
J Glob Optim (2016) 65:83–107
DOI 10.1007/s10898-015-0316-1

Balancing mixed-model assembly lines with
sequence-dependent tasks via hybrid genetic algorithm

Qiuhua Tang1 · Yanli Liang1 · Liping Zhang1 ·
Christodoulos A. Floudas2,3 · Xiaojun Cao4

Received: 22 March 2014 / Accepted: 30 May 2015 / Published online: 10 June 2015
© Springer Science+Business Media New York 2015

Abstract Close connections existing among sequence-dependent tasks should be empha-
sized while assembling products within automotive or electronic industries. This paper
addresses the mixed-model assembly line balancing problem with sequence-dependent tasks
with two objectives, the minimization of cycle time and workload variance. A hybrid genetic
algorithm with novel logic strings was proposed to address the problem. First, both the
sequence-dependent connections and precedence relations are integrated into the combined
precedence graph so as to transform the original problem into the single-model assembly
line balancing problem and to decrease the computational complexity. Second, three heuris-
tic factors are hybridized into the process of initialization with the purpose of improving
the quality of initial solution population. Third, considering sequence-dependent tasks, logic
strings are designed to ensure the feasibility of chromosomes during two-point crossover and
insertion mutation operations. Computational studies have demonstrated that the proposed
algorithm can solve problems to near-optimality and even optimality with less computational
effort.

Keywords Mixed-model assembly line balancing · Sequence-dependent tasks ·
Combined precedence graph · Hybrid genetic algorithm · Elite preservation strategy

Supported by Natural Science Foundation of China under Grant Nos. 50875190 and 51275366.

B Qiuhua Tang
tangqiuhua@wust.edu.cn

B Christodoulos A. Floudas
floudas@tamu.edu

1 Industrial Engineering Department, Wuhan University of Science and Technology,
Wuhan 430081, Hubei, China

2 Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA

3 Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
77843, USA

4 Technique Center of Dongfeng Peugeot Citroen Automobile Company,
Wuhan 430056, Hubei, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-015-0316-1&domain=pdf

84 J Glob Optim (2016) 65:83–107

1 Introduction

Anassembly line is a flow-line production system,which is typical in high quantity production
of standardized commodities and low volume production of customized products. Originally,
assembly lines targeted atmass production of single products.With the diversified needs of the
customers, the number of product models began to increase. For example, in the automotive
and electronic industries, the customers hope to buy individualized products according to their
own requirements and affordability, which impels manufacturers to extend the capability of
existing assembly lines so as to produce various products concurrently. In such a context,
mixed-model assembly lines arise. It specializes in assembling a variety of product models
with similar characteristics at the same time.

The single-model assembly line balancing problem (SALB-P) was first proposed and
formulated as a mathematical problem by Salveson [1]. Subsequently, additional product
models are introduced, which leads to the mixed-model assembly line balancing problem
(MMALB-P). MMALB-P needs to make decisions about how to assign all the given tasks
to workstations under the constraints of precedence relations. The MMALB-P is generally
classified into two categories: Type-I, the number of workstations is minimized for a given
cycle time; Type-II, the number of workstations is fixed and the objective is to minimize cycle
time. Type-II is also NP-hard [2–4], but more popular in contemporary enterprises because
it can increase productivity without purchasing new machines or expanding facilities within
existing assembly lines. Hence, Type-II is studied in this paper.

Unlike SALB-P, MMALB-P is much more complicated since it necessitates additional
considerations about interactions among product models. As addressed by several researches
in the last fewdecades [4–7], the task common to severalmodels should be allocated to exactly
one workstation by utilizing the joint precedence graph or combined precedence graph [8–
12]. As for joint precedence graphs, Boysen [12] proposed a modified approach based on
option mix forecasts, which allows for reliable model mix forecasts when product variety
is high. This option-based approach is a better choice in practice in terms of computational
effort and outcome.

As for MMALB-P with sequence-dependency, several contributions can be found, in
which production sequence-dependency, resulting from differences among product models,
is involved. The number of sequence-dependent setups was optimized by Giard and Jeunet
[13] through a cost function. Under the constraint of setup times, Ozturk et al. [14] and
Yolmeh and Kianfar [15] balanced and scheduled flexible mixed-model assembly lines. Due
to facility constraints, tasks belonging to different car types should be processed in one
workstation, and thus the operation of process precision is dependent on the production
sequence [16].Mosadegha and Zandiehb [17] solved the balancing and sequencing problems,
where processing time of each task was station-dependent, so that production sequence
had a great influence on the workload of given workstations and line efficiency. Hamtaa
et al. [18] proposed a new solution method based on the combination of particle swarm
optimization algorithm with variable neighborhood search to solve a single-model assembly
line balancing problem with three objectives. There, the task time depends on worker(s) (or
machine(s)) learning for the same or similar activities and sequence-dependent setup times
existing between tasks. In rare cases, task sequence-dependency within one product model is
considered. In 2006, sequence-dependent assembly line balancing problem of single model
was defined by Scholl et al. [19], where two tasks interact and the task times are influenced due
to strict technological requirements. Note that, the MMALB-P with the sequence-dependent
tasks has not been studied very well. For the sake of industrial applications, this paper focuses
on the MMALB-P with sequence-dependent connections.

123

J Glob Optim (2016) 65:83–107 85

In the past several decades, many approaches such as exact, heuristic algorithm and meta-
heuristic algorithm have been developed to tackle the mixed-model assembly line balancing
problem. Bukchin and Rabinowitch [4] developed an optimal solution procedure based on
a backtracking branch-and-bound algorithm to minimize the sum of costs about stations
and task duplication. Hadi [20] presented a binary goal programming model. Helgeson and
Birnie [21] developed a heuristic approach knownas the ranked positionalweighted technique
(RPWT) which provides near-optimal solutions indeed to reduce computational times. Bock
[22] proposed distributed search procedures by integrating specific aspects relevant to the
automotive industry. To improve the combinatorial optimization capability in discrete search-
space, meta-heuristics were studied in the past decade. Vilarinho and Simaria [6] proposed a
two-stage procedure based on simulated annealing, employing different goals in each stage,
to minimize the number of workstations first for a given cycle time and to balance workloads
between and within workstations then. Simaria and Vilarinho [23] presented an iterative
genetic algorithm-based procedure for solving MMALB-P with parallel workstations, to
maximize the production rate of the line under the pre-determined number of operators. A
generalized Pareto-based scale-independent fitness function genetic algorithm was proposed
by Zhang and Gen [24], where three objectives are introduced: to minimize cycle time,
workload variation and the sum of costs.Manavizadeh et al. [25] introduced amulti-objective
genetic algorithm to solve a mixed-model assembly line problem, considering cycle time and
the number of stations simultaneously. A comparison was carried out between six multi-
objective evolutionary algorithms so as to determine the best method to solve the specific
problem.

Hybrid algorithms represent a significant attempt for solving NP-hard problems in an
effective, reliable and accurate way without any human intervention [26], and are introduced
in this study. Akpinar and Bayhan [27] presented a novel hybrid genetic algorithm by inte-
grating a genetic algorithm with three different heuristics, (1) the RPWT from Helgeson
and Birnie [21], (2) the Kilbridge and Wester heuristic [28], and (iii) phase-I of Moodie
and Young method [29]. Noorul [11] also proposed a hybrid genetic algorithm approach
in which initial solutions were obtained using a modified ranked positional weight method.
These approaches reduce both search space and search time effectively.

In this study, a hybrid genetic algorithm is proposed to solve MMALB-P with sequence-
dependent tasks. This paper is organized as follows: sequence-dependent tasks and their
industrial applications are explained in detail in Sect. 2. Themathematicalmodel ofMMALB-
P with sequence-dependent tasks is presented in Sect. 2.3. The hybrid genetic algorithm is
presented in Sect. 3. The experimental results are discussed and analyzed in Sect. 4. The
conclusions are provided in Sect. 5.

2 Problem formulation

During balancing workloads along assembly lines, there exist certain connections among
sequence-dependent tasks. Such connections have not yet been studied in the literature.

2.1 Sequence-dependent tasks

Close connections, except precedence relations, exist among tasks during the assembly of
products. These connections originate from two phases of operation management as follows.

Phase 1: Each job is divided into one or more tasks. Any task should be the smallest,
indivisible and rational work element of the job, so as to increase the efficiency of the

123

86 J Glob Optim (2016) 65:83–107

Fig. 1 The installation process of glass guide. a Coat soap-suds. b The installation of glass guide. c Pull the
line out

assembly line, and to reduce the operation errors such as missing someminor tasks. After
task division, the precedence relations among tasks are redefined and drawn into the
precedence graph. In this way, each task can be performed complying with the assembly
process strictly. This phase will be done by the process planning department.
Phase 2: Based on given task divisions and precedence relations, the objective is to
balance the workload along the assembly lines. This is performed by the manufacturing
workshop.

Due to the task division, certain connections appear inPhase 2.This is denoted as sequence-
dependent relations in practice, and demonstrated by the following three examples.

Example 1 The glass guide is installed with three tasks as displayed in Fig. 1. Task 1 in
Fig. 1a is to coat soap-suds as lubricant to facilitate the installation of glass guide. Task
2 in Fig. 1b is to install the glass guide immediately. Task 3 in Fig. 1c means to pull the
line out immediately. If task 2 is not performed immediately after task 1, the lubricant will
be dry and useless. Similarly, if task 3 is not performed immediately after task 2, other
workers may touch the soap-suds and thus stain the door. In brief, tasks 1, 2 and 3 should be
performed consecutively in one station, although such constraints have not been defined in
the precedence graph.

Example 2 The fastening clamp plays an important role in fixing the glass on the door. The
installation of the fastening clamp on the glass must be performed before installing the glass
on the door. This relation has been represented in the precedence constraint. However, during
the assembly, if two tasks as shown in Fig. 2, installing the fastening clamp on the glass and
glass on the door, are completed on different workstations, then storage spaces along the
assembly line will double, and the transportation times and costs for transferring glasses
from one workstation to another will increase. Thus, these two tasks should be performed
on the same workstation. Moreover, since the installation of fastening clamp on the glass
is very simple, workers can complete it when they fetch the glass. Thus, these two tasks
are defined as sequence-dependent tasks in practice. Such sequence-dependent connection
between these two tasks should be considered beyond the precedence relation, to ensure that
these two tasks can be performed consecutively, to reduce the walking time of workers on
the production line, and to shorten the subsidiary operation times.

123

J Glob Optim (2016) 65:83–107 87

Fig. 2 The installation process of door glass. a The sub-installation of fastening clamp. b The installation of
door glass

Fig. 3 Assembly body of gear pump

Example 3 In a real industrial operation, the gear pump of an automotive engine is assembled
by 22 components. Sixteen of themwill be left after the simplified treatment of screws, gaskets
and pins. As shown in Fig. 3, six cylinder pins must be assembled immediately to prevent the
pump bonnet from falling down. Such connections also exist in installing gasket and bolts,
and setting up spring, shim and plug screw.

The above examples show that the sequence-dependent tasks take place frequently the
practical assembly, and should be considered during balancing assembly lines.

Moreover, sequence-dependent tasks can be termed as tasks which should performed
consecutively in the same workstation. Considering sequence-dependent tasks, the assembly

123

88 J Glob Optim (2016) 65:83–107

Fig. 4 Precedence graph with sequence-dependent tasks

procedure of the gear pump can be depicted as the precedence graph of Fig. 4, where circles
represent tasks, arrows between tasks stand for precedence constraint and arrows with double
lines highlight sequence-dependent relations between tasks.

If a sequence-dependent relation exists between tasks i and l with i ahead of l, the following
principles must be held during assigning tasks among workstations:

(1) Tasks i and l must be assigned to the same workstation;
(2) Task l must be performed immediately after i , meaning that l has higher priority than

other immediate following tasks of i ;

The notation used in this study is listed in Table 1.

2.2 Problem statement

Generally, the mixed-model assembly line balancing problem of Type-II can be depicted as
Fig. 5, where S stations (j = 1, 2, ..., S) are installed along a unidirectional transportation
system. M(m = 1, 2, ..., M) product models, represented by diamonds, circles and triangles,
are serially assembled along the line at a constant pace, which is defined as cycle time (CT).
Each product model m has dm products and I (i = 1, 2, ..., N) tasks. In addition, each
workstation j can process any task of every product model.

The following assumptions are introduced for the MMALB-P with sequence-dependent
tasks:

• D products from M(M ≥ 2) models are assembled serially.
• Throughout the planning horizon, demands for each model are given and demand propor-

tions qm for each model m can be determined in advance.
• Same tasks in different product models may have different processing times.
• Any task should be allocated to exactly oneworkstation and consequently the task common

to several product models will be performed on one workstation [11]. This will improve
the proficiency of workers and make full use of tools and fixtures in that station.

• The processing time for each task is predetermined and deterministic.
• The allocation of tasks to workstations must comply with cycle time.
• Every task of each product model must be assigned only once, satisfying precedence

relations and sequence-dependent constraints.
• Precedence graphs of all models can constitute a combined precedence graph, which

includes N assembly tasks of M product models.

A combined precedence graph, which converts MMALB-P into SALB-P, is the preferred
approach to depict similarities and differences amongmodels. Figure 6 illustrates the process
of constructing a combined precedence graph, where both sequence-dependent connections

123

J Glob Optim (2016) 65:83–107 89

Table 1 The notations used in this study

Indices

i, l: Task(i, l = 1, 2, . . . , N) j : Workstation(j = 1, 2, . . . , S)

m: Product model(m = 1, 2, . . . , M)

Parameters

N : Number of task tim : Processing time of task i for model m

S: Number of workstations tmin: The minimum task time

M : Number of models tmax: The maximum task time

CT : Cycle time dm : Demand for model m

cr : Crossover rate H : Big value

mr : Mutation rate D: Total demand of all models, D = ∑M
m=1 dm

ti : Processing time of task i in the combined precedence graph, ti = ∑M
m=1 timqm

qm : Proportion of model m, where qm = dm/
∑M

m=1 dm = dm/D

W : The number of available positions in logic strings, and W = ∑N−1
r=1 Positionr

PL: The number of precedence links. If there is a precedence relation between tasks,

a precedence link exists

ylk : Binary variable for precedence relation. If Task l immediately precedes task k,

then ylk equals to 1; otherwise, it is equal to zero

SDil : Binary variable for sequence-dependent connection. If tasks i and l are

sequence-dependent with i ahead of l, then SDil equals to 1; otherwise,

it is equal to zero

I Fi : Immediate following task set of task i , which is derived directly from the

combined precedence graph

Decision variables

T abui =
{
1 if task i has been assigned
0 otherwise

Positionr =
{
1 if the task in r−th position is available to crossover or mutate
0 otherwise

xi j =
{
1 if task i is assigned to workstaion j
0 otherwise

Yi jn =
{
1 if task i is assigned to the nth position of workstaion j
0 otherwise

Dynamic sets

PS: Possible Set representing holding tasks which have no predecessor or all their

predecessors have been allocated

CS: Candidate Set representing holding tasks which satisfy both precedence relations

and sequence-dependent constraints; ykl = 1, SDil = 1, Tabuk = 1, i, l, k ∈ PS

UD: Updating Set representing holding tasks that are available to be updated,

(e.g., i, l ∈ PS, if Tabui = 1, yik = 1 and ylk = 0, then task k can be updated)

FA: Feasible Area, which is between the latest predecessor and the earliest

successor of the mutated task

and precedence relations are included. In Fig. 6a, tasks 4 and 7 are sequence-dependent,
and hence, in the combined precedence graph Fig. 6c, this sequence-dependent relation is
included. For the processing times, and given that the demand ratio between models A and

123

90 J Glob Optim (2016) 65:83–107

Fig. 5 Mixed-model assembly lines balancing

Fig. 6 Precedence graph for: a model A, b model B, c combine precedence graph

Table 2 The processing times
for each model and the combined
model

Task 1 2 3 4 5 6 7 8 9

tA 4 24 21 15 0 8 1 5 9

tB 4 0 0 0 6 2 4 2 9

Weighted ti 4 8 7 5 4 4 3 3 9

B is 1:2, the respective processing times are listed in lines 2 and 3 of Table 2, while the last
line shows the weighted processing time for each task in the combined precedence graph.

2.3 The mathematical model

The MMALB-P with sequence-dependent tasks has two objectives: (a) to minimize the
cycle time and (b) to minimize the workload variance for a given number of workstations.
The primary objective, to promote throughput and increase productivity, is achieved by
minimizing the maximal station time (cycle time) as in Eq. (1). The secondary objective,
to smooth workloads along the whole assembly line and ensure fairness among workers, is
derived by minimizing the workload varianceWV described as Eq. (2).

minCT = max Tj (1)

minWV = 1

S

S∑

j=1

[

Tj − 1

S

(
N∑

i=1

ti

)]2

(2)

where S is the number of givenworkstations, Tj is the j th station time, and ti is the processing
time of task i in the combined precedence graph.

The constraints of the mathematical model are as follows.

S∑

j=1

xi j = 1 ∀i (3)

123

J Glob Optim (2016) 65:83–107 91

N∑

n=1

Yi jn = xi j ∀i, j (4)

S∑

j=1

j · xi j ≤
S∑

j ′=1

j ′ · xi ′ j ′ ∀i,i ′, (
i, i ′

) ∈ P (5)

N∑

n=1

n · Yi jn ≤
N∑

n′=1

n′ · Yi ′ jn′+H × (2 − xi j − xi ′ j) ∀i,i ′, n, n′, j
(
i, i ′

) ∈ P (6)

N∑

i=1

xi j · ti ≤ CT ∀ j (7)

Yi jn − Yl j,n+1 = 0 (i, l) ∈ SD,∀ j, n (8)

xi j ∈ {0, 1} ∀i, j (9)

Yi jn ∈ {0, 1} ∀i, j,n (10)

Equations (3) and (4) ensure that each task is assigned to one position in certain worksta-
tion. Equations (5) and (6) introduce the precedence relationships between tasks represented
by (i, i ′) ∈ P which are satisfied by assuring that task i ′ is performed immediately after
task i , no matter whether the immediate following and preceding tasks are allocated to the
sameworkstation or not. Equation (7) imposes that the cycle time is themaximal station time.
Equation (8) guarantees that the sequence-dependent tasks i and l are performed sequentially
in the same workstation. Equations (9) and (10) are general integrality restrictions.

3 The hybrid genetic algorithm

Genetic algorithm (GA), a stochastic searching algorithm inspired by the natural evolu-
tion rule, was introduced by Holland [30]. Being able to search for near optimal solutions
efficiently, GA is widely used to address NP-hard problems in many areas, for example,
robotics, automatic control, artificial life, image processing, combinatorial optimization and
production scheduling.

The hybrid GA starts with an initial population of a set of feasible solutions represented
by chromosomes, which will be decoded according to processing times and cycle time, and
then be evaluated by a fitness function representing a quality measure of each individual. To
search for optimal or near optimal solutions, the selection process is carried out iteratively. A
new chromosome is generated through two important operators: crossover and mutation. The
crossover operator combines two selected chromosomes by exchanging part of them based
on randomly selected cut points, while the mutation operator mutates one or more randomly
selected parts. The flow chart of the hybrid GA is shown in the middle column of Fig. 7. It
includes the following steps.

Step 1. Population initialization: formulate initial population of chromosomes.
Step 2. Individual decoding: assign tasks to ordered workstations.
Step 3. Fitness evaluation: evaluate each individual.
Step 4. Selection: choose individuals with higher fitness under an elite preservation
strategy and to preserve best individuals into next generation.
Step 5. Crossover: combine two chromosomes for generating offspring.
Step 6. Mutation: produce offspring.

123

92 J Glob Optim (2016) 65:83–107

Fig. 7 Flowchat of hybrid GA for MMALB-P with sequence-dependent tasks

Step 7. Fitness evaluation: evaluate each individual of new generation.
Step 8.Termination criteria: end the procedure if certain termination criteria, such as
predetermined number of generation, have been satisfied. Otherwise, go to step 4.

Due to multiple product models being involved, the combined precedence graph of all
assembledproductmodels should be employed, so that precedence constraints of eachproduct
model can be satisfied. This is represented by the right column in Fig. 7. Moreover, as
exhibited by the left column in Fig. 7, logic strings are designed to avoid violating sequence-
dependent relations between tasks during the crossover and mutation operations, and three
novel heuristic factors are introduced to speed up the process of initialization.

3.1 Initialization

A high quality initial population can reduce the computational effort, especially for large-
scale industrial applications. Hence, it is important to generate high quality initial solutions.
A task needs to be selected from the current set, and one of several alternative task selection

123

J Glob Optim (2016) 65:83–107 93

Table 3 Criteria for selecting
tasks

No. Rule for tasks Decision criteria

1 RPWT Ranked positional weight technique

2 T Maximum task processing time

3 N Minimum task number

4 IS Maximum number of immediate successors

5 TS Maximum number of total successors

6 ATS Maximum average time of successors

7 RT Uniformly random

8 wi Synthesis Weights

rules will be used to choose the task. The decision criteria used to select the next task are
presented in Table 3, which displays an adaptation to this problem of 7 well-known priority
rules and random selection. These rules are determined either by task processing times, the
number of immediate successors, precedence relations, cycle time, or by their combinations.
For instance, the ranked positional weight technical (RPWT), associated with the task and
its immediate following tasks, was calculated in Helgeson and Birnie [21] so that tasks could
be allocated to the lowest numbered feasible stations at descending order of the positional
weight. Moodie and Young [29] employed two matrices P (immediate predecessors) and F
(immediate successors) to determine the available tasks for assigning based on the maximum
task processing time rule.

In this study, the synthesis weights of tasks are calculated based on three heuristic factors:
(a) processing times ti introduced by Tonge [31], (b) the number of immediate successors I Fi
suggested by Helgeson and Birnie [21], and the number of updated tasks for task i , defined
as UDi , is proposed here so that tasks with larger number of updated tasks can be selected
with higher priority.

Based on these three heuristic factors and their weighted modulus, λ1, λ2 and λ3, the
synthesis weight of each task can be calculated by Eq. (11), where λ1 + λ2 + λ3 = 1.

wi = λ1
ti

∑
i ′∈CS ti ′

+ λ2
UDi

∑
i ′∈CS UDi ′

+ λ3
IFi

∑
i ′∈CS IFi ′

,∀i ∈ CS (11)

The task with largest synthesis weight is selected. The proposed approach for generating
initial feasible solutions is as follows.

Step 1: Select tasks which have no predecessors or all their predecessors have been allo-
cated form the possible set PS according to Eq. (12);

Predecessork =
N∑

i=1

Pik (12)

where, Predecessork is equal to the sum of unallocated predecessors of task k at given time.
Note that, only if Predecessork equals to zero, then task k can be selected into the possible
set PS.

Step 2: Derive the candidate set CS from the possible set PS, excluding tasks that do not
meet the sequence-dependent constraints: ykl = 1, SDil = 1, Tabuk = 1, (i, l, k) ∈ PS.

Step 3: If CS is empty, (i.e., all tasks are selected) then stop; otherwise, go to step 4;
Step 4: Calculate the synthesis weights of all tasks in CS by Eq. (12), select the task

with the largest wi , and then append it into the task sequence. If there are several tasks with

123

94 J Glob Optim (2016) 65:83–107

Fig. 8 Formulating feasible task sequence. a Precedence matrix. b Generation of chromosome sequence

the largest synthesis weight, then select one task randomly. According to the assignment
principles about sequence-dependent tasks, two scenarios exist:

(1) If SDik = 1 and ylk = 1, then task l has higher priority than task i ;
(2) If SDik = 1 and Tabui = 1, then task k must be selected next; for example, in the 3rd

column in Fig. 8b, task 7 must be allocated immediately after task 4.

Step 5: Update PS and CS by removing the selected task and adding new tasks which
meet Eq. (12); go to step 3 until termination conditions are satisfied (i.e., sets PS and CS are
vacant).

As an example, consider the precedence matrix of Fig. 6c which is shown in Fig. 8a.
The number “1” represents that the line is the immediate predecessor of the column, and
number “2” shows that the tasks in the line are sequence-dependent to those in the column.
By updating the possible set PS and candidate set CS, and appending new possible tasks
iteratively, a feasible task sequence is obtained gradually from the selected task ST , as
depicted in Fig. 8b.

3.2 Chromosome code and decode

Through the process of initialization outlined in Sect. 3.1, all tasks are ordered into a feasible
sequence as represented by (1,2,3,4,7,5,6,8,9) in Fig. 8b. This chromosome simulates the task
sequence performed on all ordered stations, without information about the task assignment.
To further ascertain the task assignment on each workstation, this chromosome needs to be
decoded. Based on the real number coding and decoding processes introduced by Simaria
and Vilarinho [23], we apply the process of decoding chromosomes for the minimization of
cycle time CT and workload variance WV concurrently:

Step 1: Compute the theoretical minimum cycle time, and set it to CT ;

CT = 1

S

N∑

i=1

ti

Step 2: (a) If no sequence-dependent task is involved, allocate tasks in the feasible
sequence to stations from 1st to (S − 1)th so that each station time does not exceed
CT ; (b) If tasks i and l are sequence-dependent with i ahead of l,(i.e., SDil = 1), assign
tasks i and l simultaneously to the same workstation from 1st to (S − 1)th; (c) Allocate
all the remaining tasks to the last workstation S;

123

J Glob Optim (2016) 65:83–107 95

Fig. 9 Coding and decoding
process

Step 3: Calculate the workstation time Tj (j = 1, 2, . . . , S) and current cycle time CT ,
CT = max(Tj | j = 1, 2, . . . , S);
Step 4: The first task or sequence-dependent tasks, which is/are located in the 1st and 2nd
positions in each station (1st station excluded), are reallocated to the current immediate
preceding station, and we calculate the new workstation time T ∗

j and new cycle time
CT ∗ = max(T ∗

j | j = 1, 2, . . . , S − 1);
Step 5: IfCT ≤ CT ∗, theminimum cycle timeCT for the given chromosome is obtained;
otherwise, go to Step 2.

The schematic coding and decoding process are shown as Fig. 9.

3.3 Tournament selection with elitism

Selection strategies have different effects on the performance of GA. Generalized selection
rules include: proportion selection, level selection, tournament selection, and elite preserva-
tion strategy. In this work, two selection mechanisms, elite preservation strategy [32,33] and
tournament selection [34–36] have been applied together, and it is executed with two steps:

Step 1: Best individuals from 15% of the whole population size are inherited directly
into the next generation.
Step 2: The rest of individuals are generated by tournament selection, which is executed
as follows.

(1) Determine the tournament size ts. Here ts = 2. And the selection times st = P/2;
(2) Randomly choose individuals from the current populations;
(3) Compare the objective function value of the selected individuals and choose better

chromosome into the next generation.

With the combination of elite preservation strategy and tournament selection, on the one
hand, elite preservation strategy aims at attaining that the final population contains the best
solutions ever found, because the best individuals at each generation are preserved avoiding
the loss of best individuals. On the other hand, the tournament selection has no requirement
on the fitness value, and it has randomness to some extent.

3.4 Crossover operator

The crossover operator generates new offspring by exchanging contiguous sections of the
chromosomes of parent solutions, so that offspring chromosomes inherit features from par-
ents. In this paper, a two-point crossover is adopted.

In the process of a two-point crossover, first, any two chromosomes are chosen from
the population as parents, and then two points are selected as the cut points. Note that, the

123

96 J Glob Optim (2016) 65:83–107

Fig. 10 Crossover operator. a And operation between logic strings. b Two-points cross over

feasibility of the cut points needs to be verified because sequence-dependent tasks must be
performed successively.

3.4.1 Logic string

For sequence-dependent connections between tasks, the following logic string (see Fig. 10a)
is proposed.

Step 1: Choose any two chromosomes from the population as parents P1 and P2;
Step 2: For each parent P1 and P2, set posi tionr = 1(r = 1, 2, . . . , N−1) if sequence-
dependent tasks are not involved. Otherwise, set posi tionr = 0.
Step 3: Carry out logic “AND” operations between these two logic strings (i.e.,
posi tionr = posi tion1r ∩ posi tion2r), resulting in posi tionr = 1 only when both of
them are equal to one. Thus, the position with the value of 1 is available for crossover;
and the number of available positions is calculated by equation W = ∑N−1

r=1 posi tionr .

3.4.2 Two-point crossover operator

After available positions have been indicated by logic strings, two positions are randomly
selected as the cut points. Each of them divides the parent into three parts: the front (F),
middle (M) and back (B). From one parent (P1), the F and B parts are inherited directly
into the same positions of offspring O1, and these elements from the other parent (P2) are
removed subsequently, and the remaining elements of P2 are copied and placed in the M
part of O1 in the same order in P2, so the offspring O1 is generated [15,27]. Similarly, the
offspring O2 can be generated.

Note that O1 and O2 are feasible because the task sequence in the middle part has not
been changed. The crossover process is shown in Fig. 10b.

3.5 Mutation operator

To avoid convergence to a local optimum and generate new chromosomes, the mutation
operator is used. In general, mutation is applied with smaller probability. The mutation
operator randomly alters the composition of a chromosome to produce a new offspring,
instead of recombining two strings. Herdy [37] proposed four operators: insertion, recip-
rocal exchange, inversion and displacement. In this article, the insertion mutation is
employed.

123

J Glob Optim (2016) 65:83–107 97

Fig. 11 Mutation operator. a Without sequence-dependent tasks. b With sequence-dependent tasks

During the insertion mutation operation, first, one chromosome is randomly selected
from the population as parent, and then one task is randomly chosen as the mutated task. In
order to ensure the feasibility of the population under the constraints of sequence-dependent
connections, logic strings are defined first.

3.5.1 Logic string

The logic string shown in Fig. 11 is introduced and generated by the following steps:

Step 1: Choose a chromosome from the population as the parent;
Step 2: In the chromosome, set posi tionr = 1(r = 1, 2, . . . , N − 1) and randomly
select task i in position r as the mutated task, and set posi tionr−1 + posi tionr = 0.
There are two cases:

Case 1: without sequence-dependent tasks
If no sequence-dependent task exists (i.e., SDik = 0,∀k), determine the feasible area (FA)

of themutated task according to its latest predecessor and earliest successor; set posi tionn =
0 when (n /∈ FA) and select exactly one position from those posi tionn = 1(k ∈ FA) .

Case 2: with sequence-dependent tasks
If (SDik = 1 or SDkl = 1,∀k), determine the feasible area (FA) ranging from the latest

predecessor and the earliest successor of tasks i and k, and set posi tionn = 0(n /∈ FA).
Note that, the logic string is obtained and the number of available positions W can be

calculated.

3.5.2 Insertion mutation

Upon generation of the available positions, one position from W is randomly selected as the
insertion point. There are two cases:

Case 1: without sequence-dependent tasks
If no sequence-dependent relation exists between tasks i and others, insert i into the

insertion position. For instance, in Fig. 11a task 2 is selected as themutation point. According
to the combined precedence graph of Fig. 6c, tasks 1 and 6 are the immediate proceeding
and following task of task 2, respectively.

Case 2: with sequence-dependent tasks
If a sequence-dependent relation exists between tasks i and k, insert these two tasks into

the insertion position. This approach ensures that both precedence constraints and sequence-
dependent relations are satisfied. For instance, in Fig. 11b, task 4 is selected as the mutation
point, and tasks 3 and 8 are their latest preceding and earliest following tasks of the sequence-
dependent tasks 4 and 7.

123

98 J Glob Optim (2016) 65:83–107

Fig. 12 Modified Sawyer 30 with sequence-dependent tasks

Table 4 Processing times and weighted average task times for Sawyer 30

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

tA 9.5 1.3 4.8 3.3 1.5 4.5 3.6 0 12.3 0.0 2.5 4.3 6.5 1.7 7.0

tB 9.5 1.3 4.8 3.3 1.7 4.1 3.6 2.0 12.3 8.0 2.5 4.3 0.0 1.7 7.0

Weighted ti 9.5 1.3 4.8 3.3 1.58 4.34 3.6 0.8 12.3 3.2 2.5 4.3 3.9 1.7 7.0

Task 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

tA 1.4 7.8 2.9 1.6 7.0 8.7 3.9 6.4 2.8 8.5 6.7 1.9 9.9 4.6 4.0

tB 1.4 7.8 2.9 1.6 7.0 8.7 4.1 6.4 2.7 8.5 6.7 1.9 9.9 0.0 4.2

Weighted ti 1.4 7.8 2.9 1.6 7.0 8.7 3.98 6.4 2.76 8.5 6.7 1.9 9.9 2.76 4.08

4 Computational studies and results

4.1 Benchmark case studies

To evaluate the performance of the proposed hybrid genetic algorithm for MMALB-P with
sequence-dependent tasks, 5 benchmark case studies including Thomopoulos 19, Sawyer 30,
Lutz 32, Tonge 70 and Arcus 111 from Scholl [38] are investigated. These data sets can be
downloaded from http://www.assembly-line-balancing.de. Data about demand ratios among
models are taken from Kim and Kim [39,40].

To integrate the sequence-dependent tasks into the benchmark case studies, each of them
has been modified. For example, in Sawyer 30 as shown in Fig. 12, 30 tasks exist in the
combined precedence graph, the number of workstations is three, two models A and B are
assembled, and the demands for eachmodel are 300 and 200 units, respectively. Subsequently,
three sequence-dependent task pairs (5, 6), (14, 20) and (24, 25) are appended. In addition,
the processing time for every task of each model and the weighted average processing times
are listed in Table 4.

4.2 Implementation and parameter settings

The proposed hybrid genetic algorithm is implemented with visual C++, and carried out on
a PC with AMD Sempron LE-1250 processor and 512MB of Ram.

Related parameters are shown in Table 5, where N , M and P represent the number of
tasks of the combined precedence graph, the number of models and the population size,
respectively. The last two columns denote crossover rate (cr) and mutation rate (mr).

Note that as the number of tasks increases, then the population size increases.

123

http://www.assembly-line-balancing.de

J Glob Optim (2016) 65:83–107 99

Table 5 The parameters of
tested problems

Problem N M P cr mr

Thomopoulos 19 3 100 0.6 0.1

Sawyer 30 3 100 0.6 0.1

Lutz 32 3 100 0.6 0.1

Tonge 70 4 200 0.6 0.1

Arcus 111 5 300 0.6 0.1

Fig. 13 Initialization comparision of four approaches

4.3 Comparison of different initializations

In Sect. 3.1, the proposed algorithm is initialized by hybridizing 3 predesigned heuristic
factors. To test its performance, the case study of Sawyer 30 which features 30 tasks that
must be allocated to 5 stations (see Fig. 13), is initialized by four approaches, respectively:
(1) the proposed heuristic initialization, (2) random initialization, (3) the task with largest
processing time first, and (4) the task with the largest number of successors first.

With each approach, this case study was run 100 times, and thus derived 100 results about
cycle time, which are denoted by bullet symbol, asterisk symbol, square box symbol and
times symbol, respectively in Fig. 13. The obtained results are different even with the same
approach. The mean values of these 400 results are represented by four horizontal lines.

For this problem, the average and standard deviation of each approach are reported in
Table 6. From this table, we can observe that the average of the heuristic initialization is
30.4820, which is less than 31.3324, 31.0964 and 31.0902 from the other three approaches,
although the standard deviation is larger than that of other three approaches.

In addition, the significance of the differences between the average results are analyzed
with Students t test. And the significance and confidence intervals of the t test results are
reported in Table 7, where significance is the probability that the observed value of CT could
be as small or smaller by chance under the null hypothesis that the mean of CT obtained by
H is equal to that by R/P/S. ci is a 95% confidence interval for the true difference in means.
The result h = 1 means that the null hypothesis is rejected. For example, in the comparison
between the heuristic initialization andmaximum processing time, the significance is 0.0061,
whichmeans that by chance the observed values aremore extreme than the one in this example

123

100 J Glob Optim (2016) 65:83–107

Table 6 The average and standard deviation of each approach

Initialization
method

Heuristic
Initialization (H)

Random
initialization (R)

Maximum
processing time
(P)

Maximum number
of immediate
successors (S)

Average 30.4820 31.3324 31.0964 31.0902

Standard
deviation

1.8357 1.2463 1.2410 1.4803

Table 7 The significance and
confidence interval of the t test
results

Comparison h sig ci

H & R 1 1.7017e−004 −1.2880 −0.4128

H & P 1 0.0061 −1.0514 −0.1774

H & S 1 0.0106 −1.0732 −0.1432

Table 8 Task assignment of modified Sawyer 30

Station Tasks Ti Model A Model B

Tasks Ti Tasks Ti

1 10,2,3,12,16,13,14,20 27.60 2,3,12,16,13,14,20 27.00 10,2,3,12,16,14,20 22.3

2 15,24,25,17,18 28.96 15,24,25,17,18 29.00 15,24,25,17,18 28.90

3 21,1,5,6,22 28.10 21,1,5,6,22 28.10 21,1,5,6,22 28.10

4 4,19,7,8,23,9 28.00 4,19,7,23,9 27.20 4,19,7,8,23,9 29.20

5 26,27,28,11,29,30 27.84 26,27,28,11,29,30 29.60 26,27,28,11,30 25.20

in only 61 of 10,000 similar experiments. And a 95% confidence interval on the mean is
[−1.0514, −0.1774]. All these computational studies show that the heuristic initialization
outperforms other three approaches.

4.4 Validation studies

With the proposed hybrid genetic algorithm, the case study of Sawyer 30 (see Fig. 12) was
solved and the corresponding task assignment result is shown in Table 8.

Note that all sequence-dependent tasks, represented by italic numbers, have been assigned
sequentially into the same workstation.

To verify the convergence of the proposed algorithm, the average and best solutions of
workload variances (WV) of 100 generations are employed and illustrated in Figs. 14 and 15.
Note that, the horizontal axis represents generations and the vertical axis depicts theworkload
variances (WV). (WV is in logarithmic scale).

It can be seen in Fig. 14 that the average workload variances of four out of the five cases,
(except Archus 111), reduce progressively and almost stabilize after the 40th generation. For
the largest case, Archus 111, its average workload variance fluctuates among 100 genera-
tions, implying that more generations are required for such large-scale case studies. Further
experiments show that Archus 111 stabilizes after the 150th generation.

123

J Glob Optim (2016) 65:83–107 101

Fig. 14 Convergence of average workload variance

Fig. 15 Convergence of best solutions

Figure 15 depicts the best solutions and it can be seen that four cases, except Sawyer 30,
show distinct convergence. For Sawyer 30, its bestWV value is 0 and so no natural logarithm
exists.

It should be pointed out that the MMALB-P with sequence-dependent tasks has not been
addressed in the literature. The mathematical model of Eqs. 1–10 is A Mixed-Integer Linear
Programming (MILP) problem and each case of themodified five cases has been solved using
the General Algebra Modeling System (GAMS/CPLEX). The computational time is set to
3days and all case studies were solved to optimality. Hence, the obtained solutions from the
MILP model through GAMS/CPLEX represent the global optimum solutions.

From the comparison of the two approaches shown in Table 9, the relative gap is small for
most cases, especially for Sawyer 30 with three workstations, Tonge 70 with 23 workstations
and Arcus 111 with 23 workstations; the relative gaps are as low as 0. Furthermore, for
several cases including Thomopoulos 19, Tonge 70 with three workstations, and Arcus 111
with three workstations, their relative gaps are less than 1%. Finally, the largest relative gap
is less than 10%.

Through the comparison between the hybrid genetic algorithm and MILP model using
GAMS/CPLEX, we can conclude that although the objective CT obtained by the hybrid
genetic algorithm is not as good as that of GAMS/CPLEX, the relative gaps are small,

123

102 J Glob Optim (2016) 65:83–107

Ta
bl
e
9

C
om

pa
ri
so
n
re
su
lts

of
th
e
pr
op
os
ed

ge
ne
tic

al
go
ri
th
m

an
d
th
e
M
IL
P
m
od
el
us
in
g
G
A
M
S/
C
PL

E
X
(w

ith
se
qu
en
ce
-d
ep
en
de
nt

ta
sk
s)

Pr
ob
le
m

S
Se

qu
en
ce
-d
ep
en
de
nt

ta
sk
s

T
he

pr
op
os
ed

hy
br
id

ge
ne
tic

al
go

ri
th
m

M
IL
P
m
od

el
us
in
g

G
A
M
S/
C
PL

E
X

R
el
at
iv
e
ga
p

of
C
T
(%

)

C
T

C
PU

T
im

e(
s)

C
T

C
PU

T
im

e(
s)

T
ho

m
op

ou
lo
s
19

(3
:2
:1
)

3
(3
,9
),
(1
1,
14

)
1.
89

0.
16

1.
88

3
0.
33

0.
37

Sa
w
ye
r
30

(1
:1
:1
)

3
(5
,6
),
(1
4,
20

),
(2
4,
25

)
10

8
25

.2
8

10
8

46
.3
5

0

12
30

62
.4
2

29
10

5.
14

3.
45

L
ut
z
32

(1
:1
:1
)

8
(6
,7
),
(1
2,
13

),
19

02
61

.4
8

18
36

19
0.
28

3.
59

(1
7,
19

),
(2
7,
28

)

To
ng

e
70

(1
:1
:1
:1
)

3
(6
,8
),
(3
,6
8)
,

11
78

21
7.
22

11
70

12
,3
27

.2
4

0.
68

8
(2
3,
33

),
(3
5,
36

),
45

5
25

7.
23

43
9

15
,4
07

.8
9

3.
64

13
(6
4,
65

)
28

9
13

4.
84

27
2

18
,9
34

.5
2

6.
25

18
22

7
15

3.
44

21
6

21
,0
63

.8
5

5.
09

23
21

6
18

2.
77

21
6

67
,3
48

.1
2

0

A
rc
us

11
1
(1
:2
:4
:5
:8
)

3
(2
,3
),
(1
4,
24

),
48

,2
88

36
2.
25

48
,2
85

.3
5

17
6,
43

5.
67

0.
00

5

8
(4
3,
49

),
(5
7,
65

),
19

,1
21

.5
47

0.
25

18
,1
07

.1
19

4,
67

5.
35

5.
60

13
(7
2,
74

),
(7
5,
79

),
11

,5
45

79
2.
83

11
,3
03

.9
21

4,
63

7.
94

2.
13

18
(1
02

,1
06

)
84

38
10

91
.8
8

82
34

23
4,
76

1.
21

2.
48

23
66

15
11

10
.5
3

66
15

25
9,
20

0
0

123

J Glob Optim (2016) 65:83–107 103

and the CPU time is much less. For example, as for Arcus 111 with 23 workstations, the
CPU time of GAMS/CPLEX is as long as 259,200s, while that of hybrid genetic algorithm
is 1110.53 s. Hence, the hybrid genetic algorithm has better computational efficiency than
GAMS/CPLEX. These comparisons illustrate that the proposed hybrid genetic algorithm
is effective and efficient for solving mixed-model assembly line balancing problem with
sequence-dependent tasks.

4.5 Other performance metrics

To further compare the performance, three other metrics are employed: (a) single-point
crossover & random initialization (SC&RI), (b) single-point crossover & heuristic initializa-
tion (SC&HI), and (c) two-point crossover & random initialization (TC&RI). Comparisons
are introduced with other existing best solutions in the literature. Similar to Sect. 4.4, the
number of workstations for each case is changed so as to expand the original five cases into
14 case studies.

To describe the problem complexity, other evaluation indicators are introduced to measure
the computational complexity, which are order strength (OS), flexibility ratio (FR), west ratio
(WR), time interval (TI) and weighted efficiency (WE) respectively.OSmeasures the relative
number of precedence relations in the combined precedence graph, and problems with higher
values of order strength, holding intensified constraints, are typically more difficult to assign
tasks. FR is equal to one minus the order strength.WR represents the average number of tasks
per station. TI, defined as the time interval measure, is a two-part expression indicating the
range of task times relative to the cycle time. The last evaluation indicator,WE, is introduced
to further measure the performance of the assembly line. All five evaluation indicators are
calculated as follows:

OS = 2PL

N (N − 1)
, FR = 1 − OS, WR = N

S
, TI =

[
tmin

CT
,
tmax

CT

]

,

WE =
M∑

m=1

(
qm · ∑N

i=1 tim
S · CT

)

As demonstrated in Table 10,OS and FR are the same as long as the combined precedence
graph is predefined, and the west ratios decrease while the time intervals increase with the
number of workstations.

As for the quality of the obtained solutions, eight out of 14 instances outperform the
current best solutions, which are cited from literature [38].

Moreover, comparedwith three initialization and crossover approaches of SC&RI, SC&HI
and TC&RI, it can be observed that the TC&HI in the proposed algorithm, leads into better
solutions for 10 out of 14 instances. It can be seen that the two objectives of cycle time and
workload variance are much less, and the weighted efficiency is higher.

5 Conclusions and future research

In real practical production, sequence-dependent tasks are common inmixed-model assembly
lines such as automotive and electronic industries, although few studies have been published.
In this study, the mathematical model of the mixed-model assembly line balancing problem
with sequence-dependent tasks was formulated. A hybrid genetic algorithm has been pro-
posed to solve the mixed-model assembly line balancing problem with sequence-dependent

123

104 J Glob Optim (2016) 65:83–107

Ta
bl
e
10

C
om

pu
ta
tio

na
lc
om

pl
ex
ity

an
d
m
ea
su
re
m
en
tp

er
fo
rm

an
ce

(w
ith

ou
ts
eq
ue
nc
e-
de
pe
nd

en
tt
as
ks
)

Pr
ob
le
m

Pa
ra
m
et
er

C
om

pu
ta
tio

na
l

co
m
pl
ex
ity

Pr
op
os
ed

hy
br
id

ge
ne
tic

al
go
ri
th
m

C
ur
re
nt

be
st

so
lu
tio

n

R
el
at
iv
e

G
ap

(%
)

SC
&
R
I

SC
&
H
I

T
C
&
R
I

T
C
&
H
I

S
G
en
e

O
S

FR
W
R

T
I

C
T

W
V

W
E

C
T

W
V

W
E

C
T

W
V

W
E

C
T

W
V

W
E

C
T

T
ho
m
op

ou
lo
s

19
(3
:2
:1
)

3
10
0

0.
13
5

0.
86
5

6.
33
3

0.
49

1.
89

2.
22

×
10

−5
0.
99
6

1.
89

2.
22

×
10

−5
0.
99
6

1.
89

2.
22

×
10

−5
0.
99
6

1.
89

2.
22

×
10

−5
0.
99
6

1.
89

0

Sa
w
ye
r3
0

(1
:1
:1
)

3
10
0

0.
14
5

0.
85
5

10
0.
51

10
8

0
1.
00

10
8

0
1.
00

10
8

0
1.
00

10
8

0
1.
00

10
8

0

12
2.
5

0.
83

30
4.
5

0.
90
0

30
4.
5

0.
90
0

30
4.
5

0.
90
0

30
3.
66
7

0.
90
0

28
7.
14

L
ut
z
32

(1
:1
:1
)

8
10
0

0.
14
1

0.
85
9

4
0.
75

18
74

64
24
.5
0

0.
95
0

18
60

47
12
.7
5

0.
95
0

18
60

47
12
.7
5

0.
95
0

18
60

47
12
.7
5

0.
95
0

18
60

0

To
ng
e
70

(1
:1
:1
:1
)

3
20
0

0.
06
5

0.
93
5

23
.3
3

0.
13

11
78

32
.6
66
7

0.
99
3

11
70

0.
22
2

0.
99
9

11
78

32
.6
66
7

0.
99
3

11
70

0.
22
2

0.
99
9

11
70

0

8
8.
75

0.
35

45
6

25
8.
93
8

0.
96
2

44
9

93
.2
6

0.
97
7

44
9

93
.2
6

0.
97
7

44
1

1.
69

0.
99
5

43
9

0.
46

13
5.
38
5

0.
55

28
5

19
6.
61
5

0.
94
7

27
7

15
.5
39

0.
97
5

27
7

15
.5
39

0.
97
5

27
7

15
.5
39

0.
97
5

27
1

2.
21

18
3.
88
9

0.
70

22
1

17
0.
55
6

0.
88
2

21
6

12
1.
33
3

0.
90
3

22
1

17
0.
55
6

0.
88
2

20
5

25
.8
89

0.
95
1

19
6

4.
59

23
3.
04
3

0.
91

17
0

65
.4
33

0.
89
8

17
0

65
.4
33

0.
89
8

17
1

87
.4
62

0.
89
2

16
9

30
.6
73

0.
90
3

15
6

8.
33

A
rc
us

11
1

(1
:2
:4
:5
:8
)

3
30
0

0.
01
5

0.
98
5

37
0.
11

48
29
4.
5

42
.0
21

0.
99
9

48
28
7.
1

2.
29
6

0.
99
9

48
28
7.
1

2.
29
6

0.
99
9

48
28
6.
9

3.
89
3

0.
99
9

50
13
3

−0
.0
4

8
13
.8
8

0.
30

18
49
5.
9

57
03
0.
6

0.
97
9

18
49
5.
9

57
03
0.
6

0.
97
9

18
19
5.
1

33
98
.4

0.
99
5

18
19
5.
1

33
98
.4

0.
99
5

18
80
0

−0
.0
3

13
8.
53
8

0.
49

11
69
3

23
41
47

0.
95
3

11
69
3

23
41
47

0.
95
3

11
54
2

14
23
35

0.
96
5

11
54
2

14
23
35

0.
96
5

11
57
0

−0
.2
4

18
6.
16
7

0.
67

84
54

58
45
4.
26

0.
95
2

84
54

58
45
4.
26

0.
95
2

84
54

58
45
4.
26

0.
95
2

84
38

40
93
5.
7

0.
95
4

83
76

7.
35

23
4.
82
6

0.
84

67
54

38
13
6.
7

0.
93
2

67
54

38
13
6.
7

0.
96
8

67
54

38
13
6.
7

0.
93
2

66
15

27
09
2.
6

0.
95
2

66
15

0

123

J Glob Optim (2016) 65:83–107 105

tasks. And the objective is to minimize the cycle time and workload variance simultaneously,
considering that sequence-dependent tasks should be allocated to the same workstation. The
contributions of this paper are as follows.

(1) The initial population is improved by hybridizing three heuristics: processing time,
number of immediate successors and number of updated tasks. Additionally, with respect
to these three heuristic factors, the synthesis weight wi of task i was used to calculate
the weight of each task in the possible set PS, in which λ1, λ2 and λ3 are introduced as
weights for the three terms, respectively.

(2) During the initialization, encoding & decoding and genetic operators, the precedence
constraints and sequence-dependent relations are considered.

(3) Novel logic strings are introduced for dealing with sequence-dependent relations during
crossover and mutation operations to guarantee the feasibility of solutions.

(4) Numerous computational experiments demonstrate that the quality of initial feasible
solution has been improved by hybridizing those three heuristics. The best and average
solutions converge fast to the near-optimal or even optimal solutions. Finally, the objec-
tiveCT and CPU time are compared between the hybrid genetic algorithm and theMILP
model solved to optimality using GAMS/CPLEX. All the comparison results illustrate
that the proposed hybrid genetic algorithm functions effectively and efficiently for the
given problem.

Although the computational studies indicate that the hybrid genetic algorithm is effective
and efficient, there are still more improvements for the mixed-model assembly line balancing
problem with sequence-dependent tasks. There are several research directions that can be
studied in future. Firstly, the deterministic processing times for each task, can be extended to
stochastic cases. Secondly, the assembly linemay be extended toU-type /Two-sided assembly
line systemswhich are common in practice. Finally, the algorithm can be combinedwith other
algorithms, such as simulated annealing, ant colony algorithm and so on.

Acknowledgments The authors would like to say thanks to the Computer-Aided Systems Laboratory of
Princeton University and Dongfeng Peugot Citroen Automobile Company.

References

1. Salveson, M.E.: The assembly line balancing problem. J. Ind. Eng. 6, 18–25 (1955)
2. Scholl, A.: Balancing and Sequencing of Assembly Lines, 2nd edn. Physica, Heidelberg (1999)
3. Wee, T.S., Magazine, M.J.: Assembly line balancing as generalized bin packing. Oper. Res. Lett. 1, 56–58

(1982)
4. Bukchin, Y., Rabinowitch, I.: A branch-and-bound based solution approach for themixed-model assembly

line-balancing problem forminimizing stations and task duplication costs. Eur. J. Oper. Res. 174, 492–508
(2006)

5. Merengo, C., Nava, F., Pozzctti, A.: Balancing and sequencing manual mixed-model assembly lines. Int.
J. Prod. Res. 37, 2835–2860 (1999)

6. Vilarinho, P.M., Simaria, A.S.: A two-stage heuristic method for balancing mixed-model assembly lines
with parallel workstations. Int. J. Prod. Res. 40, 1405–1420 (2002)

7. Boysen, N., Fliedner, M., Scholl, A.: Assembly line balancing: Which model to use when? Int. J. Prod.
Econ. 111, 509–528 (2008)

8. Thomopoulos, N.T.: Mixed-model line balancing with smoothed station assignments. Manag. Sci. 16,
593–603 (1970)

9. Macaskill, J.L.C.: Production-line balancing for mixed-model lines. Manag. Sci. 19, 423–434 (1972)
10. Van Zante-de Fokkert, J., de Kok, T.G.: Themixed andmulti model line balancing problem: a comparison.

Eur. J. Oper. Res. 100, 399–412 (1997)

123

106 J Glob Optim (2016) 65:83–107

11. Noorul, A., Jayaprakash, J., Rengarajan, K.: A hybrid genetic algorithm approach to mixed-model assem-
bly line balancing. Int. J. Adv. Manuf. Technol. 28, 337–341 (2006)

12. Boysen, N., Fliedner, M., Scholl, A.: Assembly line balancing joint precedence graphs under high product
variety. IIE Trans. 41, 183–193 (2009)

13. Giard, V., Jeunet, J.: Optimal sequencing of mixed-models with sequence-dependent setups and utility
workers on an assembly line. Int. J. Prod. Econ. 123, 290–300 (2010)

14. Ozturk, C., Tunali, S., Hnich, B., Ornek, M.A.: Simultaneous balancing and scheduling of flexible mixed-
model assembly lines with sequence-dependent setup times. Electron. Notes Discrete Math. 36, 65–72
(2010)

15. Yolmeh, A., Kianfar, F.: An efficient hybrid geneticalgorithm to solve assembly linebalancing problem
with sequence-dependent setup times. Comput. Ind. Eng. 62, 936–945 (2012)

16. Tang, Q., Li, J., et al.: Optimization framework for process scheduling of operation-dependent automobile
assembly lines. Optim. Lett. 6, 797–824 (2012)

17. Mosadegha, H., Zandiehb, M., Ghomia, S.M.T.F.: Simultaneous solving of balancing and sequencing
problems with station-dependent assembly times for mixed-model assembly lines. Appl. Soft Comput.
12, 1359–1370 (2012)

18. Hamtaa, N., Ghomia, S.M.T.F., Jolaib, F., Shirazi, M.A.: A hybrid PSO algorithm for a multi-objective
assembly line balancing problem with flexible operation times, sequence-dependent setup times and
learning effect. Int. J. Prod. Econ. 141(1), 99–111 (2013)

19. Scholl, A., Boysen, N., Fliedner, M.: The sequence-dependent assembly line balancing problem. OR
Spectr. 30, 579–609 (2006)

20. Hadi, G., Erel, E.: A goal programming approach to mixed-model assembly line balancing problem. Prod.
Econ. 48, 177–185 (1997)

21. Helgeson, W.B., Birnie, D.P.: Assembly line balancing using the ranked positional weight technique. J.
Ind. Eng. 12, 394–397 (1961)

22. Bock, S.: Using distributed search methods for balancing mixed-model assembly lines in the automotive
industry. OR Spectr. 30, 551–578 (2006)

23. Simaria,A.,Vilarinho, P.:Agenetic algorithmbased approach to themixed-model assembly line balancing
problem of type II. Comput. Ind. Eng. 47, 391–407 (2004)

24. Zhang, W., Gen, M.: An efficient multiobjective genetic algorithm for mixed-model assembly line bal-
ancing problem considering demand ratio-based cycle time. J. Intell. Manuf. 22, 367–378 (2009)

25. Manavizadeh, N., Rabbani, M., Moshtaghi, D., Jolai, F.: Mixed-model assembly line balancing in the
make-to-order and stochastic environment using multi-objective evolutionary algorithms. Expert Syst.
Appl. 39, 12026–12031 (2012)

26. ElMihoub, T.A., Hopgood, A.A., Nolle, L., Battersby, A.: Hybrid genetic algorithms: a review. Eng. Lett.
3, 2–16 (2006)

27. Akpinar, S., Bayhan, G.M.: A hybrid genetic algorithm formixed-model assembly line balancing problem
with parallel workstations and zoning constraints. Eng. Appl. Artif. Intell. 24, 449–457 (2011)

28. Kilbridge, M.D., Wester, L.: A heuristic method of assembly line balancing. J. Ind. Eng. 7, 292–298
(1961)

29. Moodie, C.L., Young, H.H.: A heuristic method of assembly line balancing for assumptions of constant
or variable work element times. J. Ind. Eng. 1, 23–29 (1965)

30. Holland, J.H.: Adaptation in Natural and Artificial System. University of Michigan Press, Ann Arbor
(1975)

31. Tonge, F.M.: Summary of a heuristic line balancing procedure. Manag. Sci. 7, 21–42 (1960)
32. Yamamoto, A.: A quantitative comparison of loading pattern optimization methods for in-core fuel man-

agement of PWR. J. Nucl. Sci. Technol. 34, 339–347 (1997)
33. Yang, S.M., Shao, D.G., Luo, Y.J.: A novel evolution strategy for multiobjective optimization problem.

Appl. Math. Comput. 170, 850–873 (2005)
34. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech.

Eng. 186, 311–338 (2000)
35. Miettinen, K., Makela, M.M., Toivanen, J.: Numerical comparison of some penalty-based constraint

handing techniques in genetic algorithms. J. Glob. Optim. 27, 427–446 (2003)
36. Alvarenga, G.B., Mateus, G.R.: Hierarchical tournament selection genetic algorithm for the vehicle rout-

ing problem with time windows. In: Proceedings of the Fourth International Conference on Hybrid
Intelligent Systems, pp. 410–415 (2004)

37. Herdy, M.: Application of the evolution strategy to discrete optimization problems. In: Proceedings of
lst lnternational Conference Parallel Problem Solving from Nature (PPSN), Lecture Notes in Computer
Science, vol. 496, pp. 188–192 (1991)

38. Scholl, A.: Data of assembly line balancing problems. Working Paper, TH Darmstadt (1993)

123

J Glob Optim (2016) 65:83–107 107

39. Kim, Y.K., Kim, S.J., Kim, J.Y.: Balancing and sequencing mixed-model U-lines with a co-evolutionary
algorithm. Prod. Plan. Control 11, 754–764 (2000)

40. Kim, Y.K., Kim, J.Y., Kim, Y.: An endosymbiotic evolutionary algorithm for the integration of balancing
and sequencing in mixed-model U-lines. Eur. J. Oper. Res. 68, 838–852 (2006)

123

	Balancing mixed-model assembly lines with sequence-dependent tasks via hybrid genetic algorithm
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Sequence-dependent tasks
	2.2 Problem statement
	2.3 The mathematical model

	3 The hybrid genetic algorithm
	3.1 Initialization
	3.2 Chromosome code and decode
	3.3 Tournament selection with elitism
	3.4 Crossover operator
	3.4.1 Logic string
	3.4.2 Two-point crossover operator

	3.5 Mutation operator
	3.5.1 Logic string
	3.5.2 Insertion mutation

	4 Computational studies and results
	4.1 Benchmark case studies
	4.2 Implementation and parameter settings
	4.3 Comparison of different initializations
	4.4 Validation studies
	4.5 Other performance metrics

	5 Conclusions and future research
	Acknowledgments
	References

