
J Glob Optim (2015) 63:165–180
DOI 10.1007/s10898-015-0291-6

On power penalty methods for linear complementarity
problems arising from American option pricing

Zhe Sun1 · Zhe Liu1 · Xiaoqi Yang2

Received: 21 April 2014 / Accepted: 7 March 2015 / Published online: 17 March 2015
© Springer Science+Business Media New York 2015

Abstract Power penalty methods for solving a linear parabolic complementarity problem
arising from American option pricing have attracted much attention. These methods require
us to solve a series of systems of nonlinear equations (called penalized equations). In this
paper, we first study the relationships among the solutions of penalized equations under
appropriate conditions. Additionally, since these penalized equations are neither smooth nor
convex, some existing algorithms, such as Newton method, cannot be applied directly to
solve them. We shall apply the nonlinear Jacobian method to solve penalized equations and
verify that the iteration sequence generated by the method converges monotonically to the
solution of the penalized equation. Some numerical results confirm the theoretical results
and the efficiency of the proposed algorithm.
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1 Introduction

Power penaltymethods for the parabolic linear complementarity problemarising fromAmeri-
can options pricing problems have attractedmuch attention; see, for example [1,7,12,14–16].
In these methods, the parabolic linear complementarity problem is approximated by a non-
linear parabolic partial differential equation (which is called a penalized equation) via adding
a penalty term. It is shown that the solution of the penalized equation converges to that of
the parabolic linear complementarity problem with an arbitrary order and this allows us to
achieve the required accuracy of the solution with a small penalty parameter [10,12]. After
the penalized equation is discretized in space and time, at each timestep it yields the following
nonlinear discrete penalized equation: Find a vector Wk

λ ∈ R
n such that

AWk
λ − λ

[
g − Wk

λ

]1/k
+ = f, (1.1)

where A = (ai j ) ∈ R
n×n is an M-matrix, f = ( f1, . . . , fn)T ∈ R

n, g = (g1, . . . , gn)T ∈
R
n, λ > 1 is the penalty parameter, k ≥ 1 is the power exponent and [u]+ = max{0, u}.

The solution of the penalized equation Wk
λ is closely related to λ and k. A matrix B is called

an M-matrix if it has non-positive off-diagonals and B−1 ≥ 0 (i.e., all entries of B−1 are
nonnegative) [8]. The penalized equation (1.1) can be regarded as the penalized formulation
of the following discrete linear complementarity problem

W ≥ g, AW − f ≥ 0 and (W − g)T (AW − f ) = 0. (1.2)

In this paper, we shall study the relationships among the solutions of penalized equations
and the relationships between the solution of the penalized equation and that of the discrete
linear complementarity problem.

In order to price American options numerically, large-scale systems of nonlinear algebraic
equations need to be solved at each discrete time point. When k = 1 in (1.1), the penalized
equation is a semismooth equation and semismooth Newton method can be used to solve
it [2,4,9]. When k > 1, the penalized equation (1.1) is a nonsmooth equation and classical
or semismooth Newton method can not be applied directly. In [12], Wang et al. proposed a
smoothing technique for the penalty term and with this technique, a damped Newton method
was applied to solving the penalized equation. Compared with the cases where k = 1,
it requires much more computational time to solve the penalized equation by the damped
Newton method [14].

In this paper, we shall apply the nonlinear Jacobian iteration (see, e.g., [8]) to the penalized
equation (1.1). A nonlinear SOR iteration was used to solve the discrete penalized equation
arising from obstacle problems in [3] when k = 1. The nonlinear SOR iteration typically
converges faster than the nonlinear Jacobi iteration by using the most recently available
approximations of the elements of the iteration vector. However, the method is inherently
sequential and it does not possess natural parallelism.Under proper conditions,we shall verify
that the sequence generated by the nonlinear Jacobian iteration monotonically converges to
the solution of the penalized equation.

The paper is organized as follows. In Sect. 2, we shall discuss convergence properties of
solutions of penalized equations. In Sect. 3, we shall apply the nonlinear Jacobi iteration for
solving the penalized equation and study the convergence property of the iteration. In Sect. 4,
we shall discuss the solution of the subproblem. Finally, in Sect. 5, numerical experiments
are presented to confirm the efficiency of the proposed method and to verify the theoretical
results.
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2 Convergence properties of solutions of penalized equations

We call W a lower-solution for the penalized equation (1.1) if

AW − λ[g − W ]1/k+ ≤ f ;
we also call W a lower-solution for the discrete linear complementarity problem (1.2) if

min{W − g,AW − f } ≤ 0.

For two index subsets I, J ⊂ {1, . . . , n}, let AI J be the submatrix of A with rows in I and
columns in J andWI be the subvector ofW with entries indexes in I . A matrix B (or a vector
W ) is nonnegative, denoted by B ≥ 0 (or W ≥ 0), if all its entries are nonnegative. With
these notions, we present some important relationships among the solutions of penalized
equations and the discrete linear complementarity problem in the following lemmas.

Lemma 2.1 Let λ > 1, k > 0 and Wk
λ be the solution of the penalized equation (1.1). If W̃

is a lower-solution of the penalized equation (1.1), then W̃ ≤ Wk
λ .

Proof Since W̃ is a lower-solution of the penalized equation (1.1), it holds

AW̃ − λ[g − W̃ ]1/k+ ≤ f = AWk
λ − λ

[
g − Wk

λ

]1/k
+ . (2.1)

This means that

A
(
W̃ − Wk

λ

)
≤ λ

(
[g − W̃ ]1/k+ −

[
g − Wk

λ

]1/k
+

)
.

Assume that there exist two disjoint nonempty index subsets I1 and I2 of {1, . . . , n} such
that

W̃i ≤
(
Wk

λ

)
i
, ∀i ∈ I1 and W̃i >

(
Wk

λ

)
i
, ∀i ∈ I2. (2.2)

From (2.1) it follows

AI2 I2

(
W̃ − Wk

λ

)
I2

≤ λ

(
[g − W̃ ]1/k+ −

[
g − Wk

λ

]1/k
+

)

I2

− AI2 I1

(
W̃ − Wk

λ

)
I1

.

Noting that A is an M-matrix, we obtain that AI2 I1 ≤ 0 and AI2 I2 is also an M-matrix. From
(2.2) we deduce

(
W̃ − Wk

λ

)
I2

≤ 0.

This is a contradiction to (2.2). The contradiction implies that I2 = ∅. Therefore,
W̃ ≤ Wk

λ .

The proof is complete. �	
Lemma 2.2 Let 1 < λ1 < λ2 and Wk

λ1
be the solution of the penalized equation

AW − λ1[g − W ]1/k+ = f.

Then Wk
λ1

is a lower-solution of the penalized equation

AW − λ2[g − W ]1/k+ = f. (2.3)

Moreover, Wk
λ1

≤ Wk
λ2
, where Wk

λ2
is the solution of (2.3).
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Proof Since 1 < λ1 < λ2, [g−Wk
λ1

]+ ≥ 0 andWk
λ1

is the solution of the penalized equation

AW − λ1[g − W ]1/k+ = f , it must hold

AWk
λ1

− λ2

[
g − Wk

λ1

]1/k
+ ≤ AWk

λ1
− λ1

[
g − Wk

λ1

]1/k
+ = f.

This means that Wk
λ1

is a lower-solution of the penalized equation (2.3). Since Wk
λ2

is the

solution of (2.3), by Lemma 2.1 we get Wk
λ1

≤ Wk
λ2
. The proof is complete. �	

Lemma 2.3 Let 0 < k1 < k2 and Wk1
λ be the solution of the penalized equation

AW − λ[g − W ]1/k1+ = f.

Assume that for each i , it holds (Wk1
λ )i ≥ gi − 1. Then Wk1

λ is a lower-solution of the
penalized equation

AW − λ[g − W ]1/k2+ = f. (2.4)

Moreover, Wk1
λ ≤ Wk2

λ , where Wk2
λ is the solution of (2.4).

Proof Since 0 < k1 < k2, 0 ≤ [gi − (Wk1
λ )i ]+ ≤ 1 and Wk1

λ is the solution of the penalized

equation AW − λ[g − W ]1/k1+ = f , it must hold

AWk1
λ − λ

[
g − Wk1

λ1

]1/k2
+ ≤ AWk1

λ − λ
[
g − Wk1

λ1

]1/k1
+ = f.

This means that Wk1
λ is a lower-solution of the penalized equation (2.4). Noting that Wk2

λ is

the solution of (2.4), from Lemma 2.1 we deduce Wk1
λ ≤ Wk2

λ . �	
Lemma 2.4 Let λ > 1 and k > 0. Assume that Wk

λ is the solution of the penalized equation
(1.1). Then Wk

λ is a lower-solution of the discrete linear complementarity problem (1.2).
Moreover, Wk

λ ≤ W ∗, where W ∗ denotes the solution of (1.2).

Proof Define two index sets I1 and I2 as follows

I1 �
{
i |

(
Wk

λ

)
i
≥ gi

}
and I2 �

{
i |

(
Wk

λ

)
i
< gi

}
. (2.5)

For each i ∈ I1, by (1.1) we have (AWk
λ)i = fi , which means that min{(Wk

λ − g)i , (AWk
λ −

f )i } = 0; and for each i ∈ I2, we have (Wk
λ − g)i < 0, which means that min{(Wk

λ −
g)i , (AWk

λ − f )i } < 0. This implies that for each i , it holds

min
{(

Wk
λ − g

)
i
,

(
AWk

λ − f
)
i

}
≤ 0.

And hence Wk
λ is a lower-solution of the discrete linear complementarity problem (1.2).

Noting that W ∗ ≥ g, by (2.5) we have W ∗
i >

(
Wk

λ

)
i for each i ∈ I2. On the other hand,

we have (
AWk

λ

)
I1

= f I1 ≤ (AW∗)I1 .

This means that

AI1 I1

(
W ∗ − Wk

λ

)
I1

≥ −AI1 I2

(
W ∗ − Wk

λ

)
I2

≥ 0.

Since AI1 I1 is an M-matrix, we have (W ∗ − Wk
λ )I1 ≥ 0. And hence Wk

λ ≤ W ∗. �	
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The following theorem shows that the sequence of solutions {Wk
λm

} of the penalized
equations is monotonically increasing and convergent to the solution of the discrete linear
complementarity problem (1.2) as λm → +∞.

Theorem 2.1 Let k be fixed and {λm} be a monotonically increasing sequence tending to
positive infinity as m → +∞. Assume that Wk

λm
is the solution of the penalized equation

AW − λm[g − W ]1/k+ = f.

Then the sequence {Wk
λm

} is monotonically increasing and convergent to the solution of the
discrete linear complementarity problem (1.2). Moreover, when A is positive definite, there
exists a constant C > 0, independent of n,W ∗,Wk

λm
and λm, such that

∥∥∥W ∗ − Wk
λm

∥∥∥
2

≤ C

(λm)k/2
, (2.6)

where W ∗ is the solution of the discrete linear complementarity problem (1.2).

Proof It follows from Lemmas 2.2 and 2.4 that

Wk
λm1

≤ Wk
λm2

≤ W ∗, ∀m1 < m2.

This implies that there exists some W ∗∗ such that limm→+∞ Wk
λm

= W ∗∗. Note that

AWk
λm

− f = λm

[
g − Wk

λm

]1/k
+ ≥ 0. (2.7)

Letting m → +∞ in (2.7), we get AW∗∗ − f ≥ 0. On the other hand, we have
[
g − Wk

λm

]
+ =

((
AWk

λm
− f

)
/λm

)k
. (2.8)

Letting m → +∞ in (2.8), we get [g − W ∗∗]+ = 0. This means that W ∗∗ ≥ g. And hence
it holds (

AW∗∗ − f
)T

(W ∗∗ − g) ≥ 0. (2.9)

By (2.7), we get
(
AWk

λm
− f

)T (
Wk

λm
− g

)
= λm

(
Wk

λm
− g

)T [
g − Wk

λm

]1/k
+ ≤ 0.

Letting m → +∞, we obtain (AW∗∗ − f )T (W ∗∗ − g) ≤ 0. This together with (2.9) implies
that

(AW∗∗ − f )T (W ∗∗ − g) = 0.

Thus the above discussion shows thatW ∗∗ is a solution of (1.2). Noting that A is anM-matrix,
the linear complementarity problem (1.2) has a unique solution. Therefore,W ∗∗ = W ∗. The
upper error bound (2.6) comes from Theorem 2.1 of [13] directly. The proof is complete. �	
Remark 2.1 (i) The constant C in (2.6) is independent of the dimensionality n [13]. The

upper error bound (2.6) can be further improved by the fact that all norms in a finite
dimensional space are equivalent (see [5,13] for details), i.e.,

∥∥∥W ∗ − Wk
λm

∥∥∥
2

≤ C

(λm)k
.

But the constant C here is dependent of the dimensionality n.
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(ii) In general, the sequence of solutions {Wkm
λ } of the penalized equations may not converge

to the solution of the discrete linear complementarity problem if we let λ be fixed and
km → +∞. The following example has shown this. Consider the linear complementarity
problem

W ∗ − 3 ≥ 0, 2W ∗ − 2 ≥ 0 and (W ∗ − 3)(2W ∗ − 2) = 0.

and the corresponding penalized equation

2Wk
2 − 2

[
3 − Wk

2

]1/k
+ = 2,

where λ = 2 and k > 0. By a simple calculation, we getWk
2 = 2 andW ∗ = 3. Therefore,

the sequence of solutions Wkm
2 cannot converges to the solution as km → +∞.

Theorem 2.2 Let A be positive definite,λ > ‖Ag− f ‖1 be fixed and {km} be amonotonically
increasing sequence tending to positive infinity asm → +∞. Assume thatWkm

λ is the solution
of the penalized equation

AW − λ[g − W ]1/km+ = f.

If λ is chosen such that for each i, gi ≤ (Wk1
λ )i +1, then the sequence {Wkm

λ } is monotonically
increasing and convergent to the solution of the discrete linear complementarity problem
(1.2).

Proof FromLemmas 2.3 and 2.4 it follows that the sequence {Wkm
λ } ismonotonically increas-

ing and bounded. As a result, there exists someW ∗∗ such that limm→+∞ Wkm
λ = W ∗∗. Note

that

AWkm
λ − f = λ

[
g − Wkm

λ

]1/km
+ ≥ 0. (2.10)

Letting m → +∞ in (2.10), we get AW∗∗ − f ≥ 0. On the other hand, we have

0 ≤ λ

∥∥∥∥
[
g − Wkm

λ

]
+

∥∥∥∥
p

p
= −

(
g − Wkm

λ

)T
A

[
g − Wkm

λ

]
+ + (Ag − f )T

[
g − Wkm

λ

]
+ ,

(2.11)
where p = 1 + 1/km . We decompose g − Wkm

λ into g − Wkm
λ = [uT1 , uT2 ]T with u1 > 0

and u2 ≤ 0. Then the matrix A can be decomposed into A =
(
A11 A12

A21 A22

)
and (2.11) can be

rewritten as

0 ≤ λ

∥∥∥∥
[
g − Wkm

λ

]
+

∥∥∥∥
p

p
= −uT1 A11u1 − uT1 A12u2 + (Ag − f )T

[
g − Wkm

λ

]
+ .

Since uT1 A11u1 ≥ 0 and uT1 A12u2 ≥ 0, it holds

0 ≤ λ

∥∥∥∥
[
g − Wkm

λ

]
+

∥∥∥∥
p

p
≤ (Ag − f )T

[
g − Wkm

λ

]
+ .

Using the Hȯlder’s inequality, we get
∥∥∥∥
[
g − Wkm

λ

]
+

∥∥∥∥∞
≤ (‖Ag − f ‖1/λ)km . (2.12)
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Note that λ > ‖Ag− f ‖1. Lettingm → +∞ in (2.12), we get [g−W ∗∗]+ = 0. This means
that W ∗∗ ≥ g. Since AW∗∗ − f ≥ 0, it holds

(AW∗∗ − f )T (W ∗∗ − g) ≥ 0. (2.13)

By (2.10), we get
(
AWkm

λ − f
)T (

Wkm
λ − g

)
= λ

(
Wkm

λ − g
)T [

g − Wkm
λ

]1/km
+ ≤ 0.

Letting m → +∞, we obtain (AW∗∗ − f )T (W ∗∗ − g) ≤ 0, which together with (2.13)
implies that

(AW∗∗ − f )T (W ∗∗ − g) = 0.

Thus, W ∗∗ is a solution of (1.2). Noting that the linear complementarity problem (1.2) has a
unique solution, we get W ∗∗ = W ∗. The proof is complete. �	
Theorem 2.3 Let W ∗ be the solution of the discrete linear complementarity problem (1.2).
Assume that Wk

λ is the solution of the penalized equation (1.1). Define the following two
index sets

I1 =
{
i |

(
Wk

λ

)
i
≤ gi

}
and I2 =

{
i |

(
Wk

λ

)
i
> gi

}
.

Then for sufficiently large λ, we have
∥∥∥∥
(
g − Wk

λ

)
I1

∥∥∥∥∞
≤ C1

λk
,

∥∥∥∥
(
Wk

λ − W ∗)
I2

∥∥∥∥∞
≤ C2

λk
,

and
∥∥∥W ∗ − Wk

λ

∥∥∥∞ ≤ C3

λk
.

Here, constants C1,C2 and C3 only depend on k and ‖AW∗ − f ‖∞.

Proof For any i ∈ I1, by (1.1) we obtain

(g − Wk
λ )i =

[(
AWk

λ − f
)
i

]k
λk

=
[(
AW∗ − f + A

(
Wk

λ − W ∗))
i

]k
λk

≤
[
(AW∗ − f )i + | (A (

Wk
λ − W ∗))

i |
]k

λk
.

Noting that Wk
λ − W ∗ → 0 as λ → ∞, we have |(A(Wk

λ − W ∗))i | < max{(AW∗ − f )i , 1}
for λ sufficiently large. This implies that

(
g − Wk

λ

)
i
≤

[
2max{(AW∗ − f )i , 1}

]k
λk

≤ 2k
[
max{‖AW∗ − f ‖∞, 1}]k

λk
, ∀i ∈ I1.

Let C1 = 2k[max{‖AW∗ − f ‖∞, 1}]k . Then it holds
∥∥∥∥
(
g − Wk

λ

)
I1

∥∥∥∥∞
≤ C1

λk
. (2.14)

For any i ∈ I2, by (1.1) we get (AWk
λ − f )i = 0. Since W ∗

i ≥ (Wk
λ )i , it holds W ∗

i > gi
and hence (AW∗ − f )i = 0. Therefore, we have

0 =
[
A

(
W ∗ − Wk

λ

)]
I2

= AI2 I2

(
W ∗ − Wk

λ

)
I2

+ AI2 I1

(
W ∗ − Wk

λ

)
I1

,
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which implies that
(
W ∗ − Wk

λ

)
I2

= −(AI2 I2)
−1AI2 I1

(
W ∗ − Wk

λ

)
I1

.

Note that Wk
λ → W ∗ as λ → ∞. For sufficiently large λ, we have (Wk

λ )i > gi as long as
W ∗

i > gi . This means that W ∗
I1

= gI1 and hence

∥∥∥W ∗ − Wk
λ

∥∥∥∞ =
∥∥∥∥(AI2 I2)

−1AI2 I1

(
g − Wk

λ

)
I1

∥∥∥∥∞
≤ ∥∥(AI2 I2)

−1AI2 I1

∥∥∞

∥∥∥∥
(
g−Wk

λ

)
I1

∥∥∥∥∞
.

Let C2 = C1‖(AI2 I2)
−1AI2 I1‖∞. Then it holds

∥∥∥∥
(
Wk

λ − W ∗)
I2

∥∥∥∥∞
≤ C2

λk
. (2.15)

Let C3 = C1 max{‖(AI2 I2)
−1AI2 I1‖∞, 1}. From (2.14) and (2.15), it follows

∥∥∥Wk
λ − W ∗

∥∥∥∞ ≤ C3

λk
.

The proof is complete. �	
Using Theorem 2.3, we get the following corollary.

Corollary 2.1 Letλ1 < λ2, andWk
λ1
andWk

λ2
be the corresponding solutions of the penalized

equation (1.1). Then there exists some constant C such that
∥∥∥Wk

λ1
− Wk

λ2

∥∥∥∞ ≤ C

λk1

.

3 Nonlinear Jacobi iteration for solving the penalized equation

In this section, we shall apply the nonlinear Jacobi iteration for the solution of the discrete
penalized equation (1.1) and analyze its convergence. For this purpose, we introduce some
notations. We denote by D = diag(a11, a22, . . . , ann) the diagonal matrix composed of the
diagonal elements of A. Then, B � A− D denotes the matrix composed of the off-diagonal
elements of A. With these notations, we give the steps of the algorithm as follows.

Algorithm 3.1.

Step 1. Choose an initial point W 1 ∈ R
n and ε > 0. Let � = 1.

Step 2. Compute W �+1 by solving the system of nonlinear equations

DW �+1 − λ
[
g − W �+1

]1/k
+ = f − BW�. (3.1)

Step 3. Stop if ‖W �+1 − W �‖∞ < ε. Otherwise, let � := � + 1 and go to Step 2.

Remark 3.1 Let b� = f − BW�. Noting that D is a diagonal matrix, we can compute W �+1

in (3.1) by solving in parallel the following n one-dimensional nonlinear equations

aiiW
�+1
i − λ

[
gi − W �+1

i

]1/k
+ = b�

i , i = 1, 2, . . . , n. (3.2)

The following lemma shows that the system (3.1) has a unique solution.
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Lemma 3.1 For any � ≥ 1, the system of nonlinear equations (3.1) has a unique solution.
Moreover,

W �+1 ≥ D−1( f − BW�), � = 1, 2, . . . . (3.3)

Proof It follows from Remark 3.1 that it only needs to prove the one-dimensional nonlinear
equation (3.2) has a unique solution and W �+1

i ≥ b�
i /aii .

Consider the one-dimensional mapping h : R → R defined by

h(t) = aii t − λ[gi − t]1/k+ − b�
i .

Since the matrix A is an M-matrix, we have aii > 0. Thus, it is not difficult to verify that the
mapping h is strictly monotone on R and

lim
t→−∞ h(t) = −∞, lim

t→+∞ h(t) = +∞.

Hence the equation h(t) = 0 has a unique solution. This implies that (3.2) has a unique
solution. On the other hand, by (3.2) we have

W �+1
i = b�

i

aii
+ λ

aii

[
gi − W �+1

i

]1/k
+ ≥ b�

i

aii
.

This means that (3.3) holds. The proof is complete. �	
We now give a convergence theorem of Algorithm 3.1.

Theorem 3.1 Let W 1 be a lower-solution of the penalized equation (1.1). Then the sequence
{W �} generated by Algorithm 3.1 is monotonically increasing and convergent to the solution
of the penalized equation (1.1).

Proof The proof is divided into two parts.
We first verify that for each � = 1, 2, . . ., it holds

W � ≤ W �+1 ≤ Wk
λ , (3.4)

whereWk
λ is the solution of the penalized equation (1.1). Assume thatW � is a lower-solution.

We shall prove that (3.4) holds for thisW �. By Lemma 2.1 we only need to verify thatW �+1

is also a lower-solution and W � ≤ W �+1. Since W � is a lower-solution, we have

AW� − λ[g − W �]1/k+ ≤ f.

Using the previous notations D, B and bk , it can be rewritten as

DW � − λ[g − W �]1/k+ ≤ f − BW� = bk .

This implies that for each i = 1, 2, . . . , n, it holds

aiiW
�
i − λ

[
gi − W �

i

]1/k
+ ≤ bki .

Combining it with (3.2), we get

aiiW
�
i − λ

[
gi − W �

i

]1/k
+ ≤ aiiW

�+1
i − λ

[
gi − W �+1

i

]1/k
+ .

Since aii > 0, it is readily to see that W �
i ≤ W �+1

i . Thus, W � ≤ W �+1. On the other hand,
we have

AW�+1 − λ[g − W �+1]1/k+ = DW �+1 − λ[g − W �+1]1/k+ + BW�+1.
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Noting that B ≤ 0 and W � ≤ W �+1, it follows from (3.1) that

AW�+1 − λ[g − W �+1]1/k+ ≤ DW �+1 − λ[g − W �+1]1/k+ + BW� = f.

This shows that W �+1 is also a lower-solution of the penalized equation (1.1). Since W 1 is
a lower-solution of the penalized equation (1.1), by the induction hypothesis we obtain (3.4)
for each �.

We now verify that the sequence {W �} is convergent to the solution of the penalized
equation (1.1). By (3.4), there exists some W̄ k

λ such that lim�→+∞ W � = W̄ k
λ . Letting

� → +∞ in (3.1), we get

DW̄k
λ − λ

[
g − W̄ k

λ

]1/k
+ = f − BW̄k

λ

and hence

AW̄k
λ − λ

[
g − W̄ k

λ

]1/k
+ = f.

This means that the sequence {W �} is convergent to the solution of the penalized equation
(1.1). The proof is complete. �	

4 The implementation of Algorithm 3.1

In Sect. 3, it has been established that the sequence generated by Algorithm 3.1 is
monotonically convergent to the solution of the penalized equation if the initial iterate is
a lower-solution. One question is how to choose the initial iterate, which is a lower-solution
of (1.1). From Lemma 2.3, we know that the solution of the l1 penalized equation is a lower-
solution of the corresponding lk penalized equation. Thus, we can obtain the initial iterate
via solving the l1 penalized equation. The other question is how to solve the one-dimensional
nonlinear equation (3.2) effectively. To answer this question, we shall give a detailed discus-
sion in the following.

We consider the following one-dimensional nonlinear equation: find U ∈ R such that

αU − λ[β −U ]1/k+ = γ, (4.1)

where α > 0, β ∈ R and γ ∈ R. Obviously, Eq. (4.1) is nonsmooth. Since α > 0, by the
discussion in Sect. 3 we know that (4.1) has a unique solution. In addition,U ≥ γ /α and the
solution U satisfies the following equation

(
U − γ

α

)k = λk

αk
[β −U ]+.

We shall study the analytical solution of Eq. (4.1) for the case where k = 1 and k = 2.
If γ /α ≥ β, then U = γ /α. Otherwise, it holds

(
U − γ

α

)k = λk

αk
(β −U ),

which yields that

(
U − γ

α

)k + λk

αk

(
U − γ

α

)
+ λk

αk

(γ

α
− β

)
= 0. (4.2)
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Case I: k = 1. By a direct calculation, we get

U = γ + βλ

α + λ
.

Since γ /α < β, it holds U > γ/α and it satisfies (4.1).
Case II: k = 2. Since γ /α < β, we have Δ � λ2 + 4α2β − 4αγ > λ2 and Eq. (4.2) has the
following two solutions:

U1 = γ

α
+ λ

√
Δ − λ2

2α2 , U2 = γ

α
− λ

√
Δ + λ2

2α2 .

Noting that U ≥ γ /α and U2 < γ/α, we have U = U1 or equivalently

U = γ

α
+ 2λ(αβ − γ )

α(
√

Δ + λ)
= γ

α
+ 2(αβ − γ )

α(
√

Δ/λ2 + 1)
= γ

α
+ 2(αβ − γ )

α(
√
1 + 4(α2β − αγ )/λ2 + 1)

.

From the above discussion, we know that the one-dimensional nonlinear Eq. (3.2) has a
unique analytical solutionwhen k = 1 and k = 2. In fact, when k = 3 and k = 4, the equation
(3.2) also has a unique analytical solution [6]. But its expression is more complicated and
the details are omitted here. When k ≥ 4, we may apply the Newton-like iteration to solving
the Eq. (4.1).

Note that the sequence {W �} generated by Algorithm 3.1 is monotonically increasing and
convergent to the solution of the penalized equation (1.1). It follows from Theorem 2.3 that
we can choose the tolerance ε = 1/λk in Step 3 of Algorithm 3.1.

5 Applications to American option pricing problems

In this section, we shall do some preliminary numerical experiments to verify the theoretical
results and compare the performance of the proposedmethodwith that of themethodproposed
in [12].

Consider an American put option with strike price K > 0 and maturity time T > 0. If
the option is exercised when the underlying asset price is S, the option holder receives the
payoff

Ψ (S) = (K − S)+ = max(K − S, 0).

Let V (S, t) be the option value at time t ∈ [0, T ] when the asset price is S. Introducing a
time-reverse transformation τ = T − t, V (S, τ ) � V (S, T − t) satisfies the following form
of the parabolic linear complementarity problem:

V (S, τ ) ≥ Ψ (S),

∂V (S, τ )

∂τ
− L V (S, τ ) ≥ 0,

(
∂V (S, τ )

∂τ
− L V (S, τ )

)
· (V (S, τ ) − Ψ (S)) = 0 (5.1)

a.e. in Ω � (0,+∞) × [0, T ), with the initial condition

V (S, 0) = Ψ (S), S ∈ (0,+∞)

and the differential operator

L V (S, τ ) �
1

2
σ 2S2

∂2V (S, τ )

∂S2
+ r S

∂V (S, τ )

∂S
− rV (S, τ ),
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where σ is the volatility of the underlying asset and r > 0 is the risk free interest rate. For
computational purposes, problem (5.1) will be posed on the localized domain

(S, τ ) ∈ [0, Smax] × [0, T ],
where Smax denotes a sufficiently large number to ensure the accuracy of the solution, and
we impose the following boundary conditions V (0, τ ) = Ψ (0) and V (Smax, τ ) = Ψ (Smax)

for τ ∈ [0, T ]. From [12], the penalized form of (5.1) is

∂V (S, τ )

∂τ
− L V (S, τ ) − λ[Ψ (S) − V (S, τ )]1/k+ = 0, (5.2)

where λ > 0 and k > 0.

5.1 Discretization

Following [1,11,12], we shall apply the finite volume discretization in space to (5.2). To the
end, we let the interval I = (0, Smax) be divided into N subintervals,

Ii � [Si , Si+1], i = 0, 1, . . . , N − 1

with Si = ih and h = Smax/N . We also let

Si−1/2 = (Si−1 + Si )/2, Si+1/2 = (Si + Si+1)/2, i = 1, 2, . . . , N − 1.

These midpoints form a second partition of (0, Smax) if we define S−1/2 = x0 and SN+1/2 =
xN . Integrating both sides of (5.2) over (Si−1/2, Si+1/2), we get

∫ Si+1/2

Si−1/2

∂V (S, τ )

∂τ
dS −

[
S

(
aS

∂V (S, τ )

∂S
+ bV (S, τ )

)]Si+1/2

Si−1/2

+
∫ Si+1/2

Si−1/2

cV (S, τ )dS − λ

∫ Si+1/2

Si−1/2

[Ψ (S) − V (S, τ )]1/k+ dS = 0

for i = 1, 2, . . . , N − 1, where

a = 1

2
σ 2, b = r − σ 2, c = 2r − σ 2.

Applying the midpoint quadrature rule to the first, third, and last terms, we obtain

h
∂Vi (τ )

∂τ
−[

Si+1/2ρ(V )|Si+1/2 − Si−1/2ρ(V )|Si−1/2

]+h
[
cVi (τ ) − λ[Ψi − Vi (τ )]1/k+

]
= 0,

(5.3)
whereΨi = Ψ (Si ), Vi (τ ) is the nodal approximation to V (Si , τ ) to be determined, and ρ(V )

is a flux associated with V defined by

ρ(V ) � aS
∂V (S, τ )

∂S
+ bV (S, τ ).

To derive an approximation to the flux at the two endpoints Si−1/2 and Si+1/2, let us consider
the following two-point boundary-value problem

(aSu′ + bu)′ = 0, S ∈ Ii

with

u(Si ) = Vi (τ ), u(Si+1) = Vi+1(τ ).
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Denote α � b/a = 2(r/σ 2 − 1). Solving the two-point boundary-value problem exactly, we
obtain

ρi (V ) = b
[
Sα
i+1Vi+1(τ ) − Sα

i Vi (τ )
]
/
(
Sα
i+1 − Sα

i

)
, S ∈ Ii (5.4)

which provides an approximation to the flux ρ(V ) at Si+1/2. Similarly, we can define an
approximation of the flux at Si−1/2.

The above analysis does not apply to the approximation of the flux on (0, x1) since the two-
point boundary-value problem is degenerate. To overcome this difficulty, let us reconsider it
with an extra degree of freedom in the following form

(aSu′ + bu)′ = C, S ∈ (0, x1)

with

u(0) = V0, u(S1) = V1,

where C is a constant to be determined. This local problem has the following solution [12]

u(S) = u0 + (u1 − u0)S/S1, S ∈ I0.

which yields the following approximation to the flux ρ(V ) in I0

ρ0(V ) = 1

2
[(a + b)V1(τ ) − (a − b)V0(τ )] . (5.5)

Substituting (5.4) and (5.5) into (5.3), we have

h
∂Vi (τ )

∂τ
+ ei,i−1Vi−1(τ ) + ei,i Vi (τ ) + ei,i+1Vi+1(τ ) − λh[Ψi − Vi (τ )]1/k+ = 0, (5.6)

where

e1,0 = −S1(a − b)/4,

e1,1 = S1(a + b)/4 + bS1+1/2S
α
1 /

(
Sα
2 − Sα

1

) + ch,

e1,2 = −bS1+1/2S
α
2 /

(
Sα
2 − Sα

1

)
,

ei,i−1 = −bSi−1/2S
α
i−1/

(
Sα
i − Sα

i−1

)
,

ei,i = bSi−1/2S
α
i /

(
Sα
i − Sα

i−1

) + bSi+1/2S
α
i /(Sα

i+1 − Sα
i ) + ch,

ei,i+1 = −bSi+1/2S
α
i+1/

(
Sα
i+1 − Sα

i

)
,

for i = 2, 3, . . . , N − 1. These form an N − 1 nonlinear ODE system for V (τ ) �
(V1(τ ), . . . , VN−1(τ ))T with the homogeneous boundary condition V0(τ ) = Ψ (0) and
VN (τ ) = Ψ (Smax). Using ei, j , we define an (N −1)× (N −1) tridiagonal matrix E � (ei, j )
and an (N − 1)-dimensional vector

f (τ ) = (−e1,0V0(τ ), 0, . . . , 0,−eN−1,N VN (τ ))T .

Then (5.6) can be rewritten as

h
∂V (τ )

∂τ
+ EV (τ ) − λh[Ψ − V (τ )]1/k+ = f (τ ), (5.7)

whereΨ = (Ψ1, . . . , ΨN−1)
T . Equation (5.7) is a first order linearODE system. To discretize

it, we let τi , i = 0, 1, . . . , M , be a set of partition points in [0, T ] satisfying 0 = τ0 ≤ τ1 ≤
. . . ≤ τM = T . Then, the application of the implicit timestepping scheme to (5.7) yields
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Table 1 Computed results by the l1 penalty method.

p λp Vp(100, 0) ΔpV Ratio1p Normp([g − V ]+) Ratio2p

1 2 3.067701973051 – – 0.0022 –

2 22 3.067901237271 1.9926e−004 – 9.7636e−004 2.2533

3 23 3.068001145982 9.9909e−005 1.9944 4.3862e−004 2.2260

4 24 3.068050991438 4.9845e−005 2.0044 2.0489e−004 2.1408

5 25 3.068078076901 2.7085e−005 1.8403 9.8141e−005 2.0877

6 26 3.068091779323 1.3702e−005 1.9767 4.7930e−005 2.0476

7 27 3.068098662832 6.8835e−006 1.9906 2.3671e−005 2.0248

h
Vm+1 − Vm

Δτm
+ EVm+1 − λh[Ψ − Vm+1]1/k+ = f m+1, (5.8)

where Δτm = τm+1 − τm > 0, Vm+1 = V (τm+1) and f m+1 = V (τm+1). Letting

A = I + Δτm

h
E, b = Δτm

h
f + Vm, λ = λΔτm,

where I is an identity matrix, (5.8) reduces to (1.1). By [12], the matrix A is an M-matrix.

5.2 Numerical experiments

In this subsection, we set the parameters as follows:

K = 100, T = 0.25, r = 0.1, σ = 0.2, Smax = 1000.

We first verify the monotone convergence of the power penalty method and compare
the orders of convergence rate for k = 1 and k = 2. When k = 1, we call the method
the l1 penalty method. When k = 2, we call the method the l1/2 penalty method. In this
experiment, we choose the grid step h = 0.3125. The corresponding node number is 3201,
that is, N = 3200. To determine numerically the computational orders of convergence rate
of the penalty method with respect to λ, we choose a sequence of λp with λp = 2λp−1

(p = 2, 3, 4, 5, 6) and some given λ1 > 1. Table 1 (resp. Table 2) lists the value of American
put options at S = K , t = 0 or τ = T [denoted by Vp(100, 0)] and ‖[g − V n]+‖∞ at
t = 0 [denoted by normp([g − V ]+)] for each p and k = 1 (resp. k = 2). We denote
ΔpV = Vp(100, 0) − Vp−1(100, 0), and

Ratio1p = Δp−1V

ΔpV
, Ratio2p = norm p−1([g − V ]+)

normp([g − V ]+)
.

From Tables 1 and 2, we see that the computed rates of convergence is about 1 for the l1
penalty method and about 2 for the l1/2 penalty method. That is,

Ratio1p ≈
(

λp

λp−1

)k

and Ratio2p ≈
(

λp

λp−1

)k

, p = 2, 3, . . . , 7.

Moreover, the l1/2 penalty method generates a more accurate approximation to the true
solution than the l1 penalty method does, which is well matched with the theoretical results
obtained in Sect. 2. From Tables 1 and 2, we also see that the value of American option at
S = K , t = 0 is monotonically increasing as the λ is increasing, which shows the monotone
convergence of the methods.
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Table 2 Computed results by the l1/2 penalty method

p λp Vp(100, 0) ΔpV Ratio1p Normp([g − V ]+) Ratio2p

1 2 3.068104254959 – – 2.2647e−006 –

2 22 3.068105253835 9.9888e−007 - 5.6103e−007 4.0367

3 23 3.068105504678 2.5084e−007 3.9821 1.3994e−007 4.0091

4 24 3.068105567521 6.2843e−008 3.9915 3.4964e−008 4.0024

5 25 3.068105583253 1.5732e−008 3.9946 8.7398e−009 4.0005

6 26 3.068105587213 3.9600e−009 3.9727 2.1849e−009 4.0001

7 27 3.068105588221 1.0080e−009 3.9286 5.4621e−010 4.0001

Table 3 Comparison of computational cost for smoothing Newton method and Algorithm 3.1

N Smoothing Newton method Algorithm 3.1

V(100, 0) Iter CPU V(100, 0) Iter CPU

200 2.914838754888 7.5800 0.2802 2.914840245541 3.9200 0.0797

400 3.027616605739 8.2190 3.5490 3.027620851502 4.1238 0.2255

800 3.057274498560 8.7667 39.1032 3.057281213020 4.7238 0.7597

1600 3.065565836573 8.9952 322.3914 3.065570741136 5.5494 2.9738

In the second experiment, we compare the computational performance of smoothingNew-
ton method proposed in [12] and Algorithm 3.1 when applied to solve the l1/2 penalized
equation. Note that the solution of the l1 penalized equation with the same penalty parameter
λ is a lower-solution of the l1/2 penalized equation. We choose it as an initial iterate for both
algorithms. We consider the l1/2 penalized equation with N = 200, 400, 800, 1600. We set
the penalty parameter λ = 4 for these penalized equations. Table 3 lists the average number
of iterations (denoted by Iter) of two algorithms per timestep and the total CPU time (denoted
by CPU). Besides these, the value of American put options at S = K , t = 0 [denoted by
V (100, 0)] is listed in Table 3.

Table 3 shows that the value of American put options at S = K , t = 0 solved by both
algorithms is almost the same. But the smoothing Newton method requires much more CPU
time than Algorithm 3.1 does. Therefore, the proposed method is much more efficient than
the smoothing Newton method.
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