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Abstract In this work, we study the class of problems called semi-continuous optimization,
which contains constrained minimization (maximization) problems with lower (upper) semi-
continuous objective functions. We show some existence conditions for solutions based on
asymptotic techniques, as well as a duality scheme based on the Fenchel–Moreau conjuga-
tion specifically applied to semi-continuous problems. Promising results are obtained, when
we apply this scheme to minimize quadratic functions (whose Hessians can be symmetric
indefinite) over nonempty, closed and convex polyhedral sets.
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1 Introduction

In this work, we study the semi-continuous minimization (SCM) problem that consists of
minimizing a proper lower semi-continuous function over a nonempty and closed set. While,
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in the class of semi-continuous maximization problems, the objective function is proper and
upper semi-continuous.

It is known that in classical optimization theory, the Weierstrass Theorem guarantees
the existence of solutions for SCM, whenever its feasible set is compact, [1,2]. In order to
deal with unbounded feasible sets, existence of solutions is, in general, studied by using
asymptotic techniques. In this sense, several coerciveness conditions have appeared in the
literature, [1,3–6]. However, we observe that coerciveness conditions rely on boundedness
of lower level sets of the objective function of the optimization problem being studied. As
the solution set of an optimization problem is exactly the intersection of all nonempty lower
level sets, this idea of using coerciveness conditions comes up naturally, since compactness
of lower level sets ensures a nonempty intersection.

In this work, we first study existence conditions for solutions of SCM problems based on
asymptotic notions. The existence conditions for SCM, that will be introduced here, recover,
in a simple way, the results of the Frank–Wolf Existence Theorem for the minimization of a
quadratic objective function over a nonempty polyhedral set [7].

As the study of existence conditions is theoretical, it would be nice that some practical
procedures could be introduced to find solutions of SCM problems. As we know, the SCM
problem is hard to solve analytically, since it does not have enough mathematical structure to
characterize its optimal solutions. An alternative is to investigate its associated dual problem.

For a convex optimization problem, the Fenchel conjugation plays a very important role in
the duality theory, in which an associated convex dual problem can be formalized, [2,8–11].
As we already know, the relation between primal and dual problems are very rich in the sense
that many theoretical developments can be obtained, as well as it can devise competitive
solution methods.

On the other hand, when the objective function of an optimization problem is not necessar-
ily convex, as in the SCM problem, we turn our attention to the Fenchel–Moreau conjugation
for lower semi-continuous functions, presented in [12], where a particular coupling function
for the Moreau’s extension [13] of Fenchel’s conjugation is considered in order to present
a convex conjugate function for a lower semi-continuous function. Regarding the Moreau’s
extension for the conjugation of a convex function, depending on the choice of the coupling
function, the conjugate function might be non-convex (see [12] for more details).

In fact, the Fenchel–Moreau conjugation has been already studied in a general manner in
[10,14–18], and it is implicit in [11]. However, here, we apply the general scheme specifically
for the SCM problems.

In this work, we claim that, despite the lack of mathematical structure, whenever the SCM
problem has solutions, its optimal solution value can be attained through the solution of
its associated dual convex problem, using the Fenchel–Moreau conjugation, as in [12]. As
the associated dual problem has an infinite dimensional feasible set, promising results are
obtained, in particular, for minimization of quadratic functions over nonempty, closed and
convex polyhedral sets, when we consider an alternative conjugate dual space with finite
dimension.

This paper is organized as follows. Section 2 presents the background material, such as
some notions on recession techniques and a summary of the main theoretical results, by
applying Fenchel–Moreau conjugation for lower semi-continuous functions. Some existence
conditions for solutions of SCM problems are given in Sect. 3. Section 4 presents the duality
scheme in order to get a convex dual problem associated with the SCMproblem. In particular,
regarding the dual problem of a linearly constrained quadratic problem, we show that it is
possible to work in an alternative conjugate dual space with finite dimension, when the
polyhedral set is convex. Finally, some concluding remarks are drawn in Sect. 5.
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2 Preliminaries

Before the presentation of the background material, we introduce the main notation used
hereafter. The scalar product of two vectors x and y in IRn will be denoted by 〈x, y〉, and
‖x‖ will denote the Euclidean norm 〈x, x〉1/2. B(c, r) will denote the n-dimensional open
ball with center c and radius r .

For a set K ⊂ IRn , the asymptotic or recession set of K is

K∞ := {x ∈ IRn : ∃ {ti } ↓ 0, ∃ {xi } ∈ K , ti xi → x}, (1)

where ↓ means that the sequence {ti } converges to zero and ti > 0 for all i ∈ IN (see
Definition 2.1.1 in [1]). By convention, ∅∞ = {0}, [1]. The set clK denotes the closure of K ,
whereas convK denotes the convex hull of K.

For a function h : IRn → IR ∪ {+∞}, the lower level set of h associated with λ ∈ IR is
denoted by Lh(λ) := {x ∈ IRn : h(x) ≤ λ}. Observe that there are two particular cases in
which we use the same notation; the first one is when λ = −∞, and in this case we have
Lh(λ) = ∅. The second case is when λ = +∞, and in this case Lh(λ) = IRn . We denote the
effective domain of h as dom(h) := {x ∈ IRn : h(x) < +∞}.

The key for devising asymptotic or recession techniques for existence conditions is the
concept of asymptotic or recession sets. Next, we present some basic results with respect to
recession sets, that will be used in the sequel.

Regarding the recession set of K , we have the following key property (see Proposition
2.1.2 in [1]):

K is bounded if and only if K∞ = {0}.
In case K is a nonempty, closed and convex subset of IRn , it is known that, for any x0 ∈ K

K∞ = {x ∈ IRn : x0 + t x ∈ K , ∀t > 0}. (2)

Note that the definition of K∞ in (2) considers only algebraic structure, while the definition
in (1) considers algebraic and topological structures.

Now, we highlight the following basic properties on recession sets:

1. K∞ is a nonempty and closed cone;
2. (clK)∞ = K∞;
3. If K is a cone, then K∞ = clK ;
4. (K + x)∞ = K∞ for all x ∈ IRn ;
5. Let K1 and K2 be subsets of IRn ; then K1 ⊂ K2 implies K∞

1 ⊂ K∞
2 ;

6. Let I be an index set and Ki , i ∈ I , be any family of nonempty sets in IRn ; then
(

∩i∈I Ki

)∞ ⊂ ∩i∈I K∞
i . (3)

If, in addition, each set Ki is closed and convex, and ∩i∈I Ki �= ∅, then we obtain an
equality in the previous inclusion.

In particular, if K ⊂ IRn is a nonempty polyhedral set and {xk} ⊂ K is a sequence, such
that ‖xk‖ → +∞ and xk/‖xk‖ → d as k → +∞, then, for any t > 0, there exists k ∈ IN
sufficiently large, such that

xk − td ∈ K , and ‖xk − td‖ < ‖xk‖ (4)

(see Proposition 2.3 in [4], for more details see [1] and [5]). These results will be used later,
when we will consider minimization of quadratic objective functions over polyhedral sets.
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On the other hand, the key for devising a duality scheme for the SCM problem, formulated
as

minimize f (x) subject to x ∈ X, (5)

where f : IRn → IR ∪ {+∞} is proper and lower semi-continuous, and X is a nonempty
and closed subset of IRn , is the specific application of the Fenchel–Moreau conjugation for
lower semi-continuous functions, presented in [12]. Denoting by C(IRn, IRn) the class of
continuous operators p : IRn → IRn , the authors proposed a particular coupling function for
the Moreau’s extension [13] of Fenchel’s conjugation, that is,

ρ : IRn × C(IRn, IRn) → IR, ρ(x, p) = 〈p(x), x〉,
in order to present a convex conjugate function for f . Next, the main results of [12] are
summarized as follows.

Consider C(IRn, IRn), the class of continuous operators from IRn to IRn . For simplicity,
we will denote this class by Pn in the sequel. Let f : IRn → IR ∪ {+∞} be a proper
lower semi-continuous function. The Fenchel–Moreau conjugate function of f is given by
f ∗ : Pn → IR ∪ {+∞}, defined as

f ∗(p) := sup
x∈IRn

{〈p(x), x〉 − f (x)}, (6)

which is a proper and convex function.
Note that, in this setting, we shall consider Pn as a real vector space so that, for each

x ∈ IRn , the function lx : Pn → IR, defined as lx (p) = 〈p(x), x〉, is linear.
Moreover, observe that, from (6), for all x ∈ IRn and all p ∈ Pn , we obtain an extension

of the Fenchel’s inequality

〈p(x), x〉 ≤ f (x) + f ∗(p).

Consider now the biconjugate function f ∗∗ : IRn → IR ∪ {+∞}, defined by
f ∗∗(x) := sup

p∈Pn
{〈p(x), x〉 − f ∗(p)}.

In this setting, the involution property ( f (x) = f ∗∗(x),∀x ∈ IRn) is ensured, whenever f
is proper and lower semi-continuous (see Definitions 3.4 and 4.3, and Theorem 4.6 in [12]).

If f and f ∗ are Fenchel–Moreau conjugate functions, then the function f is proper and
lower semi-continuous, and the function f ∗ is proper and convex (see Lemma 3.5 in [12]).

Let the class of constant operators of Pn be denoted by

Fn := {p ∈ Pn : p constant}. (7)

Considering f : IRn → IR ∪ {+∞} a proper and lower semi-continuous function, we say
that a real vector space S is a conjugate dual space if f (x) = f ∗∗

S (x) for all x ∈ IRn and
Fn ⊂ S ⊆ Pn , where

f ∗∗
S (x) := sup

p∈S
{〈p(x), x〉 − f ∗(p)}.

Furthermore, from Lemma 4.1 in [12], if Fn ⊂ S ⊂ Pn , then, for all x ∈ IRn

f ∗∗
Fn (x) ≤ f ∗∗

S (x) ≤ f ∗∗(x) ≤ f (x), (8)

using the simplified notation f ∗∗(x) = f ∗∗
Pn

(x). Later, we shall see that the duality scheme
will benefit from an alternative conjugate dual space instead of Pn .
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In case f is also convex, besides being proper and lower semi-continuous, then its Fenchel–
Moreau conjugate function f ∗ : Fn → IR ∪ {+∞} is also convex, proper and lower semi-
continuous, having Fn (7) as the conjugate dual space. It is also interesting to mention that,
in this case, Fenchel’s conjugation could be recovered due to the enlargement of the domain
of the Fenchel–Moreau conjugate function.

3 Existence conditions

In this section, we study some existence conditions for solutions of SCM problems, formu-
lated as (5). Furthermore, we investigate the particular case, when X is a nonempty, closed
and convex polyhedral set.

Let us denote the solution set of SCM by

S( f, X) := {x ∈ X : f (x) ≤ f (y), ∀y ∈ X}.
Note that

S( f, X) =
⋂
x∈X

(X ∩ L f ( f (x))).

If λ := inf{ f (x) : x ∈ X}, then S( f, X) = X ∩ L f (λ). In case λ = −∞, as we remarked in
Sect. 2, we have L f (λ) = ∅, and so S( f, X) = X∩L f (λ) = ∅. Moreover, if λ ∈ Im( f ),
then S( f, X) = X ∩ L f ( f (x)) ∀x ∈ L f (λ). On the other hand, in case λ = +∞, we have
f (x) = +∞ for each x ∈ X , and, as we also remarked in Sect. 2, we get L f ( f (x)) = IRn ,
and so S( f, X) = X ∩ L f ( f (x)) = X , for each x ∈ X .

Regarding asymptotic sets, an immediate consequence of relation (3) is that

S( f, X)∞ ⊂ (X ∩ L f ( f (x)))
∞, ∀x ∈ X. (9)

The following result shows a relation between the recession cones of the lower level sets,
which can be theoretically built or generated by algorithms.

Lemma 1 Let {λi }i∈IN be a sequence such that λi → λ := inf{ f (x) : x ∈ X} as i → +∞.
If X ∩ L f (λ) = ∅ and X ∩ L f (λi ) �= ∅ ∀i ∈ IN , then

⋂
x∈X

(X ∩ L f ( f (x)))
∞ =

⋂
i∈IN

(X ∩ L f (λi ))
∞.

Proof First, let us show that
⋂
x∈X

(X ∩ L f ( f (x)))
∞ ⊂

⋂
i∈IN

(X ∩ L f (λi ))
∞. Indeed, since

X ∩ L f (λ) = ∅ and X ∩ L f (λi ) �= ∅ ∀i ∈ IN , then λi > λ ∀i ∈ IN . Here, there exists

xi ∈ (X ∩ L f (λi )) for each i . So,
⋂
x∈X

(X ∩ L f ( f (x)))
∞ ⊂

⋂
i∈IN

(X ∩ L f ( f (x
i )))∞ ⊂

⋂
i∈IN

(X ∩ L f (λi ))
∞, because (X ∩ L f ( f (xi )))∞ ⊂ (X ∩ L f (λi ))

∞ ∀i .

Conversely, to show that
⋂
i∈IN

(X ∩ L f (λi ))
∞ ⊂

⋂
x∈X

(X ∩ L f ( f (x)))
∞ take an element

u ∈
⋂
i∈IN

(X ∩ L f (λi ))
∞. Thus, we get u ∈ (X ∩ L f (λi ))

∞ ∀i ∈ IN . For each x ∈ X

arbitrarily fixed, we have that λ < f (x), because X ∩ L f (λ) = ∅. Since limi→+∞ λi = λ

and X ∩ L f (λi ) �= ∅ ∀i ∈ IN , there exists m ∈ IN such that λm ≤ f (x). So, it follows that
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X ∩ L f (λm) ⊂ X ∩ L f ( f (x)), which implies that (X ∩ L f (λm))∞ ⊂ (X ∩ L f ( f (x)))∞,
and so u ∈ (X ∩ L f ( f (x)))∞. As x ∈ X was arbitrarily fixed, the statement follows. ��

Next, we show that, even though X is just nonempty and closed, the result is theoretically
analogous to the one for convex feasible sets.

Theorem 1 Consider the SCM problem, as in (5), where f : IRn → IR ∪ {+∞} is proper
and lower semi-continuous, and X is a nonempty and closed subset of IRn. Then,

1. if S( f, X) �= ∅, then S( f, X)∞ =
⋂
x∈X

(X ∩ L f ( f (x)))
∞.

2. Otherwise, if S( f, X) = ∅, then
⋂
x∈X

(X ∩ L f ( f (x)))
∞ �= {0}.

Proof If S( f, X) �= ∅, then S( f, X) = X ∩ L f (λ) �= ∅, where λ = inf { f (x) : x ∈ X}. It
implies that

⋂
x∈X

(X ∩ L f ( f (x)))
∞ ⊂ (X ∩ L f (λ))∞ = S( f, X)∞.

So, combining relation (9) with the above inclusion, we get the desired result.
Now, suppose S( f, X) = ∅, then X ∩ L f ( f (x)) is unbounded ∀x ∈ IRn . So, take

ui ∈ (X ∩ L f (λi ))
∞ with ||ui || = 1 ∀i ∈ IN , where λi → λ with λi ≥ λi+1 > λ and

λ := inf{ f (y) : y ∈ X}. Since λk ≤ λi ∀i ∈ IN and ∀k ≥ i , it follows that (X∩L f (λk))
∞ ⊂

(X ∩ L f (λi ))
∞ and {uk}k≥i ⊂ (X ∩ L f (λi ))

∞ ∀i ∈ IN . So, any cluster point of {uk}k∈IN
belongs to (X ∩ L f (λi ))

∞ ∀i ∈ IN , or, equivalently, from Lemma 1, any cluster point of

{uk}k∈IN belongs to
⋂
x∈X

(X ∩ L f ( f (x)))
∞, showing that

{0} �=
⋂
x∈X

(X ∩ L f ( f (x)))
∞.

��
Weshould remark that, regarding property 6 on recession sets in (3), Theorem1generalizes

the result of convex analysis, when the sets Ki are sublevel sets of a lower semi-continuous
function. Also, note that the nonemptiness condition for the intersection of the sets Ki is
necessary for the result of classical convex analysis, whereas, in this setting, this condition
is necessary and sufficient.

The following result applies to the particular case, when the solution set is also compact.

Theorem 2 Consider the SCMproblem, as in (5), where f : IRn → IR∪{+∞} is proper and
lower semi-continuous, and X is a nonempty and compact subset of IRn. Then, the following
statements are equivalent:

(a)
⋂
x∈X

(X ∩ L f ( f (x)))
∞ = {0}.

(b) There exists x ∈ X such that X ∩ L f ( f (x)) is bounded.
(c) There exists x ∈ X such that cl(conv(X ∩ L f ( f (x)))) is bounded.

Proof We just need to prove that (a) implies (b), because the other implications follow from
the results of classical convex analysis. Consider that (a) holds. From relation (9), we have
{0} ⊂ S( f, X)∞ ⊂

⋂
x∈X

(X ∩ L f ( f (x)))
∞ = {0} and, from Theorem 1, we know that

S( f, X) �= ∅. Thus, the statement follows from the fact that S( f, X) = X ∩ L f (λ), where
λ = inf{ f (x) : x ∈ X}. ��
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Given a function h : IRn → IR ∪ {+∞} and the indicator function of a set X ⊂ IRn ,
defined as

iX (x) :=
{
0, if x ∈ X
+∞, otherwise,

(10)

consider the following assumptions:

1. for all {xk}k∈IN ⊂ X ∩ dom(h) with limk→+∞ ||xk || = +∞ and limk→+∞
xk/||xk || = u ∈ ⋂

x∈X (X ∩ Lh(h(x)))∞, ∃k0 ∈ IN large enough, such that
X ∩ Lh(h(xk0)) ∩ B(0, ||xk0 ||) �= ∅. This assumption will be referred as A1(h, X)

in the sequel.
2. For all {xk}k∈IN ⊂ IRn with limk→+∞ ||xk || = +∞, ∃k0 ∈ IN large enough,

such that Lh+iX (h(xk0) + iX (xk0)) ∩ B(0, ||xk0 ||) �= ∅; where, for a fixed k0,
B(0, ||xk0 ||)denotes then-dimensional openball centered at zerowith radius ||xk0 ||.
This assumption will be referred as A2(h + iX ) in the sequel.

Observe that conditions related to A1(h, X) have been already exploited by many authors
and can be found, for instance, in [3–6,19,20]. Now,we are able to show a technical procedure
in order to check nonemptiness of the solution set of SCM.

Theorem 3 Consider the SCMproblem, as in (5), where f : IRn → IR∪{+∞} is proper and
lower semi-continuous, and X is a nonempty and closed subset of IRn. Then, the following
conditions are equivalent:

(a) A1(f, X) is satisfied.
(b) S( f, X) �= ∅.
Proof In order to prove that (a) implies (b), as f is a proper function by assumption, consider,
without any loss of generality, for all m ∈ IN , the following proper function fm : IRn →
IR ∪ {+∞}, defined by

fm(x) :=
{
f (x), ‖x‖ ≤ m,

+∞, otherwise.

So, by construction of fm , we have that S( fm, X) is nonempty and also compact. Take
xm ∈ argmin{‖x‖ : x ∈ S( fm, X)} ⊂ X ∩ dom( f ). Supposing that the sequence {xm} is
unbounded, without any loss of generality, we can assume that ‖xm‖ → ∞ as m → ∞
and xm/‖xm‖ → u as m → ∞. We claim that u ∈ ⋂

x∈X (X ∩ L f ( f (x)))∞. Indeed, take
x ∈ X arbitrary fixed; then, for all m ≥ ‖x‖, we have that xm ∈ L f ( f (x)). Now, taking
tm = 1/‖xm‖, we have that tmxm → u as m → ∞, and so u ∈ (L f ( f (x)))∞. Since
x was arbitrarily fixed, then u ∈ ⋂

x∈X (X ∩ L f ( f (x)))∞. As condition A1( f, X) holds,
∃ m0 ∈ IN large enough such that X ∩ L f ( f (xm0)) ∩ B(0, ||xm0 ||) �= ∅. Now, taking
x ∈ X ∩ L f ( f (xm0))∩ B(0, ||xm0 ||), then x ∈ X , f (x) ≤ f (xm0) and ‖x‖ < ‖xm0‖, and so
x ∈ S( fm0 , X), which is a contradiction, showing that the sequence {xm} is bounded. Thus,
any cluster point of {xm} is a minimizer of f , and the statement follows.

For proving that (b) implies (a), take a sequence {xk}k∈IN ⊂ X ∩ dom( f ) such that
limk→+∞ ||xk || = +∞ and limk→+∞ xk/||xk || = u ∈ ⋂

x∈X (X ∩ L f ( f (x)))∞. The
statement follows from taking x̄ ∈ S( f, X) and k0 ∈ IN such that ‖xk0‖ > ‖x̄‖. ��
Theorem 4 Consider the SCM problem, as in (5), where f : IRn → IR ∪ {+∞} is proper
and lower semi-continuous, and X is a nonempty and closed subset of IRn. Then, A1( f, X)

is equivalent to A2( f + iX ).
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Proof We only need to prove that A1( f, X) implies A2( f + iX ), since the converse follows
from the fact that dom( f +iX ) = X∩dom( f ). Take {xk}k∈IN ⊂ IRn with limk→+∞ ||xk || =
+∞. As condition A1( f, X) holds, then, from Theorem 3, we have that S( f, X) �= ∅. The
statement follows from taking x̄ ∈ S( f, X) and k0 ∈ IN such that ‖xk0‖ > ‖x̄‖. ��

Since conditions A1(h, X) and A2(h + iX ) are equivalent, when h is proper and lower
semi-continuous, and X is nonempty and closed, then from now on, we refer to both of them
as just A(h, X).

3.1 The quadratic case

We finish this section studying the existence of solutions of the minimization of a quadratic
function over a nonempty, closed and convex polyhedral set.

Given A ∈ IRm×n , b ∈ IRm , c ∈ IR, g ∈ IRn , and H ∈ IRn×n symmetric, define the set
X := {x ∈ IRn : Ax ≤ b} and consider the following problem:

minimize f (x) subject to x ∈ X, (11)

where f : IRn → IR is a continuous function, given by:

f (x) = 1/2〈x, Hx〉 + 〈g, x〉 + c. (12)

It is worth mentioning that no other assumption on the Hessian H of f is made.

Lemma 2 Let f be a quadratic function, as in (12). If inf{ f (x) : x ∈ X} = β > −∞,
then, for each x ∈ X and each u ∈ ⋂

x∈X (X ∩ L f ( f (x)))∞ both fixed, the mapping
l : [0,+∞[→ IR, defined by l(t) = f (x + tu) − f (x) is linear, and l(t) ≥ 0, for all
t ∈ [0,+∞[.
Proof Suppose inf{ f (x) : x ∈ X} = β > −∞. Take u ∈ ⋂

x∈X (X ∩ L f ( f (x)))∞ arbitrary
fixed, and so u ∈ (X ∩ L f ( f (x)))∞ ∀x ∈ IRn . Now, take x ∈ X arbitrarily fixed. Thus,
∃{yk}k∈IN ⊂ L f ( f (x)), ∃{tk}k∈IN ↓ 0 such that tk yk → u as k → +∞. So, u ∈ X∞ and
−∞ < β ≤ f (yk) = 1/2〈yk, Hyk〉 + 〈g, yk〉 + c ≤ f (x) < +∞ ∀k ∈ IN , implying that
〈u, Hu〉 = 0. Since x + tu ∈ X , for all t > 0, we have, for all t > 0, that

l(t) = f (x + tu) − f (x) = t〈Hx + g, u〉 = t〈∇ f (x), u〉,
where l is a linear mapping over [0,+∞[. Finally, since inf{ f (x) : x ∈ X} = β > −∞, it
follows that l(t) ≥ 0, ∀t ≥ 0. ��

From the proof of Lemma 2 and since l(t)/t = 〈∇ f (x), u〉 ≥ 0 ∀t > 0, we observe the
following result.

Corollary 1 For each x ∈ X, it follows that

(S( f, X))∞ ⊂
⋂
x∈X

(X ∩ L f ( f (x)))
∞ ⊂ ∇ f (X)+ ∩ {d : 〈Hd, d〉 ≥ 0},

where ∇ f (X)+ = {d ∈ IRn : 〈∇ f (x), d〉 ≥ 0,∀x ∈ X}.
Theorem 5 Consider the minimization of a quadratic function over a nonempty, closed and
convex polyhedral set, as formulated in (11–12). The following conditions are equivalent.

(i) inf{ f (x) : x ∈ X} = β > −∞.
(ii) A( f, X) is satisfied.
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Proof Let us prove first that (i) implies (ii). If X is bounded, then condition A( f, X) holds.
If not, take the sequence {xm}m∈IN ⊂ X such that the conditions ‖xm‖ → +∞ and
xm/‖xm‖ → u ∈ ⋂

x∈X (X ∩ L f ( f (x)))∞ as m → +∞ hold. So, from Lemma 2, for
each x ∈ X , we have that f (x) ≤ f (x + tu) ∀t ≥ 0. From Proposition 2.3 in [4], rewritten
in (4), we have that, for any t > 0, there exists k ∈ IN large enough such that xk − tu ∈ X .
Now, taking y = xk − tu, we have that f (y) ≤ f (y + tu) = f (xk). Note that, for k large
enough, ‖y‖ = ‖xk − tu‖ < ‖xk‖, and so A( f, X) holds.

The proof that (ii) implies (i) follows directly from the fact that f is a proper and lower
semi-continuous function and that A( f, X) holds, and also from Theorem 3. ��

We note that both Theorem 3 and Theorem 5 retrieve, in a simple way, the results of Frank
and Wolfe’s Theorem (1956) (Chapter 2 in [7]) for existence of solutions for minimization
of quadratic functions constrained to nonempty and convex polyhedral sets.

We point out that there exist in the literature other results related to Frank and Wolfe’s
Theorem, such as, for instance [21], where assumptions (b) and (c) of Theorem 4.1 therein
would be interpreted as a specialization of our assumption A( f, X) for the quadratic case.

4 The duality scheme

In this section, we apply the general duality scheme, that can be found in [10,15,18], in the
setting of SCM problems with a particular choice for the coupling function. Without any loss
of generality, we can redefine f considering, in addition, f (x) = +∞ when x /∈ X , and,
equivalently, rewrite the SCM problem (5) as

minimize f (x) subject to x ∈ IRn . (13)

For this, we need first the following definition.

Definition 1 We say that φ : IRn × IRm → IR ∪ {+∞} is a perturbation function of f , if,
and only if, φ is proper and lower semi-continuous, and φ(x, 0) = f (x) for each x ∈ IRn .

Consider now the Fenchel–Moreau conjugation of a perturbation functionφ of f restricted
to the subspace S = Pn × Pm , instead of the natural choice Pn+m . Clearly,

Fn+m = Fn × Fm ⊂ S ⊂ Pn+m,

with S �= Pn+m . The following result is the key to define the dual problem associated with
SCM.

Proposition 1 Given f and φ, a perturbation function of f, we have

−φ∗(0, p) ≤ f (x),

for all x ∈ IRn and p ∈ Pm.

Proof According to [12], the Fenchel–Moreau conjugate function of the perturbation func-
tion of f , φ : IRn × IRm → IR ∪ {+∞} restricted to S = Pn × Pm is the function
φ∗ : S → IR ∪ {+∞}, defined by

φ∗(q, p) := sup
(x,y)

{ρ̂((x, y), (q, p)) − φ(x, y)}
:= sup

(x,y)
{〈q(x), x〉 + 〈p(y), y〉 − φ(x, y)},
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where the coupling function is given as

ρ̂ : (IRn × IRm) × (Pn × Pm) → IR, ρ̂((x, y), (q, p)) := 〈q(x), x〉 + 〈p(y), y〉.
So, it follows that

φ∗(q, p) ≥ 〈q(x), x〉 + 〈p(y), y〉 − φ(x, y).

As φ(x, 0) = f (x), for each x ∈ IRn , the statement follows taking q = 0 and y = 0. ��

Definition 2 The dual problem associated with SCM is formulated as follows

(DSCM) maximize − φ∗(0, p) subject to p ∈ Pm . (14)

For convenience, the dual problem will be formulated hereafter as a minimization problem.

Lemma 3 The dual of SCM (14), formulated as a minimization problem, is a convex opti-
mization problem.

Proof Applying the Fenchel–Moreau conjugation for φ(x, y), for all p ∈ Pm , we have

φ∗(0, p) = sup
(x,y)∈IRn×IRm

{〈p(y), y〉 − φ(x, y)},

and we observe that, for each (x, y) ∈ IRn × IRm , the mapping a(x,y) : Pm → IR, defined by
a(x,y)(p) = 〈p(y), y〉 − φ(x, y) is affine linear. Since Pm is convex, the statement follows
completely from the fact that the supremum of an affine linear function is convex. ��

Now, for a given perturbation function φ of f , consider an auxiliary function, called the
marginal function h : IRm → IR ∪ {−∞,+∞}, defined as

h(y) := inf
x∈IRn

φ(x, y). (15)

Observe that, by definition of h, h(0) is the optimal value of the SCM problem in (13),
since φ(x, 0) = f (x) ∀x ∈ IRn .

Theorem 6 Given the SCM problem (13) and a perturbation function φ of f , if the dual
conjugation space associated with φ is S = Pn × Pm, then the dual of DSCM (14) is SCM.

Proof Given the perturbation function φ of f , define the marginal function h as in (15).
Thus, the Fenchel–Moreau conjugate of the marginal function h is given by h∗ : Pm →
IR ∪ {−∞,+∞}, where

h∗(p) = sup
y∈IRm

{〈p(y), y〉 − h(y)}
= sup

y∈IRm
{〈p(y), y〉 − inf

x∈IRn
φ(x, y)}

= sup
(x,y)∈IRn×IRm

{〈p(y), y〉 − φ(x, y)}

= sup
(x,y)∈IRn×IRm

{〈ρ̂((x, y), (0, p))〉 − φ(x, y)}

= φ∗(0, p).
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Consider g : Pn → IR ∪ {−∞,+∞} a marginal function of φ∗. Let us make explicit the
main points of the duality scheme between SCM and DSCM as follows:

SCM
f (x) = φ(x, 0), ∀x ∈ IRn

h(y) = inf {φ(x, y) | x ∈ IRn}
α := h(0)

DSCM
h∗(p) = φ∗(0, p), ∀(0, p) ∈ S
g(q) := inf {φ∗(q, p) | p ∈ Pm}
β := g(0).

As φ∗
S is the perturbation function of h

∗, we claim that φ∗∗
S will be a perturbation function

of the objective function of the dual of DSCM. Likewise the previous outlined scheme, the
main points of the duality scheme between DSCM and its associated dual problem are as
follows:

DSCM
h∗(p) = φ∗(0, p), ∀(0, p) ∈ S
g(q) = inf {φ∗(q, p) | p ∈ Pm}
β = g(0)

DDSCM
k(x) := φ∗∗(x, 0), ∀x ∈ IRn

j (y) := inf {φ∗∗(x, y) | x ∈ IRn}
δ := j (0).

Since φ is proper and lower semi-continuous, we have φ∗∗
S = φ, according to the involution

property of the Fenchel–Moreau conjugation. Hence, it follows directly that k = f , j = h
and δ = α, completing the proof. ��

Consider the Lagrangian function L : IRn × Pm → IR ∪ {−∞,+∞}, defined by
L(x, p) := inf

y∈IRm
{φ(x, y) − 〈p(y), y〉},

where φ is a perturbation function of f , i.e., φ is a proper and lower semi-continuous function
with φ(x, 0) = f (x). We should mention that some results on the Lagrangian function can
be recovered directly in this particular setting. For instance, one can show easily that (x̄, p̄)
is a saddle point of L if, and only if, x̄ is a solution of SCM and p̄ is a solution of DSCM.

Furthermore, we should remark that the involution property is not satisfied for all problems
in the SCMclass. In next section,we identify a family of SCMproblems inwhich this property
holds. We also observe that, for the convex optimization case, the above scheme is already
presented in [9].

4.1 The quadratic case

After applying the duality scheme for SCM problems, we realize that we still face some
difficulty. Although the dual problem is convex, the dimension of the conjugate dual space is
infinite. The good news is that we can overcome this difficulty, in particular, when addressing
a family of quadratic optimization problems, by constructing a convex dual optimization
problem in finite dimensional space, provided by the results on conjugate dual spaces with the
specific application of the Fenchel–Moreau conjugation for lower semi-continuous functions,
as in [12].

In the sequel, we present theoretical results that support the construction of a convex dual
problem in finite dimensional space associated with the minimization of a quadratic function
constrained to a nonempty, closed and convex set. For this, let us define first the following
real vectorial spaces:

Hn := {H ∈ IRn×n : H is symmetric}, (16)

with dimension n(n + 1)/2, and

Sn := {p ∈ Pn : p(x) = Hx + g, H ∈ Hn, g ∈ Fn}, (17)
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with dimension n(n + 3)/2.

Proposition 2 Consider a quadratic function f : IRn → IR; then Sn, as defined in (17), is
an associated conjugate dual space with finite dimension.

Proof As Sn ⊂ Pn , from the definition of conjugate dual spaces, we just need to show that,
for all x ∈ IRn , f (x) = f ∗∗

Sn
(x). Since f is a quadratic function, there exist H ∈ Hn , as

defined in (16), g ∈ Fn as in (7), and c ∈ IR, such that

f (x) = 〈x, Hx〉 + 〈g, x〉 + c.

Now, take p0 ∈ Sn , defined by p0(x) = Hx + g. Then, it follows that

f ∗(p0) = sup
x∈IRn

{〈p0(x), x〉 − f (x)}
= sup

x∈IRn
{〈x, Hx〉 + 〈g, x〉 − 〈x, Hx〉 − 〈g, x〉 − c} = −c.

Thus, we have, for all x ∈ IRn , that

f ∗∗
Sn (x) = sup

p∈Sn

{〈x, p(x)〉 − f ∗(p)
} ≥ 〈x, p0(x)〉 − f ∗(p0) = f (x).

However, from Lemma 4.1 [12] (which is rewritten in (8)), f ∗∗
Sn

≤ f ∗∗ ≤ f . Hence, for all
x ∈ IRn , we get f ∗∗

Sn
(x) = f (x), completing the proof. ��

From now on, given a nonempty and closed set X ⊂ IRn , we denote by TX ⊂ Pn the
conjugate dual space of the functional iX (10). One can show easily that, if X is also convex,
then TX coincides with Fn , the class of all constant operators from IRn to IRn .

Now, let us consider a quadratic function constrained to a nonempty and closed set X ⊂
IRn .

Proposition 3 If f : IRn → IR is a quadratic function and iX : IRn → IR ∪ {+∞} is the
indicator function of the nonempty and closed set X ⊂ IRn, then Sn +TX is a conjugate dual
space of the functional f + iX .

Proof For each r ∈ TX , consider pr ∈ Sn+TX , defined by pr (x) = Hx+g+r(x) ∀x ∈ IRn ;
so

( f + iX )∗(pr ) = sup
x∈IRn

{〈pr (x), x〉 − f (x) − iX (x)}
= sup

x∈IRn
{〈r(x), x〉 − c − iX (x)}

= sup
x∈IRn

{〈r(x), x〉 − iX (x)} − c

= (iX )∗(r) − c.

Thus, it follows that

( f + iX )∗∗
Sn+TX (x) = sup

p∈Sn+TX
{〈p(x), x〉 − ( f + iX )∗(p)}

≥ sup
r∈TX

{〈pr (x), x〉 − ( f + iX )∗(pr )}

= sup
r∈TX

{〈x, Hx〉 + 〈g, x〉 + 〈r(x), x〉 − (iX )∗(r) + c}

= f (x) + sup
r∈TX

{〈r(x), x〉 − (iX )∗(r)}
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= f (x) + (iX )∗∗(x)
= f (x) + iX (x),

where the last equality follows from the involution property of the Fenchel–Moreau conju-
gation for proper and lower semi-continuous functions. The statement follows considering,
in addition, the fact that ( f + iX )∗∗

Sn+TX
(x) ≤ f (x) + iX (x) ∀x , from (8). ��

Theorem 7 If f : IRn → IR is a quadratic function and iX : IRn → IR ∪ {+∞} is the
indicator function of the nonempty, closed and convex set X ⊂ IRn, then Sn is a conjugate
dual space of the functional f + iX .

Proof It follows directly from Proposition 3 and the fact that Fn is the conjugate dual space
associated with the functional iX , whenever X is a nonempty, closed and convex set. ��

Wenow focus our attention on the class ofminimization problemswith quadratic objective
functions over nonempty, closed and convex polyhedral sets, with the purpose to build the
convex dual problem by choosing as feasible set an alternative finite dimensional conjugate
dual space. Without any loss of generality, a problem in this class can be formulated as

(Q) minimize 〈x, Hx〉 + 〈g, x〉 + c subject to Bx = d, x ≥ 0, (18)

where H ∈ Hn , g ∈ Fn , c ∈ IR, B ∈ IRm×n and d ∈ IRm are given data, and the feasible
set X := {x ∈ IRn : Bx = d, x ≥ 0} is a nonempty, closed and convex polyhedral set. So,
define f : IRn → IR ∪ {+∞} by f (x) := 〈x, Hx〉 + 〈g, x〉 + c + iX (x).

The function φ : IRn × IRm → IR ∪ {+∞}, needed for the duality scheme, is defined by

φ(z) := 〈z, H̄ z〉 + 〈ḡ, z〉 + c + i X̄ (z), (19)

where z := (x, y) ∈ IRn+m , the matrix H̄ :=
[
H 0
0 0

]
∈ IR(n+m)×(n+m) is symmetric,

ḡ := (g, 0) ∈ IRn+m , and X̄ := {z = (x, y) ∈ IRn+m : B̄z = d and z ≥ 0}, where the
matrix B̄ is defined as B̄ := [

B −I
] ∈ IRm×(n+m) and I ∈ IRm×m is the identity matrix,

and i X̄ is the indicator function of X̄ .
Of course, this function φ is proper and lower semi-continuous, and satisfies φ(x, 0) =

f (x) ∀x ∈ X , meaning that φ is a perturbation function of f .
We point out that, if H ∈ Hn and g ∈ IRn × IRm , then p : IRn × IRm → IRn × IRm

defined by p(z) = H̄ z + g is an operator in Sn × Sm , since p = (p1, p2), with p1 ∈ Sn ,
p1(x) = Hx + g1 ∈ IRn , p2 ∈ Sm , p2(y) = g2 ∈ IRm , g = (g1, g2) and z = (x, y).

Lemma 4 Sn × Sm is a dual conjugate space of φ as defined in (19).

Proof For each r ∈ IRn × IRm , consider pr ∈ Sn × Sm defined by pr (z) = H̄ z + ḡ + r . So,
we have that

φ∗(pr ) = sup
z∈IRn×IRm

{〈pr (z), z〉 − φ(z)}

= sup
z∈IRn×IRm

{〈z, H̄ z + ḡ + r〉 − 〈z, H̄ z〉 − 〈ḡ, z〉 − c − i X̄ (z)}
= sup

z∈IRn×IRm
{〈r, z〉 − i X̄ (z)} − c

= (i X̄ )∗(r) − c.
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Thus, it follows that

φ∗∗
Sn×Sm (z) = sup

p∈Sn×Sm
{〈p(z), z〉 − φ∗(z)}

≥ sup
r∈IRn×IRm

{〈pr (z), z〉 − φ∗(pr )}

= sup
r∈IRn×IRm

{〈z, H̄ z〉 + 〈ḡ + r, z〉 + c − (iX )∗(r)}

= 〈z, H̄ z〉 + 〈ḡ, z〉 + c + sup
r∈IRn×IRm

{〈r, z〉 − (i X̄ )∗(r)}

= 〈z, H̄ z〉 + 〈ḡ, z〉 + c + (i X̄ )∗∗(z) = φ(z).

The statement follows from the fact that φ∗∗
Sn×Sm

(z) ≤ φ(z) for all z ∈ IRn × IRm . ��
All the above results are summarized as follows.

Theorem 8 Under our general assumptions of problem (18), i.e., assuming that X is a
nonempty, closed and convex polyhedral set, the convex dual problem generated from the
perturbation function φ, as defined in (19), is the following:

(DQ) minimize φ∗(0, p) subject to p ∈ Sm .

Proof It suffices to combine Lemma 4 and Theorem 6. ��

5 Conclusions

This paper studies the general problem consisting of minimizing a lower semi-continuous
function over a closed set, and considers the particular case when the objective function is
quadratic and the constraint set is a convex polyhedron. Existence conditions in terms of
asymptotic sets are presented. Moreover, a duality scheme is proposed, in which the dual
problem is convex. Applying the proposed duality scheme with an alternative conjugate
dual space to the minimization of a quadratic function over a convex polyhedral, whose
Hessian can be symmetric indefinite, we get an associated convex dual problem with a finite
dimensional feasible set. We believe that the development of solution methods for nonlinear
optimization can benefit from the results of this work.
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