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Abstract The separation problem of two sets, whose convex hulls have a nonempty intersec-
tion, is considered. In order to find a solution of the problem algorithms of local and global
search are developed. The efficiency of the algorithms is demonstrated by computational
simulations on test examples.

Keywords Spherical separation · D.C. function · Nonsmooth optimization · Local search ·
Global search

1 Introduction

During the last decades the attention of specialists has been attracted to theoretical and
practical problems of systems analysis, control and information processing from various
application areas, where a necessity to classify (to decompose) finite sets of data arises that
can be often reduced to a solution of separability problems.

The problem of separation of sets, whose convex hulls have a nonempty intersection, rep-
resents, probably, one of the attractive objects of real-life interest. Such problems necessitate
some more general and complicated concepts of separability than this one of linear splitting.
Various definitions of generalized separability have been proposed to satisfy the demands
from application areas [1–9]. Among others let us mention the employing k-functions and
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the majority committees [1,4]. Polyhedral separability is shown itself as well rather relevant
from theoretical view-point and suitable for practitioners [2,3].

Among such approaches we recall the seminal contributions by Mangasarian [2] and
Rosen [5], and the fundamental breakthrough due to the introduction the Support Vector
Machine (SVM) method [6,7]. Moreover, the field of data sets classification is enlarging
ceaselessly and grasps new areas [4–11]. In addition, all separation problems turn out to be
nonconvex, and therefore they need new mathematical apparatus to find a global solution,
in particular, to escape local pits provided by local search algorithms including the classical
ones (conjugate gradients methods, Newtonian ones, SQP ones, IMP etc).

On the other hand, all theoretical proposals have to be verified by a practical relevance and
a possible issue to solve numerically the corresponding nonconvex extremum’s problems.
A comparison of computational efficiency of global search algorithms such as Brunch &
Bounds methods, cuts schemes committee’s methodology etc, gives rise to new ideas for
constructing special procedures for solving classification and separation problems.

In the paper we consider the problem of spherical binary separability [8,9,11], which
consists in finding a sphere, dissevering the setsA and B in the finite-dimensional space IRn .
Since it is unknown in advance whether the sets may be separated with a sphere or not, the
minimization of the classification error function arises here naturally [10]. This minimization
problem turns out to be nonsmooth and nonconvex [12–16], that leads us to a nonconvex
variational problem.

Nonconvex problems with nondifferentiable functions are of special interest from the
viewpoint of mathematical investigations because of their additional complexity and, on the
other side, since they have a wide field of applications. Lately, themodelling of many real-life
problems [17–19] have led to nondifferentiable nonconvex optimization problems.

At the same time, in nonconvex problems, the direct application of standard methods may
have unpredictable consequences [13,15,16,20,21], and sometimes may even distract one
from the desired solution. So, it seems to be quite natural (but hardly ever grounded) the
reaction of the specialists propagating methods of direct selection—such as the method of
branches and bounds (and cuts methods), which, as known, suffer the curse of dimension,
when the volume of computations grows exponentially side by side with the growth of
the problems dimension [13,15,16]. We are sure, there exists also another way of solving
nonconvex problems of high dimension.

Further the spherical separability problem for two sets can be viewed as a problem of D.C.
minimization [13–15]:

F(x) = g(x) − h(x) ↓ min
x

, x ∈ D, (P)

where g(·), h(·) are convex and not necessarily differentiable functions, and set D ⊂ IRn

is also convex. From now on let us suppose that the function F(·) over IRn is bounded from
below:

inf(F, IRn) > −∞. (H)

Aswell-known [13,15,16], theA.D.Alexandov’s functions (or the (D.C.) functions, which
may be represented as a difference of two convex functions), form a linear space, which is
dense in the space of continuous functions (in the topology of homogeneous convergence
on compacts). So, problems of D.C. programming represent a rather large and, besides, very
attractive class of optimization problems, for which we developed the theory of global search
[13,15].
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According to the theory developed on the base of global optimality conditions (GOC),
the process of seeking for a global solution in nonconvex optimization problems consists
of the two principal stages: (i) a special local search, which takes into account the structure
of the problem under scrutiny [14], and (ii) the procedures (based on the global optimality
conditions [13,15]) of escaping critical points (provided by the local search).

The paper is organized as follows. In Sect. 3 we consider the generalization of the special
local search method for solving D.C. minimization problems for the nonsmooth case. In
addition, the convergence conditions of the method under investigation, and the stopping
criteria are also substantiated. In Sect. 4 the proposed method is verified on the test problems
of classification [22–24]. After that, on the base of global optimality conditions [13,15] we
develop a global search strategy for nonsmooth problems of D.C. minimization. In Sect. 6
we present the global search algorithm and the average of the tenfold cross-validation results
of its computational testing on classification problems from [22–24].

2 Problem statement

Consider two nonempty and disjoint finite sets A = {a1, . . . , aM } and B = {b1, . . . , bN } in
the space IRn . Further let us denote the sphere S(x, r) of radius r > 0 centered at a point
x ∈ IRn .

Then the sets A and B are defined to be separated by a sphere S(x, r), if the following
inequalities hold

‖ ai − x ‖≤ r ∀i = 1, . . . , M; (1)

‖ b j − x ‖≥ r ∀ j = 1, . . . , N ; (2)

where ‖ · ‖ is the Euclidean norm in the space IRn .
The points of the setsA and B for which inequalities (1) and (2) are respectively satisfied,

are called the well-classified points.
In the case, where one or more of the inequalities (1) or (2) are violated, we introduce the

classification error, which is defined as follows:

ω(x, r)

=

M∑

i=1

max{0, ‖ ai − x ‖2 −r2} +
N∑

j=1

max{0, r2− ‖ b j − x ‖2}. (3)

Now one can formulate the problem of spherical separation with a sphere of the minimal
radius as the problem of minimization of the classification error function with the variables
x ∈ IRn and radius r ∈ IR. It can be readily seen, that this problem is nonconvex, and the
nonconvexity is generated by the terms (−r2) and (− ‖ b j − x ‖2). Taking into account the
definition (3) of the error function, we obtain the problem of unconstrained nondifferentiable
nonconvex optimization (C > 0):

F(x, r)

= r2 + Cω(x, r) ↓ min

x,r
. (P0)

In this problem we look for the priority between the two goals such as minimizing the radius
and the classification error by means of varying the constant C > 0. It is clear that the
function F(x, r) is bounded from below by zero. So, the assumption (H) in Problem (P0) is
fulfilled.
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Further, to perform the investigations we need an exact D.C. representation of the non-
convex goal function F(·) in Problem (P0). Using the following equality

max{0, f1(x) − f2(x)} + f2(x) − f2(x) = max{ f1(x), f2(x)} − f2(x),

we immediately obtain the D.C. representation as follows [10]:

F(x, r) = g(x, r) − h(x, r), (4)

where

g(x, r)

= r2 + C

M∑

i=1

max{r2, ‖ ai − x ‖2} + C
N∑

j=1

max{r2, ‖ b j − x ‖2},

h(x, r)

= CMr2 + C

N∑

j=1

‖ b j − x ‖2 . (5)

In the next section we consider a special local search method employing this D.C. decom-
position.

3 A special local search method

It is well-known [13–15,25,26] that in nonconvex problems, in particular, in D.C. program-
mingproblems, the classical convexoptimizationmethods (as conjugate gradient,Newtonian,
trust region methods etc.) turn out to be inefficient, in general, for reaching a global solution.
In order to develop a search for a local solution to Problem (P) we are going to apply the
well-known DC-Algorithm (DCA) [13–15,27,28]. As known, it consists, first, in linearizing,
at a current point, the function h(·) which defines the basic non-convexity of Problem (P),
and minimizing so constructed convex linearized problem. After that we carry out consec-
utive solution of these linearized problems. This algorithm provides critical points, that can
be proved by using only tools of convex analysis [13–15,29–31].

Now, let us describe the special local search method (SLSM) for a nonsmooth D.C.
minimization Problem (P).

Let us given a starting iterate x0 ∈ IRn . Suppose, a point xs ∈ D and a subgradient
x∗
s ∈ ∂h(xs) are provided. Then we find xs+1 ∈ D as an approximate solution to the

linearized problem as follows

Φs(x) = g(x) − 〈x∗
s , x〉 ↓ min

x
, x ∈ D, (PLs)

so that the linearization is produced at the point xs . More precisely, it means that the next
iterate xs+1 satisfies the inequality as follows

g(xs+1) − 〈x∗
s , x

s+1〉 ≤ inf
x∈D{g(x) − 〈x∗

s , x〉} + δs, (6)

where a sequence {δs} fulfils the following conditions

δs ≥ 0, s = 0, 1, 2, . . . ;
∞∑

s=0

δs < ∞. (7)

Note, that the linearized problem (PLs) turns out to be convex, meanwhile Problem (P)

was a nonconvex one.
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Let us denote the optimal value of the linearized problem (PLs) by V(PLs), so that

V(PLs) := inf
x

{g(x) − 〈x∗
s , x〉 | x ∈ D}. (8)

Theorem 1 [13,15] Suppose,that the goal function F(·) of Problem (P) is bounded from
below, and one can find a subgradient x∗ ∈ ∂h(x) of the function h(·) at any point x ∈ D,
where D is a closed convex set from IRn.

Then

i) the sequence {xs}generated by the rule (6), (7),where x∗
s ∈ ∂h(xs), satisfies the condition:

lim
s→∞{inf

x
[g(x) − g(xs+1) − 〈x∗

s , x − xs+1〉]} = 0, (9)

or what is the same

lim
s→∞[V(PLs) − Φs(x

s+1)] = 0.

ii) Furthermore, if the sequences {xs} and {x∗
s } are converging in concordance, i.e.

xs → z ∈ D, x∗
s → z∗ ∈ ∂h(z), x∗

s ∈ ∂h(xs), (10)

then the limit point z of the sequence {xs} satisfies the condition
inf
x∈D{g(x) − g(z) − 〈z∗, x − z〉} = 0, z∗ ∈ ∂h(z), (11)

or what is the same V(PLz) = Φ∗(z)

= g(z) − 〈z∗, z〉.

Thus, the point z in Theorem 1 is a solution to the linearized problem

g(x) − 〈z∗, x〉 ↓ min
x

x ∈ D, z∗ ∈ ∂h(z). (PLz)

Definition 1 i) A point z is called critical if it satisfies condition (11), i.e. it is a solution
to the linearized problem (PLz) with a subgradient z∗ ∈ ∂h(z).

ii) A point xs is an approximate τ -critical if it is a τ -solution to Problem (PLs) with a
subgradient x∗

s ∈ ∂h(xs), i.e.

g(xs) − 〈x∗
s , x

s〉 ≤ inf
x∈D{g(x) − 〈x∗

s , x〉} + τ.

Now let us investigate the issue related to a stopping criterion for the presented method.
From (6) due to convexity of the function h(·) it follows

−δs ≤ inf
x∈D{g(x) − 〈x∗

s , x〉} − g(xs+1) + 〈x∗
s , x

s+1〉
≤ g(xs) − g(xs+1) + 〈x∗

s , x
s+1 − xs〉

≤ g(xs) − g(xs+1) + h(xs+1) − h(xs) = F(xs) − F(xs+1),

which can be considered as a hint for the convergence proof of the method. Moreover, it
suggests that one of the following inequalities can be employed as a stopping criterion for
SLSM (together with δs ≤ τ/2):

F(xs) − F(xs+1) ≤ τ/2,

Φs(xs) − Φs(xs+1)

= g(xs) − g(xs+1) + 〈x∗

s , x
s+1 − xs〉 ≤ τ/2,

}
(12)

where F(·) and Φs(·) are the objective functions of Problems (P) and (PLs), respectively,
and τ is a given accuracy, and x∗

s ∈ ∂h(xs).

123



26 J Glob Optim (2016) 66:21–34

If one of the inequalities (12) is fulfilled, it can be easily shown that point xs turns out to
be τ -critical to Problem (P), when δs ≤ τ/2. Indeed, (12) together with inequality (6) imply
that

g(xs) − 〈x∗
s , x

s〉 ≤ τ/2 + g(xs+1) − 〈x∗
s , x

s+1〉 ≤ inf
x∈D{g(x) − 〈x∗

s , x〉} + τ/2 + δs .

Therefore, if δs ≤ τ/2, then the point xs is a τ -solution to Problem (PLs).
Thus, in the nonsmooth optimization Problem (P) SLSM described above provides for

an approximate critical point. Henceforth below we assume D = IRn .

4 Testing the local search method (DCA)

The local search algorithm just presented above has been tested on nine test problems from
[22–24]. The computational experiment has been conducted on the computer Intel Pentium
4 CPU 3 GHz.

Further the barycenter of set A :

x0 = (x01 , . . . , x
0
n ), x0i = a1i + . . . + aMi

M
, i = 1, . . . , n, (13)

has been chosen as a starting point for the center of a possibly separating sphere, and the
solution to Problem (P0) with the fixed initial center x0 (corresponding to the minimization
of the radius) has been chosen as the starting radius r0.

On the other hand, the SLSM’s framework requires to solve at each iteration a convex
Problem (PLs). To this end we have employed Shor’s r-algorithm [18]. It is based on the
operation of stretching of the space in the direction of the difference of two sequential
subgradients.

In addition, we have adopted the tenfold cross-validation protocol, which consists in
splitting the dataset of interest into ten equally sized pieces. Nine of them are in turn used
as a training set and the remaining one as a testing set. The correctness of the following
computational simulation can be estimated by the total percentage of well classified points
(of both sets A and B) when the algorithm stops.

Table 1 represents the average of the tenfold cross-validation results of computational
testing of the local search algorithm, where we used the notations as follows: n is the space
dimension; M and N stand for the numbers of points to be classified in the sets A and B,
respectively; C stands for the values of parameter C in the goal function of Problem (P0);
F0 = F(x0, r0) is the starting value of the goal function of Problem (P0); F(z) is the value
of the function at the critical point (z = (x, r)) provided by SLSM; i ter is the number
of Linearized Problems solved (iterations of SLSM); time is the CPU time of computing
solutions (seconds); % stands for the percentage of well classified points; %[10] stands for
the percentage of well-classified points in the paper [10].

As the stopping criterion for SLSM we have used the following inequalities (see (12)):

|Φs(x
s) − Φs(x

s+1)| ≤ τ

2
, δs ≤ τ

2
;

with the precision of τ = 10−3 (likewise in [10]).
The average number of iterations turned out to be 41, which corresponds to the number of

linearized problems solved, and the average CPU time for solving one problem was 1.22 s.
From Table 1 it can be readily seen, that we have managed to enlarge the percentage of

well-classified points in problems “ionosphere”, “g50c”, “g10n” only at the stage of local
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Table 1 Local search

Name n M N C F0 F(z) Iter Time % % [10]

Cancer 9 23 443 0.1 2.15 × 102 1.70 × 102 42 10.59 94.71 95.71

1 1.14 × 103 6.39 × 102 56 5.40 95.36

10 1.03 × 104 5.65 × 103 54 4.67 95.51

100 1.02 × 105 5.24 × 104 44 5.47 95.22

Diagnost 30 375 212 0.1 5.26 × 105 5.13 × 105 23 74.14 85.97 89.82

1 4.24 × 106 3.92 × 106 37 247.52 87.89

10 4.12 × 107 3.82 × 107 33 396.13 87.89

100 4.13 × 108 3.81 × 108 33 196.38 87.89

Heart 13 214 83 0.1 4.02 × 101 3.43 × 101 8 7.47 75.00 80.33

1 2.63 × 102 1.79 × 102 12 6.72 79.00

10 2.49 × 103 1.63 × 103 17 1.43 78.33

100 2.47 × 104 1.66 × 104 14 0.36 77.00

Pima 8 268 500 0.1 4.34 × 105 3.75 × 105 59 31.99 61.43 68.70

1 4.28 × 106 3.63 × 106 60 21.95 61.95

10 4.27 × 107 3.64 × 107 54 12.94 61.40

100 4.27 × 108 3.65 × 108 35 6.76 61.04

Ionosphere 34 225 126 0.1 4.72 × 101 2.34 × 101 15 82.24 82.22 72.00

1 3.83 × 102 8.32 × 101 20 136.50 89.17

10 3.74 × 103 6.60 × 102 19 78.67 89.44

100 3.73 × 104 6.82 × 103 18 32.37 89.16

Sonar 60 97 126 0.1 6.14 × 100 4.68 × 100 14 13.92 66.67 69.05

1 4.76 × 101 2.38 × 101 26 9.83 69.52

10 4.61 × 102 2.09 × 102 33 3.59 70.00

100 4.61 × 103 2.09 × 103 29 2.97 70.95

Galaxy 14 2082 2110 0.1 1.10 × 101 7.58 × 100 73 37.27 87.41 93.79

1 1.09 × 102 6.75 × 101 201 102.50 88.81

10 1.08 × 103 6.66 × 102 185 60.12 88.79

100 1.08 × 104 7.10 × 103 46 19.66 87.10

g50c 50 275 275 0.1 1.58 × 102 1.09 × 102 16 57.94 83.09 72.96

1 1.09 × 103 4.43 × 102 33 65.00 85.17

10 1.04 × 104 4.40 × 103 25 20.42 83.64

100 1.03 × 105 5.08 × 104 22 3.37 80.36

g10n 10 274 276 0.1 7.23 × 101 4.61 × 101 24 20.13 80.00 81.04

1 6.29 × 102 2.11 × 102 33 18.25 85.82

10 6.20 × 103 1.81 × 103 34 11.07 86.36

100 6.19 × 104 2.25 × 104 33 3.19 82.55

search. It is easy to see that the results of Table 1 can be viewed as more promising than
these ones from [10]. It may be assessed so, in particular, because of the choice of Shor’s
r-algorithm [18] for solving Problem (PLs) instead of the subroutine NCVX [8], which
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implements a bundle type algorithm for solving the nonsmooth unconstrained optimization
problems as it was done in [10]. On the other hand, the principal effect is attained due to the
employing of the general framework of SLSM.

5 Optimality conditions and the global search strategy

Let us recall the fundamental result of global search theory for d.c. programming.

Theorem 2 [13,15] Suppose that

∃v ∈ IRn : F(v) > F(z)

= ζ. (14)

Then point z ∈ IRn is a global solution to Problem (P) if and only if

(a) ∀(y, β) ∈ IRn+1 : β = h(y) + ζ,

(b) g(y) ≤ β ≤ sup(g, IRn), ∀y∗ ∈ ∂h(y) :
(c) g(y) − β ≥ 〈y∗, x − y〉 ∀x ∈ IRn .

⎫
⎬

⎭ (E)

Conditions (E) are related to classical optimality conditions, employ the idea of lineariza-
tion with respect to the basic nonconvexity and possess a constructive (algorithmic) property
(in case when variational inequality (c) of conditions (E) does not hold, there exists a rule of
constructing a feasible point, which is better than the point z under scrutiny)[13,15].

Now introduce the following function

ϕ(z) = sup
x,y,β,y∗

{〈y∗, x − y〉 + β − g(x) | β = h(y) + ζ,

g(y) ≤ β ≤ sup(g, IRn), y∗ ∈ ∂h(y)}. (15)

Since β = β0

= g(z) for y = z, the following inequality obviously holds

0 = β0 + 〈
z∗, z − z

〉 − g(z) ≤ ϕ(z) ∀z ∈ IRn ∀z∗ ∈ ∂h(z).

Hence
ϕ(z) ≥ 0 ∀z ∈ IRn . (16)

Therefore, conditions (E) are equivalent to the equality ϕ(z) = 0. Furthermore, optimality
conditions for the minimizing sequences can be presented in the following form.

Theorem 3 [13,15] If a sequence {zk} is minimizing to Problem (P) ({zk} ∈ M), then

lim
k→∞ ϕ(zk) = 0. (17)

If, in addition, the following condition holds

∃v ∈ IRn, ∃χ > 0 : F(v) ≥ F(zk) + χ, k = 0, 1, 2, . . . , (18)

then the optimality condition (17) becomes sufficient for the sequence {zk} to be minimizing
({zk} ∈ M) in Problem (P).

The proof of this theorem does not principally differ from the proof in the differentiable case
[13].

The properties of Optimality Conditions (E) allow one to construct algorithms for solving
D.C. minimization problems, which presume two principal stages, as follows:
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(a) local search, which provides for an approximately critical point zk with the corresponding

value of the goal function ζk

= F(zk);

(b) procedures of escaping critical points, which are based on the Global Optimality Condi-
tions (GOC) (E).

The latter procedure can be represented as a chain of the following operations [13,15,29]:

(1) Choose a number β : inf(g, IRn) ≤ β ≤ sup(g, IRn). It is possible to choose an initial
β0, for instance, which is equal to g(zk) (β0 = g(zk), ζk = F(zk) = g(zk) − h(zk)).

(2) Construct a finite approximation

Ak(β) = {v1, . . . , vNk | h(vi ) = β − ζk, i = 1, . . . , Nk, Nk = Nk(β)}
of the level surface {h(x) = β − ζk} of the function h(·), which generates the basic
nonconvexity in Problem (P).

(3) Find a δk-solution ūi of the following Linearized Problem:

g(x) − 〈v∗
i , x〉 ↓ min

x
, x ∈ IRn, (PLi )

where v∗
i ∈ ∂h(vi ) is a subgradient of h(·) at the point vi , so that

g(ūi ) − 〈v∗
i , ū

i 〉 − δk ≤ inf
x

{g(x) − 〈v∗
i , x〉}. (19)

After that, apply SLSM starting at the point ūi . Let ui be a point provided by SMLP.
(4) Find a δk-solution wi (h(wi ) = β − ζk) of the level problem, i.e.

〈w∗
i , u

i − wi 〉 + δk ≥ sup
v,v∗

{〈v∗, ui − v〉| h(v) = β − ζk, v∗ ∈ ∂h(v)}, (20)

where w∗
i ∈ ∂h(wi ).

(5) Compute the value ηk(β) := η0k (β) + β, where

η0k (β) := 〈w∗
j , u

j − w j 〉 − g(u j )

= max

i∈Ik
{〈w∗

i , u
i − wi 〉 − g(ui )}, (21)

w∗
i ∈ ∂h(wi ), i ∈ Ik


= {i ∈ {1, . . . , Nk}| g(vi ) ≤ β}.
If ηk(β) > 0 then it can be readily seen that the point u j is better than z with respect
to the goal function. In this case, one can pass to the next iteration of the algorithm and
again execute the local search by starting from the point u j . If still ηk(β) ≤ 0, then a
new value of β should be chosen, and the iteration should be repeated.

6 The global search algorithm and its numerical testing

Now let us describe the principal stages of the algorithm developed on the basis of the global
search strategy (GSS) developed above for nonsmooth problem of D.C. minimization.

Note that the SLSM already described in Sect. 3 and tested in Sect. 4 has been applied as
a local search method.

Further, it is necessary to determine the boundaries for the number β within the interval

[β−, β+], where β−

= inf(g, IRn), β+


= sup(g, IRn).
However, it is clear that the search for numbers β−, β+ is equivalent to an unconstrained

minimization and maximization of the function g(·), respectively. It can be readily seen from
(5), that the function g(·) is convex and takes only nonnegative values. Therefore, one can
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take β− = 0, β+ = +∞, i.e. the interval of variation of parameter β is not bounded from
above.

On the other side, it is possible to estimate the upper bound β+ in another way, for example
β+ := g(x0, r̄), where x0 is the barycenter of set A from (13), and r̄2 = max

j
||b j ||2. So,

we have restricted the interval of variation of parameter β and we can change the number
β, for example, as follows βp+1 := βp + Δβ, Δβ := (β+ − β−)/10. In other words,
the procedure of choosing the value Δβ can be carried out by means of one of well-known
methods of one-dimensional optimization.

Further, the crucial element of the Global Search procedures consists in construction
of an approximation of the level surface of the convex function h(·) which generates the
basic nonconvexity in Problem (P0). In particular, an approximation Ak(β) for each pair
(β, ζk), ζk = F(zk), can be constructed by the rule as follows

vl = zk − μl e
l , l = 1, . . . , n, (22)

where zk is a current critical point; el is the lth unit vector of Euclidean basis of IRn . A
search for μl turns out to be rather simple and moreover analytical for the quadratic function
h(·), because it reduces itself to the solution of a quadratic equation in one variable. The
set (approximation) (22) has shown itself rather competitive [13] during the computational
simulations.

Repeat, that later on stage 3 of GSS, instead of solving only one Linearized Problem, we
additionally initiate SLSM, i.e. we solve a sequence of Linearized Problems until obtaining
an approximate critical point. The structure of GSS shall not be destroyed by this change,
and we can obtain a feasible point with some better and attractive properties. On stage 4
of GSS, instead of solving the level problem and the subsequent forming the value ηk , we
execute direct comparison of the value of the goal function at the point ui provided by the

local search, with the value ζk

= F(zk). Besides, it can be readily seen that ηk > 0 if and

only if point the point ui is better than zk with respect to the objective function [13].
Let us describe now the global search algorithm (GSA) step by step.
Let us given a starting point x0, and the accuracy τ = 10−3.

Step 0. Set k := 0, xk := x0, l := 1, τk := 0.1.
Step 1. Starting from the point xk and applying SLSM construct a τk-critical point zk , such

that ζk

= F(zk) ≤ F(xk).

Step 2. Set β := g(zk).
Step 3. Construct the point vl of the approximationAk(β) according to the rule (22), h(vl) =

β − ζk .

Step 4. Starting from the point vl construct by means of the SLSM a 2τk-critical point ul .
Step 5. If ζk > F(ul) then set xk+1 := ul , ζk+1 := F(ul), l := l + 1. If τk > τ then set

τk+1 := τk

2
. After that set k := k + 1 and loop to Step 1.

Step 6. If ζk ≤ F(ul) and l < N then set l := l + 1 and loop to Step 3.

Step 7. If ζk ≤ F(ul) and l = N , and τk > τ then set τk := τk

2
, l := 1 and loop to Step 1.

Step 8. If ζk ≤ F(ul) and l = N , and τk ≤ τ , and β < β+ then set τk := τ, β :=
β + Δβ, l := 1 and loop to Step 3.

Step 9. If l = N , ζk ≤ F(ul) ∀β ∈ [β−, β+] (i.e. the one-dimensional search with respect
to parameter β on the segment [β−, β+] is over) then Stop: zk is a feasible point
provided by GSA.
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Table 2 Global search

Name C F0 F∗ ω(x∗, r∗) PL Loc Iter Time

Cancer 0.1 2.15 × 102 1.65 × 102 577.29 896 90 4 1:25:53.15

1 1.14 × 103 6.51 × 102 476.65 769 171 14 0:04:51.71

10 1.03 × 104 4.33 × 103 474.05 1685 207 16 0:16:22.28

100 1.02 × 105 4.39 × 104 481.89 551 234 15 0:07:13.16

Diagnost 0.1 5.26 × 105 4.94 × 105 3986749.01 2733 921 21 2:54:02.65

1 4.24 × 106 3.59 × 106 3222243.79 2040 1786 52 1:25:36.09

10 4.12 × 107 3.02 × 107 2905610.64 2334 1507 69 2:40:28.01

100 4.13 × 108 3.17 × 108 3213153.73 1377 1245 32 0:52:11.48

Heart 0.1 4.02 × 101 3.37 × 101 174.68 176 104 5 0:14:15.02

1 2.63 × 102 1.68 × 102 158.23 260 125 4 0:18:59.88

10 2.49 × 103 1.59 × 103 157.98 638 143 4 0:12:08.27

100 2.47 × 104 1.58 × 104 158.13 752 169 5 0:01:45.24

Pima 0.1 4.34 × 105 3.73 × 105 3544741.12 6450 200 18 0:19:01.97

1 4.28 × 106 3.41 × 106 3312008.33 6673 336 35 0:04:58.33

10 4.27 × 107 3.31 × 107 3292801.64 5878 304 32 0:03:19.89

100 4.27 × 108 3.32 × 108 3314252.72 1477 152 9 0:02:07.73

Ionosphere 0.1 4.72 × 101 2.31 × 101 93.91 1210 272 3 5:43:11.91

1 3.83 × 102 7.16 × 101 40.28 1173 510 10 1:29:43.21

10 3.74 × 103 3.88 × 102 31.52 845 748 16 0:19:31.25

100 3.73 × 104 4.26 × 103 42.32 816 235 17 0:14:59.94

Sonar 0.1 6.14 × 100 4.66 × 100 24.56 4522 588 5 3:49:07.66

1 4.76 × 101 2.14 × 101 15.92 2495 1026 14 0:43:49.48

10 4.61 × 102 1.49 × 102 14.09 2102 1404 16 0:07:03.32

100 4.61 × 103 1.56 × 103 15.61 1662 1132 21 0:10:03.98

Galaxy 0.1 1.10 × 101 7.56 × 100 69.71 2581 84 2 6:52:16.41

1 1.09 × 102 6.73 × 101 65.99 1885 112 3 2:33:52.38

10 1.08 × 103 6.59 × 102 65.83 815 154 5 1:02:45.08

100 1.08 × 104 6.70 × 103 67.03 401 140 5 0:03:11.88

g50c 0.1 1.58 × 102 1.05 × 102 342.64 2573 880 14 14:44:43.04

1 1.09 × 103 3.08 × 102 215.93 10973 1850 31 2:52:26.15

10 1.04 × 104 2.50 × 103 245.51 20178 2795 52 12:00:14.31

100 1.03 × 105 3.01 × 104 299.19 2345 1813 43 0:46:58.29

g10n 0.1 7.23 × 101 4.57 × 101 240.59 154 103 6 0:02:45.91

1 6.29 × 102 1.89 × 102 138.25 220 142 10 0:01:03.45

10 6.20 × 103 1.36 × 103 130.05 379 178 14 0:00:30.81

100 6.19 × 104 1.39 × 104 139.21 407 239 17 0:00:15.48

Table 2 represents the average results of computational testing of the GSA (using adopted
tenfold cross-validation protocol aswell as in the local search testing), where F0 is the starting
value of the cost function of Problem (P0); F∗ is the best value of the goal function provided
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Table 3 Average percentage of testing correctness and comparison

Name n M N Well class % Win/loss

GSA DCA [10]

Cancer 9 239 443 96.23 95.71 0

Diagnost 30 375 212 90.70 89.82 0

Heart 13 214 83 79.35 80.33 0

Pima 8 268 500 68.05 68.70 0

Ionosphere 34 225 126 90.28 72.00 +1,7

Sonar 60 97 126 80.04 69.05 +1

Galaxy 14 2082 2110 89.91 93.79 –0,4

g50c 50 275 275 87.46 72.96 +1,6

g10n 10 274 276 90.18 81.04 +1

byGSA;ω(x∗, r∗) is the classification error;PL is the number of Linearized Problems solved
during the Global Search; Loc is the number of start-ups of the local search procedure in
course of the global search; i ter is the number of iterations of GSA; time is the CPU time
of the program implementing GSA.

Note, that the the average number of different critical points from column i ter , by which
GSA passed improving, at the same time, the goal function of Problem (P0), is 18, while the
average number of start-ups of the local search procedure from column Loc is 695.

As expected, in all test problems the biggest classification error ω(x∗, r∗) has been
obtained at C = 0.1, what corresponds to the priority of minimizing radius of the sphere.

Next, Table 3 demonstrates a relative efficiency of GSA with adopted tenfold cross-
validation protocol. Furthermore, in Table 3 one can observe the data related to the average
percentage of well-classified points obtained with the algorithms (i) GSA and (ii) DCA
[9,10]. The last column in the table stands for the relative loss (“–”) or the relative win (“+”)
as a percentage of the number of well-classified points compared to the results from [9,10].

Note that despite the application of a rather simple approximation of the level surface and
a rather simplified search of the parameter β, our GSA is able to increase the percentage of
well-classified points in all the examples. In problems “ionosphere” and “g50c” the increment
has turned out to be rather substantial: it was more than 1.7 and 1.6% well classified points
correspondingly with respect to the results from [10]. As to Problems “sonar” and “g10n”,
the percentage of well-classified points is more than 1 in comparison with the results from
[9,10]. And for the only one Problem “galaxy” the percentage of well-classified points is less
than 0.4 in comparison with the results from [9,10].

We have added n points −vl , l = n+1, . . . , 2n, in the approximation constructed at the
Step 3 of the GSA, and tried to increase the percentage of well-classified points in Problem
“galaxy”. The CPU time of the program implemented with the parameter C = 10 increased
up to 2:29:31.68 and the percentage of well-classified points reached 90.36.

7 Conclusion

In the paper we considered the binary separability problem which consists in splitting two
finite-dimensional sets by means of a sphere. This problem is formulated as minimization
of the classification error function which is nonconvex and nonsmooth. Besides, the error
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function can be represented as a difference of two convex functions, so the problem falls into
D.C. optimization area [13,15].

This feature opens the way of seeking for a global solution to the problem by means of
the Theory of Global Search developed in [13–15]. The core of this theory is constructed
by Global Optimality Conditions (GOC). The suitable for our case formulation of GOC
was mentioned in the paper. On the base of the Theory of Global Search the Global Search
Algorithm has been developed.

The computational testing of developed algorithms has been carried out on well known
classification test problems [22–24] with the tenfold cross-validation technique.

The comparison of computational efficiency of the developed approach has been done
with results from [10]. We plan to continue the comparison in order to have more large field
of testing results. Nevertheless, one can see a comparative effectiveness of global search
algorithm developed above, the implementation of which was a first attempt. We ponder now
about how it can be improved taking into account the promising results of computational
experiments. At the same time we plan to enlarge the field of test examples but till present we
have found only [32], which together with [10] was apparently sufficient for our first attempt
to attack spherical separability.

Acknowledgments The authors expresses gratitude to anonymous referees for theirs valuable remarks in
improving the paper.
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