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Abstract In this paper, we mainly study one class of convex mixed-integer nonlinear pro-
gramming problems (MINLPs)with non-differentiable data. By dropping the differentiability
assumption, we substitute gradients with subgradients obtained from KKT conditions, and
use the outer approximation method to reformulate convex MINLP as one equivalent MILP
master program. By solving a finite sequence of subproblems and relaxed MILP problems,
we establish an outer approximation algorithm to find the optimal solution of this convex
MINLP. The convergence of this algorithm is also presented. The work of this paper gen-
eralizes and extends the outer approximation method in the sense of dealing with convex
MINLPs from differentiable case to non-differentiable one.
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1 Introduction

Many practical optimization problems aremodelled asmixed-integer nonlinear programming
problems (MINLPs) involving continuous and discrete variables and the study of solution
algorithms for these optimization problems has been an active focus of research over the past
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decades (cf. [3,10,12–16,21,22,25] and references therein). Suppose f, gi : R
n × R

p →
R (i = 1, . . . , m) are nonlinear functions, X is a nonempty compact convex set in R

n and Y
is a set of discrete variables in R

p . The general form for MINLPs is defined mathematically
as follows:

(P)

⎧
⎪⎨

⎪⎩

minimize
x, y

f (x, y)

subject to gi (x, y) ≤ 0, i = 1, . . . , m,

x ∈ X, y ∈ Y discrete variable.

(1.1)

This paper is devoted to one class of convex MINLPs in which objective and constraint
functions f, gi for i = 1, . . . , m are convex but not differentiable.

The class of convex MINLPs has been extensively studied by many authors and sev-
eral methods for these MINLPs have been developed over past decades. These meth-
ods include branch-and-bound, generalized Benders decomposition, extended cutting-plane
method, NLP/LP based branch and bound and outer approximation method (cf. [2,5–
9,11,12,15,19,23–25] and references therein). Note that the extended cutting-plane method
was proposed by Westerlund and Pettersson [24] for solving differentiable convex MINLPs.
Subsequently, Westerlund and Pettersson [25] presented this method to deal with a more
general case of MINLPs including pseudo-convex functions. It was shown in [25] that
one MINLP with pseudo-convex functions and pseudo-convex constraints can be solved
to global optimality by the cutting-plane techniques. In 2014, Eronen et al. [6] generalized
the extended cutting-plane method for solving convex nonsmooth MINLPs and provided
one ECP algorithm which was proved to converge to one global optimum. Recently they [7]
further considered this extended cutting plane method to deal with nonsmooth MINLPs with
pseudo-convexity assumptions.

It is known that Duran and Grossmann [5] introduced the outer approximation method
to deal with a particular class of MINLPs which was restricted to contain separable convex
differentiable functions and not general convex differentiable functions in all variables. These
separable convex functions were composed of convex differentiable functions in continuous
variables and linear functions in discrete variables separately. Afterwards Fletcher and Leyf-
fer [8] further extended the outer approximation method for solving convex MINLPs with
convex and continuously differentiable objective and constraint functions, and provided a
linear outer approximation algorithm to attain the optimal solution of this MINLP by solving
a finite sequence of relaxed subproblems. This extension is the pioneering work on outer
approximation method in a sense of solving MINLPs where the discrete variables are con-
sidered as nonlinear. In 2008, Bonami et. al [2] also studied outer approximation algorithms
for convex and continuously differentiable MINLPs. Recently the authors in [6] and [23]
used the outer approximation method to study convex nonsmooth MINLPs and established
the resulting algorithms. It is noted that differentiability of functions plays an important role
in the construction of relaxation and is proved to be an important matter for allowing to solve
these relaxed subproblems efficiently. Since nonsmooth optimization problems defined by
non-differentiable functions appear in practice, from the theoretical viewpoint as well as
for applications, it is interesting and significant to consider convex and non-differentiable
MINLPs. Motivated by this, in this paper, we are inspired by [2,5,6,8,23] to continue study-
ing one convex MINLP by dropping the differentiability assumption and aim to construct
an outer approximation algorithm for solving this MINLP. The outer approximation method
used herein is along the line given in [8,23] and consists of the use of KKT conditions to lin-
earize the objective and constraint functions at different points for constructing an equivalent
MILP relaxation of the problem.
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The paper is organized as follows. In Sect. 2, we give some definitions and preliminaries
used in this paper. Section 3 contains the equivalent reformulation of convex MINLP by
the outer approximation method and one outer approximation algorithm for finding optimal
solutions of this MINLP. The reformulation is mainly dependent on KKT conditions and
projection techniques. For the algorithm construction, it is necessary to solve a finite sequence
of nonlinear programs including feasible and infeasible subproblems and the relaxations of
mixed-integer linear master program. The convergence theorem for the established algorithm
is also presented therein. The conclusion of this paper is presented in Sect. 4. Section 5 is an
“Appendix”which contains the proofs of themain results given for constructing the algorithm
in the paper.

2 Preliminaries

Let ‖ ·‖ be the norm of R
n and denote the inner product between two elements of R

n by 〈·, ·〉.
Let Ω be a closed convex set of R

n and x ∈ Ω . We denote T (Ω, x) the contingent cone of
Ω at x ; that is, v ∈ T (Ω, x) if and only if there exist a sequence {vk} in R

n converging to v

and a sequence tk in (0,+∞) decreasing to 0 such that x + tkvk ∈ Ω for all k ∈ N, where N

denotes the set of all natural numbers. It is known from [1] that

T (Ω, x) = cl(R+(Ω − x))

where cl denotes the closure.
Let N (Ω, x) denote the normal cone of Ω at x , that is

N (Ω, x) := {γ ∈ R
n : 〈γ, z − x〉 ≤ 0 for all z ∈ Ω}. (2.1)

It is easy to verify that normal cone N (Ω, x) and contingent cone T (Ω, x) are the polar dual;
that is

N (Ω, x) = (
T (Ω, x)

)◦ := {
γ ∈ R

n : 〈γ, v〉 ≤ 0 for all v ∈ T (Ω, x)
}
.

Readers are invited to consult the book [1] for more details on contingent cone and normal
cone.

Let ϕ : R
n → R be a continuous convex function, x̄ ∈ R

n and h ∈ R
n . Recall (cf. [20])

that d+ϕ(x̄)(h) denotes the directional derivative of ϕ at x̄ along the direction h and is defined
by

d+ϕ(x̄)(h) := lim
t→0+

ϕ(x̄ + th) − ϕ(x̄)

t
.

We denote ∂ϕ(x̄) the subdifferential of ϕ at x̄ which is defined by

∂ϕ(x̄) := {α ∈ R
n : 〈α, x − x̄〉 ≤ ϕ(x) − ϕ(x̄) for all x ∈ R

n}.
Each vector in ∂ϕ(x̄) is called a subgradient of ϕ at x̄ . It is known from [20] that α ∈ ∂ϕ(x̄)

if and only if

〈α, h〉 ≤ d+ϕ(x̄)(h) for all h ∈ R
n .

Recall that ϕ is said to be Gâteaux differentiable at x̄ if there exists dϕ(x̄) ∈ R
n such that

lim
t→0+

ϕ(x̄ + th) − ϕ(x̄)

t
= 〈dϕ(x̄), h〉 for all h ∈ R

n (2.2)
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and ϕ is said to be Fréchet differentiable at x̄ if ϕ is Gâteaux differentiable there and the limit
in (2.2) exists uniformly for ‖h‖ ≤ 1 as t → 0+.

It is known from [20] that ϕ is Gâteaux differentiable at x̄ if and only if ∂ϕ(x̄) is the
singleton. Further, Gâteaux differentiability of ϕ is equivalent to the Fréchet differentiability
of ϕ due to the local Lipschitzian property of ϕ and the compactness of unit closed ball in
R

n .
Given a continuous convex function φ : R

n × R
p → R and (x̄, ȳ) ∈ R

n × R
p , one vector

(α, β) ∈ R
n × R

p is the subgradient of φ at (x̄, ȳ) if and only if

φ(x, y) ≥ φ(x̄, ȳ) + (α, β)T
(

x − x̄
y − ȳ

)

for all (x, y) ∈ R
n × R

p, (2.3)

where (α, β)T is the transpose of matrix (α, β). When ȳ is fixed (resp. x̄ is fixed), the
subdifferential of φ(·, ȳ) (resp. φ(x̄, ·)) at x̄ (resp. ȳ) is the set defined by

∂φ(·, ȳ)(x̄) := {
α ∈ R

n : φ(x, ȳ) ≥ φ(x̄, ȳ) + 〈α, x − x̄〉 for all x ∈ R
n}

(
resp. ∂φ(x̄, ·)(ȳ) := {

β ∈ R
p : φ(x̄, y) ≥ φ(x̄, ȳ) + 〈β, y − ȳ〉 for all y ∈ R

p}
)
.

The following proposition on the subdifferential of convex functions is easy to verify from
the definition.

Proposition 2.1 Let φ : R
n × R

p → R be a continuous convex function and (x̄, ȳ) ∈
R

n × R
p. Then for any (α, β) ∈ ∂φ(x̄, ȳ), one has α ∈ ∂φ(·, ȳ)(x̄) and β ∈ ∂φ(x̄, ·)(ȳ).

It is an interesting question to consider the converse of Proposition 2.1. This question is
also interesting even for smooth convex functions in mathematical analysis. The question is
explicitly stated as follows:

Given one continuous convex function φ : R
n × R

p → R and one vector ᾱ from
∂φ(·, ȳ)(x̄), whether or not is there some vector β̄ ∈ R

p such that (ᾱ, β̄) ∈ ∂φ(x̄, ȳ)?
The following two propositions provided an affirmative answer to this question. These

propositions will play a key role in construction of outer approximation algorithm in the
sequel. The first proposition is on convex and Fréchet differentiable functions.

Proposition 2.2 Let φ : R
n × R

p → R be a continuous convex function and (x̄, ȳ) ∈
R

n×R
p. Suppose thatφ(·, ȳ) is Fréchet differentiable at x̄ andφ(x̄, ·) is Fréchet differentiable

at ȳ. Then φ is Fréchet differentiable at (x̄, ȳ).

Proof By the Fréchet differentiability of φ(·, ȳ) and φ(x̄, ·), one has
∂φ(·, ȳ)(x̄) = {�xφ(x̄, ȳ)} and ∂φ(x̄, ·)(ȳ) = {�yφ(x̄, ȳ)}.

This and Proposition 2.1 imply that ∂φ(x̄, ȳ) is the singleton and

∂φ(x̄, ȳ) = {(�xφ(x̄, ȳ), �yφ(x̄, ȳ)}.
Hence φ is Gâteaux differentiable at (x̄, ȳ) and consequently Fréchet differentiable at (x̄, ȳ).
The proof is complete. ��

Proposition 2.2 may not necessarily be true for non-convex functions. Consider function

φ on R × R defined as: φ(x, y) = x2 y2

(x2+y2)3/2
if x2 + y2 = 0 and φ(x, y) = 0 if x2 + y2 =

0. Then φ is continuous on R × R and partial derivatives �xφ(0, 0) and �yφ(0, 0) exist
(�xφ(0, 0) = �yφ(0, 0) = 0). However, one can verify that φ is not differentiable at (0, 0).
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Proposition 2.3 Let φ : R
n × R

p → R be a continuous convex function and (x̄, ȳ) ∈
R

n × R
p. Then for any ᾱ ∈ ∂φ(·, ȳ)(x̄), there exists β̄ ∈ R

p such that (ᾱ, β̄) ∈ ∂φ(x̄, ȳ).

Proof Let Fȳ : R
n → R

n × R
p be defined by Fȳ(x) := (x, ȳ). Then φ(·, ȳ) = φ ◦ Fȳ , and

it is easy to verify that Fȳ is differentiable at x̄ and

�Fȳ(x̄)(h) = (h, 0) ∈ R
n × R

p (2.4)

holds for all h ∈ R
n . Let ᾱ ∈ ∂φ(·, ȳ)(x̄). We first prove that

ᾱ ∈ �Fȳ(x̄)∗(∂φ(x̄, ȳ)) (2.5)

where �Fȳ(x̄)∗ is the conjugate operator of �Fȳ(x̄).
Since φ is continuous at (x̄, ȳ), it follows that ∂φ(x̄, ȳ) is a nonempty, convex and com-

pact subset by [20, Proposition1.11] and then �Fȳ(x̄)∗(∂φ(x̄, ȳ)) is convex and compact as
�Fȳ(x̄)∗ is continuous.

Suppose to the contrary that ᾱ /∈ �Fȳ(x̄)∗(∂φ(x̄, ȳ)). By the seperation theorem, there
exists ū ∈ R

n with ‖ū‖ = 1 such that

〈ᾱ, ū〉 > max{〈�Fȳ(x̄)∗(α, β), ū〉 : (α, β) ∈ ∂φ(x̄, ȳ)}
= max{〈(α, β), �Fȳ(x̄)(ū)〉 : (α, β) ∈ ∂φ(x̄, ȳ)}.

This and (2.4) imply that

〈ᾱ, ū〉 > max{〈(α, β), (ū, 0)〉 : (α, β) ∈ ∂φ(x̄, ȳ)}. (2.6)

Noting that ᾱ ∈ ∂φ(·, ȳ)(x̄) and φ is a continuous convex function on R
n × R

p , it follows
from [20, Proposition 2.24] and (2.6) that

d+φ(·, ȳ)(x̄)(ū) ≥ 〈ᾱ, ū〉 > d+φ(x̄, ȳ)(ū, 0) = d+φ(·, ȳ)(x̄)(ū),

which is contradiction. Thus (2.5) holds.
By virtue of (2.5), there exists (α̂, β̄) ∈ ∂φ(x̄, ȳ) such that ᾱ = �Fȳ(x̄)∗(α̂, β̄). It suffices

to prove that ᾱ = α̂.
For any h ∈ R

n , by using (2.4), one has

〈ᾱ, h〉 = 〈�Fȳ(x̄)∗(α̂, β̄), h〉 = 〈(α̂, β̄), �Fȳ(x̄)(h)〉 = 〈(α̂, β̄), (h, 0)〉 = 〈α̂, h〉.
This means that ᾱ = α̂. The proof is complete. ��

The following proposition is on the subdifferential of maximum function of two convex
functions which is from [26, Theorem 2.4.18]. This result will be used later in our analysis.

Proposition 2.4 Let ϕ : R
n → R be a convex and continuous function. Define ϕ+(x) :=

max{ϕ(x), 0} for all x ∈ R
n. Then ϕ+ is a convex continuous function and

∂ϕ+(x) = [0, 1]∂ϕ(x) (2.7)

holds for all x ∈ R
n with ϕ(x) = 0, where [0, 1]∂ϕ(x) := {tγ : t ∈ [0, 1] and γ ∈ ∂ϕ(x)}

for any x ∈ R
n.
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3 Main results

In this section, we mainly study convex MINLP problem of (1.1) by dropping the differen-
tiability assumption and aim to establish one outer approximation algorithm for solving such
problem.

Let convex MINLP be defined as (1.1) and set g := (g1, . . . , gm). For the case that
f, gi (i = 1, . . . , m) in (1.1) are convex and smooth, it is known from [2,6,8] that main
idea of outer approximation algorithm for convex smooth MINLPs is using linearization of
the objective function and the constraints at different points to build a mixed-integer linear
program (MILP) relaxation of the problem; that is, given some set K with optimal solutions
of several optimization problems, it is possible to build a relaxation of problem (P) in (1.1):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minimize θ

subject to f (x j , y j ) + � f (x j , y j )
T

(
x − x j

y − y j

)

≤ θ,

g(x j , y j ) + �g(x j , y j )
T

(
x − x j

y − y j

)

≤ 0,

x ∈ X, y ∈ Y discrete variable.

∀(x j , y j ) ∈ K (3.1)

When dealing with problem (P) in (1.1), the concept of subgradient is the substitute of
the gradient in relaxation of (P). Note that arbitrary subgradients substituting gradients in
(3.1) is not sufficient to equivalently reformulate problem (P) (see Example 3.1 below). As
in [3,6], with the help of KKT conditions, we obtain several special subgradients, which we
then use to reformulate problem (P) as one equivalent MILP master program such as (3.1).

3.1 An overview of the method

For the equivalent reformulation of problem (P) in (1.1) and by using techniques in (3.1),
we appeal to the concept of projection for expressing problem (P) onto y variables. For any
fixed y ∈ Y , we consider the following subproblem P y :

P y

⎧
⎨

⎩

minimize
x

f (x, y)

subject to g(x, y) ≤ 0,
x ∈ X.

(3.2)

If there exists some x ∈ X such that g(x, y) ≤ 0, the subproblem P y is said to be feasible;
otherwise, P y is said to be infeasible.

For the validness of KKT conditions, we assume that the following Slater constraint
qualification holds:

Assumption (A1) For any y ∈ Y satisfying that the subproblem P y is feasible, the fol-
lowing Slater constraint qualification holds:

g(x̂, y) < 0 for some x̂ ∈ X. (Slater CQ)

Let
Σ := {y ∈ Y : g(x, y) ≤ 0 for some x ∈ X} (3.3)

denote the set of all discrete variables y that produce feasible subproblems. Then the projec-
tion of problem (P) onto variable y can be given as follows:

minimize
y j ∈Σ

⎧
⎨

⎩

minimize
x

f (x, y j )

subject to g(x, y j ) ≤ 0,
x ∈ X.

(3.4)
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Now let y j ∈ Σ be fixed. Since X is compact and f, gi are continuous, it follows that
the optimal solution to subproblem P y j exists. Thus we can suppose that x j is one optimal
solution to P y j . By the assumption (A1) and KKT conditions, there exist (λ j,1, . . . , λ j,m) ∈
R

m such that
⎧
⎪⎨

⎪⎩

0 ∈ ∂ f (·, y j )(x j ) + ∑

i∈I (x j )

λ j,i∂gi (·, y j )(x j ) + N (X, x j ),

λ j,i gi (x j , y j ) = 0, i = 1, . . . , m,

λ j,i ≥ 0, i = 1, . . . , m,

(3.5)

where
I (x j ) := {i ∈ {1, . . . , m} : gi (x j , y j ) = 0} (3.6)

is the active constraint set. This means that we can take α j ∈ ∂ f (·, y j )(x j ) and ξ j,i ∈
∂gi (·, y j )(x j )(i = 1, . . . , m) such that

− α j −
∑

i∈I (x j )

λ j,iξ j,i ∈ N (X, x j ). (3.7)

By Proposition 2.3, there exist β j ∈ R
p and η j,i ∈ R

p(i = 1, . . . , m) such that

(α j , β j ) ∈ ∂ f (x j , y j ) and (ξ j,i , η j,i ) ∈ ∂gi (x j , y j ),∀i ∈ {1, . . . , m}. (3.8)

Set ξ j := (ξ j,1, . . . , ξ j,m) and η j := (η j,1, . . . , η j,m). We consider the following linear
problem:

L P(x j , y j )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize
x

f (x j , y j ) + (α j , β j )
T

(
x − x j

0

)

subject to g(x j , y j ) + (ξ j , η j )
T

(
x − x j

0

)

≤ 0,

x ∈ X.

(3.9)

The following theorem establishes the equivalence between subproblem P y j and linear
program L P(x j , y j ) of (3.9). The proof of this theorem will be given in Sect. 5.

Theorem 3.1 Let L P(x j , y j ) be defined as (3.9). Then x j is one optimal solution for
L P(x j , y j ) in (3.9) and f (x j , y j ) is the optimal value of L P(x j , y j ) in (3.9).

We denote

T :=
{

j : P y j is feasible and x j is an optimal solution to P y j
}
. (3.10)

Let j ∈ T . By assumption (A1), we can take (λ j,1, . . . , λ j,m) ∈ R
m+, (α j , β j ) ∈ ∂ f (x j , y j )

and (ξ j,i , η j,i ) ∈ ∂gi (x j , y j ) (i = 1, . . . , m) such that (3.7) holds. Applying Proposition 2.3,
there exist β j ∈ R

p and η j,i ∈ R
p (i = 1, . . . , m) such that (3.8) holds. Then we set

ξ j := (ξ j,1, . . . , ξ j,m) and η j := (η j,1, . . . , η j,m).

We consider the following MILP:

(MΣ)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minimize
x, y, θ

θ

subject to f (x j , y j ) + (α j , β j )
T

(
x − x j

y − y j

)

≤ θ ∀ j ∈ T,

g(x j , y j ) + (ξ j , η j )
T

(
x − x j

y − y j

)

≤ 0 ∀ j ∈ T,

x ∈ X, y ∈ Σ discrete variable.

(3.11)
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By virtue of Theorem 3.1, we obtain the following theorem on the equivalence of problem
(P) of (1.1) and MILP (MΣ) of (3.11).

Theorem 3.2 Assmue that MINLP problem (P) of (1.1) satisfies assumption (A1). Then
MILP (MΣ) of (3.11) are equivalent to problem (P) in the sense that both have the same
optimal value and that the optimal solution (x̄, ȳ) to problem (P) corresponds to the optimal
solution (x̄, ȳ, θ̄ ) to (MΣ) of (3.11) with θ̄ = f (x̄, ȳ).

For completely reformulating the problem (P), it remains to provide an appropriate rep-
resentation of constraint y ∈ Y\Σ by supporting hyperplanes. Along the lines in [2,8], we
are inspired to study infeasible subproblems so as to eliminate those discrete variables that
give rise to infeasibility.

Let yl ∈ Y\Σ . Then subproblem P yl is infeasible; that is,

�x ∈ X satisfying gi (x, yl) ≤ 0 for all i = 1, . . . , m.

Let Jl be one subset of {1, . . . , m} such that there is some x̂ ∈ X satisfying

gi (x̂, yl) < 0, ∀i ∈ Jl . (3.12)

Denote J⊥
l := {1, . . . , m}\Jl the complement of Jl . To detect the infeasibility, we study the

following subproblem F yl :

F yl

⎧
⎪⎪⎨

⎪⎪⎩

minimize
x

∑

i∈J⊥
l

[gi (x, yl)]+
subject to gi (x, yl) ≤ 0 ∀i ∈ Jl ,

x ∈ X,

(3.13)

where [gi (x, yl)]+ := max{gi (x, yl), 0}.
Since X is compact and gi for i = 1, . . . , m are continuous, then the optimal solution to

subproblem F yl exists. Thus we can assume that xl is one optimal solution to subproblem
F yl . For convenience to state the process, we divide the set J⊥

l into three disjoint subsets
which are denoted by J 1

l , J 2
l and J 3

l . These three subsets are defined as
⎧
⎨

⎩

J 1
l := {i ∈ J⊥

l : gi (xl , yl) = 0},
J 2

l := {i ∈ J⊥
l : gi (xl , yl) > 0},

J 3
l := {i ∈ J⊥

l : gi (xl , yl) < 0}.
(3.14)

This means that J⊥
l = J 1

l ∪ J 2
l ∪ J 3

l and by using continuity of gi , one has

∂[gi (·, yl)]+(xl) = ∂gi (·, yl)(xl), ∀i ∈ J 2
l and ∂[gi (·, yl)]+(xl) = {0}, ∀i ∈ J 3

l .

By (3.12) and KKT condition, there exist λl,i ∈ R for all i ∈ Jl such that
⎧
⎪⎪⎨

⎪⎪⎩

0 ∈ ∑

i∈J⊥
l

∂[gi (·, yl)]+(xl) + ∑

i∈Jl

λl,i∂gi (·, yl)(xl) + N (X, xl),

λl,i gi (xl , yl) = 0, ∀i ∈ Jl ,

λl,i ≥ 0, ∀i ∈ Jl .

(3.15)

Denote λl,i ≡ 1 for all i ∈ J 2
l and λl,i ≡ 0 for all i ∈ J 3

l . Using Proposition 2.4, there exist
λl,i ∈ [0, 1](∀i ∈ J 1

l ) and ξl,i ∈ ∂gi (·, yl)(xl)(∀i ∈ J⊥
l ∪ Jl) such that

−
∑

i∈J⊥
l ∪Jl

λl,iξl,i ∈ N (X, xl). (3.16)
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By virtue of Proposition 2.3, there exist ηl,i ∈ R
p such that (ξl,i , ηl,i ) ∈ ∂gi (xl , yl) for all

i ∈ J⊥
l ∪ Jl .

Since subproblem P yl is infeasible, then there exists one optimal solution xl to subproblem
F yl such that

∑
i∈J⊥

l
[gi (xl , yl)]+ > 0, by the continuity of gi and compactness of X . This

gives the following theorem on subproblem F yl . The proof is also given in Section 5.

Theorem 3.3 The discrete variable yl ∈ Y\Σ is infeasible to the following constraint:

⎧
⎨

⎩

gi (xl , yl) + (ξl,i , ηl,i )
T

(
x − xl

y − yl

)

≤ 0, ∀i ∈ J⊥
l ∪ Jl ,

x ∈ X, y ∈ Y.

(3.17)

It is necessary to ensure that discrete variables that produce infeasible subproblems are
also infeasible in the reformulated master program. We denote

S := {
l : P yl is infeasible and xl solves F yl

}
. (3.18)

For any l ∈ S, take λl,i ≥ 0 and ξl,i ∈ ∂gi (·, yl)(xl)(i = 1, . . . , m) such that (3.16) holds.
Take ηl,i ∈ R

p such that (ξl,i , ηl,i ) ∈ ∂gi (xl , yl) for any i ∈ {1, . . . , m} by Proposition 2.3.
We set ξl := (ξl,1, . . . , ξl,m) and ηl := (ηl,1, . . . , ηl,m). Then by using Theorem 3.3, we have
the following theorem which shows how to eliminate those discrete variables giving rise to
infeasible subproblems.

Theorem 3.4 For any l ∈ S, let (ξl , ηl) be defined as above. Then the following constraints

⎧
⎨

⎩

g(xl , yl) + (ξl , ηl)
T

(
x − xl

y − yl

)

≤ 0, ∀l ∈ S,

x ∈ X, y ∈ Y
(3.19)

exclude all discrete variables yl ∈ Y for which subproblem P yl is infeasible.

It is known from Theorem 3.4 that we can add linearization from F yl when subproblem
P yl is infeasible so as to correctly represent the constraints y ∈ Σ in (3.3). This gives rise
to the MILP master program (MP) which is equivalent to MINLP problem (P) in (1.1) and
used to reformulate problem (P).

Let T and S be defined as (3.10) and (3.18), respectively. For any j ∈ T , by assumption
(A1), we can take λ j,i ≥ 0 (i = 1, . . . , m), α j ∈ ∂ f (·, y j )(x j ) and ξ j,i ∈ ∂gi (·, y j )(x j )(i =
1, . . . , m) such that (3.7) holds, and by Proposition 2.3, we take β j ∈ R

p and η j,i ∈ R
p(i =

1, . . . , m) such that (3.8) holds. We set

ξ j := (ξ j,1, . . . , ξ j,m) and η j := (η j,1, . . . , η j,m).

For any l ∈ S, we take λl,i ≥ 0 and ξl,i ∈ ∂gi (·, yl)(xl)(i = 1, . . . , m) such that (3.16) holds
and by Proposition 2.3, we take ηl,i ∈ R

p such that (ξl,i , ηl,i ) ∈ ∂gi (xl , yl). Set

ξl := (ξl,1, . . . , ξl,m) and ηl := (ηl,1, . . . , ηl,m).
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The MILP master problem (MP) is given as follows:

(MP)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
x, y, θ

θ

subject to f (x j , y j ) + (α j , β j )
T

(
x − x j

y − y j

)

≤ θ ∀ j ∈ T,

g(x j , y j ) + (ξ j , η j )
T

(
x − x j

y − y j

)

≤ 0 ∀ j ∈ T,

g(xl , yl) + (ξl , ηl)
T

(
x − xl

y − yl

)

≤ 0 ∀l ∈ S,

x ∈ X, y ∈ Y discrete variable.

(3.20)

The following theorem, immediate from Theorems 3.3 and 3.4, is one main result in the
procedure of reformulating MINLP problem (P) of (1.1) as the equivalent MILP master
program (MP).

Theorem 3.5 Assume that MINLP problem (P) of (1.1) satisfies assumption (A1). Then
master program (MP) of (3.20) is equivalent to problem (P) in the sense that both problems
have the same optimal value and that the optimal solution (x̄, ȳ) to problem (P) corresponds
to the optimal solution (x̄, ȳ, θ̄ ) to (MP) of (3.20) with θ̄ = f (x̄, ȳ).

Remark 3.1 Theorem 3.5 is one extension of main results given in [8,23], and it generalizes
the outer approximation method in the sense of equivalently reformulating convex MINLP
problem (P) from differentiable case to the non-differentiable one. Further, it is known from
Theorem 3.5 that all optimal solutions of problem (P) are optimal solutions tomaster program
(MP). However, the converse is not necessarily true since some optimal solutions of (MP)
may be infeasible to problem (P). We refer the reader to [2, Example 1] and [23, Remark3.1]
for the detail.

Theorem 3.5 shows that some subgradients obtained from the KKT conditions enable to
reformulate MINLP problem (P) as an equivalent MILP master program by outer approx-
imation method. However, this procedure is not valid if arbitrary subgradients are chosen
to replace gradients. The following example demonstrates that the substitution of the gra-
dient by an arbitrary subgradient in the outer approximation method is insufficient for the
equivalent reformulation.

Example 3.1 We consider the following convex MINLP problem:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize
x, y

f (x, y) := x + y

subject to g1(x, y) := max{−x + y + 1, x − y + 1} ≤ 0,
g2(x, y) := x − y ≤ 0,
x ∈ [0, 2], y ∈ {1, 2, 3}.

(3.21)

One can verify that this convex MINLP in (3.21) is infeasible. However, let the initial point
y0 = 1. Then subproblem P y0 is infeasible and we can consider the following subproblem
F y0 : ⎧

⎨

⎩

minimize
x

[g1(x, y0)]+ = g1(x, y0)

subject to g2(x, y0) ≤ 0,
x ∈ [0, 2].

(3.22)

It is easy to verify that x0 = 1 is the optimal solution to subproblem F y0 and

[−1, 1] × [−1, 1] ⊂ ∂g1(x0, y0).
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Now, if we take (ξ0,1, η0,1) = (1, 1) ∈ ∂g1(x0, y0), (ξ0,2, η0,2) = �g2(x0, y0) and
(α0, β0) = � f (x0, y0), then the MILP is defined as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize
x, y, θ

θ

subject to x + y ≤ θ,

x + y − 1 ≤ 0,
x − y ≤ 0,
x ∈ [0, 2], y ∈ {1, 2, 3}.

(3.23)

The optimal solution to MILP in (3.23) is (x, y, θ) = (0, 1, 1). This means that the outer
approximation method for this MINLPmay generate an infinite loop between points (x0, y0)
and (0, 1). Thus the outer approximation method is invalid for thisMINLP problem in (3.21).
Further, when tracking down why this method is not valid here, the reason noticed is that the
KKT conditions at (x0, y0) for (ξ0,1, η0,1) does not hold; that is,

�(λ0,1, λ0,2) ∈ R
2+ satisfying � f (x0, y0) + λ0,1(ξ0,1, η0,1) + λ0,2�g2(x0, y0) = 0.

3.2 The algorithm

In this subsection, based on the solution ofMILPmaster program (MP) in (3.20), we paymain
attention to one outer approximation algorithm for finding the optimal solution of problem
(P) in (1.1) along the line in [5,8,23].

At iteration k, the sets T and S in master program (MP) of (3.20) are substituted by the
sets T k and Sk respectively which are defined as

{
T k := { j ≤ k : P y j is feasible and x j solves P y j },
Sk := {l ≤ k : P yl is infeasible and xl solves F yl }. (3.24)

If k ∈ T k then xk solves P yk and there exist (αk, βk) ∈ R
n × R

p and (ξk,i , ηk,i ) ∈ R
n × R

p

for all i = 1, . . . , m such that

⎧
⎪⎪⎨

⎪⎪⎩

−αk −
m∑

i=1
λk,iξk,i ∈ N (X, xk) for some (λk,1 . . . , λk,m) ∈ R

m+,

(αk, βk) ∈ ∂ f (xk, yk),

(ξk,i , ηk,i ) ∈ ∂gi (xk, yk), ∀i = 1, . . . , m.

(3.25)

If k ∈ Sk then xk solves F yk and there exist (ξk,i , ηk,i ) ∈ R
n × R

p for all i = 1, . . . , m such
that ⎧

⎨

⎩

−
m∑

i=1
λk,iξk,i ∈ N (X, xk) for some (λk,1 . . . , λk,m) ∈ R

m+,

(ξk,i , ηk,i ) ∈ ∂gi (xk, yk), ∀i = 1, . . . , m.

(3.26)

Set

ξk := (ξk,1, . . . , ξk,m) and ηk := (ηk,1, . . . , ηk,m).

To prevent discrete variable assignment y j (for any j ∈ T k) from being the solution to the
relaxed master program, it is necessary to define U B Dk := min{ f (x j , y j ) : j ∈ T k} and
add a constraint θ < U B Dk to the master program. This gives rise to the following relaxed
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master program M Pk :

M Pk

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
x, y, θ

θ

subject to θ < U B Dk

f (x j , y j ) + (α j , β j )
T

(
x − x j

y − y j

)

≤ θ ∀ j ∈ T k,

g(x j , y j ) + (ξ j , η j )
T

(
x − x j

y − y j

)

≤ 0 ∀ j ∈ T k,

g(xl , yl) + (ξl , ηl)
T

(
x − xl

y − yl

)

≤ 0 ∀l ∈ Sk,

x ∈ X, y ∈ Y discrete variable.

(3.27)

The new discrete variable assignment yk+1 can be obtain by solving M Pk and the whole
process is repeated iteratively until the relaxed master program is infeasible.

We are now in a position to state the outer approximation algorithm for solving problem
(P) in detail.

Algorithm 1 (Outer Approximation Algorithm)

1: Initialization. Given an initial y0 ∈ Y , set T 0 = S0 := ∅, U B D0 := ∞ and let k := 1
2: for k = 1, 2, . . . , do
3: Solve subproblem P yk

4: if P yk is feasible then
5: Choose one solution xk of P yk

Choose (αk , βk ) and ξk := (ξk,1, . . . , ξk,m ), ηk := (ηk,1, . . . , ηk,m ) as in (3.25)
Set T k := T k−1 ∪ {k}, Sk := Sk−1 and U B Dk := min{U B Dk−1, f (xk , yk )}

6: else
7: Solve subproblem F yk and choose one solution xk of F yk

Choose ξk := (ξk,1, . . . , ξk,m ), ηk := (ηk,1, . . . , ηk,m ) as in (3.26)
Set Sk := Sk−1 ∪ {k}, T k := T k−1 and U B Dk := U B Dk−1

8: end if
9: Solve the relaxation M Pk and obtain a new discrete variable yk+1

Set k := k + 1 and go back to line 3
10: end for

Under the assumption of finite cardinality of discrete variable subset Y , the following
theorem shows Algorithm 1 can detect feasibility or infeasibility of problem (P) in (1.1) and
the procedure in Algorithm 1 terminates after a finite number of steps. The proof is also given
in Sect. 5.

Theorem 3.6 Suppose that MINLP problem (P) in (1.1) satisfies assumption (A1) and the
cardinality of Y is finite. Then either problem (P) is infeasible or Algorithm 1 terminates in
a finite number of steps at an optimal value of problem (P).

4 Conclusions

This paper is mainly devoted to the study of one convex MINLP in which objective and con-
straint functions are continuous and non-differentiable. With no differentiability assumption,
subgradients of objective and constraint functions, the substitute of gradients in convex and
smooth MINLP, are chosen from the KKT conditions and used to reformulate the MINLP
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problem as one equivalent mixed-integer linear program. A counterexample shows that the
chosen subgradients, if not satisfying KKT conditions, may be invalid for theMILP reformu-
lation, which demonstrates the necessity of KKT conditions in the equivalent reformulation.
By solving a finite sequence of subproblems and relaxed MILP problems, one outer approx-
imation algorithm for this convex MINLP is presented to find the optimal solution of the
problem. The finite convergence of the algorithm is also proved. The work of this paper is
the extension of references [5,8,23] and also generalizes outer approximation method in the
sense of dealing with convex MINLP from differentiable case to the non-differentiable one.
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5 Appendix: Proofs of Theorems 3.1, 3.3 and 3.6

In this section, we present the proofs of several key results in Section 3.

Proof of Theorem 3.1 To prove Theorem 3.1, it suffices to show that

(α j , β j )
T

(
x − x j

0

)

≥ 0, ∀x ∈ X with g(x j , y j ) + (ξ j , η j )
T

(
x − x j

0

)

≤ 0. (5.1)

Let x ∈ X be such that

g(x j , y j ) + (ξ j , η j )
T

(
x − x j

0

)

≤ 0

and let I (x j ) be defined as (3.6). Then

〈ξ j,i , x − x j 〉 ≤ 0,∀i ∈ I (x j ). (5.2)

By using (3.7), there exists γ ∈ N (X, x j ) such that

α j +
∑

i∈I (x j )

λ j,iξ j,i + γ = 0. (5.3)

Noting that X is convex, it follows that x − x j ∈ T (X, x j ). This together with (5.2) and (5.3)
implies that

(α j , β j )
T

(
x − x j

0

)

= 〈α j , x − x j 〉 = −
〈 ∑

i∈I (x j )

λ j,iξ j,i + γ, x − x j

〉
≥ 0.

Hence (5.1) holds. The proof is complete. ��
Proof of Theorem 3.3 Since X is compact and g is continuous, then one has

∑

i∈J⊥
l

[gi (xl , yl)]+ > 0. (5.4)

Suppose to the contrary that there exists x̂ ∈ X such that (x̂, yl) is feasible to the constraint
of (3.17). Then

gi (xl , yl) + 〈ξl,i , x̂ − xl〉 ≤ 0, ∀i ∈ J⊥
l ∪ Jl . (5.5)
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Noting that x̂ − xl ∈ T (X, xl) by the convexity of X , it follows from (3.16) that there exists
γ ∈ N (X, xl) such that ∑

i∈J 1
l ∪J 2

l ∪J 3
l

λl,iξl,i + γ = 0, (5.6)

where λl,i ≡ 1 for all i ∈ J 2
l and λl,i ≡ 0 for all i ∈ J 3

l . By multiplying (5.5) by λl,i for any
i ∈ J 1

l ∪ J 2
l ∪ J 3

l , it follows from (5.6) that

0 ≥
∑

i∈J 1
l ∪J 2

l

λl,i gi (xl , yl) +
〈 ∑

i∈J 1
l ∪J 2

l ∪Jl

λl,iξl,i + γ, x̂ − xl

〉

≥
∑

i∈J 2
l

gi (xl , yl) =
∑

i∈J⊥
l

[gi (xl , yl)]+

as x̂ − xl ∈ T (X, xl) and λl,i gi (xl , yl) = 0(∀i ∈ Jl), which contradicts (5.4). The proof is
complete. ��

Proof of Theorem 3.6 (This is similar to the proof for [23, Theorem 3.6]. For the sake of
completeness, we provide the proof in brief.)

For the proof of Theorem 3.6, we first prove that there is no discrete variable in Y generated
more than once by Algorithm 1. Granting this, it follows from the finite cardinality of Y that
the termination of Algorithm 1 holds after a finite number steps.

At iteration k, let (x̂, ŷ, θ̂ ) be an optimal solution to the relaxed master program M Pk . By
virtue of Theorem 3.4, one can verify that ŷ = yl for all l ∈ Sk . Suppose to the contrary that
ŷ = y jk for some jk ∈ T k . Then (x̂, y jk , θ̂ ) solves the relaxed master program M Pk and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̂ < U B Dk ≤ f (x jk , y jk ),

f (x jk , y jk ) + (α jk , β jk )
T

(
x̂ − x jk

0

)

≤ θ̂ ,

g(x jk , y jk ) + (ξ jk , η jk )
T

(
x̂ − x jk

0

)

≤ 0.

(5.7)

By using (5.1) in the proof of Theorem 3.1, one has

(α jk , β jk )
T

(
x̂ − xl

0

)

≥ 0.

This and (5.7) imply that f (x jk , y jk ) ≤ θ̂ , which contradicts θ̂ < f (x jk , y jk ) in (5.7). Hence
ŷ = y j for all j ∈ Tk . This means that ŷ is distinct from any y j for all j ∈ T k ∪ Sk .

Now suppose that the relaxed master program M Pk is infeasible for some k. Then Algo-
rithm 1 terminate at k-th step. Let ρ denote the optimal value of MINLP problem (P). If there
is some j ∈ T k−1 such that f (x j , y j ) = ρ, then the conclusion holds. Next, we assume
that f (x j , y j ) > ρ for all j ∈ T k−1. Then U B Dk−1 > ρ and k ∈ T k (otherwise, k ∈ Sk ,
U B Dk = U B Dk−1 by Algorithm 1 and consequently M Pk is feasible, a contradiction).
Thus subproblem P yk is feasible and f (xk, yk) ≥ ρ.

Suppose to the contrary that f (xk, yk) > ρ. If f (xk, yk) ≤ U B Dk−1, then ρ <

f (xk, yk) = U B Dk and M Pk is feasible, a contradiction. If f (xk, yk) > U B Dk−1

then ρ < U B Dk−1 = U B Dk and thus M Pk is feasible, a contradiction. This means
f (xk, yk) = ρ. The proof is complete. ��
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