLP) within
ΩK ∩Y . From Eq. (13) it is clear that ΩK ∩Y also includes the entire feasible set defined by
L ∩ C ∩ Y . Since xKMILP also satisfies the nonlinear constraints, it is also within the feasible
set, i.e.,xKMILP ∈ L∩C ∩Y . Because xKMILP minimizes the objective function within ΩK ∩Y ,
which includes the entire feasible set, and xKMILP ∈ L ∩ C ∩ Y , it is also an optimal solution
to (P-MINLP).
�

In Theorem 2 it is proven that the ESH algorithm generates a sequence of solution points
converging to a global optimum, however, the proof requires some intermediate results given
by Lemmas 1–4.

Lemma 1 If the current solution xkMILP /∈ L ∩ C, then it is excluded from the set Ωk+1 by
the supporting hyperplanes added in iteration k.

Proof Since xkMILP /∈ L ∩ C a line search between xkMILP and xNLP for the boundary of the
feasible set is conducted, which gives the point xk . At least one supporting hyperplane is
generated at xk , with the equation

∇gm
(
xk

)T (
x − xk

)
≤ 0, (14)

where ∇gm(xk) is the gradient of a function active at xk (a function such that gm(xk) =
F(xk)). Since F is a convex function the subgradient definition states that

F (xNLP) ≥ F
(
xk

)
+ ξF

(
xk

)T (
xNLP − xk

)
, (15)

where ξF (xk) is a subgradient of F at xk , see [2,24]. Because F(xk) = 0 and F(xNLP) < 0,
rewriting Eq. (15) gives

ξF

(
xk

)T (
xNLP − xk

)
< 0. (16)

Note that inequality (16) applies for all subgradients of F at xk , including ∇gm(xk), and
therefore

∇gm
(
xk

)T (
xNLP − xk

)
< 0. (17)

123

J Glob Optim (2016) 64:249–272 261

Using the fact that the vector
(
xNLP − xk

) = −a
(
xkMILP − xk

)
, where a is a positive scalar

(see Fig. 1), Eq. (17) can be rewritten as

∇gm
(
xk

)T (
xkMILP − xk

)
> 0 (18)

and thereby it is clear that xkMILP is excluded from Ωk+1 by the supporting hyperplanes
defined by Eq. (14).
�

Next it is shown that if the ESH algorithm does not stop in a finite number of iterations,
the sequence of solution points contains at least one convergent subsequence

{
xkiMILP

}∞
i=1,

where
{k1, k2, . . .} ⊆ {1, 2, . . .} and

{
xkiMILP

}∞
i=1 ⊆ {

xkMILP

}∞
k=1.

Since the subsequence
{
xkiMILP

}∞
i=1 is convergent there exists a limit limi→∞ xkiMILP = x̃ . In

Lemmas 3 and 4, it is shown that x̃ is not only within the feasible set of (P-MINLP) but also
an optimal solution to (P-MINLP).

Lemma 2 If the ESH algorithm does not stop in a finite number of iterations it generates at
least one convergent subsequence

{
xkiMILP

}∞
i=1.

Proof Because the algorithm has not terminated, none of the solutions to (P-MILP) are
within the feasible set, i.e., xkMILP /∈ L ∩C ∩ Y for all k = 1, 2, . . . in the solution sequence.
Therefore all the points in the sequence

{
xkMILP

}∞
k=1 will be distinct due to Lemma 1. Since

{
xkMILP

}∞
k=1 contains an infinite number of different points, all within the compact set X ,

according to the Bolzano–Weierstrass theorem the sequence therefore contains at least one
convergent subsequence.
�
Lemma 3 The limit x̃ of any convergent subsequence

{
xkiMILP

}∞
i=1 generated by the ESH

algorithm belongs to the feasible set of (P-MINLP).

Proof In Lemma 1 we showed that the supporting hyperplanes added in iteration k excludes

the current solution xkMILP from the new set Ωk+1. Choosing two points x
k j+1
MILP and x

k j
MILP

from the sequence
{
xkiMILP

}∞
i=1 gives

∇gm
(
xk j

)T (
x
k j+1
MILP − xk j

)
≤ 0 ≤ ∇gm

(
xk j

)T (
x
k j
MILP − xk j

)
, (19)

where xk j is the point given by the line search between x
k j
MILP and xNLP. According to previous

notation ∇gm(xk j) is a gradient of a function active at xk j . Note that from Eq. (16) it is clear
that Eq. (19) holds for all gradients of the functions active at xk j . Adding gm(xk j)T xk j to
each side of the inequality (19) renders

∇gm
(
xk j

)T
x
k j+1
MILP ≤ ∇gm

(
xk j

)T
xk j ≤ ∇gm

(
xk j

)T
x
k j
MILP.

The point xk j , given by the line search, can also be written as xk j = λk j xNLP+(1−λk j)x
k j
MILP,

and therefore

∇gm(xk j)T x
k j+1
MILP ≤ ∇gm(xk j)T

(
λk j xNLP + (1 − λk j)x

k j
MILP

)
≤ ∇gm(xk j)T x

k j
MILP. (20)

Since lim j→∞ x
k j
MILP = x̃ and xkMILP �= xNLP for each point in the sequence

{
xkMILP

}∞
k=1,

it is true that lim j→∞ λk j = 0 from Eq. (20) according to the sandwich theorem. Since

123

262 J Glob Optim (2016) 64:249–272

F(xNLP) < 0 and all functions gm are convex, xk j cannot be a local minimum of gm and
therefore the gradient used in Eq. (20) cannot be a zero vector in any iteration. Because
lim j→∞ λk j = 0, F(x̃) = 0 is obtained, and therefore x̃ ∈ C . Since each solution to
(P-MILP) is within L ∩ Y and x̃ ∈ C , the limit point x̃ will be within the feasible set of
(P-MINLP) i.e., x̃ ∈ L ∩ C ∩ Y .
�
Lemma 4 The limit point of a convergent subsequence

{
xkiMILP

}∞
i=1 is a global minimum of

(P-MINLP).

Proof Because each set Ωk overestimates the feasible set of (P-MINLP), cT xkiMILP gives
a lower bound on the optimal value of the objective function. Due to relation (13), the
sequence

{
cT xkiMILP

}∞
i=1 is nondecreasing and since the objective function is continuous we

get limi→∞ cT xkiMILP = cT x̃ . Lemma 3 showed that the limit point x̃ will be within the
feasible set of (P-MINLP) and because it is a minimizer of the objective function within a
set enclosing the entire feasible set, it is also an optimal solution to (P-MINLP).
�

Lemma 2 states that there exists at least one convergent subsequence and there might
actually exist several such subsequences. Because Lemmas 3 and 4 applies to all convergent
subsequences generated by the MILP step, any limit point of such a sequence will be a global
optimum. Now the convergence results can be summarized in the next theorem.

Theorem 2 The ESH algorithm either finds a global optimum of (P-MINLP) in a finite
number of iterations or generates a sequence

{
xkiMILP

}∞
i=1 converging to a global optimum.

Proof Suppose the algorithm stops in a finite number of iterations and εMILP = 0. Then the
last iteration satisfies all constraints and according to Theorem 1 it is a global optimum of
(P-MINLP). In case the algorithm does not stop in a finite number of iterations, it generates
a sequence converging to a global optimum of (P-MINLP) according to Lemmas 2 and 4.
�

Next, consider the case when the tolerance εMILP > 0. Note, that εMILP does not cor-
respond to a specific optimality gap for the objective function, it is merely a bound on the
maximum violation of the nonlinear constraints gm(x) ≤ 0.

Theorem 3 For any given tolerance εMILP > 0, the ESH algorithm finds, in a finite number
of iterations, a point x such that F(x) < εMILP.

Proof Assume the ESH algorithm does not terminate after a finite number of iterations.
According to Lemmas 2 and 4 the algorithm then generates a convergent subsequence{
xkiMILP

}∞
i=1 and the limit of this sequence x̃ is an optimal solution to (P-MINLP). Fur-

thermore Lemma 3 states that x̃ ∈ C , and therefore F(x̃) ≤ 0. Since F is a continuous
function,

∃ δ > 0 : |F(x) − F(x̃)| < εMILP ∀x :
∣
∣
∣
∣
∣
∣xkiMILP − x̃

∣
∣
∣
∣
∣
∣
2

< δ.

Because {xkiMILP}∞i=1 is a convergent sequence

∃ N ∈ Z+ :
∣
∣
∣
∣
∣
∣xkiMILP − x̃

∣
∣
∣
∣
∣
∣
2

< δ ∀i > N .

The solution xkiMILP then satisfies the nonlinear constraints within the given tolerance, i.e.,

F(xkiMILP) < εMILP. Hence the tolerance εMILP is achieved in a finite number of N iterations.

�

123

J Glob Optim (2016) 64:249–272 263

Remark 1 So far it has been assumed that the set C has a nonempty interior and there exists
a point xNLP such that F(xNLP) < 0. However, even if F(xNLP) = 0, it is still possible
to solve the MINLP problem to an arbitrary tolerance εMILP > 0 with the ESH algorithm.
The nonlinear constraints are relaxed by gm(x) − εMILP

2 ≤ 0 and an overestimated set of

C is defined as Ĉ = {
x

∣
∣ gm(x) − εMILP

2 ≤ 0, m = 1, . . . , M, x ∈ X
}
. In case the original

MINLP problem is feasible, the overestimated set Ĉ has an nonempty interior and an interior
point of the set can be found by solving an NLP problem as described Sect. 2.1. As proven
earlier, an MINLP problem with the relaxed nonlinear constraints can be solved with the
ESH algorithm to the tolerance εMILP

2 in a finite number of iterations. The original MINLP
problem can therefore be solved to an arbitrary tolerance εMILP > 0 within a finite number
of iterations by relaxing the nonlinear constraints.

2.7 Instances with nonlinear objective function and quadratic functions

So far in this paper it has been assumed that the objective function is linear in the original
MINLP problem. However, a MINLP problem with a nonlinear objective function f can
easily be transformed into one with a linear objective function by adding an auxiliary variable
xN+1 and the nonlinear constraint f (x) − xN+1 ≤ 0. The new linear objective is then to
minimize the auxiliary variable xN+1. In case the objective function f is convex the new
nonlinear constraint will also be convex. Furthermore, to guarantee convergence the function
f has to be continuously differentiable and bounded on X .

Since many MILP solvers, e.g., CPLEX, Gurobi and CBC, are able to directly handle
a quadratic objective function efficiently it is not necessary to transform it into a nonlinear
constraint. This has the advantage that each subproblem then utilizes the real objective func-
tion instead of a linear approximation. The original problem (P-MINLP) can in this case be
written as

find x∗ ∈ arg min
x∈L∩C∩Y

xT Q x + cT x, (P-MINLP*)

where Q is a positive semidefinite real matrix. In this case the subproblems discussed in
previous sections are solved as mixed-integer quadratic programming (MIQP) problems.

Note that all the proofs given in the Sect. 2.6 also applies for a quadratic objective func-
tion. Additionally, if the subsolver can handle quadratic constraints it is possible to directly
incorporate them in the set L and define the setC only by the remaining nonlinear constraints.
The quadratic constraints are then handled in the same manner as the linear constraints and
the proofs given in the previous section still applies. Incorporating the quadratic constraints
in the set L gives a tighter overestimated set and could hence reduce the number of iterations
needed to solve the MINLP problem.

3 SHOT: a solver implementation of the ESH algorithm

In this section, the supporting hyperplane optimization toolkit (SHOT) solver for convex
MINLP is introduced. SHOT is an implementation of the ESH algorithm in C++ together
with heuristics for obtaining primal solutions. The solver utilizes several subprojects of the
COIN-OR initiative, such as the optimization services (OS) library [12] together with its
XML-based optimization services instance language (OSiL) [11] for problem file input. The
goal is to release SHOT as an open source solver part of COIN-OR.

123

264 J Glob Optim (2016) 64:249–272

3.1 Interior point strategy

In the solver implementation, the interior point used for the line searches is obtained by
solving the smooth minimax problem in (P-NLP*), in practice this is done by calling on the
NLP solver Ipopt [27].

3.2 Solution of subproblems

In SHOT, the subsolvers CPLEX, Gurobi and CBC can be used to find solutions to LP and
MILP subproblems. Since problems where discrete variables are relaxed are much easier to
solve than the corresponding MILP problem, it is possible to instead solve LP relaxations
of the MILP subproblems. In this way it is possible to find a tight linear approximation by
supporting hyperplanes much faster. However, in problems where the discrete nature of the
variables has a significant impact on the solution found in the subproblems, the supporting
hyperplanes generated in the LP step may give a poor relaxation of the feasible set of the
original problem. The LP solution also always provides a dual bound on the value of the
objective value. The standard LP relaxation strategy is to initially solve LP problems until
some criterion has been fulfilled and after this only solve MILP problems. In the current ver-
sion of SHOT, the LP step is terminated whenever a maximum constraint violation tolerance

εLP is reached [cf. Eq. (7)], the change in objective function value cT
(
xk+1

LP − xkLP

)
is less

than a specified tolerance, or a maximum number of LP iterations KLP has been reached.
All the MILP subproblems do not need to be solved to optimality; however, to obtain a

dual bound, i.e., a lower bound on the objective value for the original MINLP problem, the
MILP solution must be optimal. In the GAMS implementation of the ECP algorithm, i.e.,
AlphaECP, this is done by initially using a large value for the relative objective gap tolerance
in the MILP subsolver. In SHOT however, the solution limit parameter of the subsolver is
used as described in [29]. This setting determines the maximal number of integer-feasible
solutions to find before terminating the MILP solver in each iteration. In many cases this
reduces the solution time required significantly as several MILP subproblems can be solved
utilizing a warm start and no extra time is spent on proving the optimality of intermediate
solutions. Initially the solution limit can be set to one, i.e., the MILP solver is interrupted as
soon as it finds the first integer-feasible solution. The solution limit is then increased whenever
the maximal constraint violation for the returned solution is less than a user-set parameter or
when a maximal number of MILP iterations have used the same solution limit. The solution
limit can be increased without the solver needing to rebuild the branch-and-bound tree if
no new linear constraints have been added to the model, so supporting hyperplanes are not
added in iterations where the solution limit is updated but instead added in the next possible
iteration.

If the MINLP problem has a quadratic objective function it can be directly handled by
the subsolver as mentioned in Sect. 2.7, i.e., a sequence of QP or MIQP problems are solved
instead of LP or MILP problems. This can greatly reduce the time needed to solve the original
problem. In the case of a problem instance with a quadratic objective function subject to only
linear constraints, only one call to the subsolver is needed to find the solution.

3.3 Line search and supporting hyperplane generation

Many MILP solvers, including CPLEX, Gurobi and CBC, are capable of returning a pool of
feasible solutions to a problem in addition to the optimal solution. In the current version of
SHOT, the maximal solution pool size is a user-determined setting. Supporting hyperplanes

123

J Glob Optim (2016) 64:249–272 265

can be directly generated in points on the boundary of the nonlinear feasible region, and
points on the exterior can be utilized as end points for the line searches. By adding more
then one hyperplane in each iteration, the performance can in many cases be increased since
less iterations are required. However, each individual MILP problem will be computationally
more demanding so there is a definite trade-off for larger problem instances.

As mentioned before, it is possible to add hyperplanes for all the active constraint functions,
or in practice the one with the greatest function value since line searches do not give exact
values for the root. In SHOT the line search procedure utilizes quadratic interpolation as well
as inverse cubic interpolations [1]. The line search always gives an interval in which the actual
root lies and the length of this interval is dependent on the tolerance used for terminating the
line search. Therefore, to obtain the optimal solution with a high level of accuracy requires
that the line searches are conducted with a high precision. To guarantee that feasible solutions
are not cut off by the added supporting hyperplanes due to the numerical accuracy of the line
search, in practice cutting planes are added according to the formula

lk,m = gm
(
xk

)
+ ∇gm

(
xk

)T (
x − xk

)
≤ 0 (21)

instead of according to Eq. (5) where gm(xk) = 0. In practice the constant value gm(xk) is
often very small but due to numerical accuracy it might not be identical to zero.

3.4 Primal bound strategies

Dual solutions to the MINLP problem are given by optimal solutions to the LP, QP, MILP or
MIQP subproblems. However, in order to calculate a duality gap for the objective function,
primal solutions to the MINLP problem are also required. These solutions can be obtained
from the solution pool the MILP solver returns if the solutions are feasible also for the
nonlinear constraints, i.e., belongs to the set L ∩ C ∩ Y . A strategy specifically designed
to find primal solutions is to solve continuous NLP relaxations of the MINLP problem,
where the discrete variables are fixed to their values obtained when solving the current MILP
problem. In SHOT this strategy is executed when a time limit or number of iterations since
the last NLP call has been reached. These intermediate problems are solved using Ipopt. If
the solution found is feasible for problem (P-MINLP) it provides a primal bound. In addition
to being used for calculating an objective duality gap, the obtained primal solutions can also
be used as starting points for the MILP solver, thus providing upper cut off values on the
objective function.

3.5 Termination criteria

In addition to a user-set maximal number of iterations and time limit, the termination criteria
used in SHOT is whenever all nonlinear constraints are fulfilled to an ε-tolerance

F
(
xkMILP

)
≤ εMILP, (22)

or absolute or relative duality gap tolerances for the objective have been reached. If the
current lower bound (dual) on the objective value is DB and the best known integer solution
objective value (primal) is PB, then these termination criterions are given by

|DB − PB| ≤ εabs and
|DB − PB|

10−10 + |PB| ≤ εrel. (23)

123

266 J Glob Optim (2016) 64:249–272

Note that for a minimization problem of type (9), all solutions to subproblems give lower
bounds on the original objective function value as long as they are solved to optimality.

4 Numerical comparisons

To benchmark the performance of SHOT it has been tested on all 333 convex problems
containing discrete variables in MINLPLib 2 [22]. The number of variables varies from 3
to 107 223 with the mean 999 and the largest number of discrete variables in any of the
problems is 1500. The absolute εabs and relative εrel termination tolerances were both set
at 0.001 and the constraint tolerance εMILP = 10−5. The maximal number of LP iterations
KLP was set at 300 and εLP = 0.001. A maximal solution pool limit of ten was used
for the MILP solver. In case of a quadratic objective function, these were directly passed
on to the MILP solver, but quadratic constraints were treated as general nonlinear. The
total time limit per problem was set at 900 s. Ipopt 3.11.7 was used for solving the NLP
problems and CPLEX 12.6.1 for the LP, QP, MILP and MIQP subproblems. The Linux
based 64 bit computer used for all comparisons had an Intel Xeon 3.6 GHz processor with
four physical cores and a total of eight logical cores. The amount of system memory was
32 GB.

SHOT was compared to some other MINLP solvers available in GAMS 24.4.1: AlphaECP,
ANTIGONE, BARON, BONMINH, DICOPT, SBB and SCIP. DICOPT and SBB are convex
solvers and convex solver strategies were activated for AlphaECP and SCIP. In BONMIN
the B-Hyb strategy was used as it is recommended for convex problems. ANTIGONE and
BARON are nonconvex solvers, but can identify convexities in many problems. Default
settings were used for all solvers except for increasing the maximum number of threads to
8 and setting the iteration limit and other similar stopping criteria to prevent termination
before optimality. The absolute and relative termination tolerances for all solvers were set at
0.001. CPLEX and CONOPT were used as the default MILP and NLP subsolvers. The data
from the solver runs were processed with PAVER [5], a tool for analysis and visualization
of benchmark data for optimization solvers. Even with the 900 s time limit, running the
comparison took close to 150 h.

In Fig. 5 the termination status for the different solvers in the benchmark are shown,
e.g., it is shown how many problems are terminated normally within 900 s. The solvers with
the fewest timeouts are SHOT 13, BARON 18 and AlphaECP 41. Performance profiles are
provided in Figs. 6 and 7 where the number of problems solved with respect to time by the
different solvers are shown; in the two figures the number of instances with an objective
duality gap of 1 % and primal bound gap of 1 % are shown respectively.

The results from this test set indicates that SHOT is on par with, and in many cases
surpasses, the state-of-the-art solvers in this field both when regarding performance and
solution quality. SHOT, SCIP, BARON and DICOPT are all effective for many problems
with low solution times; however, the performance of DICOPT levels off after a few seconds.
When it comes to the quality of the solution given, SHOT is very good as can be seen in
Fig. 8, where the number of problems solved to objective duality gaps of 1 and 0.1 %, are
shown. Note that the relative gap termination tolerance was set at 0.1 % and the absolute
gap tolerance at 0.001. For this test set SHOT is also the most efficient solver for obtaining
both tight primal and dual bounds, as can be seen in Fig. 9. Note that, out of the 333 convex
instances in MINLPLib2 only 242 instances have verified optimal solutions in the library.
Out of these 242 instances with known solutions in MINLPLib2, SHOT manages to obtain

123

J Glob Optim (2016) 64:249–272 267

Alph
aE

CP

ANTIG
ONE

BARON

BONM
IN

H

DIC
OP

T
SBB

SCIP
SHOT

0

100

200

300 290

217

312

265

199

163

282

320

41

115

18

65
48

104

51

132 1 2 3

86
66

0 0N
um

be
r

of
 p

ro
bl

em
 in

st
an

ce
s

Normal completion Exceeded limit Error or capability problem

Fig. 5 The termination reason for the solvers. Note that a the solution can be optimal even though a limit
(e.g., time) has been reached, the solver has simply not proven optimality. Similarly, depending on the solver,
normal completion does not automatically guarantee that the optimal solution has been found only that some
termination criteria has been met

a primal bound gap of <1 % for 241 instances and obtains a dual bound gap of <1 % for all
these 242 instances within 900 s.

As a comment on the results of the two nonconvex solvers without a specific convex
strategy, the difference in performance between ANTIGONE and BARON may partly be
due to the former not being able to identify the convexity of some constraints, thus triggering
unnecessary reformulations for convexifying the problems. Also, regarding the performance
of SBB it can be noted that the solver has not been updated since 2002. In addition, SBB
does not utilize the possibility of parallelization whereas the main computational work in
SHOT is performed in the MILP subsolver, i.e., CPLEX, which utilizes multiple cores of the
processor very well in many cases. Directly using a quadratic objective function, instead of
transforming it into a nonlinear constraint, was beneficial for SHOT. In many cases it was
significantly faster to use the quadratic objective compared to rewriting it into a nonlinear
constraint. Both AlphaECP and DICOPT could take advantage of directly utilizing a quadratic
objective function in their mixed-integer subproblems. However, at the moment neither one
of the solvers has this functionality.

5 Future work

Even though the ESH algorithm is clearly defined, there are some uncertain details regarding
the solver implementation which can affect its efficiency. First the choice of interior point
might affect the performance of the solver and this will be investigated further. As described
earlier the interior point is obtained by solving a minimax problem, which ideally gives a
point close to the center of the convex set C . However, in some cases the distance to the
geometric center of the set can be quite large. Choosing an interior point close to an optimal
solution to the original problem should be favorable, since supporting hyperplanes would

123

268 J Glob Optim (2016) 64:249–272

F
ig
.6

A
pe

rf
or

m
an

ce
pr

ofi
le

of
so

lv
in

g
th

e
33

3
co

nv
ex

M
IN

L
P

in
st

an
ce

s
as

de
sc

ri
be

d
in

Se
ct

.4
.T

he
nu

m
be

r
of

pr
ob

le
m

in
st

an
ce

s
in

th
e

gr
ap

h
co

rr
es

po
nd

s
to

th
os

e
w

he
re

th
e

ga
p

be
tw

ee
n

th
e

du
al

an
d

pr
im

al
bo

un
ds

re
tu

rn
ed

w
er

e
≤1

%
.N

ot
e

th
at

th
e

tim
e

is
lin

ea
r

in
th

e
tim

e
in

te
rv

al
[0,

10
]a

nd
lo

ga
ri

th
m

ic
in

[10
,
90

0].
T

he
sh

ad
ed

ar
ea

in
di

ca
te

s
th

e
di

ff
er

en
ce

be
tw

ee
n

th
e

vi
rt

ua
lb

es
ta

nd
vi

rt
ua

lw
or

st
so

lv
er

s,
i.e

.,
se

le
ct

in
g

th
e

fa
st

es
to

r
sl

ow
es

ts
ol

ve
r

fo
r

ea
ch

pr
ob

le
m

in
di

vi
du

al
ly

.F
ro

m
th

e
pl

ot
it

ca
n

be
ob

ta
in

ed
th

at
by

a
sm

ar
ts

ol
ve

r
se

le
ct

io
n,

28
2

of
th

e
pr

ob
le

m
s

ca
n

be
so

lv
ed

to
w

ith
in

an
ob

je
ct

iv
e

ga
p

of
1

%
w

ith
in

10
s

an
d

32
4

pr
ob

le
m

s
in

90
0

s;
SH

O
T

so
lv

ed
26

2
pr

ob
le

m
s

in
10

s
an

d
31

7
pr

ob
le

m
s

in
90

0
s

to
th

e
re

qu
ir

ed
to

le
ra

nc
e.

(C
ol

or
fig

ur
e

on
lin

e)

123

J Glob Optim (2016) 64:249–272 269

F
ig
.7

A
pe

rf
or

m
an

ce
pr

ofi
le

ill
us

tr
at

in
g

th
e

nu
m

be
r

of
pr

ob
le

m
in

st
an

ce
s

of
th

e
24

2
w

ith
re

po
rt

ed
op

tim
al

so
lu

tio
ns

in
M

IN
L

PL
ib

2,
th

at
w

er
e

so
lv

ed
to

w
ith

in
1

%
of

th
e

op
tim

al
so

lu
tio

n.
N

ot
e

th
at

th
e

tim
e

is
lin

ea
ri

n
th

e
tim

e
in

te
rv

al
[0,

10
]a

nd
lo

ga
ri

th
m

ic
in

[10
,
90

0].
T

he
sh
ad

ed
ar
ea

in
di

ca
te

s
th

e
di

ff
er

en
ce

be
tw

ee
n

th
e

vi
rt

ua
lb

es
ta

nd
vi

rt
ua

l
w

or
st

so
lv

er
s,

i.e
.,

se
le

ct
in

g
th

e
fa

st
es

t
or

sl
ow

es
t

so
lv

er
fo

r
ea

ch
in

st
an

ce
.F

ro
m

th
e

pl
ot

it
ca

n
be

ob
ta

in
ed

th
at

by
a

sm
ar

t
so

lv
er

se
le

ct
io

n
23

0
of

th
e

pr
ob

le
m

s
ca

n
be

so
lv

ed
to

w
ith

in
1

%
of

th
e

op
tim

al
so

lu
tio

n
w

ith
in

10
s

an
d

24
2

pr
ob

le
m

s
in

90
0

s.
SH

O
T

so
lv

ed
22

1
pr

ob
le

m
s

to
a

pr
im

al
ga

p
le

ss
th

en
1

%
in

10
s

an
d

24
1

pr
ob

le
m

s
in

90
0

s.
(C

ol
or

fig
ur

e
on

lin
e)

123

270 J Glob Optim (2016) 64:249–272

Alph
aE

CP

ANTIG
ONE

BARON

BARON

BONM
IN

H

DIC
OP

T
SBB

SCIP

SHOT

200

300 292

221

303

227
197

160

274

317

Pr
ob

le
m

in
st

an
ce

s
Objective duality gap ≤ 1%

Alph
aE

CP

ANTIG
ONE

BONM
IN

H

DIC
OP

T
SBB

SCIP

SHOT

200

300
259

197

288

222
195

157

270

311

Pr
ob

le
m

in
st

an
ce

s

Objective duality gap ≤ 0.1%

Fig. 8 The number of problems solved to objective duality gaps of 1 % (left) and 0.1 % (right)

BARON

BARON
SHOT

SHOT

Alph
aE

CP

ANTIG
ONE

BONM
IN

H

DIC
OP

T
SBB

SCIP

200

300

237
208

240

202

159
144

229 241

Pr
ob

le
m

in
st

an
ce

s

Primal bound gap ≤ 1%

Alph
aE

CP

ANTIG
ONE

BONM
IN

H

DIC
OP

T
SBB

SCIP

200

300

225

182

234

198

153
137

217
242

Pr
ob

le
m

in
st

an
ce

s
Dual bound gap ≤ 1%

Fig. 9 The number of problem instances with primal (left) and dual (right) bound gaps ≤1 % as calculated
by PAVER for the 242 problems with reported optimal solution available in MINLPLib 2

then be generated close to an optimal solution in an early stage. Unfortunately this is not
possible since an optimal solution is not known in advance, although it would be possible to
approximate the solution point by an optimal solution of an integer relaxation of the original
problem.

It would also be possible to generate more supporting hyperplanes in each iteration.
For example, it is possible to generate supporting hyperplanes for all nonlinear constraints
violated at the MILP solution xkMILP, since all these violated constraints may not be active
at the point given by the line search. Additional supporting hyperplanes could improve the
linear relaxation, although they would also increase the size of the MILP subproblems. It
should therefore be investigated how to best utilize these additional supporting hyperplanes.
It could also be possible to use some cut-removal strategies to reduce the size of the MILP
problems, cf. [4].

6 Conclusions

The ESH algorithm for convex MINLP was presented in this paper. It is a solution method
based on solving a sequence of linear overestimations of the nonlinear feasible set to obtain

123

J Glob Optim (2016) 64:249–272 271

a global solution to the MINLP problem. Although it shares some similarities with the ECP
algorithm, there are several differences, the main one being that supporting hyperplanes are
used instead of cutting planes to exclude earlier solutions and improve the linear relaxation.
The supporting hyperplanes often provide a tighter relaxation of the convex nonlinear feasible
set. In the numerical comparison SHOT, an implementation of the ESH algorithm, proved
to be on par with other state-of-the-art MINLP solvers. In this benchmark, SHOT was even
the most efficient solver when considering the solution times and the number of instances
solved. Finally, the numerical comparison showed that efficiently solving large-scale convex
MINLP problems is still a nontrivial task, further motivating the development of convex
MINLP solvers.

Acknowledgments Financial support from the Foundation of Åbo Akademi University and the Center of
Excellence in Optimization and Systems Engineering, is gratefully acknowledged, as is the support from
GAMS Development Corporation. JK is grateful for the financial support from the Finnish Graduate School
in Chemical Engineering.

References

1. Alefeld, G.E., Potra, F.A., Shi, Y.: Algorithm 748: enclosing zeros of continuous functions. ACM Trans.
Math. Softw. 21(3), 327–344 (1995)

2. Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and
Software. Springer, New York (2014)

3. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A.,
Margot, F., Sawaya, N., et al.: An algorithmic framework for convex mixed integer nonlinear programs.
Discrete Optim. 5(2), 186–204 (2008)

4. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear
programs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in
Mathematics and Its Applications, vol. 154, pp. 1–39. Springer, New York (2012)

5. Bussieck, M., Dirkse, S., Vigerske, S.: PAVER 2.0: an open source environment for automated perfor-
mance analysis of benchmarking data. J. Glob. Optim. 59(2–3), 259–275 (2014)

6. Bussieck, M.R., Vigerske, S.: MINLP solver software. Wiley Encyclopedia of Operations Research and
Management Science (2010)

7. Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255
(1965)

8. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear
programs. Math. Program. 36(3), 307–339 (1986)

9. Eronen, V.P., Mäkelä, M.M., Westerlund, T.: On the generalization of ECP and OA methods to nonsmooth
convex MINLP problems. Optimization 63(7), 1057–1073 (2014)

10. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1),
3–38 (2009)

11. Fourer, R., Ma, J., Martin, K.: OSiL: an instance language for optimization. Comput. Optim. Appl. 45(1),
181–203 (2010)

12. Gassmann, H., Ma, J., Martin, K., Sheng, W.: Optimization services 2.9 users manual (2015). https://
projects.coin-or.org/OS

13. Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)
14. Jeroslow, R.: There cannot be any algorithm for integer programming with quadratic constraints. Oper.

Res. 21(1), 221–224 (1973)
15. Kocis, G.R., Grossmann, I.E.: Computational experience with DICOPT solving MINLP problems in

process systems engineering. Comput. Chem. Eng. 13(3), 307–315 (1989)
16. Lastusilta, T., Bussieck, M.R., Westerlund, T.: An experimental study of the GAMS/AlphaECP MINLP

solver. Ind. Eng. Chem. Res. 48(15), 7337–7345 (2009)
17. Leyffer, S.: Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Comput.

Optim. Appl. 18(3), 295–309 (2001)
18. Lundell, A., Skjäl, A., Westerlund, T.: A reformulation framework for global optimization. J. Glob. Optim.

57(1), 115–141 (2013)

123

https://projects.coin-or.org/OS
https://projects.coin-or.org/OS

272 J Glob Optim (2016) 64:249–272

19. Lundell, A., Westerlund, J., Westerlund, T.: Some transformation techniques with applications in global
optimization. J. Glob. Optim. 43(2), 391–405 (2009)

20. Lundell, A., Westerlund, T.: Global optimization of mixed-integer signomial programming problems. In:
Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in Mathematics and
Its Applications, vol. 154, pp. 349–369. Springer, New York (2012)

21. Mäkelä, M.: Survey of bundle methods for nonsmooth optimization. Optim. Methods Softw. 17(1), 1–29
(2002)

22. MINLP Library 2 (2014). http://www.gamsworld.org/minlp/minlplib2/html/
23. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of non-

linear equations. J. Glob. Optim. 59, 1–24 (2014)
24. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
25. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8(2),

201–205 (1996)
26. Veinott Jr, A.F.: The supporting hyperplane method for unimodal programming. Oper. Res. 15(1), 147–152

(1967)
27. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for

large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
28. Westerlund, T., Petterson, F.: An extended cutting plane method for solving convex MINLP problems.

Comput. Chem. Eng. 19, S131–S136 (1995)
29. Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization problems by cutting plane

techniques. Optim. Eng. 3(3), 253–280 (2002)

123

http://www.gamsworld.org/minlp/minlplib2/html/

	The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming
	Abstract
	1 Introduction
	2 The ESH algorithm
	2.1 The NLP step
	2.2 The LP step
	2.3 The MILP step
	2.4 Example 1
	2.4.1 The NLP step
	2.4.2 The LP step
	2.4.3 The MILP step

	2.5 Example 2
	2.6 Proof of convergence
	2.7 Instances with nonlinear objective function and quadratic functions

	3 SHOT: a solver implementation of the ESH algorithm
	3.1 Interior point strategy
	3.2 Solution of subproblems
	3.3 Line search and supporting hyperplane generation
	3.4 Primal bound strategies
	3.5 Termination criteria

	4 Numerical comparisons
	5 Future work
	6 Conclusions
	Acknowledgments
	References

