
J Glob Optim (2015) 63:1–36
DOI 10.1007/s10898-015-0303-6

Reverse propagation of McCormick relaxations

Achim Wechsung1 · Joseph K. Scott2 ·
Harry A. J. Watson1 · Paul I. Barton1

Received: 2 October 2013 / Accepted: 12 April 2015 / Published online: 23 April 2015
© Springer Science+Business Media New York 2015

Abstract Constraint propagation techniques have heavily utilized interval arithmetic while
the application of convex and concave relaxations has been mostly restricted to the domain
of global optimization. Here, reverse McCormick propagation, a method to construct and
improve McCormick relaxations using a directed acyclic graph representation of the con-
straints, is proposed. In particular, this allows the interpretation of constraints as implicitly
defining set-valued mappings between variables, and allows the construction and improve-
ment of relaxations of these mappings. Reverse McCormick propagation yields potentially
tighter enclosures of the solutions of constraint satisfaction problems than reverse interval
propagation. Ultimately, the relaxations of the objective of a non-convex program can be
improved by incorporating information about the constraints.

Keywords Constraint propagation · Global optimization · Convex relaxations ·
McCormick relaxations

Mathematics Subject Classification 49M20 · 49M37 · 65K05 · 90C26

B Paul I. Barton
pib@mit.edu

Achim Wechsung
awechsun@mit.edu

Joseph K. Scott
jks9@clemson.edu

Harry A. J. Watson
hwatson@mit.edu

1 Process Systems Engineering Laboratory, Massachusetts Institute of Technology,
77 Massachusetts Ave, Rm 66-363, Cambridge, MA 02139, USA

2 Department of Chemical and Biomolecular Engineering, Clemson University, 207B Earle Hall,
Clemson, SC 29634, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-015-0303-6&domain=pdf

2 J Glob Optim (2015) 63:1–36

1 Introduction

A constraint satisfaction problem (CSP) consists of a finite set of variables, domains and
constraints. A solution of a CSP is an assignment of elements of the domains to the variables
so that all constraints are satisfied. In general, these problems are NP-hard and hence it
is desirable to compute an enclosure of the solution set. Constraint propagation routines,
or, more generally, contractors, are numerical methods that assist in this task. Using the
information about the relationship between variables that is contained in a single constraint
or in a set of constraints, they attempt to shrink an initial enclosure of the domains. Typically,
intervals are used to enclose the solution sets whereas a constraint propagation technique for
McCormick relaxations [39,52] is proposed in this contribution that is applicable to factorable
functions.

1.1 Review of constraint propagation methods

Constraint propagation was first developed for logic constraints on discrete domains [35].
Different notions of consistency, which describes the degree to which the remaining ele-
ments of the domain satisfy the constraints, have been introduced for this case [2,9].
Constraint propagation has also been applied to connected sets that appear in so-called
numerical CSPs [8,13] and a large number of techniques have been proposed in the lit-
erature.

Many constraint propagation methods use ideas from interval analysis: they consider
interval domains and use interval arithmetic. Cleary [12] and Davis [13] presented the
first algorithms for constraint propagation with interval domains. Hyvönen [26] con-
sidered cases where exact numbers are insufficient and studied how interval arithmetic
can be utilized in CSPs. Lhomme [33] proposed an extension of arc-consistency to
numeric CSPs. Benhamou et al. [6] introduced the notion of box-consistency. Sam-
Haroud and Faltings [49] approximated feasible regions by 2n-trees and presented algo-
rithms to label leaves consistently. Benhamou and Older [5] proposed the notion of
hull-consistency. Van Hentenryck et al. [59] showed how interval extensions can be
used to calculate box-consistent labels, see also [60]. Benhamou et al. [7] proposed
an algorithm for hull-consistency that does not require decomposing constraints into
primitives. Vu et al. [61] proposed a method to construct inner and outer approxima-
tions of the feasible set using unions of intervals. Lebbah et al. [32] discussed how the
reformulation-linearization technique can be used to relax nonlinear constraints and to
aid in pruning the search space. Granvilliers and Benhamou [19] proposed an algorithm
that prunes boxes using both constraint propagation techniques and the interval Newton
method. Recently, Domes and Neumaier [15] proposed a constraint propagation method
for linear and quadratic constraints and constraints and Jaulin [27] studied set-valued
CSPs.

Jaulin et al. [28] discussed contractors based on interval analysis, many of which were
also the subject of Neumaier’s book, though it focused on solving systems of equations in
the presence of data uncertainty [43]. Recently, Schichl and Neumaier [50] studied directed
acyclic graphs (DAG) to represent functions for interval evaluation. Vu et al. [62] used
this representation and extended the contractor proposed in [7], which propagates interval
information forward and backward along the DAG. Recently, Stuber et al. [55] extended
contractors based on interval analysis to compute convex and concave relaxations of implicit
functions. However, their methods require existence and uniqueness of the implicit function
on the full domain.

123

J Glob Optim (2015) 63:1–36 3

1.2 Connection to global optimization

Continuous optimization problems are often solved to guaranteed global optimality using
continuous branch-and-bound algorithms [17,25]. It is well-known that the efficiency of
these algorithms can be improved by discarding parts of the search space that are infeasible
or that are known not to contain optimal solutions [56]. These tasks are often referred to as
domain reduction. Obviously, global optimization is an important application of CSPs [44]
and ideas originally developed for CSPs are routinely utilized in global optimization: logic-
based methods can enhance and expedite optimization routines [24], constraint propagation
is often used to discard parts of the domain where the solution is known not to exist (e.g., [21,
22,47]). For example, constraint propagation routines are part of BARON’s pre-processing
step [48]. It is also not coincidental that many constraint satisfaction tools use branch-and-
prune frameworks inspired by global optimization algorithms to identify a set of boxes that
contains all solutions (e.g., [19,32,59]). Also, see the recent discussion of feasibility-based
bounds-tightening procedures in [3,4]. Thus, borrowing and embracing ideas from the other
field has been very beneficial for both fields.

As indicated by the “bound” keyword, branch-and-bound algorithms also require com-
putable bounds on the range of the objective function and non-convex constraints. Interval
methods have been used to provide such bounds [42,43,45,56]. However, their slow conver-
gence results in long computational times when the number of variables is large, which led to
the development of several nonlinear convex relaxation techniques [1,39,41,52,56,57] that
are more accurate and have higher convergence order [10]. Methods for domain reduction,
and CSPs in general, however, still rely almost exclusively on interval arithmetic.

1.3 Replacing intervals with relaxations in constraint propagation

Schichl and Neumaier [50] demonstrated that factorable functions can be represented alter-
natively as a DAG1 and discussed how this representation can be used for calculations in
interval analysis. Vu et al. [62] detailed how to propagate interval information on DAGs to
improve interval bounds. Their method can utilize the information from equality and inequal-
ity constraints. We will refer to this idea as reverse interval propagation. In this paper, the
idea is extended to convex and concave relaxations.

The remainder of the paper is organized as follows. In Sect. 2, the proposed method will
be described briefly. In Sect. 3, the notion of a factorable function is defined and concepts
from interval and McCormick analysis are reviewed. Section 4 recapitulates the important
results for reverse interval propagation from [62], which are extended to McCormick objects
in Sect. 5. Section 6 discusses how the theoretical results from the previous section can
be applied to construct, improve and utilize relaxations in the context of CSPs and global
optimization. Section 7 describes how the method can be implemented and some small
illustrative examples are given in Sect. 8. The results of applying the method to a set of more
complicated global optimization test problems are shown in Sect. 9. Section 10 summarizes
the contributions and concludes the paper.

2 Method description

In this section, we summarize the proposed method and describe how it can be applied in the
context of solving constraint satisfaction problems and optimization problems globally.

1 This representation of a factorable function is also used in the reverse mode of automatic differentiation [20].

123

4 J Glob Optim (2015) 63:1–36

Fig. 1 Illustration of domain
reduction by reverse interval and
McCormick propagation. The
gray area is the set of all feasible
points, the dash-dotted line is the
original domain, the dotted line is
the reduced domain using reverse
interval propagation. The solid
and dashed lines are relaxations
of the feasible region that are
functions of p

The class of factorable functions encompasses most functions that can be implemented
as computer programs without conditional statements. It is well-known that relaxations of
factorable functions can be computed using McCormick’s composition rule [39,52]; the
obtained relaxations are often referred to as McCormick relaxations. Here, it is proposed
to use the DAG representation of the constraints to also propagate McCormick relaxations
backward. For the benefit of the reader we provide an interpretation of relaxations in the
context of constraint propagation. Suppose we partition the variables into p and x . Whereas
reverse interval propagation yields a constant interval bound that all feasible (x, p) must
satisfy, reverse McCormick propagation yields bounds that are (convex and concave) func-
tions of p. For a given p in the domain, all x so that (p, x) is feasible are bounded. Figure 1
illustrates this interpretation. It shows that a domain (dash-dotted box) can be shrunk by
interval constraint propagation to find an outer approximation of the feasible region (dotted
box). However, the relaxations (solid and dashed lines) can provide a tighter approximation
that is a function of p. For example, consider p1, for which a thick solid line shows all
feasible x . Given p1, the relaxations restrict x to the interval (curly brace in Fig. 1) whereas
the interval bounds only constrain them to the larger interval (square bracket). Furthermore,
since the bounds are convex and concave functions of p, it is tractable, for example, to
calculate a reduced interval domain using affine relaxations based on the subgradients of
the relaxations [41] or by minimizing and maximizing the relaxations of each xi on the p
domain.

When solving global optimization problems, the improved domains for x and p can be used
as input to the calculation of the relaxations of the objective function. By taking advantage
of the information about the feasible region, it is possible to improve the tightness of the
objective function relaxations, a very desirable feature in global optimization.

The method can be described as follows: First, a particular partitioning of the variables
is selected and initial interval bounds (p, x) on the variables are specified. For each variable
suitable initial values are then derived from these bounds. Next, for each factor of the function
F bounds andMcCormick relaxations are computed. After this forward pass, bounds as well
as convex and concave relaxations of the reachable set {F(x, p) : (x, p) ∈ x × p} have
been constructed. Now, known restrictions of this reachable set, i.e., equality or inequality
constraints are used to tighten these bounds and relaxations. Lastly, this information is prop-
agated back to the variables x and p by “inverting”, in some sense, the operation related
to each factor of the function. This yields the relaxations of the feasible space described
above.

123

J Glob Optim (2015) 63:1–36 5

3 Preliminary definitions and results

In this section, factorable functions will be formally defined with the following development
in mind. The notation follows [51, Chapter 2] closely. Also, some concepts from interval and
McCormick analysis are reviewed. In particular, Sect. 3.3 utilizesmany definitions introduced
in [51, Chapter 2].

3.1 Factorable functions

Loosely speaking, a function is factorable if it can be represented as a finite sequence of
simple binary operations and univariate functions.

Herein, a function will be denoted as a triple (o, B, R) where B is the domain, R is the
range, and o is a mapping from B into R, o : B → R. Permissible functions shall include
binary addition (+, R

2, R) and multiplication (×, R
2, R) as well as a collection of univariate

functions, cf. Definition 1.

Definition 1 LetL denote a set of functions (u, B, R) where B ⊂ R.L will be referred to
as a library of univariate functions.

It will be required that, for each (u, B, R) ∈ L , u(x) can be evaluated on a computer for any
x ∈ B. Additional assumptions will be introduced when necessary.

Factorable functions will be defined in terms of computational sequences, which are
ordered sequences of the permissible basic operations defined above. Every such sequence
of computations defines a sequence of intermediate quantities called factors. In the following
definition, the factors are denoted by vk , and the functions πk are used to select one or two
previous factors to be the operand(s) of the next operation.Note that a computational sequence
is a specialization of a DAG because it allows binary and unary operations only.

Definition 2 Let ni , no ≥ 1. AL -computational sequence with ni inputs and no outputs is
a pair (S , πo), where:

1. S is a finite sequence of pairs {((ok, Bk, R), (πk, R
k−1, R

dk))}n f
k=ni+1 with every element

defined by one of the following options:

(a) (ok, Bk, R) is either (+, R
2, R) or (×, R

2, R) and πk : R
k−1 → R

2 is defined by
πk(v) = (vi , v j) for some integers i, j ∈ {1, . . . , k − 1}.

(b) (ok, Bk, R) ∈ L and πk : R
k−1 → R is defined by πk(v) = vi for some integer

i ∈ {1, . . . , k − 1}.
2. πo : R

n f → R
no is defined by πo(v) = (vi(1), . . . , vi(no)) for some integers

i(1), . . . , i(no) ∈ {1, . . . , n f }.
A computational sequence defines a function FS : DS ⊂ R

ni → R
no by the following

construction.

Definition 3 Let (S , πo) be a L -computational sequence with ni inputs and no outputs.
Define the sequence of factors {(vk, Dk, R)}n f

k=1 with Dk ⊂ R
ni , where

1. for k = 1, . . . , ni , Dk = R
ni and vk(x) = xk , ∀x ∈ Dk ,

2. for k = ni + 1, . . . , n f , Dk = {x ∈ Dk−1 : πk(v1(x), . . . , vk−1(x)) ∈ Bk} and
vk(x) = ok(πk(v1(x), . . . , vk−1(x))), ∀x ∈ Dk .

The set DS ≡ Dn f is the natural domain of (S , πo), and the natural function
(FS , DS , R

no) is defined by FS (x) = πo(v1(x), . . . , vn f (x)), ∀x ∈ DS .

123

6 J Glob Optim (2015) 63:1–36

Definition 4 A function F : D ⊂ R
n → R

m is L -factorable if there exists a
L -computational sequence (S , πo) with n inputs and m outputs such that the natural func-
tion (FS , DS , R

m) satisfies D ⊂ DS and F = FS |D .

3.2 Interval analysis

Definition 5 We conform to the standardized interval notation outlined in [30]. For a, b ∈ R,
a ≤ b define the interval [a, b] as the compact, connected set {x ∈ R : a ≤ x ≤ b}. The
set of all nonempty intervals is denoted as IR, and intervals are denoted by bold face letters,
x ∈ IR. The set of n-dimensional boxes (Cartesian products of n intervals) is denoted by IR

n .
The “interval vector” notation (x1, x2, . . . , xn) will often be used for x1 × x2 × · · · × xn .
Suppose x ∈ IR

n . Then, the lower and upper bounds of x are denoted as x and x , respectively.
Suppose Z ⊂ R

n . The set of all interval subsets of Z is denoted by IZ ⊂ IR
n . Lastly, if Z is

nonempty and bounded, then�Z with (�Z)i = [inf z∈Z zi , supz∈Z zi], i = 1, . . . , n denotes
the interval hull of Z , the tightest box enclosing Z . Note that (·)L and (·)U will be used for
more complex expressions to denote the respective lower and upper bound vectors of a box.

We will encounter functions that either return a vector of reals or the symbol NaN, or “not
a number”, which can be thought of as undefined or unspecified. It is convenient to define
R∅ = R∪{NaN}. We also define ∗

R= R∪{−∞,+∞} to denote the extended reals. For the
purposes of this paper it is also necessary to extend the definition of an interval to include
unbounded intervals and empty intervals, which are commonly excluded in the definition of
IR (e.g, [30]). Here, ∅ is used to denote the empty interval.

Definition 6 Let I∅R ≡ IR ∪ {∅}, and let the set of all interval subsets of Z ⊂ R
n including

the empty interval be denoted by I∅Z ⊂ I∅R
n . Similarly to Definition 5, define the set of all

extended intervals as ∗
IR = {[a, b] : a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}, a ≤ b} ∪ {∅}, which

includes all unbounded intervals and also the empty interval. Lastly, the set of all extended
interval subsets of Z ⊂ R

n is denoted by ∗
IZ ⊂ ∗

IR
n .

We will follow the conventions that real-valued operations involving NaN result in NaN,
that [NaN,NaN] = ∅, that NaN is an element of any interval, that every interval x ∈ I∅R

or x ∈ ∗
IR contains the empty interval and that any interval operation involving the empty

interval will again result in the empty interval with the exception of the construction of the
interval hull where �{x,∅} = x for any x ∈ ∗

IR
n . Note that x = ∅ for x ∈ ∗

IR
n if xi = ∅

for some i = 1, . . . , n. Otherwise, the operations of interval arithmetic extend naturally. For
any x ∈ R and ◦ ∈ {+,−, ·, /}, define x ◦ ±∞ = lima→±∞ x ◦ a.

As described in detail in Sect. 6.1 one benefit of this definition is the ease with which
potential domain violations occurring during an evaluation of the natural function can be
handled. Ifwe let points outside the natural domain evaluate toNaNwhich, by our convention,
is an element of any interval then the all-important inclusion property of interval functions,
which we will define below, can be maintained.

Definition 7 Let F : D ⊂ R
n → R

m
∅ , and for any x ⊂ D, let range(F, x) denote the image

of the box x under F . A mapping F : D ⊂ ∗
ID → ∗

IR
m is an inclusion function for F onD

if range(F, x) ⊂ F(x), ∀x ∈ D.

Definition 8 Let D ⊂ R
n . A set D ⊂ ∗

IR
n is an interval extension of D if D ⊂ ∗

ID and
every x ∈ D satisfies [x, x] ∈ D. Let F : D → R

m
∅ . A function F : D ⊂ ∗

ID → ∗
IR

m is an
interval extension of F on D ifD is an interval extension of D and F([x, x]) = [F(x), F(x)]
for every x ∈ D.

123

J Glob Optim (2015) 63:1–36 7

Definition 9 Let F : D ⊂ ∗
IR

n → ∗
IR

m . F is inclusion monotonic onD if x1 ⊂ x2 implies
that F(x1) ⊂ F(x2), ∀x1, x2 ∈ D.

Theorem 1 Let F : D ⊂ R
n → R

m
∅ and let F : D → ∗

IR
m be an interval extension of F.

If F is inclusion monotonic on D, then F is an inclusion function for F on D.

Proof Choose any x ∈ D and any x ∈ x. Since x ∈ D, it follows that [x, x] ∈ D. Since
∅ ∈ F(x) is always true, if fi (x) = NaN for some i ∈ {1, . . . ,m} then F(x) ∈ F(x).
Otherwise, the result follows from [51, Theorem 2.3.4]. ��

Define the typical inclusion functions for addition and multiplication: let the functions
(+, I∅R

2, I∅R) and (×, I∅R
2, I∅R) be defined by +(x, y) ≡ [x + y, x + y] and ×(x, y) ≡

[min(x y, x y, x y, x y),max(x y, x y, x y, x y)] and recall our convention2 that any operation
involving the empty interval results in an empty interval, i.e., +(x,∅) = +(∅, x) = ∅ or
×(x,∅) = ×(∅, x) = ∅ for any x ∈ I∅R.

Assumption 1 Assume that for every (u, B, R) ∈ L , an interval extension (u, I∅B, I∅R) is
known. Furthermore, this interval extension is inclusion monotonic on I∅B.

Suppose that Assumption 1 holds and that (S , πo) is aL -computational sequence. Then,
to any element (ok, πk) of S a corresponding (ok, I∅Bk, I∅R) exists. Also, the functions
(πk, I∅R

k−1, I∅R) or (πk, I∅R
k−1, I∅R

2) with πk(v) = (vi) or πk(v) = (vi , v j) extend
(πk, R

k−1, R) or (πk, R
k−1, R

2) naturally. Note that we do not distinguish notationally
between the real and interval versions of the elementary operations and functions u, πk,

and ok . Rather, they are assumed to always act on the class of the object in their argument(s).

Definition 10 For everyL -computational sequence (S , πo) with ni inputs and no outputs,
define the sequence of inclusion factors {(vk,Dk, I∅R)}n f

k=1 where

1. for all k = 1, . . . , ni , Dk = I∅R
ni and vk(x) = xk , ∀x ∈ Dk ,

2. for all k = ni + 1, . . . , n f , Dk = {x ∈ Dk−1 : πk(v1(x), . . . , vk−1(x)) ∈ I∅Bk} and
vk(x) = ok(πk(v1(x), . . . , vk−1(x))), ∀x ∈ Dk .

The natural interval extension of (S , πo) is the function (FS ,DS , I∅R
no) defined by

DS ≡ Dn f and FS (x) = πo(v1(x), . . . , vn f (x)), ∀x ∈ DS .

Theorem 2 Let (S , πo) be a L -computational sequence with associated natural function
(FS , DS , R

no). The natural interval extension (FS ,DS , I∅R
no) is an inclusionmonotonic

interval extension of (FS , DS , R
no) on DS and an inclusion function for FS on DS . In

particular, each inclusion factor vk of (S , πo) is an inclusion monotonic interval extension
of vk on DS for all k = 1, . . . , n f .

Proof See [51, Theorem 2.3.11] together with Theorem 1. ��
3.3 McCormick analysis

Let D ⊂ R
n be convex. A vector-valued function G : D → R

m is convex on D if each
component is convex on D. Similarly, it is concave on D if each component is concave on
D. For any set A, let P(A) denote the power set, or set of all subsets, including the empty
set, of A.

2 Hereafter, we will not make this distinction explicitly in expressions. Rather it is always assumed tacitly.

123

8 J Glob Optim (2015) 63:1–36

Definition 11 Let D ⊂ R
n be a convex set and F : D → P(Rm). A function ˇF : D → R

m

is a convex relaxation, or convex underestimator, of F on D if ˇF is convex on D and

ˇ
fi (x) ≤ inf{ fi (x)}, ∀x ∈ D and i = 1, . . . ,m. A convex relaxation G : D → R

m is called
the convex envelope of F on D if gi (x) ≥

ˇ
fi (x) for all convex relaxations of F , ∀x ∈ D and

i = 1, . . . ,m. A function F̂ : D → R
m is a concave relaxation, or concave overestimator,

of F on D if F̂ is concave on D and f̂i (x) ≥ sup{ fi (x)}, ∀x ∈ D and i = 1, . . . ,m. A
concave relaxation G : D → R

m is called the concave envelope of F on D if gi (x) ≤ f̂i (x)
for all concave relaxations of F , ∀x ∈ D and i = 1, . . . ,m.

Remark 1 Definition 11 allows that fi (x) = NaN for some i ∈ {1, . . . ,m} and x ∈ D. In this
case, the inequality defining a relaxation will hold for any function. However, the convexity
and concavity requirement must still be met by ˇF and F̂ , respectively, and this requirement
constrains the set of functions that satisfy the definition, as exemplified in Fig. 7.

The following notation was introduced in [51]. While it differs from the previously used
notation for McCormick relaxations, it is more compact and very useful for the proposed
operations on computational sequences, and it also makes the relationship with interval
arithmetic more apparent. In the latter, information is passed from one operation in the
sequence of factors to the next in the form of intervals. McCormick’s procedure to construct
relaxations [39], on the other hand, requires a box x and a point x ∈ x as input and returns
three values: a box vk(x), which encloses the image of x under vk , and two additional values

ˇvk(x, x) and v̂k(x, x), which represent the value of the convex and concave relaxation of vk
on x evaluated at x . After a recent generalization, one can also consider mappings that take
a box and two relaxation values as input and return a box and two relaxation values; these
are called generalized McCormick relaxations [52]. One advantage of this generalization is
that it yields mappings with conformable inputs and outputs, which are hence composable.

Definition 12 Let MR
n ≡ {(zB , zC) ∈ IR

n × IR
n : zB ∩ zC �= ∅}. Elements of MR

n are
denoted by script capitals, Z ∈ MR

n . For any Z ∈ MR
n , the notations zB , zC ∈ IR

n and
(z, z,

ˇ
z, ẑ) ∈ R

n will be commonly used to denote the boxes and vectors satisfying Z =
(zB , zC) = ([z, z], [

ˇ
z, ẑ]). For any D ⊂ R

n , let MD denote the set {Z ∈ MR
n : zB ⊂ D}.

Note that for more complex expressions, (·)C will be used to denote the relaxation box, and
(·)cv and (·)cc will be used to denote the convex and concave relaxation vectors, respectively,
of a McCormick object.

In this paper, it is also necessary to consider unbounded and empty McCormick objects.
Analogous to Definition 6, define the sets M∅R

n ≡ {(zB , zC) ∈ I∅R
n × I∅R

n : zB ∩ zC �=
∅ ∨ zC = ∅} and ∗

MR
n ≡ {(zB , zC) ∈ ∗

IR
n × ∗

IR
n : zB ∩ zC �= ∅ ∨ zC = ∅}, which are

extensions of MR
n . Also, define M∅D and ∗

MD for any D ∈ R
n analogous to I∅D and ∗

ID.
Introduce Enc : ∗

MR
n → ∗

IR
n defined by Enc(Z) = zB ∩ zC for all Z ∈ ∗

MR
n . This

function is necessary since for z ∈ R
n
∅, z ∈ Z is not well-defined whereas z ∈ Enc(Z) is.

Next, we formalize McCormick’s technique by defining operations on M∅R
n . We intro-

duce the concept of a relaxation function, which is analogous to the notion of an inclusion
function in interval analysis, and is the fundamental object thatwewant to compute for a given
real-valued function. Then, we show how relaxation functions can be obtained through a sim-
pler construction, just as inclusion functions can be constructed from inclusion monotonic
interval extensions. First, however, some preliminary concepts are necessary.

Definition 13 Let X ,Y ∈ ∗
MR

n . X and Y are coherent if xB = yB . A set D ⊂ ∗
MR

n is
coherent if every pair of elements is coherent. A set D ⊂ ∗

MR
n is closed under coherence

if, for any coherent X ,Y ∈ ∗
MR

n , X ∈ D implies Y ∈ D .

123

J Glob Optim (2015) 63:1–36 9

For any coherent X1,X2 ∈ ∗
MR

n with a common box part q and for all λ ∈ [0, 1], define
Conv(λ,X1,X2) ≡ (q, λxC1 + (1 − λ)xC2)

where the rules of interval arithmetic are used to evaluate λxC1 +(1−λ)xC2 . For anyX1,X2 ∈
∗
MR

n , the inclusion X1 ⊂ X2 holds iff xB
1 ⊂ xB

2 and xC1 ⊂ xC2 . Likewise, X1 ⊃ X2 iff
X2 ⊂ X1. Also, define X1 ∩ X2 ≡ (xB

1 ∩ xB
2 , xC1 ∩ xC2).

Definition 14 Suppose D ⊂ ∗
MR

n is closed under coherence. A function F : D → ∗
MR

m

is coherently concave on D if for every coherent X1,X2 ∈ D , i.e., q = xB
1 = xB

2 , F (X1)

andF (X2) are coherent, andF (Conv(λ,X1,X2)) ⊃ Conv(λ,F (X1),F (X2)) for every
λ ∈ [0, 1].
Definition 15 Let F : D ⊂ R

n → R
m
∅ . A mappingF : D ⊂ ∗

MD → ∗
MR

m is a relaxation
function for F on D if D is closed under coherence, F is coherently concave on D , and
F(x) ∈ Enc(F (X)) is satisfied for every X ∈ D and x ∈ Enc(X).

Remark 2 Definition 14 is a generalization of convexity and concavity, and Definition 15
is a generalization of the notion of convex and concave relaxations. Convex and concave
relaxations of F can be recovered from a relaxation function of F as follows. Let x ∈ ID
so that there exists Y ∈ D with x = yB . Define the functions U ,O : x → R

m
∅ for all

x ∈ x by ([F, F], [U (x),O(x)]) ≡ F ((x, [x, x])). Then,U andO are convex and concave
relaxations of F on x, respectively, as shown in [51, Lemma 2.4.11].

Definition 16 LetD ⊂ R
n .A setD ⊂ ∗

MR
n is aMcCormick extensionofD ifD ⊂ ∗

MD and
every x ∈ D satisfies ([x, x], [x, x]) ∈ D . Let F : D → R

m
∅ . A functionF : D → ∗

MR
m is

a McCormick extension of F if D is a McCormick extension of D and F ([x, x], [x, x]) =
([F(x), F(x)], [F(x), F(x)]), ∀x ∈ D.

Definition 17 Let F : D ⊂ ∗
MR

n → ∗
MR

m . F is inclusion monotonic on D if X1 ⊂ X2

implies that F (X1) ⊂ F (X2) for all X1,X2 ∈ D .

Theorem 3 Let F : D ⊂ R
n → R

m
∅ and let F : D → ∗

MR
m be a McCormick extension of

F. If F is inclusion monotonic on D , then every X ∈ D satisfies F(x) ∈ Enc(F (X)) for
all x ∈ Enc(X).

Proof See [51, Theorem 2.4.14]. ��
We conclude that an inclusion monotonic McCormick extension that is also coher-

ently concave is a relaxation function. Hence, it suffices to derive an inclusion monotonic,
coherently concave McCormick extension. As shown in [51, Lemmas 2.4.15,2.4.17] the
composition of inclusion monotonic, coherently concave McCormick extensions yields
an inclusion monotonic, coherently concave McCormick extension. This motivates the
derivations of inclusion monotonic, coherently concave McCormick extensions of the basic
operations below.

Define the following relaxation functions for addition and multiplication: let the functions
(+, M∅R

2, M∅R) and (×, M∅R
2, M∅R) be given by +(X ,Y) = (xB + xB , xC + xC) and

×(X ,Y) = (xB yB , [
ˇ
z, ẑ]) where

ˇ
z = max

((
yxC + x yC − x y

)L
,
(
yxC + x yC − x y

)L
, (xB yB)L

)
,

ẑ = min

((
yxC + x yC − x y

)U
,
(
yxC + x yC − x y

)U
, (xB yB)U

)
.

123

10 J Glob Optim (2015) 63:1–36

Note that this definition of multiplication ensures that [
ˇ
z, ẑ] ⊂ xB yB [51, Theorems 2.4.22,

2.4.23]. Furthermore, the standard rules for addition and multiplication of McCormick relax-
ations are implied by these definitions, see [51, p. 69f], with the addition of the intersection
with the bounds from interval arithmetic in the case of themultiplication rule. These functions
are indeed relaxation functions and also inclusion monotonic as shown in [51, Section 2.4.2].

The following assumption is needed to construct relaxation functions for the elements
of L . For many univariate functions, objects satisfying these assumptions are known and
readily available [51, Section 2.8].

Assumption 2 Assume that for every (u, B, R) ∈ L , functions ˇu, û : B̃ → R where
B̃ ≡ {(x, x) ∈ IB × B : x ∈ x} and xmin, xmax : IB → R are known such that ˇu(x, ·) and
û(x, ·) are convex and concave relaxations of u on x ∈ IB, respectively, and xmin(x) and
xmax(x) are a minimum of ˇu(x, ·) and a maximum of û(x, ·) on x, respectively. Furthermore,
assume that for any x1, x2 ∈ IB with x1 ⊂ x2, ˇu(x1, x) ≥ ˇu(x2, x) and û(x1, x) ≤ û(x2, x)
for all x ∈ x1 and that ˇu([x, x], x) = û([x, x], x) for all x ∈ B.

Let mid : R × R × R → R return the middle value of its arguments. It can be shown (cf.
[51], p. 76f) that a relaxation function of (u, B, R) ∈ L is given by (u, MB, MR) with

u(X) =
(
u(xB),

[
ˇu(xB ,mid(ˇx, x̂, x

min(xB))), û(xB ,mid(ˇx, x̂, x
max(xB)))

]
∩ u(xB)

)
.

(1)
Note that if the convex and concave envelopes of u are known and used, then the intersection
with u(xB) in (1) is redundant.

Suppose that Assumption 2 holds and that (S , πo) is aL -computational sequence. Then,
for any element (ok, πk) ofS , the preceding developments provide an inclusion monotonic
McCormick extension (ok, M∅Bk, M∅R). Also, the functions (πk, M∅R

k−1, M∅R) or
(πk, M∅R

k−1, M∅R
2) with πk(V) = (Vi) or πk(V) = (Vi ,V j) extend (πk, R

k−1, R) or
(πk, R

k−1, R
2) naturally.

Definition 18 For everyL -computational sequence (S , πo) with ni inputs and no outputs,
define the sequence of relaxation factors {(Vk,Dk, M∅R)}n f

k=1 where

1. for all k = 1, . . . , ni , Dk = M∅R
ni and Vk(X) = Xk , ∀X ∈ Dk ,

2. for all k = ni + 1, . . . , n f , Dk = {X ∈ Dk−1 : πk(V1(X), . . . ,Vk−1(X)) ∈ M∅Bk}
and Vk(X) = ok(πk(V1(X), . . . ,Vk−1(X))), ∀X ∈ Dk .

The natural McCormick extension of (S , πo) is the function (FS ,DS , MR
no) defined by

DS ≡ Dn f and FS (X) = πo(V1(X), . . . ,Vn f (X)), ∀X ∈ DS .

Theorem 4 Let (S , πo) be a L -computational sequence with associated natural function
(FS , DS , R

no). The natural McCormick extension (FS ,DS , M∅R
no) is a McCormick

extension of (FS , DS , R
no) and coherently concave and inclusion monotonic onDS . Thus,

it is a relaxation function for FS onDS . In particular, each relaxation factor Vk of (S , πo)

is a inclusion monotonic, coherently concave McCormick extension of vk on DS for all
k = 1, . . . , n f .

Proof See [51, Theorem 2.4.32] together with Theorem 3. ��
Thus, so far we have described forward propagation of intervals and McCormick objects,

as is commonly done to compute natural interval extensions and standard McCormick relax-
ations. Next, we consider reverse propagation of intervals and describe its use in CSPs.
The formal development of forward McCormick propagation in this section as an analo-
gous process to forward interval propagation allows us to then extend the reverse interval
propagation ideas to McCormick objects in Sect. 5.

123

J Glob Optim (2015) 63:1–36 11

4 Reverse interval propagation

In this section, we will focus on propagating interval bounds backwards through the com-
putational sequence, which is a particular form of a DAG. Since the reverse McCormick
propagation is similar in spirit, it is very instructive to first revisit the interval case. The
results, which are stated below, have been adapted from [62], though the notation is intro-
duced here.

Definition 19 Consider F : D ⊂ R
n → R

m . Let Frev : I∅D × ∗
IR

m → I∅R
n . If for all

x ∈ I∅D and r ∈ ∗
IR

m it holds that

{x ∈ x : F(x) ∈ r} ⊂ {x ∈ Frev(x, r)} ⊂ x, (2)

then Frev is called a reverse interval update of F .

Definition 20 Let (S , πo) be a L -computational sequence with ni inputs and no out-
puts with natural interval extension (FS ,DS , R

no). Let x ∈ DS . Suppose that v1(x),

. . . , vn f (x) have been calculated according to Definition 10. Let orevk : I∅Bk × ∗
IR → I∅Bk

be a reverse interval update of ok for each k = ni + 1, . . . , n f . Suppose ṽ1, . . . , ṽn f ∈ I∅R

are calculated for any x ∈ DS and r ∈ ∗
IR

no by the following procedure:

(ṽ1, . . . , ṽn f) := (v1(x), . . . , vn f (x))

πo(ṽ1, . . . , ṽn f) := πo(ṽ1, . . . , ṽn f) ∩ r

for l := 1, . . . , n f − ni do

πn f −l+1(ṽ1, . . . , ṽn f −l) := orevn f −l+1(πn f −l+1(ṽ1, . . . , ṽn f −l), ṽn f −l+1)

end

The reverse interval propagation of (S , πo) is the function (Frev
S ,DS ×∗

IR
no , IDS) defined

by Frev
S (x, r) ≡ ṽ1 × · · · × ṽni .

Theorem 5 The reverse interval propagation of (S , πo) as given by Definition 20 is a
reverse interval update of (FS , DS , R

no). If the reverse update of ok is inclusion monotonic
for each k = ni + 1, . . . , n f then the reverse interval propagation of (S , πo) is inclusion
monotonic.

Proof Finite induction yields immediately that the second inclusion in (2) holds.
Let r ∈ ∗

IR
no and x ∈ DS . If there does not exist a x ∈ x such that FS (x) ∈ r , then the

first inclusion in (2) holds trivially.
Let x ∈ x such that FS (x) ∈ r . Then, there exists a sequence of factor values {vk(x)}n f

k=1
with v1(x) = x1, . . ., vni (x) = xni and πo(v1(x), . . . , vn f (x)) ∈ r . Also, since v1, . . . , vn f

are inclusion functions (see Theorem 2), (v1(x), . . . , vn f (x)) ∈ (v1(x), . . . , vn f (x)) so that
(v1(x), . . . , vn f (x)) ∈ (ṽ1, . . . , ṽn f) prior to entering the loop. In the following, let ṽ

l
k denote

the value of ṽk for the given x and r after the lth reverse update, l = 1, . . . , n f − ni . Since
orevn f

is a reverse interval update, it follows that (v1(x), . . . , vn f −1(x)) ∈ (ṽ11, . . . , ṽ
1
n f −1).

Finite induction yields that (v1(x), . . . , vni (x)) ∈ (ṽ
n f −ni
1 , . . . , ṽ

n f −ni
ni) ≡ Frev

S (x, r). Thus,
x ∈ Frev

S (x, r) and the first inclusion in (2) holds.
Assume now that orevk is inclusion monotonic for each k = ni + 1, . . . , n f . Let x1, x2 ∈

DS with x1 ⊂ x2 and r1, r2 ∈ ∗
IR

no with r1 ⊂ r2. Then, (ṽ1(x1, r1), . . . , ṽn f (x
1, r1)) ⊂

(ṽ1(x2, r2), . . . , ṽn f (x
2, r2)) prior to entering the loop. Since orevn f

is inclusion monotonic,

123

12 J Glob Optim (2015) 63:1–36

(ṽ11(x
1, r1), . . . , ṽ1n f

(x1, r1)) ⊂ (ṽ11(x
2, r2), . . . , ṽ1n f

(x2, r2)). Using finite induction over

l yields that (ṽ
n f −ni
1 (x1, r1), . . . , ṽ

n f −ni
ni (x1, r1)) ⊂ (ṽ

n f −ni
1 (x2, r2), . . . , ṽ

n f −ni
ni (x2, r2)).

Thus, it follows that Frev
S (x1, r1) ⊂ Frev

S (x2, r2). ��
Next, wewill present a result very closely related to Theorem5 that reliesmore on standard

concepts from interval analysis.

Theorem 6 Consider (S , πo) and assume that for each k = ni + 1, . . . , n f , the reverse
interval update of ok is inclusion monotonic. Define F rev

S : D × R
no → R

ni
∅ for each x ∈ D

and r ∈ R
no by

F rev
S (x, r) =

{
x if FS (x) = r,
NaN otherwise.

(3)

Then, Frev
S is an inclusion function of F rev

S on DS × ∗
IR

no .

Proof Let r ∈ ∗
R
no . First, consider x ∈ D so that FS (x) = r . Since FS is an interval exten-

sion of FS , each factor is a degenerate interval after the forward evaluation with vk([x, x]) =
[vk(x), vk(x)]. Since FS (x) = r , the intersections during the reverse interval propagation
return degenerate intervals so that it is clear that Frev

S is an interval extension of F rev
S for

such [x, x]. If x ∈ D such that FS (x) �= r then πo(ṽ1, . . . , ṽn f) := πo(ṽ1, . . . , ṽn f) ∩ r
results in ṽk = ∅ for at least one k ∈ {1, . . . , n f }. For each k ∈ {1, . . . , n f }, ṽk influ-
ences at least one ṽ j with j ∈ {1, . . . , ni } through a sequence of reverse interval updates.
Any reverse interval update involving empty intervals yields empty intervals because it
is an interval operation. Hence, once the loop is executed, ṽ1 × · · · × ṽni = ∅ so that
Frev
S ([x, x], [r, r]) = ∅ = [NaN,NaN] = [F rev

S (x, r), F rev
S (x, r)]. Thus, Frev

S is an interval
extension of F rev

S . Inclusion monotonicity of Frev
S has been established in Theorem 5. The

assertion follows then from Theorem 1. ��
Here, we will demonstrate how to obtain inclusion monotonic reverse interval updates

for the case of addition. Similar constructions are possible for multiplication and univariate
operations [62].

Lemma 1 Consider (+, R
2, R). The function (+rev, I∅R

2×∗
IR, I∅R

2) defined for all x, y ∈
I∅R and r ∈ ∗

IR by
+rev((x, y), r) = (r − y, r − x) ∩ (x, y)

is an inclusion monotonic reverse interval update of (+, R
2, R).

5 Reverse McCormick propagation

In this section, the ideas for reverse interval propagation are extended toMcCormick objects.
Again, the enclosure property will be established, but also coherent concavity and inclusion
monotonicity of the resulting relaxations will be proved.

Definition 21 Suppose F : D ⊂ R
n → R

m . Consider F rev : M∅D × ∗
MR

m → M∅R
n . If

for all X ∈ M∅D and R ∈ ∗
MR

m it holds that

{x ∈ Enc(X) : F(x) ∈ Enc(R)} ⊂ {x ∈ Enc(F rev(X ,R))} (4)

and F rev(X ,R) ⊂ X , then F rev is called a reverse McCormick update of F .

123

J Glob Optim (2015) 63:1–36 13

Definition 22 Let (S , πo) be a L -computational sequence with ni inputs and no outputs
with natural McCormick extension (FS ,DS , R

no). Let X ∈ DS . Suppose V1(X), . . . ,

Vn f (X) have been calculated according to Definition 18. Let orevk : M∅Bk ×∗
MR → M∅Bk

be a reverse McCormick update of ok for each k = ni + 1, . . . , n f . Suppose Ṽ1, . . . , Ṽn f ∈
M∅R are calculated for any X ∈ DS and R ∈ ∗

IR
no by the following procedure:

(Ṽ1, . . . , Ṽn f) := (V1(X), . . . ,Vn f (X))

πo(Ṽ1, . . . , Ṽn f) := πo(Ṽ1, . . . , Ṽn f) ∩ R

for l := 1, . . . , n f − ni do

πn f −l+1(Ṽ1, . . . , Ṽn f −l) := orevn f −l+1(πn f −l+1(Ṽ1, . . . , Ṽn f −l), Ṽn f −l+1)

end

The reverseMcCormickpropagationof (S , πo) is the function (F rev
S ,DS ×∗

MR
no , M∅DS)

defined for any X ∈ DS and R ∈ ∗
MR

no by F rev
S (X ,R) ≡ Ṽ1 × · · · × Ṽni .

Theorem 7 The reverse McCormick propagation of (S , πo) as given by Definition 22 is a
reverse McCormick update of (FS , DS , R

no).

Proof Let R ∈ ∗
MR

m and X ∈ DS . Finite induction yields immediately that F rev(X ,

R) ⊂ X . If there does not exist x ∈ Enc(X) such that FS (x) ∈ Enc(R), then (4) holds
trivially.

Let x ∈ Enc(X) satisfy FS (x) ∈ Enc(R). Then, there exists a sequence of factor values
{vk(x)}n f

k=1 with v1(x) = x1, . . ., vni (x) = xni and πo(v1(x), . . . , vn f (x)) ∈ Enc(R). Also,
since V1, . . . ,Vn f are relaxation functions, (v1(x), . . . , vn f (x)) ∈ Enc((V1(X), . . . ,Vn f

(X))) so that (v1(x), . . . , vn f (x)) ∈ Enc((Ṽ1, . . . , Ṽn f)) prior to entering the loop.

In the following, let Ṽ l
k denote the value of Ṽk for the given X and R after the

lth reverse update, l = 1, . . . , n f − ni . Since orevn f
is a reverse McCormick update, it

follows that (v1(x), . . . , vn f −1(x)) ∈ Enc(Ṽ 1
1 , . . . , Ṽ 1

n f −1). Finite induction yields that

(v1(x), . . . , vni (x)) ∈ Enc((Ṽ
n f −ni
1 , . . . , Ṽ

n f −ni
ni)) ≡ Enc(F rev

S (X ,R)). Thus, x ∈
Enc(F rev

S (X ,R)) and (4) holds. ��
Lemma 2 Consider (S , πo) and assume that for each k = ni + 1, . . . , n f , the reverse
McCormick update of ok is coherently concave and inclusion monotonic on M∅Bk × ∗

MR.
Then, F rev

S is coherently concave and inclusion monotonic on DS × ∗
MR

no .

Proof Compositions of coherently concave and inclusionmonotonic functions are coherently
concave and inclusion monotonic [51, Lemma 2.4.15]. The result thus follows from finite
induction, analogous to the proof of Theorem 7. ��
Theorem 8 Consider (S , πo) and assume that for each k = ni + 1, . . . , n f , the reverse
McCormick update of ok is coherently concave and inclusion monotonic. Then, F rev

S is a
relaxation function of F rev

S on DS × ∗
MR

no .

Proof Let r ∈ ∗
R
no . First, consider x ∈ D so that FS (x) = r . It is clear that F rev

S is a
McCormick extension of F rev

S for such ([x, x], [x, x]) sinceFS is a McCormick extension
of FS and orevk (B,R) ⊂ B for all (B,R) ∈ M∅Bk ×∗

MR by definition. If x ∈ D such that
FS (x) �= r then πo(Ṽ1, . . . , Ṽn f) := πo(Ṽ1, . . . , Ṽn f) ∩ ([r, r], [r, r]) results in Ṽk = ∅ for

at least one k ∈ {1, . . . , n f }. For each k ∈ {1, . . . , n f }, Ṽk influences at least one Ṽ j with

123

14 J Glob Optim (2015) 63:1–36

j ∈ {1, . . . , ni } through a sequence of reverse McCormick updates. Any reverseMcCormick
update involving empty McCormick objects yields empty McCormick objects because it
is a McCormick operation. Hence, once the loop is executed, Ṽ1 × · · · × Ṽni = ∅ so that
F rev

S (([x, x], [x, x]), ([r, r], [r, r])) = ∅. Thus,F rev
S is aMcCormick extension of F rev

S . The
assertion follows from Lemma 2 in conjunction with Theorem 3. ��
5.1 Reverse McCormick updates of binary operations

Lemma 3 Consider (+, R
2, R) and its relaxation function (+, MR

2, MR). The function
(+rev, M∅R

2 × ∗
MR, M∅R

2) defined for all X ,Y ∈ M∅R and R ∈ ∗
MR by

+rev((X ,Y),R) = (R − Y ,R − X) ∩ (X ,Y)

is a reverse McCormick update of (+, R
2, R).

Proof Let X ,Y ∈ M∅R and R ∈ ∗
MR. If Enc(+(X ,Y) ∩ R) = ∅, then �(x, y, r) ∈

Enc((X ,Y ,R)) : r − y = x . Thus, r − y /∈ Enc(X) for all (y, r) ∈ Enc((Y ,R)) so
that Enc(R − Y) ∩ Enc(X) = ∅. Similarly, Enc(R − X) ∩ Enc(Y) = ∅ so that (4) holds
trivially.

Otherwise, pick (x, y) ∈ Enc(X)×Enc(Y) so that x+y ∈ Enc(R). Since
ˇ
φ ≤ x+y ≤ φ̂

and (x, y) ∈ ([ˇx, x̂], [ˇ
y, ŷ]), it follows that x ≥

ˇ
φ − y ≥

ˇ
φ − ŷ and x ≤ φ̂ − y ≤ φ̂ −

ˇ
y and

that y ≥
ˇ
φ − x ≥

ˇ
φ − x̂ and y ≤ φ̂ − x ≤ φ̂ − ˇx so that (x, y) ∈ Enc(+rev((X ,Y),R)).

Thus, (4) holds. ��
Let (Γ, I∅R × ∗

IR × I∅R, I∅R) denote the Gauss–Seidel operator for all x, y ∈ I∅R and
r ∈ ∗

IR, see [43, Proposition 4.2.1] for its description.

Definition 23 Define an extension of the Gauss–Seidel operator to MR, denoted as G :
M∅R × ∗

MR × M∅R → M∅R, for all X ,Y ∈ M∅R and R ∈ ∗
MR by (G (X ,R,Y))B =

Γ (xB , rB , yB) and

(G (X ,R,Y))C =

⎧⎪⎪⎨
⎪⎪⎩

(R′ × 1
X ′)C ∩ (y′)C if 0 /∈ xB ,

Γ (xB , rB , yB) ∩ (y′)C if 0 ∈ xB , 0 /∈ rB ,

(y′)C otherwise,

where X ′ = (xB , xB ∩ xC), Y ′ = (yB , yB ∩ yC) and R′ = (rB , rB ∩ rC).

Lemma 4 Suppose X ,Y ∈ M∅R, R ∈ ∗
MR. Then, G (X ,R,Y) ⊂ B and

Enc(G (X ,R,Y)) ⊃ {y ∈ Enc(Y) : ∃x ∈ Enc(X), r ∈ Enc(R) : xy = r}. (5)

Proof Γ (xB , rB , bB) ⊂ bB follows from [43, 4.3.2] and it is also clear that (G (X ,R,Y))C

⊂ (y′)C , hence G (X ,R,Y) ⊂ Y ′ ⊂ Y . It has already been established [43, Proposi-
tion 4.2.1] that

Γ (xB , rB , yB) = �{y ∈ bB : ∃a ∈ xB , r ∈ rB : xy = r}.
Next, note that

�{y ∈ yB : ∃x ∈ xB , r ∈ rB : xy = r} ⊃ {y ∈ Enc(Y) :
∃x ∈ Enc(X), r ∈ Enc(R) : xy = r}

123

J Glob Optim (2015) 63:1–36 15

since Enc(X) ⊂ xB , Enc(Y) ⊂ yB , and Enc(R) ⊂ rB . Therefore, (5) holds for the second
and third case. Establishing (G (X ,R,Y))C ⊃ �{y ∈ Enc(Y) : ∃x ∈ Enc(X), r ∈
Enc(R) : xy = r} is sufficient to show that (5) holds in the first case.

Suppose that 0 /∈ xB . Consider y ∈ yC such that ∃x ∈ (x′)C , r ∈ (r ′)C with xy = r ,
noting that x �= 0 by assumption. If such y does not exist then {y ∈ Enc(Y) : ∃x ∈
Enc(X), r ∈ Enc(R) : xy = r} = ∅ and (5) holds trivially. If such y exists, then y = r × 1

x .
Also, 1

X ′ exists and 1
x ∈ Enc(1

X ′). Since r × 1
x ∈ (R′ × 1

X ′)C , (G (X ,R,Y))C ⊃ {y ∈
Enc(Y) : ∃x ∈ Enc(X), r ∈ Enc(R) : xy = r}. ��
Lemma 5 Consider (×, R

2, R) and its relaxation function (×, MR
2, MR). The function

(×rev, M∅R
2 × ∗

MR, M∅R
2) defined for all X ,Y ∈ M∅R and R ∈ ∗

MR by

×rev((X ,Y),R) = (G (Y ,R,X),G (G (Y ,R,X),R,Y))

is a reverse McCormick update of (×, R
2, R).

Proof Let X ,Y ∈ M∅R, R ∈ ∗
MR. If ×(X ,Y) ∩ R = ∅, there does not exist

x ∈ Enc(X), y ∈ Enc(Y) so that xy ∈ Enc(R). Thus, (4) holds trivially. Otherwise,
pick (x, y) ∈ Enc(X)×Enc(Y) so that xy ∈ Enc(R). By Lemma 4, Enc(G (Y ,R,X)) ⊃
{x̃ ∈ Enc(X) : ∃ỹ ∈ Enc(Y), z ∈ Enc(R) : x̃ ỹ = z}, and hence x ∈ Enc(G (Y ,R,X)).
Likewise, {ỹ ∈ Enc(Y) : ∃x̃ ∈ Enc(G (Y ,R,X)), z ∈ Enc(R) : x̃ ỹ = z} ⊂ Enc
(G (G (Y ,R,X),R,Y)), hence y ∈ Enc(G (G (Y ,R,X),R,Y)). Thus, (x, y) ∈
Enc(×rev((X ,Y),R)) and (4) holds. ��

Note that×rev((X ,Y),R) = (G (G (X ,R,Y),R,X),G (X ,R,Y)) is an alternative
reverse McCormick update of (×, R

2, R).

5.2 Reverse McCormick updates of univariate functions

Lemma 6 Let B ⊂ R and consider an injective continuous function (u, B, R) ∈ L . Fur-
thermore, assume that (u−1, range(u, B), R) ∈ L where range(u, B) refers to the image of
B under the real-valued function u. The function (urev, M∅B × ∗

MR, M∅R) defined for all
X ∈ M∅B and R ∈ ∗

MR by

urev(X ,R) = u−1(T) ∩ X

where T = (rB ∩ u(xB),Enc(R ∩ u(X))) is a reverse McCormick update of (u, B, R).

Proof Let X ∈ M∅B. Suppose that Enc(T) = ∅. Since (u, M∅B, MR) is a relaxation
function, there does not exist an x ∈ Enc(X) so that u(x) ∈ Enc(R). Otherwise, since
(u, B, R) is continuous and injective, it is invertible on range(u, B) and u−1 is continuous [46,
Thm. 4.17]. Since (u−1, range(u, B), R) ∈ L , u(x) ∈ Enc(T) implies x = u−1(u(x)) ∈
Enc(u−1(T)). ��
Remark 3 Lemma 6 can be used to define the reverse McCormick update of −(·), (·)n for
odd n ∈ N, exp, log,

√·, etc. It is also applicable to 1
(·) if B is restricted to either the negative

or positive reals.

Lemma 7 Let n ∈ N be even. Consider (u, R, R) ∈ L where u(x) = xn and assume that
(n
√·, [0,+∞), R) ∈ L . The function (urev, M∅R × ∗

MR, M∅R) defined for all X ∈ M∅R

and R ∈ ∗
MR by

123

16 J Glob Optim (2015) 63:1–36

urev(X ,R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅ if rB ∩ u(xB) = ∅,
n
√
T ∩ X if x ≥ 0,

− n
√
T ∩ X if x ≤ 0,(

urev(xB , tB),
[
− n

√
t̂,

n
√
t̂
]

∩ urev(xB , tB)
)

∩ X otherwise,

where T = (tB , tC) = (rB ∩ u(xB) ∩ [0,+∞),Enc(R) ∩ Enc(u(X)) ∩ [0,+∞)) is a
reverseMcCormick update of (u, R, R), and urev(xB , tB) denotes the reverse interval update
for the operation.

Proof Let X ∈ M∅R. Suppose that rB ∩ u(xB) = ∅. Since (u, I∅R, IR) is an inclusion
function, there does not exist an x ∈ xB so that u(x) ∈ rB .

In the following, assume that rB ∩ u(xB) �= ∅. Note that intersecting R with the non-
negative half space only ensures that no domain violation occurs. Let x̃ ∈ Enc(X) so that
u(x̃) ∈ Enc(R)}. If x ≥ 0 then x̃ ≥ 0. By definition of the relaxation function of n

√·, it
follows that {x ∈ R : x ≥ 0∧u(x) ∈ Enc(R)} ⊂ Enc(n

√
T). Similarly, if x ≤ 0 then x̃ ≤ 0.

Since u(−x̃) = u(x̃) ≥ 0 and u(−x̃) ∈ Enc(R), u(−x̃) ∈ Enc(T) so that x̃ = −(−x̃) =
− n

√
u(−x̃) ∈ Enc(− n

√
T). Hence, {x ∈ R : x ≤ 0 ∧ u(x) ∈ Enc(R)} ⊂ Enc(− n

√
T).

Otherwise, if 0 /∈ xB , it is easy to see that

{x ∈ R : u(x) ∈ Enc(R)} = {x ∈ R : ∃y ∈ Enc(R), x = − n
√
y∨x = n

√
y} ⊂

[
− n

√
t̂,

n
√
t̂
]
.

Intersecting with the reverse interval update does not discard any x̃ for which u(x̃) ∈ Enc(R)

holds. ��
Note that a similar construction is possible to find the reverse McCormick update of the
absolute value function.

5.3 Inclusion monotonicity of the reverse McCormick updates

Next, it will be shown that reverseMcCormick updates are inclusionmonotonicwhile the next
subsection focuses on establishing coherent concavity. Note that [51, Lemma 2.4.15] will be
referencedmultiple times hereafter to establish inclusionmonotonicity of a finite composition
of inclusionmonotonic functions. Though coherent concavitywas also assumed in that result,
it is not necessary in order to establish inclusion monotonicity of a finite composition of
inclusion monotonic functions.

First, note that the intersection update is inclusion monotonic.

Lemma 8 The mapping ∩ : ∗
MR × ∗

MR → ∗
MR defined by ∩(X ,Y) = X ∩ Y for all

X ,Y ∈ ∗
MR is inclusion monotonic on ∗

MR × ∗
MR.

Proof LetX1,X2,Y1,Y2 ∈ ∗
MR. Then,X1 ⊂ X2 andY1 ⊂ Y2 implyX1∩Y1 ⊂ X2∩Y2.

��
Next, the binary operations are considered.

Lemma 9 (+rev, M∅R
2 × ∗

MR, M∅R) is inclusion monotonic on M∅R
2 × ∗

MR.

Proof This follows immediately since the negative univariate function [51, Theorem 2.4.29
together with Section 2.8], addition [51, Theorem 2.4.20], the intersection operator
(Lemma 8) as well as finite composition of inclusion monotonic mappings [51, cf.
Lemma 2.4.15] are inclusion monotonic. ��

123

J Glob Optim (2015) 63:1–36 17

It is helpful to study the extended Gauss–Seidel operator prior to looking at the reverse
update of multiplication.

Lemma 10 G is inclusion monotonic on M∅R × ∗
MR × M∅R.

Proof It was already shown that multiplication [51, Theorem 2.4.23] and the reciprocal
function [51, Theorem 2.4.29 together with Section 2.8] as well as finite composition [51,
Lemma 2.4.15] are inclusion monotonic. Also note that Γ is inclusion monotonic [43,
4.3.2]. Let (X1,R1,Y1), (X2,R2,Y2) ∈ M∅R × ∗

MR × M∅R so that (X1,R1,Y1) ⊂
(X2,R2,Y2). If 0 /∈ xB

2 then (R′
1 × 1

X ′
1
)C ∩ (y′

1)
C ⊂ (R′

2 × 1
X ′

2
)C ∩ (y′

2)
C . Otherwise, if

0 /∈ xB
1 then (R′

1 × 1
X ′

1
)C ∩ (y′

1)
C ⊂ Γ (xB

1 , rB1 , yB1) ∩ (y′
1)

C ⊂ Γ (xB
2 , rB2 , yB2) ∩ (y′

2)
C .

Otherwise, if 0 ∈ xB
1 and 0 /∈ rB2 then Γ (xB

1 , rB1 , yB1) ∩ (y′
1)

C ⊂ Γ (xB
2 , rB2 , yB2) ∩ (y′

2)
C .

Otherwise, if 0 ∈ xB
1 and 0 ∈ rB2 then Γ (xB

1 , rB1 , yB1) ∩ (y′
1)

C ⊂ (y′
1)

C ⊂ (y′
2)

C Thus, G
is inclusion monotonic. ��
Lemma 11 (×rev, M∅R

2 × ∗
MR, M∅R) is inclusion monotonic on M∅R × M∅R × ∗

MR.

Proof SinceG and finite composition [51, Lemma 2.4.15] are inclusionmonotonic, the result
is immediate. ��

Next, the reverse updates of univariate functions are considered.

Lemma 12 Let B ⊂ R and consider an injective continuous function (u, B, R) ∈ L .
Assume that (u−1, range(u, B), R) ∈ L . Then, urev as defined in Lemma 6 is inclusion
monotonic on M∅B × ∗

MR.

Proof Since (u−1, range(u, B), R) ∈ L , it follows that u−1 is inclusion monotonic [51,
Theorem 2.4.29]. ��
Lemma 13 Let n ∈ N be even. Consider (u, R, R) ∈ L where u(x) = xn. Assume that
(n
√·, [0,+∞), R) ∈ L . Suppose that the convex and concave envelopes of n

√· are used
in calculating relaxations. Then, urev as defined in Lemma 7 is inclusion monotonic on
M∅R × ∗

MR.

Proof Note that the relaxation function of n
√· and of the negative operator, the intersection

operator and finite composition is inclusion monotonic. Note that T is inclusion monotonic
by construction and so is urev(xB , tB). Let (X1,R1), (X2,R2) ∈ M∅B × ∗

MR so that
(X1,R1) ⊂ (X2,R2). If rB1 ∩ u(xB

1) = ∅ or if x2 ≥ 0 or x2 ≤ 0 then urev(X1,R1) ⊂
urev(X2,R2). Otherwise, suppose x1 ≥ 0. Then n

√
T1∩X1 ⊂ (urev(xB

1 , tB1), [− n
√
t̂1,

n
√
t̂1]∩

urev(xB
1 , tB1)) ∩ X1 ⊂ (urev(xB

2 , tB2), [− n
√
t̂2,

n
√
t̂2] ∩ urev(xB

2 , tB2)) ∩ X2. A similar argu-
ment applies when x1 ≤ 0. In any other case, inclusion monotonicity follows directly
from the properties referenced above and the monotonicity of n

√·, i.e., t̂1 ≤ t̂2 implies
that [− n

√
t̂1,

n
√
t̂1] ⊂ [− n

√
t̂2,

n
√
t̂2]. ��

5.4 Coherent concavity of the reverse McCormick updates

Next, it will be shown that reverse McCormick updates are coherently concave. Note that
if either Enc(F (X1)) = ∅ or Enc(F (X2)) = ∅, then the subset condition for coherent
concavity holds trivially. Thus, in the proofs below, this case is never considered explicitly.

First, note that the intersection update is coherently concave.

123

18 J Glob Optim (2015) 63:1–36

Lemma 14 The mapping ∩ : ∗
MR × ∗

MR → ∗
MR defined by ∩(X ,Y) = X ∩ Y for all

X ,Y ∈ ∗
MR is coherently concave on ∗

MR × ∗
MR.

Proof Suppose X1,X2 ∈ ∗
MR and Y1,Y2 ∈ ∗

MR are coherent. Let λ ∈ [0, 1]. Since
xB
1 = xB

2 and yB1 = yB2 , it follows that x
B
1 ∩ yB1 = xB

2 ∩ yB2 = (λxB
1 + (1−λ)xB

2)∩ (λ yB1 +
(1 − λ) yB2). Thus, ∩(X1,Y1) and ∩(X2,Y2) are coherent.

We will show that ∩(Conv(λ, (X1,Y1), (X2,Y2))) ⊃ Conv(λ,∩(X1,Y1),∩(X2,Y2)).
Let z1 ∈ xC1 ∩ yC1 and z2 ∈ xC2 ∩ yC2 . Denote z = λz1 + (1−λ)z2. By construction, z1 ∈ xC1 ,
z1 ∈ yC1 and z2 ∈ xC2 , z2 ∈ yC2 so that z ∈ λxC1 + (1−λ)xC2 and z ∈ λ yC1 + (1−λ) yC2 . Thus,
z ∈ (λxC1 + (1 − λ)xC2) ∩ (λ yC1 + (1 − λ) yC2) so that λ(xC1 ∩ yC1) + (1 − λ)(xC2 ∩ yC2) ⊂
((λxC1 + (1 − λ)xC2) ∩ (λ yC1 + (1 − λ) yC2)). ��
In particular, note that the proof indicates that ∩(X1,Y1) �= ∅ and ∩(X2,Y2) �= ∅ imply
that ∩(Conv(λ, (X1,Y1), (X2,Y2))) �= ∅.

Next, the binary operations are considered.

Lemma 15 (+rev, M∅R
2 × ∗

MR, M∅R) is coherently concave on M∅R
2 × ∗

MR.

Proof Note that negative univariate function [51, Theorems 2.4.29 and 2.4.30 together
with Section 2.8], addition [51, Theorem 2.4.20] and the intersection operator (Lemmas 8
and 14) are inclusionmonotonic and coherently concave, (+rev, I∅R

2×∗
IR, I∅R) is inclusion

monotonic and finite composition [51, Lemma 2.4.15] is coherently concave. Thus, the result
follows. ��

It is helpful to study the extended Gauss–Seidel operator prior to looking at the reverse
update of multiplication.

Lemma 16 G is coherently concave on M∅R × ∗
MR × M∅R.

Proof Let X1,X2 ∈ M∅R, R1,R2 ∈ ∗
MR and Y1,Y2 ∈ M∅R be coherent. Since xB

1 =
xB
2 , yB1 = yB2 and rB1 = rB2 , it follows that Γ (xB

1 , rB1 , yB1) = Γ (xB
2 , rB2 , yB2) so that

G (X1,R1,Y1) and G (X2,R2,Y2) are coherent.
Suppose 0 /∈ xB

1 = xB
2 . It was already shown that multiplication [51, Theo-

rems 2.4.23 and 2.4.24] and the reciprocal function [51, Theorems 2.4.29 and 2.4.30
together with Section 2.8] are inclusion monotonic and coherently concave and finite com-
positions of inclusion monotonic, coherently concave functions are coherently concave [51,
Lemma 2.4.15]. Also, Lemmas 8 and 14 show that the intersection operation is coherently
concave and inclusion monotonic. Thus, G is coherently concave in this case.

Next, suppose 0 ∈ xB
1 and r1 = r2 > 0 or r1 = r2 < 0. Pick λ ∈ [0, 1] and let

z1 ∈ Γ (xB
1 , rB1 , yB1) ∩ yC1 , z2 ∈ Γ (xB

2 , rB2 , yB2) ∩ yC2 . Consider z = λz1 + (1− λ)z2. Since
z1 ∈ yC1 and z2 ∈ yC2 , z ∈ λ yC1 +(1−λ) yC2 . Note that z ∈ Γ (xB

1 , rB1 , yB1) = Γ (xB
2 , rB2 , yB2).

Thus, z ∈ λ(Γ (xB
1 , rB1 , yB1) ∩ yC1) + (1 − λ)(Γ (xB

2 , rB2 , yB2) ∩ yC2) and G is coherently
concave in this case.

In the last case, coherent concavity is immediate. ��
Lemma 17 (×rev, M∅R

2 × ∗
MR, M∅R) is coherently concave on M∅R × M∅R × ∗

MR.

Proof Since G is inclusion monotonic and coherently concave and finite composi-
tions of inclusion monotonic, coherently concave functions are coherently concave [51,
Lemma 2.4.15], the result is immediate. ��

Next, the reverse updates of univariate functions are considered.

123

J Glob Optim (2015) 63:1–36 19

Lemma 18 Let B ⊂ R and consider an injective continuous function (u, B, R) ∈ L .
Assume that (u−1, range(u, B), R) ∈ L . Then, urev as defined in Lemma 6 is coherently
concave on M∅B × ∗

MR.

Proof Let X1,X2 ∈ M∅R and R1,R2 ∈ ∗
MR be coherent, i.e., xB

1 = xB
2 and rB1 = rB2 .

Note that urev(X1,R1) and urev(X2,R2) are coherent. Since (u−1, range(u, B), R) ∈ L , it
follows that u−1 is coherently concave [51, Theorem 2.4.30]. ��
Lemma 19 Let n ∈ N be even. Consider (u, R, R) ∈ L where u(x) = xn. Assume that
(n
√·, [0,+∞), R) ∈ L . Then, urev as defined in Lemma 7 is coherently concave on M∅R ×

∗
MR.

Proof Let X1,X2 ∈ M∅R and R1,R2 ∈ ∗
MR be coherent, i.e., xB

1 = xB
2 and rB1 = rB2 .

Note that urev(X1,R1) and urev(X2,R2) are coherent.
By assumption, the relaxation function of n

√· is coherently concave. Likewise, − n
√· is

coherently concave which follows from coherent concavity of the negative operator and
the composition theorem [51, Lemma 2.4.15]. It follows that n

√· and − n
√· are relaxation

functions. As the intersection operator is coherently concave (Lemma 14), coherent concavity
for the cases x ≥ 0 and x ≤ 0 follows. Otherwise, we must consider two potential roots.
Define (ũ−1, [0,+∞), P(R)) for each x ∈ [0,+∞) by ũ−1(x) = {− n

√
x, n

√
x} and note that

u(y) = x for each y ∈ ũ−1(x) and x ∈ ũ−1(u(x)). It is easy to see that − n
√· and n

√· are the
convex and concave envelopes of ũ−1 so that we can use the construction of the relaxation
function of ũ−1 in Eq. (1). Furthermore, tmin(tB) = tmax(tB) = t and t ≥ t̂ in this case so
that mid(ˇt, t̂, t

min(tB)) = mid(ˇt, t̂, t
max(tB)) = t̂ . This is equivalent to the relaxation we

obtain by using Eq. (1). It has already been established that Eq. (1) provides for a coherently
concave relaxation function [51, Theorem 2.4.30] so that, together with Lemma 14, coherent
concavity of the last case follows. ��

6 Using reverse McCormick propagation in CSPs and in global
optimization

Consider a CSP with variables y = (y1, . . . , yn), domains d ∈ IR
n and constraints

G(y) ≤ 0, (6)

H(y) = 0, (7)

where G : d → R
ng and H : d → R

nh are L -factorable functions.
Suppose that the variables y ∈ d can be partitioned into independent and dependent

variables, p ∈ p ∈ IR
n−m and z ∈ x ∈ IR

m , respectively, where p × x = d. Consider the
set-valued map X : p → P(x) defined by: p �→ {ξ ∈ x : G(ξ, p) ≤ 0, H(ξ, p) = 0}. In
words, this mapping returns for each p ∈ p all points in x that are feasible in the constraints
(6) and (7) and thus are solutions of the CSP.

Remark 4 It is not assumed that m = nh . The proposed method will work for any choice of
m. In particular note that is often not possible to find a closed form for x nor is nonempty
X (p) or X (p) a singleton immediate in many cases.

In this section, we will first discuss how reverse McCormick propagation can be applied
to utilize equality and inequality constraints. Next, we will compare different full-space and
reduced-space relaxations of nonlinear programs and we will conclude with a discussion on
how to partition the variables into independent and dependent ones.

123

20 J Glob Optim (2015) 63:1–36

6.1 Solving CSPs with equality and inequality constraints

For easier notation, define C : d → R
ng+nh with ci (y) = gi (y) for i = 1, . . . , ng

and ci+ng (y) = hi (y) for i = 1, . . . , nh and introduce N ∈ ∗
MR

ng+nh with Ni =
((−∞, 0], (−∞, 0]), i = 1, . . . , ng and Ni+ng = ([0, 0], [0, 0]), i = 1, . . . , nh . Let
Y 0 : p → MR

n where Y 0
i = (xi , [xi , xi]) for i = 1, . . . ,m and Y 0

i+m = (pi , [pi , pi]) for
i = 1, . . . , n − m.

Y 0 can be interpreted as an a priori enclosure of the solution set of the CSP when
yi+m = pi , i = 1, . . . , n − m. Using the idea of constraint propagation on the DAG of
C , several avenues to tighten Y 0 exist. First, it is possible to discard parts of d for which
it can be guaranteed that no y exists that satisfies Eqs. (6) and (7). Most easily, this can
be achieved by reverse interval propagation [62], which considers the bounds only. Second,
reverse McCormick propagation provides a means to improve the original bounds and relax-
ations to find new bounds and relaxations that are at least as tight as the original relaxations
and possibly nonconstant.

Let (S , πo) be aL -computational sequence corresponding to C . Recall the definition of
C rev
S , cf. Eq. (3), and note that for each p ∈ p and ξ ∈ X (p) there exists a φ ∈ Enc(N) so

that C rev
S ((ξ, p), φ) = (ξ, p). Consider the reverse McCormick propagation of C :

C rev
S (((x, x), (p, [p, p])),N) ≡ ((x̃, [ˇX (p), X̂ (p)]), (p̃, [ˇP(p), P̂(p)])). (8)

Note that C rev
S is a relaxation function of C rev

S by Theorem 8. As the following theorem

shows, one interpretation of Equation 8 is that it defines ˇX, X̂ : p → R
m , which are convex

and concave relaxations of X on p, respectively, (and, less interestingly, ˇP, P̂ : p → R
n−m ,

which are convex and concave relaxations of the identity function P on p).

Theorem 9 Consider C rev
S , a relaxation function of C rev

S on ((x, x), (p, [p, p])) ×
∗
MR

ng+nh . Let ˇX, X̂ : p → R
m be as defined by Equation 8. Then, ˇX, X̂ are convex and

concave relaxations of X on p, respectively.

Proof Let x ∈ x, p ∈ p andφ ∈ Enc(N). Note thatC rev
S ((x, p), φ) = (x, p) ifCS (x, p) =

φ. Since C rev
S is a relaxation function of C rev

S , it follows for such (x, p) that

Enc(C rev
S (((x, x), (p, [p, p])),N)) ⊃ Enc(C rev

S (((x, [x, x]), (p, [p, p])),N))

⊃ ([x, x], [p, p]).
In particular, ˇxi (p) ≤ inf{xi (p)} ≤ sup{xi (p)} ≤ x̂i (p),∀i = 1, . . . ,m.

Pick p1, p2 ∈ p and λ ∈ (0, 1). Consider Y1 = ((x, x), (p, [p1, p1])) × N and Y2 =
((x, x), (p, [p2, p2]))×N .C rev

S is coherently concave on ((x, x), (p, [p, p]))×∗
MR

ng+nh ,
so it follows that

C rev
S (Conv(λ,Y1,Y2)) ⊃ Conv(λ,C rev

S (Y1),C
rev
S (Y2)),

which implies that

ˇX (λp1 + (1 − λ)p2) ≤ λ ˇX (p1) + (1 − λ) ˇX (p2)

X̂ (λp1 + (1 − λ)p2) ≥ λX̂ (p1) + (1 − λ)X̂ (p2).

Thus, ˇX, X̂ are convex and concave relaxations of X on p, respectively. ��
In other words, given p ∈ p and ξ ∈ X (p), it holds that ξ ∈ [ˇX (p), X̂ (p)]. Also note

that a particular possible outcome of the reverse McCormick propagation is

C rev
S (((x, x), (p, [p, p])),N) = ((x̃,∅), (p̃,∅))),

123

J Glob Optim (2015) 63:1–36 21

Fig. 2 Principle of forward–reverse McCormick update to construct relaxations of the implicit set-valued
mapping X (·): forward evaluation of relaxation functions [52] to obtain a particular kind of relaxations
of G and H on p (1), intersection with constraint information (2), and reverse propagation of additional
information (3). This procedure can be iterated on if desired (4)

in which case X (p) = ∅.
The sequence of the calculations for the reverse updateC rev

S is outlined in Fig. 2. In contrast
to the evaluation of natural McCormick extensions, the forward evaluation of the relaxation
functions in Step (1) is initialized differently. The results of this evaluation are interval bounds
on the range of G and H on x × p, as well as a particular kind of relaxations of G and H on
p, here denoted by ˇG(x, p), etc. From the properties of the relaxation function it follows that

ˇG(x, ·) is convex on p and that
ˇ
gi (x, p) ≤ gi (x, p), ∀(x, p) ∈ x × p and i = 1, . . . , ng .

Similarly, Ĝ(x, p) denotes an analogue concave relaxation of G. In Step (2), the constraint
information is intersected with the relaxation functions of the constraints. This tightens the
relaxations without losing the convexity and concavity properties. Step (3) propagates this
information back to the variables so that we obtain relaxations of X evaluated at p or the
information that X (p) = ∅. It is also shown that the procedure can be repeated in order to
further improve the computed relaxations (Step (4)).

Let Y k+1 = C rev
S (Y k,N), k = 0, 1, Note that the coherent concavity property of

Y k is guaranteed only for a fixed k so that it is important that the number of reverse updates
is equal for all p ∈ p.

Avoiding domain violations Definition 3 ensures that the natural function FS of a computa-
tional sequence (S , πo), and, in particular, each participating univariate function, is defined
at each point of its natural domain DS and hence can be safely evaluated there. However,
the natural domain of a complicated computational sequence is not easily obtained. If the
natural function is evaluated at a point outside its domain, which is possible due to difficulty
in practically establishing the exact natural domain, the domain of at least one univariate
function will be violated. Additionally, Definition 10 further restricts the natural domains of
the natural interval andMcCormick extensions. Due to the inherent conservatism of the inter-
val and McCormick techniques, domain violations are also potentially possible for x ∈ IDS

or X ∈ MDS . In order to avoid either problem, the following convention is implemented.
Consider (u, b, R) ∈ L with b ∈ IR, as is the case for many common univariate functions.
If x /∈ b then set u(x) = NaN. For x ∈ IR orX ∈ MR with x �⊂ b or xB �⊂ b, the evaluation
of u(x) or u(X) is undefined whereas u(x ∩ b) or u(X ∩ (b, b)) is always defined due to
the convention used herein that u(∅) = ∅. Given any x ∈ IR

ni or X ∈ MR
ni , this approach

continues to construct valid enclosures and relaxations of F̃ : R
ni → R

no
∅ defined by

F̃(x) =
{
FS (x) if x ∈ DS ,

NaN otherwise.
Points outside the natural domain evaluate to NaN and, by our convention, NaN is an element
of any interval so that any interval-valued or McCormick-valued function satisfies the inclu-

123

22 J Glob Optim (2015) 63:1–36

sion property for such x . On the other hand, the natural interval or McCormick extensions
bound or relax the natural function at each point that is contained in the natural domain by
its usual properties. Overall, this convention allows us to circumvent difficulties with domain
violations without losing the inclusion or relaxation function properties. In particular, it pro-
vides more directly useful information than throwing a flag indicating that a domain violation
occurred.

6.2 Constructing relaxations for reduced-space optimization problems

Consider

f ∗ = min
z∈x,p∈ p

f (z, p)

s.t. G(z, p) ≤ 0,
H(z, p) = 0,

(P)

where f : x × p → R, G : x × p → R
ng and H : x × p → R

nh are L -factorable.
Define the set-valued mapping φ : p → P(R) for each p ∈ p by φ(p) = { f (z, p) : z ∈

x,G(z, p) ≤ 0, H(z, p) = 0}. It is obvious that f ∗ = minp∈ p inf φ(p).
Let x̃ and p̃ denote the results of a reverse interval update as outlined above and illustrated

in Fig. 2. First, note that x̃ × p̃ is a superset of the feasible region by construction of the
reverse interval update. Recall that the procedure described in the previous section provides
valid relaxations of the set-valued mapping X , ˇX and X̂ . These can be used to calculate
generalized relaxation functions of f . To this extent, let F denote the natural McCormick
extension of f and we will define

[
ˇ
φ(p), φ̂(p)] ≡ (F ((x̃, [ˇX (p), X̂ (p)]), (p̃, [p, p])))C .

Proposition 1 Consider

φ∗ = min
p∈ p̃ ˇ

φ(p). (R1)

Then, (R1) is a convex program and f ∗ ≥ φ∗.

Proof (R1) is a convex program since p̃ is a convex set and
ˇ
φ is convex on p̃. f ∗ ≥ φ∗

follows immediately from
ˇ
φ(p) ≤ inf φ(p) [51, Theorem 2.7.13]. ��

Proposition 2 Let
ˇ
f , ˇG and ˇH denote the standard convex McCormick relaxations of f , G

and H, respectively, on x̃× p̃ and let Ĥ denote the standard concave McCormick relaxation
of H on x̃ × p̃. Consider

f1 = min
z∈x̃,p∈ p̃ ˇ

f (z, p)

s.t. ˇG(z, p) ≤ 0,

ˇH(z, p) ≤ 0 ≤ Ĥ(z, p),

ˇX (p) ≤ z ≤ X̂ (p),

(R2)

Then, f ∗ ≥ f1 ≥ φ∗.

Proof It is clear that (R2) is a relaxation of (P) so that f ∗ ≥ f1.Note that [ˇ
f (z, p), f̂ (z, p)] =

(F ((x̃, [z, z]), (p̃, [p, p])))C holds for the standard McCormick relaxation of f on x̃ × p̃.
Inclusion monotonicity of the natural McCormick extensions implies that for any p ∈ p̃ and
z ∈ [ˇX (p), X̂ (p)], F ((x̃, [z, z]), (p̃, [p, p])) ⊂ F ((x̃, [ˇX (p), X̂ (p)]), (p̃, [p, p])) and
thus

ˇ
f (z, p) ≥

ˇ
φ(p) so that f1 ≥ φ∗. ��

123

J Glob Optim (2015) 63:1–36 23

Remark 5 (R1) and (R2) are valid relaxations of (P). It is known that McCormick relaxations
can be nonsmooth functions [41]. Thus, while (R2) is a tighter relaxation of (P), it potentially
requires the solution of a convex nonsmooth program with nonlinear nonsmooth constraints.
While several methods to solve such programs have been proposed (e.g.,[23,31,37]), and
some software is available (e.g., [29,36]), this remains a challenging class of problems to solve
robustly. The constraints in (R2) can also be linearized using subgradients [41] to construct an
outer-approximation. In this case, the consequence of Proposition 2 is no longer guaranteed
to hold. On the other hand, convex nonsmooth programs with box-constraints such as (R1)
can be solved more readily using methods such as that provided in [34]. Furthermore, (R1)
only requires the solution of a n − m-dimensional optimization problem whereas (R2) is
n-dimensional.

Remark 6 An alternativemethod to obtain a relaxation of (P) is the auxiliary variable method
which introduces additional variables and constraints for each factor that appears in the
DAG [54,56–58]. Its relaxations, prior to linearization, are at least as tight as McCormick
relaxations [56, p. 127f] and are differentiable functions. However, the dimension of the
resulting nonlinear convex optimization problem is (much) larger. It is typically linearized so
that themore robust andmore efficient linear programming algorithms can be used. Again, no
general comparison of the tightness of different relaxations is possible once the linearization
is performed. Also, this approach does not include the constraint ˇX (p) ≤ z ≤ X̂ (p) in the
relaxation so no direct comparison with (R1) and (R2) in terms of tightness is possible.

Suppose it is known that UBD is a valid upper bound on the optimal objective function
value of (P), e.g., there exists a (z†, p†) feasible in (P) with f (z†, p†) = UBD. Similarly,
suppose that LBD is a valid lower bound on the optimal objective function value, e.g., there
does not exists a (z†, p†) feasible in (P) with f (z†, p†) < LBD. Both cases are very common
in the context of a branch-and-bound algorithm. Consider

f ‡ = min
z∈x,p∈ p

f (z, p)

s.t. G(z, p) ≤ 0,

H(z, p) = 0,

f (z, p) − UBD ≤ 0,

LBD − f (z, p) ≤ 0.

It is clear that f ‡ = f ∗ since (z†, p†) is feasible in (P). However, we can potentially
strengthen the relaxations ˇX , X̂ and thus also φ∗ or f 1 by including f (z, p) − UBD ≤ 0
and LBD − f (z, p) ≤ 0 in the reverse propagation outlined in Sect. 6.1.

6.3 Partitioning variables

A discussion on how to partition the variables into x and p concludes this section. We begin
by analyzing the two extreme cases: m = 0 and m = n.

First considerm = 0.Here,Y is initialized using a point, i.e.,Y 0
i = (pi , [pi , pi]) for each

i = 1, . . . , n, constructing the tightest relaxations ofC(p) after the forward evaluation. How-
ever, only two outcomes are possible after the reverse propagation, eitherY 1

i = (p̃i , [pi , pi])
or Y 1

i = (p̃i ,∅). While the latter case indicates that p violates at least one of the constraints,
it is not clear how this information can be exploited numerically. For example, it is not clear
how to obtain a hyperplane separating infeasible from potentially feasible points.

123

24 J Glob Optim (2015) 63:1–36

Next consider m = n. In this case, Y is initialized using the interval bounds, i.e., Y 0
i =

(pi , pi) for each i = 1, . . . , n. This will yield looser relaxations of C after the forward
evaluation and sinceY is constant, we will obtainY 1 = (p̃, p̆) after the reverse propagation
where p̆ ∈ I∅P is a box. Actually, in this case the reverse McCormick propagation yields
the same information as the reverse interval propagation given that the exact image for
each univariate function is used as the interval extension and the envelopes are used as the
relaxations.

The advantages of the proposed method over interval methods are obtained for partitions
between the two extremes listed above. A partitioning with m = nh such that there exists a
unique implicit function X : p → x with H(X (p), p) = 0 for all p ∈ p is more favorable.
In our numerical experience, this partitioning gave results that were better compared to
interval reverse propagation. Interval Newton methods can be used to verify the existence
and uniqueness of X , see [43, Ch. 5]. Additional inequality constraints can be used to reduce
x and p further.

Another effective strategy is to partition the variables such that m = nh , and that the
resulting occurrence matrix corresponding to the equality constraint system is structurally
nonsingular. Note that in general such a partitioning will not be unique. This approach
was used in the majority of the test problems described in Sect. 9. One means of finding
such a partition is given by the Dulmage–Mendelsohn decomposition [16]. Dulmage and
Mendelsohn showed that any occurrence matrix can be transformed to a block structure
consisting of up to three parts: an over-determined part, a fully-determined part and an under-
determined part. In the types of problems considered here, the over-determined block should
never exist, and by specifying p as the variables in the under-determined block, the equation
system will become structurally nonsingular, as desired. An automatic implementation of
this algorithm is available in MATLAB [38]. This procedure could also be combined with
interval Newton methods to further screen the possible choices for good partitions.

7 Implementation

In this section, an implementation of the reverse interval andMcCormick propagation in C++
is presented. First, it is briefly discussed how the DAG of a factorable function can be easily
constructed. Next, it is shown how forward and reverse interval and McCormick calcula-
tions can be performed on this DAG. Lastly, an outward rounding method for McCormick
arithmetic is given, which is necessary for the practical application of reverse McCormick
propagation. Consider a factorable function F : R

n → R
m . In this section, independent and

dependent variables will refer to y and F(y), respectively. The boost interval library is used
for the interval calculations [40] and MC++ provides the necessary routines for McCormick
objects [11].

7.1 Algorithm implementation

The first step is the parsing of the factorable function to construct the DAG. In C++ this can
be easily achieved using function and operator overloading. The DAG is stored as an array.
Each element of the array corresponds to one factor of the factorable function including
factors for the assignment of independent variables. Each element stores the operation type
as well as pointers to its parent element(s), an interval and a McCormick object (as defined
by MC++). Optionally, a constant parameter can be stored, which is used to keep track of,
for example, constant exponents or factors. While the first n array elements correspond to

123

J Glob Optim (2015) 63:1–36 25

the independent variables, pointers to the dependent variables must be stored. Note that after
the DAG has been constructed, all remaining operations are performed on this DAG object.

Prior to a forward interval/McCormick pass, the interval/McCormick objects of the inde-
pendent variables are initialized. During the forward pass each factor is visited in sequence
and the factor’s interval/McCormick object is updated according to the operation type using
the pointers to parents’ values. After the forward pass, the interval/McCormick objects of the
dependent variables store the values, which could have been alternatively calculated using
traditional methods.

Prior to a reverse pass, the interval/McCormick objects of the dependent variables are
updated based on the information supplied by the constraints. Then, each factor is visited
in reverse order. A reverse interval/McCormick update is performed and the parents’ inter-
val/McCormick objects are updated accordingly. After the reverse pass, the independent
variables now store the updated interval/McCormick values. If during the reverse pass one
of the intervals or McCormick objects of a factor is set to the empty set then the calculation
can be aborted and the result of the reverse propagation is the empty set.

Note that MC++ also provides functionality to calculate subgradients of the convex and
concave relaxations [41]. This functionality is essential when the relaxations are to be used
in convex optimization algorithms. The present implementation also provides routines to
update the subgradients during the reverse pass accordingly.

Additionally, the implementation allows the user to provide constraints on the domains of
intermediate factors. These can avoid domain violations as outlined at the end of Sect. 6.1
and they are already taken into account during the forward interval or McCormick pass.

Lastly, it is possible to generate code automatically, in any programming language, that
implements any combination of the discussed computations. Similar to source code trans-
formation in automatic differentiation [20], the produced code can be executed to efficiently
evaluate ˇX (·) and X̂ (·), for example.

7.2 Outward rounding

A major cornerstone of interval arithmetic is the idea that interval extensions of expressions
and functions must provide a valid, rigorous enclosure of the range of all real-valued results
on the domain of interest. Due to the finite precision of floating-point arithmetic, a rigorous
computer implementation of interval arithmetic must use directed rounding to achieve this.
In the case of intervals, if a calculation produces an interval x ∈ IR whose upper bound and
lower bound may not be exactly representable as floating-point numbers, the lower bound
must be rounded downward (towards −∞) and the upper bound must be rounded upward
(towards +∞) in order for all real numbers x ∈ x to be validly enclosed [43]. With the
rounding performed in this way, the interval result is said to be outward rounded.

Analogously, the convex and concave relaxations calculated using reverse McCormick
propagation must also provide this rigorous enclosure property. In initial attempts to apply
reverse McCormick propagation to large problems, allowing the results of floating-point
operations to all be rounded in the default manner (i.e. to the nearest floating-point) caused
two types of failures in the procedure. The first occurred when the value of the convex under-
estimator of theMcCormick object exceeded that of its concave overestimator. This behavior
was often observed in the backward pass when the result of the calculation should have
been an equal convex and concave relaxation, but the value was not exactly representable
as a floating-point. The other major issue arose from the incorrect assertion of empty inter-
sections, which most often occurred at the start of the backward pass when the results of
the forward pass were intersected with constraint information. Simple fixes, such as adding

123

26 J Glob Optim (2015) 63:1–36

a small error tolerance to the intersection operation, allowed the algorithm to run without
failing, but led to erroneous results.

As a result, it was necessary to implement an outward rounding scheme for McCormick
arithmetic. For the operations in McCormick arithmetic that only involve a single floating-
point operation to define either the convex or concave relaxation at a point, the outward
rounding is easily implemented. These operations include addition or subtraction of two
McCormick objects, as well as any operation involving a scalar and a McCormick object
(note that taking the negative of a number is an exact operation, and so it is not counted as
an second operation in this sense). For example, the outward rounded result of the addition
of two McCormick objects can be defined as:

X �(+)Y := (xB �(+) yB ,
[
ˇx ↓(+)

ˇ
y, x̂ ↑(+) ŷ

]
) (9)

with �(+) as shorthand for outward rounded addition, and ↓(+) and ↑(+) denoting downward
and upward rounded addition, respectively. This can be easily implemented in C++ by calling
the functionfesetroundprovidedby the standard library headerfenv.hwith appropriate
argument before each of the operations involving the values of the relaxations, and then
allowing the interval operations to be performed with a rigorous interval library. Subtraction
of McCormick objects and the operations involving scalars are handled analogously.

For operations such as taking the reciprocal or square root of a McCormick object, as well
as for binary multiplication, a different procedure is needed. For instance, the definition for
the convex underestimator in the reciprocal operation is as follows:

(
1

X

)cv

=
{ 1

mid(ˇx,x̂,x)
if x > 0

1
x + 1/x−1/x

x−x (mid(ˇx, x̂, x) − x) if x < 0.
(10)

Here, in the case where x > 0, the correctly rounded result can be obtained as before
by first calling fesetround(FE_DOWNWARD) to invoke downward rounding, and then
performing the division operation. In the case where x < 0 however, it is not necessarily true
that performing each of the individual calculations with downward rounding will lead to a
final result that is less than or equal to the true real-valued result. Instead, it is necessary to use
outward rounded interval arithmetic for the individual operations, which will be guaranteed
to give a valid result, as in [43, Theorem 1.4.1].

This is implemented inMC++ as follows. First, the double precision variables correspond-
ing to x , x , and mid(ˇx, x̂, x) are copied into a rigorous interval type. Then, all calculations
are performed using outward rounded interval arithmetic, which will potentially widen the
intervals if the results of the individual calculations are not floating-point numbers. Finally,
the value of the convex underestimator is set to the value of the lower bound of the final inter-
val result. For the reciprocal, this series of operations can be written out somewhat obtusely
as:
(

1

X

)cv

=
{
1 ↓(÷)mid(ˇx, x̂, x) if x > 0(
(1 �(÷) xL) �(+) (1 �(÷) xU �(−) 1 �(÷) xL) �(÷) (xU �(−) xL) �(×) (xM �(−) xL)

)L if x < 0.

(11)

where xL , xU , and xM are the interval objects corresponding to the lower bound, upper bound,
and result of the mid operation, respectively, and the operations adjacent to the up/down
arrows represent the corresponding outward rounded interval arithmetic operations. The
concave overestimator is defined similarly, and formulas can also be written using the exactly
the same approach for outward rounded binary multiplication and other univariate operations
such as the square root, exponential, and logarithm. These modified operations were added

123

J Glob Optim (2015) 63:1–36 27

to the MC++ source code and used to generate the numerical results found in the following
sections.

8 Illustrative examples

In this section, we will present illustrative case studies that show how enclosures of the
solution sets can be obtained from the reverseMcCormick propagation and that these compare
favorably to the enclosures computed with reverse interval propagation. In the first case
study, the constraints define a unique implicit function on p. It is taken from [55] and the
results are compared. The second case study compares the feasible region of the relaxed
program obtained using reverseMcCormick propagation to the feasible region of the standard
McCormick relaxation. The third case study focuses on constraints defining a non-unique
implicit mapping. The fourth case study shows the effect of a reverse interval propagation
pre-processing step when there is no feasible z for some p. The fifth case study shows that
relaxations can be sensibly calculated even when there are no feasible z for some p in the
interior of p. The sixth case study demonstrates how information from inequality constraints
can be incorporated. The last case study illustrates how relaxations of the objective function
can be significantly improved by incorporating information from the constraints.

We only consider univariate functions from the library L = {(·)l , l
√·, log, exp}, l ∈ N.

However, the method can be applied to any other univariate functions that satisfy Assump-
tions 1 and 2.

8.1 Equality constraints

Example 1 Let x = [−0.8,−0.3] and p = [6, 9]. Consider h(z, p) = z2 + zp + 4 with
(z, p) ∈ x × p. Note that h(z, p) = 0 implicitly defines a set-valued mapping x : p →
P(x) : p �→ {− p

2 +
√(p

2

)2 − 4} so that h(ξ, p) = 0 for all p ∈ p and ξ ∈ x(p). While
Fig. 3a shows the result after one iteration of the reverse McCormick propagation, Fig. 3b
depicts the effect of 10 reverse propagation iterations. In both figures the relaxations are
compared to those calculated using the method presented in [55]. Note that the calculations
for 60 different values of p take a total of 0.0021, 0.0039 and 0.014s in the case of one
reverse propagation, ten reverse propagations and one iteration of the parametric Gauss–
Seidel method given in [55] with λ = 0.5, respectively. Thus, the new method is faster and
provides tighter relaxations.

Example 2 Let x = [−3, 5] and p = [−3, 4]. Consider h(z, p) = (
√
p + 4 − 3)(log(p2 +

1)−z)with (z, p) ∈ x× p. Note that h(z, p) = 0 implicitly defines a set-valuedmapping x :
p → P(x) : p �→ {log(1+ p2)} so that h(ξ, p) = 0 for all p ∈ p and ξ ∈ x(p). The results
of a single reverse McCormick propagation are shown in Fig. 4a. Additionally, we also show
two different relaxations of the non-convex feasible space {(z, p) ∈ x × p : h(z, p) = 0)}
(shown in asterisks). A commonway to relax constraints is the construction of a convex outer-
approximation of the feasible space by considering {(z, p) ∈ x× p : ˇh(z, p) ≤ 0 ≤ ĥ(z, p)}
where ˇh, ĥ are standard McCormick relaxations of h on x × p. This set can be traced by
plotting the zero level sets of ˇh, ĥ, i.e., ˇh(z, p) = 0 and ĥ(z, p) = 0. An alternative, tighter
outer-approximation can be found by computing ˇh, ĥ on x̃ × p̃ = [0, 2.834] × [−3, 4]
instead. In Fig. 4b, the same information is shown for smaller original intervals, x = [−3, 3]
and p = [−1, 1].

123

28 J Glob Optim (2015) 63:1–36

6 6.5 7 7.5 8 8.5 9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

p

x
(a)

6 6.5 7 7.5 8 8.5 9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

p

x

(b)

Fig. 3 Result of reverse McCormick propagation for Example 1 showing the original bounds (dashed-dotted
lines), the improved bounds (gray box), the convex and concave relaxations (solid line, respectively) as well
as results of the set-valued mapping x(p) (asterisks). In a one iteration of the reverse McCormick propagation
was performed while in b the reverse propagation iterations was repeated ten times. The dashed lines show
convex and concave relaxations calculated using one iteration of the more expensive method in [55]

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

p

x

−1 −0.5 0 0.5 1

−3

−2

−1

0

1

2

3

p

x

(a) (b)

Fig. 4 Result of reverse McCormick propagation for Example 2 showing the original bounds (dashed-dotted
lines), the improved bounds (gray box), the convex and concave relaxations (solid lines) as well as results of
the set-valued mapping x(p) (asterisks). Additionally, zero level sets of the McCormick relaxations of h(z, p)
constructed on x × p (short dashed lines) as well as x̃ × p̃ (dashed lines) are shown except where they are
outside the interval bounds. Here, the results for different x × p are shown in a and b

Example 3 Let x = [−10, 10] and p = [0, 3]. Consider h(z, p) = z2 − p with (z, p) ∈
x × p. Note that h(z, p) = 0 implicitly defines a set-valued mapping x : p → P(x) : p �→
{√p,−√

p} so that h(ξ, p) = 0 for all p ∈ p and ξ ∈ x(p). The results of the reverse
McCormick propagation are shown in Fig. 5. Here, no comparison with [55] is possible due
to non-uniqueness of x .

Example 4 Let x = [−10, 10] and p = [0, 3]. Consider h(z, p) = z4− p2+1 with (z, p) ∈
x× p.Note thath(z, p) = 0 implicitly defines a set-valuedmapping x : [1, 3] → P(x) : p �→
{ 4
√
p2 − 1,− 4

√
p2 − 1} so that h(ξ, p) = 0 for all p ∈ [1, 3] and ξ ∈ x(p). While Fig. 6a

shows the result using the original bounds, Fig. 6b depicts the effect of using bounds obtained
from reverse interval propagation. In the latter case, the reverse interval propagation reduces
both x and p to obtain x̃ and p̃. Then, the reverse McCormick propagation is performed
using the reduced intervals x̃ and p̃.

123

J Glob Optim (2015) 63:1–36 29

Fig. 5 Result of reverse
McCormick propagation for
Example 3 showing the original
bounds (dashed-dotted lines), the
improved bounds (gray box), the
convex and concave relaxations
(solid lines) as well as results of
the set-valued mapping x(p)
(asterisks)

0 0.5 1 1.5 2 2.5 3

−10

−8

−6

−4

−2

0

2

4

6

8

10

p

x

0 0.5 1 1.5 2 2.5 3

−10

−8

−6

−4

−2

0

2

4

6

8

10

p

x

(a)

0 0.5 1 1.5 2 2.5 3

−10

−8

−6

−4

−2

0

2

4

6

8

10

p

x
(b)

Fig. 6 Result of reverse McCormick propagation for Example 4 showing the original bounds (dashed-dotted
lines), the improved bounds (gray box), the convex and concave relaxations (solid lines) as well as results of
the set-valued mapping x(p) (asterisks). While in a the original bounds are used, in b the result of the bounds
obtained from reverse interval propagation is shown

Example 5 Let x = [−10, 10] and p = [−3, 3]. Consider h(z, p) = z2 − (
√
p2 − p − 2)4

with (z, p) ∈ x × p. Note that h(z, p) = 0 implicitly defines a set-valued mapping x :
[−3, 0] ∩ [1, 3] → P(x) : p �→ {(√p2 − p − 2)2,−(

√
p2 − p − 2)2} so that h(ξ, p) = 0

for all p ∈ [−3, 0]∩ [1, 3] and ξ ∈ x(p). On the other hand, if p ∈ (0, 1) no feasible z exists
that satisfies h(z, p) = 0. The results of the reverse McCormick propagation are shown in
Fig. 7. Here, the algorithm was supplied with the information that the argument of the square
root cannot be negative.

8.2 Inequality constraints

Example 6 Let x = [−10, 10] and p = [0, 3]. Consider h(z, p) = z2 − p and g(z, p) =
(p−1)2−z−2.5with (z, p) ∈ x× p. Note that h(z, p) = 0 and g(z, p) ≤ 0 implicitly defines
set-valued mappings x : [0, 2.03593] → P(x) : p �→ {√p,−√

p} and x : (2.03593, 3] →
P(x) : p �→ {√p} so that h(ξ, p) = 0 for all p ∈ p and ξ ∈ x(p). However, we are
only interested in those (z, p) for which g(z, p) ≤ 0. The results of the reverse McCormick
propagation are shown in Fig. 8.

123

30 J Glob Optim (2015) 63:1–36

Fig. 7 Result of reverse
McCormick propagation for
Example 5 showing the original
bounds (dotted lines), the
improved bounds (dashed lines),
the convex and concave
relaxations (solid lines) as well as
results of the set-valued mapping
x(p) (asterisks)

−3 −2 −1 0 1 2 3

−10

−8

−6

−4

−2

0

2

4

6

8

10

p

x

Fig. 8 Result of reverse
McCormick propagation for
Example 6 showing the original
bounds (dotted lines), the
improved bounds (gray box), the
convex and concave relaxations
(solid lines) as well as results of
the set-valued mapping x(p)
(asterisks)

0 0.5 1 1.5 2 2.5 3

−10

−8

−6

−4

−2

0

2

4

6

8

10

p

x

8.3 Objective function

Example 7 Let y = [−3, 3]×[−2, 2]2 and consider the optimization of the six-hump camel
back function [14]

min
y∈ y

f (y) =
(
4 − 2.1y21 + 1

3
y41

)
y21 + y1y2 + (−4 + 4y22

)
y22

s.t. g(y) = y21 + (y2 − 0.5)2 − 0.5 ≤ 0

where an inequality constraint has been added. We are interested in constructing relaxations
of f (y) which take the information from the constraint g(y) ≤ 0 into account. Here, let
y1 take the role of the independent and y2 the role of the dependent variable. The reverse
McCormick update will proceed as outlined in Sect. 6.1. Then, one last forward evaluation
will be performed to obtain improved relaxations of f . Fig. 9 shows the obtained relax-
ations. Clearly, the McCormick relaxations can be improved substantially by incorporating
the information from the constraint.

123

J Glob Optim (2015) 63:1–36 31

−3 −2 −1 0 1 2 3
−200

−150

−100

−50

0

50

100

150

200

y
1

f

−0.5 0 0.5

−5

0

5

Magnified detail

(a)

−3 −2 −1 0 1 2 3

−2
0

2

−200

−150

−100

−50

0

50

100

150

200

y
2y

1

f

(b)

Fig. 9 Result of reverse McCormick propagation for Example 7. In a the original bounds (dashed-dotted
line), the improved bounds (gray box), the objective function f (asterisks) and the convex relaxations (solid
line) are shown as well as standard convex McCormick relaxations constructed on y (short dashed line) and
ỹ (dashed line) in a section. In b f is shown as a mesh and relaxations are shown as surfaces

9 Global optimization test problems

A set of standard global optimization problems from the COCONUT Benchmark [53] were
solved with the reverse McCormick propagation technique to demonstrate its effectiveness.
Twenty representative problems involving twenty or less variables, for which the number of
variables exceeded the number of equality constraints, were solved from Library 1 of this
collection. A basic branch-and-bound framework was used to solve the problems to global
optimality, with three different strategies for obtaining lower bounding values for each test
case.

As a baseline method, lower bounds on the optimal objective value were found by con-
structing standard McCormick relaxations of the objective function and constraints on each
node, and then solving the resulting nonsmooth convex program. For comparison, reverse
McCormick propagation was applied in two different ways to the lower bounding problem:
the full-space formulation R2 and the reduced-space formulation R1. In all three cases, a
reverse interval propagation step was performed on each node before the relaxations were
constructed. This was done both to improve the strength of the lower bound, and in order to
most directly show the advantage of applying reverse McCormick propagation beyond that
afforded by use of reverse interval propagation. The set of parameters p for each problem
was chosen such that the number of remaining dependent variables was equal to the num-
ber of equality constraints, and that the resulting square equation system defined by these

123

32 J Glob Optim (2015) 63:1–36

Table 1 Set of variables chosen
as parameters and the nonsmooth
solver used for each of the test
problems

The variable names correspond to
those given in the AMPL model
file from the COCONUT library

Problem Parametrized variables Nonsmooth solver

ex4_1_8 x2 MPBNGC

ex6_1_2 x2 MPBNGC

mhw4d x2, x3 SolvOpt

ex6_1_4 x2, x3 SolvOpt

ex7_2_2 x1, x2 SolvOpt

ex8_5_1 x2, x3 SolvOpt

ex8_5_2 x2, x3 SolvOpt

ex5_2_4 x1, x2, x3, x4, x5 SolvOpt

ex9_2_5 x1 MPBNGC

himmel11 x1, x2, x3, x4, x5, x6 MPBNGC

ex9_2_1 x1 MPBNGC

process x1, x2, x3 SolvOpt

ex6_1_3 x2, x5, x7 SolvOpt

ex5_2_2 x3, x4, x5, x6, x7 SolvOpt

ex7_3_4 x9, x10, x11, x12 MPBNGC

ex9_1_1 x1 MPBNGC

alkyl x2, x9, x11, x12, x13, x14, x15 SolvOpt

ex8_4_5 x12, x13, x14, x15 MPBNGC

ex5_4_3 x14, x15, x16 MPBNGC

ex8_4_4 x13, x14, x15, x16, x17 SolvOpt

constraints was structurally nonsingular. Since such a partitioning is non-unique in general,
different parameter sets may exist for each test problem that could perform either more or less
favorably than those explored in this work. Table 1 shows the variables chosen as parameters
for each of the test problems.

In practice, solving the convex lower bounding problemswas found to be highly nontrivial
due to the nonsmooth nature of the McCormick relaxations and the presence of constraints
in two of the formulations. Two freely-available nonsmooth local optimization algorithms
were used in this work: MPBNGC, an implementation of the proximal bundle method [36],
and SolvOpt, an implementation of Shor’s r-algorithm with an exact penalty formulation
for handling constraints [29]. It was observed that neither of these algorithms could be used
on all problems in the test set, either due to the assumptions of the method or numerical
difficulties. However, for each problem, at least one of the two algorithms was suitable, and
the same solver was used for all three formulations for consistency. The solver used for
each problem is also noted in Table 1. It was noted that MPBNGC generally required fewer
but more expensive iterations than SolvOpt to solve the lower bounding problems. Improved
methods for constrained nonsmooth optimization using reverseMcCormick propagation will
be a topic of future research.

The SQP algorithm SNOPT [18] was used to obtain upper bounds and find feasible points
required for initialization of the MPBNGC method. No range reduction techniques were
employed in this branch-and-bound implementation, and the relative and absolute tolerances
used to terminate the algorithm were 10−3 and 10−8, respectively. Branching was performed
such that the current box was bisected along the largest current width relative to the original

123

J Glob Optim (2015) 63:1–36 33

Table 2 Results of applying reverse propagation of McCormick relaxations to a set of standard global opti-
mization test problems

Standard relaxations Formulation (R2) Formulation (R1)

Problem Time (s) Iterations Time (s) Iterations Time (s) Iterations

ex4_1_8 0.01425 1 0.02603 1 0.004586 1

ex6_1_2 183.8 613 0.9245 115 0.1499 22

mhw4d 2.804 61 0.3540 23 0.06245 11

ex6_1_4 7386 15,343 8.986 279 1.034 111

ex7_2_2 234.7 277 5.572 77 0.8964 398

ex8_5_1 62.80 2,809 143.4 4,219 40.31 3,443

ex8_5_2 591.1 9,774 33.56 909 11.13 3,993

ex5_2_4 0.1968 95 0.2111 83 0.09289 44

ex9_2_5 61.50 109 2.820 45 1.469 71

himmel11 186.9 251 13.95 78 2.357 123

ex9_2_1 83.96 103 18.25 65 3.383 104

process 285.6 107 212.4 583 841.2 28,745

ex6_1_3 2006 14,227 133.9 2,815 187.0 7,555

ex5_2_2 6462 36,621 805.7 15,085 26.45 3,490

ex7_3_4 1.738 × 105 836,683 8.113 × 104 173,014 1219 52,486

ex9_1_1 111.8 63 0.2886 1 0.01650 1

alkyl 151.0 37 1851 3,331 42.90 2,158

ex8_4_5 1.238 × 104 63,595 2,701 10,181 7.425 2,423

ex5_4_3 903.8 2,135 20.39 323 2.110 571

ex8_4_4 1.493 × 105 399,809 6.518 × 104 134,005 2.974 × 104 673,281

Problems are listed in order of increasing number of variables

box dimensions. Nodes were selected according to the lowest lower bound heuristic. The
results of the numerical tests can be found in Table 2.

The results indicate the use of reverse McCormick propagation significantly improves
solution speed (in both elapsed time and iteration count) on the majority of the test problems.
The full-space (R2) formulation seems to bemost effective in reducing the number of branch-
and-bound iterations required for convergence, however, since it requires the solution of a
difficult nonsmooth local optimization problem at each iteration, the cost per iteration is
high. The reduced-space (R1) formulation was generally the fastest to converge in terms of
elapsed time, although sometimes required more branch-and-bound iterations than either the
full-space reverse mode or standard formulations. This is likely due to the fact that the two
full-space formulations are guaranteed to be quadratically convergent methods, whereas the
reduced-space formulation is not [10]. However, the reduced number of decision variables in
the problem offsets the effect of the lower convergence order in most cases. Furthermore, we
note that there is no reason to even expect that the reduced-space formulationwill converge for
an arbitrary partition (x, p). It appears necessary that for all p ∈ p either X (p) is a singleton
or X (p) = ∅, but a derivation of a convergence result for reverse interval propagation
would also be required. These conditions were not checked a priori for these test cases, and
Table 1 shows the results from those problems which did successfully converge in the (R1)

123

34 J Glob Optim (2015) 63:1–36

formulation. We note that other problems from the library were tested for which the (R2)
formulation converged but the (R1) formulation did not, although numerical difficulties with
the nonsmooth solvers were also observed in some of these cases.

In a few cases, the reverse McCormick propagation was observed to be less effective than
using the Standard McCormick relaxations (e.g. problems process and alkyl). These excep-
tions occur when the reverse McCormick update fails and returns the empty set during the
lower bounding procedure on a large number of iterations, which can happen when the local
optimization routine picks a value of p for which no X (p) exists and no relaxations can be
calculated (see Fig. 6a when p ≤ 1

3 for a graphical example). In the current implementa-
tion, this is handled by using the information from the reverse interval pass to calculate the
lower bounding value, and then immediately branching on the node. Handling this case more
effectively is the topic of ongoing research, and will further improve the performance of this
promising constraint propagation method.

10 Conclusion

ReverseMcCormick propagation, a newmethod to construct and improveMcCormick relax-
ations of implicitly defined set-valued mappings has been presented. It takes advantage of
the directed acyclic graph representation of a factorable function, which has been previ-
ously used for interval calculations [50,62]. Bounds and relaxations of factors can often
be improved by using information about the permissible range of a factorable function and
propagating it backwards through the graph. In particular, this allows the construction and
improvement of relaxations of mappings that are only implicitly defined. This is useful in
the context of CSPs since it allows to construct convex relaxations of non-convex solution
sets defined by nonlinear equality constraints and non-convex inequality constraints. Further-
more, McCormick relaxations of the objective function of an NLP can be improved using
information contained in the constraints. While Stuber et al. [55] also put forward methods
to construct relaxations of implicit functions, the method presented here does not require
existence nor uniqueness of the implicit function on all or parts of the domain. Furthermore,
it is less computationally intensive and does not require a pre-processing step. It also provides
a reduced-space relaxation for nonconvex programs that can take constraints into account,
but does not require convex optimizers that can cope with general nonsmooth nonlinear con-
straints. When used as a constraint propagation method in the context of global optimization,
the reverse McCormick approach proved to be effective at improving solution rate compared
to the standard McCormick relaxation approach and reverse interval propagation over a set
of representative test problems.

References

1. Adjiman,C.S., Floudas,C.A.:Rigorous convexunderestimators for general twice-differentiable problems.
J. Glob. Optim. 9, 23–40 (1996)

2. Barták, R.: Theory and practice of constraint propagation. In: Proceedings of the 3rd Workshop on
Constraint Programming in Decision and Control, pp. 7–14 (2001)

3. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for
non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

4. Belotti, P., Cafieri, S., Lee, J., Liberti, L.: Feasibility-based bounds tightening via fixed points. In:Wu,W.,
Daescu, O. (eds.) Combinatorial Optimization and Applications, vol. 6508, pp. 65–76. Springer, Berlin
(2010)

123

J Glob Optim (2015) 63:1–36 35

5. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer, and boolean constraints. J. Logic
Program. 32(1), 1–24 (1997)

6. Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP (intervals) revisited. In: Bruynooghe, M. (ed.)
Proceedings of the 1994 International Symposium on Logic Programming, pp. 124–138. MIT Press,
Cambridge (1994)

7. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: Pro-
ceedings of the International Conference on Logic Programming (ICLP’99), pp. 230–244. MIT Press,
Cambridge (1999)

8. Benhamou, F., Granvilliers, L., Goualard, F.: Interval constraints: results and perspectives. In: NewTrends
in Constraints, Lecture Notes in Artificial Intelligence vol. 1865, pp. 1–16. Springer, Berlin (2000)

9. Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint
Programming, pp. 29–83. Elsevier, Amsterdam (2006). chap 3

10. Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Glob. Optim. 52, 1–28 (2012)
11. Chachuat, B.: MC++—AVersatile Library forMcCormick Relaxations and TaylorModels. http://www3.

imperial.ac.uk/people/b.chachuat/research/ (2011)
12. Cleary, J.G.: Logical arithmetic. Future Comput. Syst. 2(2), 124–149 (1987)
13. Davis, E.: Constraint propagation with interval labels. Artif. Intell. 32(3), 281–331 (1987)
14. Dixon, L.C.W., Szego, G.P.: The optimization problem: an introduction. In: Dixon, L.C.W., Szego, G.P.

(eds.) Towards Global Optimization. North Holland, New York (1978)
15. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15(3), 404–429

(2010)
16. Dulmage, A., Mendelsohn, N.: Coverings of bipartite graphs. Can. J. Math. 517–534 (1958)
17. Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Manag. Sci. 15,

550–569 (1969)
18. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimiza-

tion. SIAM Rev. 47(1), 99–131 (2002)
19. Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: an interval solver using constraint satisfaction

techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)
20. Griewank, A., Walther, A.: Evaluating Derivatives, 2nd edn. Society for Industrial and Applied Mathe-

matics, Philadelphia (2008)
21. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, New

York (2004)
22. Hansen, P., Jaumard, B., Lu, S.H.: An analytical approach to global optimization.Math. Program. 52(1–3),

227–254 (1991)
23. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin

(1993)
24. Hooker, J.: Logic-BasedMethods for Optimization: CombiningOptimization and Constraint Satisfaction.

Wiley, New York (2000)
25. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)
26. Hyvönen, E.: Constraint reasoning based on interval arithmetic: the tolerance propagation approach. Artif.

Intell. 58(1–3), 71–112 (1992)
27. Jaulin, L.: Solving set-valued constraint satisfaction problems. Computing 94(2–4), 297–311 (2012)
28. Jaulin, L., Michel, K., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001)
29. Kappel, F., Kuntsevich, A.: An implementation of Shor’s r-algorithm. Comput. Optim. Appl. 15, 193–205

(2000)
30. Kearfott, R.B., Nakao, M., Neumaier, A., Rump, S.M., Shary, S., Van Hentenryck, P.: Standardized nota-

tion in interval analysis. In: Proceedings of the XIII Baikal International School-seminar “Optimization
methods and their applications”, vol. 4, pp. 106–113. Institute of Energy Systems SBRAS, Irkutsk, Russia
(2005)

31. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Springer, Berlin (1985)
32. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.P.: Efficient and safe global constraints for

handling numerical constraint systems. SIAM J. Numer. Anal. 42(5), 2076 (2005)
33. Lhomme, O.: Consistency techniques for numeric CSPs. In: International Joint Conference on Artificial

Intelligence, pp. 232–238 (1993)
34. Lukšan, L., Vlček, J.: Algorithm 811: NDA: algorithms for nondifferentiable optimization. ACM Trans.

Math. Softw. 27, 193–213 (2001)
35. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)
36. Mäkelä, M.M.: Multiobjective Proximal Bundle Method for Nonconvex Nonsmooth Optimization: For-

tran Subroutine MPBNGC 2.0. Reports of the Department of Mathematical Information Technology,
Series B, Scientific computing (B 13/2003), University of Jyväskylä, Jyväskylä (2003)

123

http://www3.imperial.ac.uk/people/b.chachuat/research/
http://www3.imperial.ac.uk/people/b.chachuat/research/

36 J Glob Optim (2015) 63:1–36

37. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization. World Scientific, Singapore (1992)
38. MATLAB.: Version 8.3.0 (R2014a). The MathWorks Inc., Natick, MA (2014)
39. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex

underestimating problems. Math. Program. 10, 147–175 (1976)
40. Melquiond, G., Pion, S., Brönnimann, H.: Boost Interval Arithmetic Library. http://www.boost.org/doc/

libs/1_49_0/ (2006)
41. Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20,

573–601 (2009)
42. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
43. Neumaier,A.: IntervalMethods for Systems of Equations. CambridgeUniversity Press, Cambridge (1990)
44. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. In: Iserles,

A. (ed.) Acta Numerica, vol. 13, pp. 271–370. Cambridge University Press, Cambridge (2004)
45. Ratschek, H., Rokne, J.: ComputerMethods for the Range of Functions. Ellis Horwood, Chichester (1984)
46. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)
47. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in

process design. Comput. Chem. Eng. 19(5), 551–566 (1995)
48. Sahinidis, N.V., Tawarmalani, M.: BARON Solver Manual. http://gams.com/dd/docs/solvers/baron.pdf

(2009)
49. Sam-Haroud, D., Faltings, B.: Consistency techniques for continuous constraints. Constraints 1(1–2),

85–118 (1996)
50. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. J. Glob.

Optim. 33(4), 541–562 (2005)
51. Scott, J.K.: Reachability Analysis and Deterministic Global Optimization of Differential-algebraic Sys-

tems. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2012)
52. Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51(4), 569–

606 (2011)
53. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.H., Nguyen, T.V.: Benchmarking global optimiza-

tion and constraint satisfaction codes. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization
and Constraint Satisfaction, pp. 211–222. Springer, Berlin (2003)

54. Smith, E.M.B., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21,
S791–S796 (1997)

55. Stuber, M.D., Scott, J.K.: Convex and concave relaxations of implicit functions. Optim. Methods Softw.
(in press) (2014)

56. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-
Integer Nonlinear Programming. Kluwer, Dordrecht (2002)

57. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical
and computational study. Math. Program. 99, 563–591 (2004)

58. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.
Program. 103, 225–249 (2005)

59. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune
approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)

60. Van Hentenryck, P., Michel, L., Benhamou, F.: Constraint programming over nonlinear constraints. Sci.
Comput. Program. 30(1–2), 83–118 (1998)

61. Vu, X.H., Sam-Haroud, D., Silaghi, M.C.: Numerical constraint satisfaction problems with non-isolated
solutions. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization andConstraint Satisfaction,
Lecture Notes in Computer Science, vol. 2861, pp. 194–210. Springer, Berlin (2003)

62. Vu, X.H., Schichl, H., Sam-Haroud, D.: Interval propagation and search on directed acyclic graphs for
numerical constraint solving. J. Glob. Optim. 45(4), 499–531 (2009)

123

http://www.boost.org/doc/libs/1_49_0/
http://www.boost.org/doc/libs/1_49_0/
http://gams.com/dd/docs/solvers/baron.pdf

	Reverse propagation of McCormick relaxations
	Abstract
	1 Introduction
	1.1 Review of constraint propagation methods
	1.2 Connection to global optimization
	1.3 Replacing intervals with relaxations in constraint propagation

	2 Method description
	3 Preliminary definitions and results
	3.1 Factorable functions
	3.2 Interval analysis
	3.3 McCormick analysis

	4 Reverse interval propagation
	5 Reverse McCormick propagation
	5.1 Reverse McCormick updates of binary operations
	5.2 Reverse McCormick updates of univariate functions
	5.3 Inclusion monotonicity of the reverse McCormick updates
	5.4 Coherent concavity of the reverse McCormick updates

	6 Using reverse McCormick propagation in CSPs and in global optimization
	6.1 Solving CSPs with equality and inequality constraints
	6.2 Constructing relaxations for reduced-space optimization problems
	6.3 Partitioning variables

	7 Implementation
	7.1 Algorithm implementation
	7.2 Outward rounding

	8 Illustrative examples
	8.1 Equality constraints
	8.2 Inequality constraints
	8.3 Objective function

	9 Global optimization test problems
	10 Conclusion
	References

