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Abstract In this paper, we consider a nonlinear programming problem for which the con-
straint set may be infeasible. We propose an algorithm based on a large family of augmented
Lagrangian functions and analyze its global convergence properties taking into account the
possible infeasibility of the problem. We show that, in a finite number of iterations, the algo-
rithm stops detecting the infeasibility of the problem or finds an approximate feasible/optimal
solution with any required precision. We illustrate, by means of numerical experiments, that
our algorithm is reliable for different Lagrangian/penalty functions proposed in the literature.

Keywords Global optimization · Augmented Lagrangians · Nonlinear programming ·
Infeasibility

1 Introduction

It is well known that augmented Lagrangian methods are efficient to solve constrained opti-
mization problems in different areas of applications. The augmentedLagrangian for optimiza-
tion problems with equality constraints was proposed by Hestenes [12] and Powell [23] and
extended by Rockafellar for inequality constraints [24]. The Powell–Hestenes–Rockafellar
(PHR) augmented Lagrangian function has been widely used in practice, see for example
[1,8] related to the packages Algencan and Lancelot, respectively.

In each iteration of an augmented Lagrangian method, a subproblem with simple con-
straints is approximately solved. One drawback of the PHR approach is that the objective
functions of the subproblems are not twice continuously differentiable, which can result in
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difficulties to apply a Newton-like method. This motivates the study of different augmented
Lagrangian functions. Many nonlinear Lagrangian/penalty functions have been proposed
and/or analyzed by many authors, see for example [2,3,6,11,14,16,17,21,22,25,29].

It is desirable that optimization algorithms have effective stopping criteria. Ideally, an
algorithm should stop at an iterate for which it is possible to ensure feasibility and optimality
up to arbitrarily small given precisions. On the other hand, if the problem is infeasible, the
algorithm should stop with a certificate of infeasibility. In the context of global optimiza-
tion and PHR augmented Lagrangian methods, this issue was considered in [5]. In the local
optimization field, strategies handling possible infeasibility were considered, for example, in
[7,19,30] in the context of SQP, augmented Lagrangian and Interior Point methods, respec-
tively. In some practical applications, it may be useful to accept some level of infeasibility
(for example when the constraints involve modeling errors) and distinguish infeasible points
according to their objective function values. These issues were considered in [4].

In this paper, we consider a large family of augmented Lagrangian methods introduced
by Kort and Bertsekas [2,14]. We propose an algorithm based on this class and, accepting
inexact global solutions of the subproblems, study its asymptotic convergence properties. We
prove that the limit points of the sequence generated by the algorithm are global minimizers
of an infeasibility measure, which is specified for some penalty functions. Based on these
results, a second algorithm is proposed, which stops after a finite number of iterations at an
approximate feasible/optimal solution or detects that the problem is infeasible. In particular,
we extend some results of [5] to our more general setting. We also present some numerical
experiments illustrating the applicability of the algorithm.

This paper is organized as follows. In Sect. 2, we consider the optimization problem and
the class of Lagrangian/penalty functions to be analyzed. In Sect. 3, we propose an algorithm
and examine its asymptotic convergence properties. We also propose a second algorithm
that takes into account the possible infeasibility of the problem. In Sect. 4, we present some
numerical experiments analyzing our algorithm for some Lagrangian/penalty functions. Last
section is devoted to conclusions and final remarks.

Notation The α-norm and maximum norm of x ∈ R
m are denoted, respectively, by ‖x‖α :=(∑m

i=1 |xi |α
)1/α and ‖x‖∞ := max(|x1|, . . . , |xm |),whenα = 2,we use the notation‖·‖.We

denoteR+ andR++ the sets of non-negative and strictly positive real numbers, respectively.
Let v ∈ Rn , then v+ := (max{0, v1}, . . . ,max{0, vn}). For K = (k1, k2, . . .) ⊆ N (with
k j < k j+1 for all j), we denote K ⊂∞N.

2 General Lagrangian function

In this paper, we consider the inequality constrained optimization problem

Minimize f (x)

subject to g(x) ≤ 0

x ∈ �,

(1)

where f : Rn → R and g : Rn → Rm are continuous and � ⊂ Rn is a nonempty compact
set. In general,� is defined by simple constraints such as affine constraints or box constraints.

In order to solve problem (1) or identify if the feasible set is empty, we propose an
algorithm based on the general class of Lagrangians introduced by Kort and Bertsekas[2,14]
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L(x, λ, ρ) = f (x) + 1

ρ

m∑

i=1

W (ρgi (x), λi ), (2)

where x ∈ �, λ ∈ Rm+, ρ > 0, and the penalty function W : R2 → R satisfies the following
conditions:

(H1) W is continuously differentiable on R×]0,∞[ and possesses, for all s ∈ R, the right
derivative

lim
t→0+

W (s, t) − W (s, 0)

t
;

(H2) W (s, .) is concave on R+ for each fixed s ∈ R;
(H3) for each fixed t ∈ R+,W (., t) is convex onR and satisfies the following strict convexity

condition: If s0 > 0 or W ′
s(s0, t) > 0, then W (s, t) − W (s0, t) > (s − s0)W ′

s(s0, t)
for s 
= s0, where W ′

s(s, t) denotes the partial derivative of W (s, t) with respect to s;
(H4) W (0, t) = 0,W ′

s(0, t) = t , for all t ∈ R+;
(H5) lims→−∞ W ′

s(s, t) = 0, for all t ∈ R+;
(H6) infs∈R W (s, t) > −∞, for all t ∈ R+;
(H7) lims→∞ W (s,t)

s = ∞, for all t ∈ R+.

Remark 1 Since by (H3)W (., t) is convex, it follows thatW ′(., t) is monotone. Hence, (H5)
implies

W ′
s(s, t) ≥ 0 ∀(s, t) ∈ R × R+,

which shows that W (·, t) is non-decreasing for every t ∈ R+. It is also possible to show that
(H7) is equivalent to lims→∞ W ′

s(s, t) = ∞, for all t ∈ R+.

The family of penalty functions satisfying (H1)–(H7) is very large. Next, we present two
subclasses of functions satisfying these conditions. The first one generalizes the classical
quadratic augmented Lagrangian, and the second one contains some exponential type func-
tions. In particular, every function in the second family is twice continuously differentiable.
For more details on these functions and other examples, see for instance [2].

Example 1 Let W : R2 → R such that

W (s, t) =
{
ts + φ(s) if t + φ′(s) ≥ 0,

min
τ∈R[tτ + φ(τ)] otherwise, (3)

where φ : R → R satisfies the following conditions:

(E1) φ is continuously differentiable and strictly convex on R;
(E2) φ(0) = 0, φ′(0) = 0, lims→−∞ φ′(s) = −∞;
(E3) lims→∞ φ(s)

|s| = ∞.

It is not difficult to prove that the penalty functionW (s, t) defined in (3) satisfies (H1)–(H7),
see [2]. In the following, we consider some examples of φ satisfying conditions (E1)–(E3):

(i) φ(s) = α−1|s|α, α > 1;
(ii) φ(s) = α−1|s|α + (1/2)s2, α > 1;
(iii) φ(s) = cosh(s) − 1.
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Taking φ(s) = (1/2)s2 in (3), then

W (s, t) =
{
ts + (1/2)s2 if s ≥ −t,

−(1/2)t2 if s < −t.
(4)

Hence, after simple calculations, the corresponding augmented Lagrangian function (2) can
be rewritten as

L(x, λ, ρ) = f (x) + 1

2ρ

m∑

i=1

{[max{0, λi + ρgi (x)}]2 − (λi )
2}, (5)

which is the PHR augmented Lagrangian function [24]. Now, if φ(s) = α−1|s|α , where
α > 1, or φ(s) = cosh(s) − 1, we obtain the following penalty functions, respectively,

W (s, t) =
{
ts + α−1|s|α if t + α−1 d

ds |s|α ≥ 0,

minτ∈R[tτ + α−1|τ |α] otherwise,
(6)

and

W (s, t) =
{
ts + cosh(s) − 1 if t + sinh(s) ≥ 0,

t sinh−1(−t) + cosh(sinh−1(−t)) − 1 otherwise.
(7)

(Recall that sinh−1(x) = ln(x + √
x2 + 1)).

Wemention that, similarly to the quadratic augmentedLagrangian, the penalty functions of
Example 1 may not be twice continuously differentiable. Next, we present some examples of
penalty functions with the advantage that the corresponding augmented Lagrangian functions
are twice continuously differentiable, see [2] for details.

Example 2 Let W : R2 → R such that

W (s, t) = tψ(s) + ξ(s), (8)

where ψ, ξ : R → R satisfy the following conditions:

(A1) ψ and ξ are twice continuously differentiable functions and convex;
(A2) ψ(0) = 0, ψ ′(0) = 1 and ψ ′′(s) > 0 for all s ∈ R;
(A3) lims→−∞ ψ(s) > −∞, lims→−∞ ψ ′(s) = 0 and lims→∞ ψ ′(s) = ∞;
(A4) ξ(s) = 0 for all s ≤ 0 and ξ(s) > 0 for all s > 0;
(A5) ξ ′′(0) = 0 and lims→∞ ξ ′(s) = ∞.

An interesting example in this family of penalty functions is obtained by taking ψ(s) =
es − 1, ξ(s) = 1

3 [max{0, s}]3. In this case,

W (s, t) = t (es − 1) + 1

3
[max{0, s}]3 (9)

and the associated augmented Lagrangian is

L(x, λ, ρ) = f (x) + 1

ρ

m∑

i=1

(
λi (e

ρgi (x) − 1) + 1

3
[max{0, ρgi (x)}]3

)
.

Another example of a twice continuously differentiable penalty function is obtained by taking
ψ and ξ as

ψ(s) =
{
s + s2 if s ≥ 0,

s/(1 − s) if s < 0,
and ξ(s) =

{
s3 if s ≥ 0,

0 if s < 0.
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Thus, the corresponding penalty function (8) becomes

W (s, t) =
{
ts + ts2 + s3 if s ≥ 0,

ts/(1 − s) if s < 0.
(10)

In the following, we present a lemma which is essential for the analysis of our algorithm.

Lemma 1 Let s ∈ R, t ≥ 0 and a bounded sequence {tk} ⊂ R+. Then
(i) W ′

t (s, t) ≥ s;
(ii) sW ′

s(s, t) ≥ W (s, t) ≥ tW ′
t (s, t) ≥ st;

(iii) W ′
s(s, t) = t implies s ≤ 0, st = 0;

(iv) limk→∞ 1
rk
infs∈R W (s, tk) = 0, where rk → ∞.

Proof For the proofs of items (i)–(iii), see [2, Proposition 5.1]. Let us prove item (iv). It
follows by assumptions (H4) and (H6) that

0 ≥ inf
s∈RW (s, t) > −∞.

From (H2) we have q(t) := infs∈R W (s, t) is concave [0,+∞[. Let 0 < tk ≤ b, vk ∈ ∂q(tk)
and v ∈ ∂q(b). Therefore, using the supergradient inequality q(0) ≤ q(tk) − vk tk and the
non-increasing property of superdifferential (tk ≤ b ⇒ v ≤ vk), we obtain

q(tk) ≥ q(0) − b|v|, 0 < tk ≤ b.

Since the last estimate also holds for tk = 0 and q(t) ≤ 0 for all t ≥ 0, it follows that q(tk)
is bounded for 0 ≤ tk ≤ b. Therefore, as rk → ∞, we have

lim
k→∞

1

rk
inf
s∈RW (s, tk) = 0.

��

3 Algorithms

In this section, we study global convergence properties of an augmented Lagrangian method
associated with the Lagrangian function defined in (2). We state the algorithm and show that
its generated sequence satisfies an asymptotic infeasibility measure. Based on this result, we
show some infeasibilitymeasures satisfied by the limit points of the sequence generated by the
algorithmwhen specific examples of penalty functions are considered.We also analyze some
properties of the algorithm, which are essential for the feasibility/infeasibility test presented
in the second algorithm. In order to state the algorithm, let {εk} ⊂ R+ be a bounded sequence,
which is used to estimate the quality of approximate solutions of the augmented Lagrangian
subproblems. Also, let us define σ(x, λ, ρ) := (σ1(x, λ, ρ), . . . , σm(x, λ, ρ))T with

σi (x, λ, ρ) := W ′
s(ρgi (x), λi ) − λi , for i = 1, . . . ,m. (11)

It follows by item (iii) of Lemma 1 that ‖σ(x, λ, ρ)‖∞ may be used to measure the feasibility
and complementarity condition of an approximate solution x and a multiplier λ. We shall
consider this measure in order to update the penalty parameter.

Algorithm 1 Let γ > 1, 0 < τ < 1, ρ1 > 0, λmax > 0, and λ1 ∈ R
m such that λ1i ∈

[0, λmax], for all i = 1, . . . ,m. Assume that {εk} is a bounded positive sequence and initialize
k ← 1.
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Step 1. (Subproblem)
Find xk ∈ � such that

L(xk, λk, ρk) ≤ L(x, λk, ρk) + εk (12)

for all x ∈ �.
Step 2. (Update penalty parameter)

If k = 1 or

‖σ(xk, λk, ρk)‖∞ ≤ τ ‖σ(xk−1, λk−1, ρk−1)‖∞, (13)

set ρk+1 = ρk . Otherwise, set ρk+1 = γρk .
Step 3. (Update multipliers)

Compute λk+1
i ∈ [0, λmax], for all i = 1, . . . ,m.

Set k ← k + 1 and go to Step 1.

We mention that, as in many augmented Lagrangian methods, solving the subproblems is
usually a difficult task. It is assumed that to solve a sequence of optimization problems with
simple constraints is much less difficult than to solve the constrained optimization problem
(1). In order to alleviate this task, we will accept approximate solutions of the subproblems.
In the first iterations the tolerance εk may be considered not so stringent and one shall start to
consider it smaller during the execution of the algorithm.Moreover, it follows fromRemark 1
that, if problem (1) is convex, then the subproblems are also convex, which implies that every
stationary point is a global solution.

In order to prove the theoretical results, we require the boundedness of the Lagrange mul-
tipliers, see Step 3 of Algorithm 1. In practice, the rule to update the Lagrangian multipliers
is determinant for the performance of the algorithm. For the family of augmented Lagrangian
functions studied in this paper, we consider the safeguard strategy to update the Lagrangian
multipliers given by

λk+1
i = min{W ′

s(ρkgi (x
k), λki ), λmax}, for all k, and i = 1, . . . ,m. (14)

A similar strategy is also considered in [1,3,5,16].
In the following, we present some properties of Algorithm 1. These properties will

be summarized and they will be the motivations for our last algorithm, for which we will
introduce an infeasibility test. Let us consider the function M : Rm × Rm+ × R++ → R

defined by

M(y, λ, ρ) = 1

ρ

m∑

i=1

W (ρyi , λi ). (15)

Proposition 2 Assume that {xk} is a sequence generated by Algorithm 1. Then, for all z ∈ �,

lim sup
k→∞

M(g(xk), λk, ρk)

β(ρk)
≤ lim sup

k→∞
M(g(z)+, λk, ρk)

β(ρk)
, (16)

for any continuous function β : ]0,∞[ → R++ such that lims→∞ β(s) = ∞. In particular,
if problem (1) is feasible, then every limit point of {xk} is feasible.
Proof Let x∗ ∈ � be an arbitrary limit point of {xk} (such a point exists because � is
compact). Let K ⊂∞N such that limk∈K xk = x∗. As {ρk} is non-decreasing, wemay consider

two cases: {ρk} bounded and ρk → ∞.
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Case 1 ({ρk} bounded): By Step 2 of Algorithm 1, we have limk→∞ ‖σ(xk, λk, ρk)‖∞ =
0, or equivalently,

lim
k→∞[W ′

s(ρkgi (x
k), λki ) − λki ] = 0, i = 1, . . . ,m. (17)

Since {λk} and {ρk} are bounded, we may assume, without loss of generality, λk → λ̄ ≥ 0,
and ρk → ρ̄ > 0. So, (17) implies

W ′
s(ρ̄gi (x

∗), λ̄i ) = λ̄i i = 1, . . . ,m.

This result, combined with item (iii) of Lemma 1, gives g(x∗) ≤ 0, which trivially implies
the second part of the proposition when {ρk} is bounded. Now, since gi (x∗) ≤ 0, for all
i = 1, . . . ,m,W (·, t) is non-decreasing for every t ≥ 0 and W (0, λ̄i ) = 0, we obtain

lim sup
k→∞

1

ρkβ(ρk)

m∑

i=1

W (ρkgi (x
k), λki ) ≤ 0. (18)

Similarly, observing that 0 ≤ max{0, gi (z)} = gi (z)+, we have

lim sup
k→∞

1

ρkβ(ρk)

m∑

i=1

W (ρkgi (z)+, λki ) = 1

ρ̄β(ρ̄)

m∑

i=1

W (ρ̄gi (z)+, λ̄i )

≥ 1

ρ̄β(ρ̄)

m∑

i=1

W (0, λ̄i ) = 0. (19)

Therefore, (16) is implied by (18) and (19).
Case 2 (ρk → ∞): For any z ∈ �, we have, by Step 1 of Algorithm 1

L(xk, λk, ρk) ≤ L(z, λk, ρk) + εk, ∀ k.

Since gi (z) ≤ gi (z)+, for all i = 1, . . . ,m, W (·, t) is non-decreasing for every t ≥ 0 and
taking into account (2), the last inequality becomes

f (xk) + 1

ρk

m∑

i=1

W (ρkgi (x
k), λki ) ≤ f (z) + 1

ρk

m∑

i=1

W (ρkgi (z)+, λki ) + εk, ∀ k.

Hence, using the functions β and M [see (15)], it follows from the last inequality that

M(g(xk), λk, ρk)

β(ρk)
≤ M(g(z)+, λk, ρk)

β(ρk)
+ εk + f (z) − f (xk)

β(ρk)
.

As {εk} is bounded, f is continuous, limρk→∞ β(ρk) = ∞, and � is compact, then (16)
follows from the last inequality. Thus, the first part of the proposition is concluded.

Observing that when {ρk} is bounded, the last assertion of the proposition has already
been proved, we may assume that ρk → ∞. Let z ∈ � be a global minimizer of (1). Hence,
using that max{0, gi (z)} = 0,W (0, λki ) = 0 and (16), we obtain

lim sup
k→∞

M(g(xk), λk, ρk)

β(ρk)
≤ 0, (20)

for any continuous function β : ]0,∞[ → R++ such that lims→∞ β(s) = ∞. Suppose, by
contradiction, that x∗ is not feasible for problem (1). Thus, there exists some i0 such that
gi0(x

∗) > 0. Hence, for some δ > 0, it follows from the continuity of gi0 that there exist
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k0 > 0 such that gi0(x
k) ≥ δ for all k ≥ k0, k ∈ K . Consequently, using that W (·, t) is

non-decreasing for every t ≥ 0, we obtain

M(g(xk), λk, ρk) = 1

ρk

∑

i 
=i0

W (ρkgi (x
k), λki ) + W (ρkgi0(x

k), λki0)

ρk

≥ 1

ρk

∑

i 
=i0

W (ρkgi (x
k), λki ) + W (ρkδ, λ

k
i0
)

ρk

≥ 1

ρk

∑

i 
=i0

inf
s∈RW (s, λki ) + W (ρkδ, 0)

ρk
, (21)

where we have used properties of infimum and item (i) of Lemma 1 in the last inequality. It
follows by item (iv) of Lemma 1 and properties of function β that

lim
k→∞

1

ρkβ(ρk)

∑

i 
=i0

inf
s∈RW (s, λki ) = 0. (22)

Now, taking β(s) = W (δs, 0)/s, (H7) implies lims→∞ β(s) = ∞. Hence, it follows by (21)
and (22) that

lim sup
k→∞

M(g(xk), λk, ρk)

β(ρk)
≥ 1,

which is a contradiction with (20), concluding the proof. ��
Proposition 2 presents an asymptotic infeasibility measure associated with the general

augmented Lagrangian function (2). In the following, we specify this infeasibility measure
for some specific penalty functions.

Corollary 3 Let {xk} be an infinite sequence generated by Algorithm 1 with W defined in
(6). For any x∗ limit point of {xk}, and for all z ∈ � we have

‖g(x∗)+‖α ≤ ‖g(z)+‖α. (23)

Proof Let K ⊂∞N be such that limk∈K xk = x∗. Using the definition in (6) and ρk > 0 for

all k ∈ N, we obtain

W (ρkgi (x
k), λki )

=

⎧
⎪⎨

⎪⎩

ρkλ
k
i gi (x

k) + α−1ρα
k |gi (xk)|α if gi (xk) ≥ 0,

ρkλ
k
i gi (x

k) + α−1ρα
k |gi (xk)|α if gi (xk) < 0, λki ≥ ρα−1

k |gi (xk)|α−1,

(1 − α)α−1(λki )
α/(α−1) if gi (xk) < 0, λki < ρα−1

k |gi (xk)|α−1.

First, consider the case in which ρk → ∞. It follows from this expression of W that

lim sup
k∈K

m∑

i=1

W (ρkgi (xk), λki )

ρα
k

=
m∑

i=1

α−1|max{0, gi (x∗)}|α.

It is easy to see that a similar argument shows

lim sup
k∈K

m∑

i=1

W (ρk max{0, gi (z)}, λki )
ρα
k

=
m∑

i=1

α−1|max{0, gi (z)}|α.
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Therefore, by Proposition 2 with β(s) = sα−1, we conclude that (23) holds in the case
ρk → ∞.

In the case {ρk} bounded, similarly to the first part of the proof of Proposition 2, we obtain
that each limit point x∗ of {xk} is feasible for problem (1), which trivially implies (23). ��
Remark 2 For the PHR augmented Lagrangian function (5), Corollary 3 implies the infea-
sibility measure ‖g(x∗)+‖ ≤ ‖g(z)+‖, for every z ∈ � and x∗ limit point of {xk} (see [5,
Theorem 2.1] for a similar result). If we consider the penalty function (10), similarly to the
proof of Corollary 3 with β(s) = s2, we obtain ‖g(x∗)+‖3 ≤ ‖g(z)+‖3, for every z ∈ �

and x∗ limit point of {xk}.
Next,wepresent an infeasibilitymeasure for the limit points of the sequence {xk}generated

by Algorithm 1 when the exponential type function is considered.

Corollary 4 Assume that {xk} is a sequence generated by Algorithm 1 with W defined in
(9). Let x∗ ∈ � be a limit point of {xk} such that lim

k∈K xk = x∗ with K ⊂∞N. Suppose that if

gi (x∗) > 0 then lim sup
j∈K

λ
j
i > 0. Then, for all z ∈ �,

‖g(x∗)+‖∞ ≤ ‖g(z)+‖∞. (24)

Proof Let us assume that problem (1) is infeasible, otherwise, it follows from the last state-
ment of Proposition 2 that (24) trivially holds. Suppose by contradiction that there exists
z ∈ � such that ‖g(x∗)+‖∞ > ‖g(z)+‖∞. Since problem (1) is infeasible, ‖g(z)+‖∞ > 0
and ρk → ∞ (see Step 2 of Algorithm 1). Therefore, there exists an index i0 ∈ {1, . . . ,m}
and δ > 0 such that

gi0(x
∗) = gi0(x

∗)+ = ‖g(x∗)+‖∞ > ‖g(z)+‖∞ + δ.

As g is continuous, there exists k0 > 0 such that gi0(x
k) > ‖g(z)+‖∞ + δ, for any k ≥

k0, k ∈ K . In particular, it follows from our assumptions that lim supk∈K λki0 > 0. Observing

that 0 ≤ λki ≤ λmax and considering the function M of (15) and W defined in (9), it follows
that

M(g(xk), λk, ρk) = 1

ρk

m∑

i=1

λki (e
ρk gi (xk ) − 1)

+ 1

3
[max{0, ρkgi (xk)}]3 ≥ λki0e

ρk gi0 (xk )

ρk
− mλmax

ρk
.

Therefore, since z is fixed, defining β(s) = es‖g(z)+‖∞ we have

lim sup
k∈K

M(g(xk), λk, ρk)

β(ρk)
≥ lim sup

k∈K
1

ρk

[
λki0e

ρk (gi0 (xk )−‖g(z)+‖∞) − mλmax

eρk‖g(z)+‖∞

]

≥ lim sup
k∈K

λki0
eρkδ

ρk
.

As lim supk∈K λki0 > 0, we obtain lim supk∈K (λki0e
ρkδ)/ρk = ∞. Combining this result with

previous inequalities, it yields

lim sup
k∈K

M(g(xk), λk, ρk)

β(ρk)
= ∞. (25)
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On the other hand,

M(g(z)+, λk, ρk)

β(ρk)
= 1

eρk‖g(z)+‖∞

m∑

i=1

[
λki

ρk
(eρk gi (z)+ − 1) + 1

3ρk
(max{0, ρkgi (z)+})3

]

≤
m∑

i=1

[
λki

ρk

(
eρk (gi (z)+−‖g(z)+‖∞)

) + ρ2
k (max{0, gi (z)+})3

3eρk‖g(z)+‖∞

]

≤
m∑

i=1

λki

ρk
+

m∑

i=1

ρ2
k

3eρk‖g(z)+‖∞ (max{0, gi (z)+})3

≤ mλmax

ρk
+

m∑

i=1

ρ2
k

3eρk‖g(z)+‖∞ (max{0, gi (z)+})3, (26)

where the first and third inequalities are due to fact that the multipliers are non-negative
and bounded by λmax, respectively. In the second one, we used gi (z)+ ≤ ‖g(z)+‖∞, for
i = 1, . . . ,m. Since {ρk} tends to infinity, we obtain from (26)

lim sup
k→∞

M(g(z)+, λk, ρk)

β(ρk)
≤ 0,

which combined with (25) gives a contradiction, by Proposition 2. The proof of the corollary
follows. ��
Remark 3 Wemention that the update rule for the Lagrange multipliers is general, see Step 3
of Algorithm 1. Therefore, the additional asymptotic condition of Corollary 4 may be forced
during the progress of the algorithm. If the update rule (14) is considered, then the asymptotic
condition is satisfied when ‖xk+1 − xk‖ → 0. We also mention that Corollary 4 holds for
the penalty function defined in (7).

Next, we present an estimate which is used in Algorithm 2 to define a criterion to detect
an approximate solution of problem (1). We shall consider for any k,

γk := −M(g(xk), λk, ρk) = − 1

ρk

m∑

i=1

W (ρkgi (x
k), λki ). (27)

Lemma 5 Assume that {xk} is an infinite sequence generated by Algorithm 1. Suppose that
problem (1) is feasible. Then, for any k

f (xk) ≤ f (z) + γk + εk,

for all feasible point z.

Proof By Step 1 of Algorithm (1) and (2), we have

f (xk)+ 1

ρk

m∑

i=1

W (ρkgi (x
k), λki ) ≤ f (z)+ 1

ρk

m∑

i=1

W (ρkgi (z), λ
k
i )+εk, ∀ k, and z ∈ �.

(28)

Let z be a feasible point. Therefore, since g(z) ≤ 0,W (0, t) = 0 for t ≥ 0 and W (·, t) is
non-decreasing for every t ≥ 0, we have

W (ρkgi (z), λ
k
i ) ≤ W (0, λki ) = 0, ∀ k and i = 1, . . . ,m.
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Combining this result with (27) and (28), we obtain

f (xk) ≤ f (z) + γk + εk,

which proves the lemma. ��
In the following theorem, we present a criterion to detect infeasibility after a finite number

of iterations of Algorithm 1. We assume that it is possible to obtain a bounded sequence {ck}
satisfying

| f (xk) − f (z)| ≤ ck for all z ∈ �, ∀k. (29)

In the numerical experiments section, we describe a way to obtain ck . Clearly, since f is
continuous and � is bounded, the sequence {ck} may be assumed to be bounded.

Theorem 6 Assume that {xk} is an infinite sequence generated by Algorithm 1. Then, prob-
lem (1) is infeasible if, and only if, there exists k ∈ N such that

γk + εk < −ck, (30)

where γk is defined in (27).

Proof Suppose the feasible region of (1) is non-empty. Therefore, it follows by (29) and
Lemma 5 that, for all feasible point z,

γk + εk ≥ f (xk) − f (z) ≥ −ck, ∀ k.

This means that the infeasibility test (30) fails to be fulfilled.
Reciprocally, suppose that problem (1) is infeasible. In this case, it follows from Step 2

of Algorithm 1 that ρk → ∞. Also, for any subsequence {xk}k∈K , there exist k0 > 0 and
i0 ∈ {1, . . . ,m} such that gi0(x

k) > δ for some δ > 0, and k ∈ K , k ≥ k0. Consequently,
using W (·, t) is non-decreasing for every t ≥ 0, we obtain for all k ∈ K , k ≥ k0

γk = − 1

ρk

m∑

i=1

W (ρkgi (x
k), λki )

= − 1

ρk

∑

i 
=i0

W (ρkgi (x
k), λki ) − W (ρkgi0(x

k), λki0)

ρk

≤ − 1

ρk

∑

i 
=i0

W (ρkgi (x
k), λki ) − W (ρkδ, λ

k
i0
)

ρk

≤ − 1

ρk

m∑

i 
=i0

inf
s∈RW (s, λki ) − W (ρkδ, 0)

ρk
, (31)

where we have used properties of infimum and item (i) of Lemma 1 to get the last inequality.
It follows by item (iv) of Lemma 1 that

lim
k→∞

1

ρk

m∑

i 
=i0

inf
s∈RW (s, λki ) = 0.

On the other hand, (H7) implies

lim
k→∞

W (ρkδ, 0)

ρk
= ∞.
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Therefore, it follows from (31) that

lim
k→∞ γk = −∞.

Hence, the boundedness of {εk} and {ck} implies the fulfillment of test (30), for k large
enough. ��

In the following theorem, we show that an optimality condition holds after a finite number
of iterations of Algorithm 1, under the assumption that problem (1) is feasible and {εk} tends
to zero.

Theorem 7 Assume that {xk} is an infinite sequence generated by Algorithm 1. Let K ⊂∞N

and x∗ ∈ � be such that limk∈K xk = x∗. Suppose that problem (1) is feasible and
limk→∞ εk = 0. Then,

lim
k∈K γk = 0, (32)

where γk is defined in (27). As a consequence, given εopt > 0, for large enough k,

γk + εk ≤ εopt,

which in turn implies

f (xk) ≤ f (z) + εopt, ∀ z feasible.

Proof It follows from Proposition 2 that x∗ is feasible for problem (1). Since the feasible
region of (1) is non-empty and compact, there exists a global minimizer z ∈ �. By Lemma 5,

f (xk) ≤ f (z) + γk + εk, ∀ k. (33)

First, we shall prove (32) in the case that ρk → ∞. For this, note that item (iv) of Lemma 1
implies

lim
k→∞

1

ρk

m∑

i=0

inf
s∈RW (s, λki ) = 0.

Using the definition of γk in (27), properties of infimum and the last equality, we obtain

lim sup
k∈K

γk = lim sup
k∈K

− 1

ρk

m∑

i=1

W (ρkgi (x
k), λki ) ≤ lim sup

k∈K
− 1

ρk

m∑

i=1

inf
s∈RW (s, λki ) = 0.

(34)

On the other hand, taking the infimum limit for k ∈ K in (33) and using εk → 0 and
f (z) ≤ f (x∗), we obtain

lim inf
k∈K γk ≥ 0,

which, combined with (34), proves (32) in the case that ρk → ∞.
Now, if {ρk} is bounded, by step 2 of Algorithm 1, we have limk→∞ ‖σ(xk, λk, ρk)‖∞ =

0, or equivalently,

lim
k→∞[W ′

s(ρkgi (x
k), λki ) − λki ] = 0, i = 1, . . . ,m. (35)
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As {λk} and {ρk} are bounded, we can assume that λk → λ̄ ≥ 0 and ρk → ρ̄ > 0. So, (35)
implies

W ′
s(ρ̄gi (x

∗), λ̄i ) = λ̄i i = 1, . . . ,m, (36)

which, combined with item (iii) of Lemma 1, gives

g(x∗) ≤ 0, λ̄i gi (x
∗) = 0, i = 1, . . . ,m. (37)

Now, using item (ii) of Lemma 1, we have for all k and i

λki gi (x
k) ≤ 1

ρk
W (ρkgi (x

k), λki ) ≤ gi (x
k)W ′

s(ρkgi (x
k), λki ).

Taking the limit for k ∈ K in the last inequality, together with (36) and (37), it follows that

lim
k→∞

1

ρk
[W (ρkgi (x

k), λki )] = λ̄i gi (x
∗) = 0, i = 1, . . . ,m,

which, combined with (27), yields (32) in the case {ρk} bounded. Thus, the proof of (32) is
concluded.

The second statement of the theorem follows from the first result and the assumption
εk → 0. In order to establish the last part of the theorem, combine the second one and
Lemma 5. ��

Due to the previous theorems, we are able to define a variation of Algorithm 1, for which
we can guarantee finite termination with certificates of infeasibility or optimality up to given
precisions. To state Algorithm 2, we assume that εfeas > 0 and εopt > 0 are user-given
tolerances for feasibility and optimality respectively.

Algorithm 2 Let γ > 1, 0 < τ < 1, ρ1 > 0, λmax > 0, and λ1 ∈ R
m such that λ1i ∈

[0, λmax], for all i = 1, . . . ,m. Assume that {εk} is a bounded positive sequence and initialize
k ← 1.

Step 1 (Subproblem)
Obtain xk ∈ � satisfying

L(xk, λk, ρk) ≤ L(z, λk, ρk) + εk, ∀z ∈ �.

Step 2 (Infeasibility test)
Let

γk := − 1

ρk

m∑

i=1

[W (ρkgi (x
k), λki )].

Compute ck > 0 such that | f (xk) − f (z)| ≤ ck for all z ∈ �. If

γk + εk < −ck,

stop declaring Infeasible problem.
Step 3 (Feasibility and optimality test)

If

‖g(xk)+‖∞ ≤ εfeas and γk + εk ≤ εopt,

stop declaring Solution found.
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Step 4 (Updating the penalty parameter)
If k = 1 or

‖σ(xk, λk, ρk)‖∞ ≤ τ ‖σ(xk−1, λk−1, ρk−1)‖∞,

then define ρk+1 = ρk . Otherwise, ρk+1 := γρk .
Step 5 (Updating the multipliers)

Compute λk+1
i = min{W ′

s(ρkgi (x
k), λki ), λmax}, for all i = 1, . . . ,m.

Set k ← k + 1 and go to Step 1.

The next result is an immediate consequence of Theorems 6 and 7.

Theorem 8 Let {xk} be generated by Algorithm 2 with limk→∞ εk = 0. Then, after a finite
number of iterations, the algorithm finds an approximate solution xk satisfying

‖g(xk)+‖ ≤ εfeas, f (xk) ≤ f (z) + εopt

for all z ∈ � such that g(z) ≤ 0, or stops, certifying the problem is infeasible.

4 Numerical experiments

This section summarizes the results of the numerical experiments we carried out in order
to verify the effectiveness of Algorithm 2, for solving problem (1) or identifying if it is
infeasible. We implemented Algorithm 2 considering five different augmented Lagrangian
functions (2) with the penalty functions (4), (6) with α = 4/3, (7), (9) and (10), which will
be denoted by augmented Lagrangian of type (ALtype) 1, 2, 3, 4 and 5, respectively.

Our algorithm was implemented as modification of the software Algencan, which is a
Fortran 77 code, free available in http://www.ime.usp.br/~egbirgin/tango/ and based on the
theory presented in [1]. Similarly to [3], our main modifications are the implementation of
different augmented Lagrangian functions. The main difference of our codes and the ones
implemented in [3] is a multistart strategy to solve the subproblems and the introduction of
stopping criteria, described in Steps 2 and 3 of Algorithm 2. The experiments were run on a
3.4GHz Intel(R) i7 with 4 processors, 8Gb of RAM and Linux operating system.

4.1 Implementation details

The performance of algorithms is, in general, sensitive to the choice of the initial parame-
ters. For comparison purposes, we decided to keep the same configuration of the initial
algorithmic parameters for all augmented Lagrangians versions. We set εfeas = εopt =
10−4, λ1 = 0, λmax = 1010, ρ1 = 10, γ = 10 and τ = 0.5. We put ε1 = 10−4 and
εk = max{10−(k+2), 10−8} for k ≥ 2.

In all considered problems the set � is a box {x ∈ Rn | l ≤ x ≤ u}. We use the
local optimization package Gencan to solve the box-constrained subproblems. Gencan is an
active-set method which uses a truncated Newton approach with line searches within the
faces whereas, for leaving the faces, uses spectral projected gradient iterations, see [1] and
references therein. In all implemented versions, we replaced each Hessian of the augmented
Lagrangian-vector product by an incremental quotient, using the approximation

∇2L(x, λ, ρ)d ≈ 1

t
(∇L(x + td, λ, ρ) − ∇L(x, λ, ρ))

with a small value of t .
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Step 1 of Algorithm 2 requires the global solution of the subproblems. However, we use
Gencan, which is a local optimization algorithm, to solve the subproblems. In each outer
iteration, we ran Gencan 30 times using different randomly generated initial points (feasible
with respect to the box �) and we considered as solution the point with the smallest value
of the objective function of the subproblem. Adopting this strategy, we assume that we are
able to find a global minimizer of each subproblem. Let us call this strategy multistart.

For simplicity, let us denote the objective function of the k-th subproblem L(x, λk, ρk)
by L(x). Given a tolerance ε̄k > 0, Gencan stops at point y if

‖y − P�(y − ∇L(y))‖ ≤ ε̄k, (38)

where P�(x) is the Euclidean projection of x on the box �. Therefore, the inequality (38)
holds for y equal to xk . The tolerance ε̄k used in the stopping criterion (38) of the k-th
subproblem is related to the gap εk at Step 1 of Algorithm 2 by

ε̄k = εk

max{1, d(xk) + ∥
∥∇L(xk)

∥
∥} , (39)

where

d(x) = ‖max {P�(x − ∇L(x)) − l, u − P�(x − ∇L(x))}‖ .

Let us justify the relation (39). Denote by xk∗ a global minimizer of the k-th subproblem.
Since the box � is compact and convex, using properties of the Euclidean projection, we
obtain

〈
xk − ∇L(xk) − P�(xk − ∇L(xk)), xk∗ − P�(xk − ∇L(xk))

〉
≤ 0.

Then,
〈
∇L(xk), P�(xk−∇L(xk))−xk∗

〉
+

〈
xk−P�(xk−∇L(xk)), xk∗ −P�(xk − ∇L(xk))

〉
≤ 0,

and, by the Cauchy–Schwarz inequality,
〈
∇L(xk), P�(xk−∇L(xk))−xk∗

〉
≤

∥∥∥xk − P�(xk−∇L(xk))
∥∥∥

∥∥∥xk∗ −P�(xk−∇L(xk))
∥∥∥ .

Therefore, by the stopping criterion (38) and the definition of d(x), we have
〈
∇L(xk), P�(xk − ∇L(xk)) − xk∗

〉
≤ ε̄kd(xk). (40)

If L(x) is a convex function, it follows by the gradient inequality that

L(xk∗) ≥ L(xk) +
〈
∇L(xk), xk∗ − xk

〉
,

or, equivalently,

L(xk∗) ≥ L(xk)+
〈
∇L(xk), P�(xk−∇L(xk))−xk

〉
+

〈
∇L(xk), xk∗ −P�(xk−∇L(xk))

〉
.

Hence, using the Cauchy–Schwarz inequality, stopping criterion (38) and (40), we obtain

L(xk∗) ≥ L(xk) − ε̄k

(
d(xk) + ‖∇L(xk)‖

)
,

which, combined with (39), gives the desired inequality in Step 1 of Algorithm 2. Now,
consider the case where L(x) is not a convex function. If we assume that xk is close enough
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to xk∗ then the linear approximation L(xk) + 〈∇L(xk), xk∗ − xk
〉
of L(xk∗) is “acceptable”.

Therefore, we can proceed as in the convex case to conclude that the inequality in Step 1 of
Algorithm 2 is “approximately” satisfied.

The constant ck at Step 2 of Algorithm 2 is computed as suggested in [5]. By interval
arithmetic, an interval [ f min, f max] is computed, such that f min ≤ f (x) ≤ f max for all
x ∈ �. So, ck is calculate by

ck = max{ f (xk) − f min, f max − f (xk)}.
For interval analysis calculations we use the Intlib library [13].

4.2 Some feasible examples

The main purpose of this section is to illustrate the performance of Algorithm 2 with the
five types of augmented Lagragian functions for some feasible problems. In the following
experiments, we considered the set of problems with inequality constraints analyzed in [5].
These problems come from the global optimization literature. Each problem is feasible and
the optimal value of the objective function is known. Therefore, it is possible to check if a
particular solution given by Algorithm 2 is indeed a global minimizer.

In this section, we are also interested to check whether the multistart strategy to solve the
subproblems and the relation (39) are appropriate or not. The reliability of these approaches
will be corroborated if the problems are successfully solved. We understand that a problem
has been successfully solved if Algorithm 2 stops at Step 3 and the final iterate x∗ satisfies
f (x∗) ≤ f (z)+εopt for all feasible z. In the following, we describe the problems considered
in these section.

Problem 1. [9]

Minimize −
(

k1x1
(1 + k1x1)(1 + k3x1)(1 + k4x2)

+ k2x2
(1 + k1x1)(1 + k2x2)(1 + k4x2)

)

subject to
√
x1 + √

x2 ≤ 4

(10−5, 10−5) ≤ x ≤ (16, 16)

k1 = 9.755988 × 10−2; k2 = 0.99; k3 = 3.919080; k4 = 0.90k3

Problem 2. [26]

Minimize −x1 − x2
subject to x1x2 ≤ 4

(0, 0) ≤ x ≤ (6, 4)

Problem 3. [15]

Minimize 29.4x1 + 18x2

subject to −x1 + 0.2458x21/x2 ≤ −6

(0, 10−5) ≤ x ≤ (115.8, 30)

Problem 4. [10]

Minimize x1 + x2

subject to x21 + x22 ≤ 4

−x21 − x22 ≤ −1

x1 − x2 ≤ 1

−x1 + x2 ≤ 1

(−2, −2) ≤ x ≤ (2, 2)

Problem 5. [18]

Minimize x41 − 14x21 + 24x1 − x22
subject to x2 − x21 − 2x1 ≤ −2

−x1 + x2 ≤ 8

(−8, 0) ≤ x ≤ (10, 10)

Problem 6. [28]

Minimize 2x1 + x2
subject to −16x1x2 ≤ −1

−4x21 − 4x22 ≤ −1

(0, 0) ≤ x ≤ (1, 1)

Problem 7. [28]

Minimize −2x1x2
subject to 4x1x2 + 2x1 + 2x2 ≤ 3

(0, 0) ≤ x ≤ (1, 1)
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Table 1 Performance of Algorithm 2 with the five augmented Lagrangian functions in the problems 1–7

Problem n m ALtype Iter f (x∗)
∥∥g(x∗)+

∥∥∞ γk + εk Global

Problem 1 2 1 1 2 −3.8881364D−01 2.91D−05 9.78D−05 Y

2 2 −3.8881470D−01 4.32D−05 9.76D−05 Y

3 2 −3.8881363D−01 2.90D−05 9.78D−05 Y

4 5 −3.8881148D−01 5.52D−07 5.83D−08 Y

5 4 −3.8881400D−01 3.40D−05 −1.56D−06 Y

Problem 2 2 1 1 3 −6.6666667D+00 4.74D−11 1.00D−05 Y

2 3 −6.6666667D+00 0.00D+00 1.00D−05 Y

3 3 −6.6666667D+00 0.00D+00 1.00D−05 Y

4 3 −6.6666667D+00 1.61D−08 1.00D−05 Y

5 3 −6.6666667D+00 3.75D−08 9.99D−06 Y

Problem 3 2 1 1 3 3.7629193D+02 0.00D+00 1.02D−05 Y

2 6 3.7629193D+02 8.17D−14 9.99D−09 Y

3 3 3.7629193D+02 0.00D+00 1.00D−05 Y

4 2 3.7629193D+02 2.12D−09 9.99D−05 Y

5 3 3.7629193D+02 0.00D+00 1.00D−05 Y

Problem 4 2 4 1 3 −2.8284274D+00 6.77D−07 9.76D−06 Y

2 3 −2.8284271D+00 5.06D−11 1.00D−05 Y

3 3 −2.8284274D+00 6.64D−07 9.77D−06 Y

4 3 −2.8284302D+00 8.73D−06 6.91D−06 Y

5 3 −2.8284276D+00 1.31D−06 9.54D−06 Y

Problem 5 2 2 1 6 −1.1870483D+02 0.00D+00 2.96D−05 Y

2 7 −1.1870491D+02 1.54D−05 −5.20D−05 Y

3 7 −1.1870493D+02 2.05D−05 −7.08D−05 Y

4 5 −1.1870497D+02 3.32D−05 −1.15D−04 Y

5 4 −1.1870480D+02 0.00D+00 6.35D−05 Y

Problem 6 2 2 1 3 7.4178118D−01 3.12D−06 9.22D−06 Y

2 3 7.4178196D−01 8.76D−12 1.00D−05 Y

3 3 7.4178118D−01 3.08D−06 9.22D−06 Y

4 4 7.4178442D−01 0.00D+00 3.47D−06 Y

5 3 7.4177556D−01 2.52D−05 3.60D−06 Y

Problem 7 2 1 1 3 −5.0000006D−01 2.47D−07 9.94D−06 Y

2 3 −5.0000000D−01 0.00D+00 1.00D−05 Y

3 3 −5.0000006D−01 2.45D−07 9.94D−06 Y

4 3 −5.0000198D−01 7.94D−06 8.02D−06 Y

5 3 −5.0000028D−01 1.13D−06 9.72D−06 Y

Table 1 shows the performance of Algorithm 2 considering the five types of augmented
Lagrangian functions. In the table, the first three columns identify the problem and the num-
ber of variables and constraints. “ALtype” identifies the considered augmented Lagrangian
function, “Iter” is the number of augmented Lagrangian iterations, f (x∗) is the value of
the objective function at the final iterate x∗, ‖g(x∗)+‖∞ is the infeasibility measurement
at x∗, γk + εk is the computed value at Steps 2 and 3 in the last iteration and “Global” iden-
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tifies whether the final iterate is a global solution, in the sense that f (x∗) ≤ f (z) + εopt for
all feasible z, or not.

In all instances, Algorithm 2 stopped at Step 3 in a finite number of iterations reporting
solution found. In fact, note that the values of γk + εk in Table 1 are equal to or less than
εopt = 10−4. The last column reports that all problems have been successfully solved by
Algorithm 2 for each augmented Lagrangian type. Analyzing the column “Iter” of Table 1,
we may note that, for these problems, the algorithm has a similar performance for all aug-
mented Lagrangian functions considered. Moreover, these results allow us to conclude that
the multistart strategy to solve the subproblems and the relation (39) are appropriate.

4.3 Kissing problems

In this section, our aim is to illustrate the behavior of our algorithm to detect if a problem is
infeasible. For this, we analyze our infeasible test for some infeasible problems. In order to
be self-contained, we also consider some feasible problems.

Given a set of nSph N -dimensional unit spheres, we consider the problem of finding the
coordinates of the sphere centers in such a way that each one of the spheres touches another
given one, with no overlap and maximizing the sum of the squared distances between the
sphere centers.

Let us denote by Ci ∈ RN the coordinate vector of the N -dimensional sphere center for
all i = 1, . . . , nSph. This problem can be modeled as follows:

Maximize
N∑

i< j

∥∥Ci − C j
∥∥2

subject to ‖Ci‖2 = 1, i = 1, . . . , nSph,
∥∥Ci − C j

∥∥2 ≥ 1, ∀i < j,

−1 ≤ Ci ≤ 1, i = 1, . . . , nSph.

(41)

The first set of constraints requires that each considered sphere touches another one centered
at the origin, while the second set determines that the spheresmust be placedwithout overlap-
ping. Simple devices can be used to transform problem (41) to the form (1). For example, we
may rewrite each equality constraint as two inequality constraints. Aftermaking the necessary
modifications, problem (41) has n = N ×nSph variables, 2×nSph constraints arising from
the first set and another CnSph

2 arising from the second one, totaling m = 2× nSph +CnSph
2

constraints beyond the box-constraints.
The kissing number is defined as themaximumnumber of non-overlapping N -dimensional

unit spheres that can be arranged such that each one touches another given N -dimensional unit
sphere. When N = 2 the kissing number is equal 6, while for N = 3 and N = 4 is equal 12
and 24, respectively, [20,27]. Therefore, for N = 2, problem (41) is feasible if 1 ≤ nSph ≤ 6
and infeasible if nSph > 6. Analogously, feasible instances of problem (41) are obtained
when N = 3 and 1 ≤ nSph ≤ 12 or when N = 4 and 1 ≤ nSph ≤ 24. Infeasible instances
may be generated with N = 3 and nSph > 12 or with N = 4 and nSph > 24.

For illustrative purposes, we considered six instances of problem (41) with N =
2, nSph = 3, 6, 7, 10, 12 and 15. The first two instances are feasible while the remaining
ones are infeasible. The problemswere solvedwith different types of augmentedLagrangians,
specified in the Fig. 1. For all instances Algorithm 2 behaves according to theory. For the
feasible instances Algorithm 2 stopped at Step 3 reporting solution foundwhile for infeasible
ones stopped at Step 2 declaring infeasibility. Figure 1 illustrates the “solutions”.
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ALtype 1, nSph = 3 ALtype 2, nSph = 6 ALtype 3, nSph = 7

ALtype 4, nSph = 10 ALtype 5, nSph = 12 ALtype 1, nSph = 15

Fig. 1 Graphical representation of six instances of the kissing problemwith N = 2 and nSph = 3, 6, 7, 10, 12
and 15

For the infeasible instances illustrated in Fig. 1, Algorithm 2 stopped at outer iteration
4, 3, 3 and 3, respectively. Despite that Algorithm 2 stopped with few iterations, the nice
arrangement of the circles corroborates the result of Proposition 2. In some sense, Proposi-
tion 2 establishes that the limit points of the sequence generated by Algorithm 2 are global
minimizers of an infeasibility measure. See Corollary 3 for ALtype 1 and 2, Remark 2 for
ALtype 5, Corollary 4 for ALtype 4 and Remark 3 for ALtype 3.

In order to verify the applicability of our approach, we run Algorithm 2 for feasible and
infeasible instances of problem (41) considering the five types of augmented Lagrangians.
Table 2 shows the performance of Algorithm 2with the five augmented Lagrangian functions
for three feasible instances of the problem (41). These problems correspond to dimension
N = 2, 3 and 4with nSph equal to their respective kissing number. Therefore, it is reasonable
to believe that these are the most difficult feasible problems for each considered dimension.
In the table, the first four columns identify the dimension N , the number of N -dimensional
spheres nSph and the number of variables and constraints. “ALtype” identifies the considered
augmented Lagrangian function, “Iter” is the number of augmented Lagrangian iterations,
f (x∗) is the value of the objective function at the final iterate x∗, ‖g(x∗)+‖∞ is the infeasi-
bility measurement at x∗, γk +εk and−ck are the computed values at Steps 2 and 3 in the last
iteration. In all the three feasible problems for all augmented Lagrangian types, Algorithm 2
stopped at Step 3 reporting solution found. In fact, note that the values of γk + εk in Table 2
is less than εopt = 10−4.

Table 3 shows the performance of Algorithm 2 with the five augmented Lagrangian func-
tions for six infeasible instances of the problem (41). Three out of the six considered instances
may be themost difficult infeasible problems for each considered dimension. These problems
correspond to dimension N = 2, 3 and 4 with nSph equal to their respective kissing number
plus one. Table 3 contains the same information as Table 2. In all infeasible instances, Algo-
rithm 2 stopped at Step 2 reporting infeasibility. In fact, comparing the last two columns of
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Table 2 Performance ofAlgorithm2with the five augmentedLagrangian functions for three feasible instances
of the kissing problem

N nSph n m ALtype Iter f (x∗)
∥∥g(x∗)+

∥∥∞ γk + εk −ck

2 6 12 27 1 3 −3.6000000D+01 1.95D−08 9.84D−06 −8.40D+01

2 4 −3.6000000D+01 2.32D−12 1.00D−06 −8.40D+01

3 3 −3.6000000D+01 1.65D−08 9.83D−06 −8.40D+01

4 3 −3.6000000D+01 5.95D−06 1.01D−05 −8.40D+01

5 4 −3.5999999D+01 1.70D−05 1.94D−06 −8.40D+01

3 12 36 90 1 3 −1.4400000D+02 8.43D−08 9.56D−06 −6.48D+02

2 5 −1.4400000D+02 5.01D−12 1.00D−07 −6.48D+02

3 3 −1.4400000D+02 6.20D−08 9.25D−06 −6.48D+02

4 3 −1.4400000D+02 7.30D−05 1.26D−05 −6.48D+02

5 4 −1.4400000D+02 7.14D−05 9.97D−06 −6.48D+02

4 24 96 324 1 3 −5.7600005D+02 1.76D−07 −3.93D−05 −3.84D+03

2 10 −5.7600000D+02 4.68D−13 1.00D−08 −3.84D+03

3 7 −5.7600000D+02 9.16D−06 1.21D−06 −3.84D+03

4 6 −5.7600000D+02 6.94D−06 −1.00D−06 −3.84D+03

5 5 −5.7600000D+02 2.80D−05 1.35D−06 −3.84D+03

Table 3, γk + εk < −ck in all cases. The results in Tables 2 and 3 show that the performance
of Algorithm 2 is in agreement with the theoretical part.

4.4 Comments on the numerical experiments

In order to compare the performance of the five type of Lagrangian functions, we may
consider the amount of augmented Lagrangian iterations (columns “Iter”) of the problems
presented in Sects. 4.2 and 4.3. For the ten feasible problems of our numerical experiments,
the numbers of augmented Lagrangian iterations are 32, 46, 37, 37 and 36 for ALtype 1, 2, 3,
4 and 5, respectively. For the six infeasible problems, the numbers of augmented Lagrangian
iterations are 38, 62, 25, 24 and 23 for ALtype 1, 2, 3, 4 and 5, respectively.

Based on our numerical experiments, we may conclude that Algorithm 2 with ALtype 2
presents the worst performance for both feasible and infeasible instances. It is interesting to
point out that augmented Lagrangians for ALtype 3, 4 and 5 demonstrated to be as efficient as
the PHR augmented Lagrangian (ALtype 1) for feasible instances.Moreover, we observe that
Algorithm 2 with these Lagrangians detected infeasibility in less iterations than PHR, which
may reflect in computational savings. These motivate to continue the research on general
augmented Lagrangian methods for nonlinear programming under possible infeasibility.

5 Conclusions

In this article, we considered a nonlinear programming problem for which the constraint set
may be infeasible. We studied the augmented Lagrangian method based on the penalty func-
tions of Kort and Bertsekas. A general algorithm was stated and its convergence properties
were analyzed. For some specific penalty functions, we showed that every limit point of the
sequence generated by the algorithm is a global minimizer of an infeasibility measure. Some
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Table 3 Performance ofAlgorithm2with the five augmentedLagrangian functions for six infeasible instances
of the kissing problem

Dim nSph n m ALtype Iter f (x∗)
∥∥g(x∗)+

∥∥∞ γk + εk −ck

2 7 14 35 1 4 −5.3627698D+01 1.83D−01 −1.57D+02 −1.14D+02

2 8 −4.8000008D+01 1.00D+00 −1.59D+02 −1.20D+02

3 3 −5.4366890D+01 1.65D−01 −5.76D+05 −1.14D+02

4 3 −5.0569965D+01 2.25D−01 −2.80D+02 −1.17D+02

5 3 −5.3257638D+01 1.86D−01 −5.95D+02 −1.15D+02

3 13 39 104 1 8 −1.7798952D+02 7.22D−02 −4.09D+03 −7.58D+02

2 11 −1.7364253D+02 1.80D−01 −9.28D+02 −7.62D+02

3 5 −1.7655173D+02 4.50D−02 −3.90D+17 −7.59D+02

4 5 −1.5466360D+02 7.07D−01 −1.00D+20 −7.81D+02

5 5 −1.7537088D+02 6.35D−02 −8.13D+03 −7.61D+02

3 20 60 230 1 5 −4.9839222D+02 3.10D−01 −1.55D+04 −1.78D+03

2 9 −4.3008527D+02 1.00D+00 −2.38D+03 −1.85D+03

3 3 −4.8605914D+02 2.18D−01 −6.19D+08 −1.79D+03

4 3 −4.1554159D+02 4.19D−01 −5.81D+03 −1.86D+03

5 3 −4.6204436D+02 2.93D−01 −1.13D+04 −1.82D+03

4 25 100 350 1 8 −6.5410561D+02 9.60D−02 −5.64D+03 −4.15D+03

2 13 −6.5071172D+02 3.84D−01 −7.83D+03 −4.15D+03

3 5 −6.4911245D+02 3.97D−02 −2.67D+15 −4.15D+03

4 5 −6.2793040D+02 1.30D−01 −1.22D+04 −4.17D+03

5 5 −6.4328594D+02 6.38D−02 −1.10D+04 −4.16D+03

4 30 120 495 1 8 −1.0099839D+03 1.86D−01 −4.26D+04 −5.95D+03

2 11 −9.8167065D+02 1.00D+00 −7.59D+03 −5.98D+03

3 6 −8.8718074D+02 1.00D+00 −1.70D+21 −6.07D+03

4 5 −8.9740635D+02 7.10D−01 −4.00D+20 −6.06D+03

5 4 −9.5306975D+02 1.55D−01 −2.49D+05 −6.01D+03

4 40 160 860 1 5 −1.9918823D+03 3.33D−01 −2.40D+04 −1.05D+04

2 10 −1.8693087D+03 1.00D+00 −1.09D+04 −1.06D+04

3 3 −1.8866072D+03 1.86D−01 −3.22D+07 −1.06D+04

4 3 −1.6579181D+03 3.94D−01 −1.13D+04 −1.08D+04

5 3 −1.8143639D+03 2.59D−01 −1.95D+04 −1.07D+04

results regarding optimality are also presented. Based on these results, a second algorithm is
proposed, which stops after a finite number of iterations at an approximate solution or detects
that the problem is infeasible. We also considered some numerical experiments illustrating
the applicability of the algorithm. It is interesting to point out that some other augmented
Lagrangians presented similar computational performance to the classical quadratic aug-
mented Lagrangian (PHR). Besides, for infeasible problems, our algorithm based on these
other Lagrangians detected infeasibility in less iterations than PHR. These numerical results
motivate to continue the studies and analysis of general Lagrangian methods.
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