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Abstract In this paper, some characterizations of nonemptiness and boundedness of solution
sets for vector variational inequalities are studied in finite and infinite dimensional spaces,
respectively. By using a new proof method which is different from the one used in Huang
et al. (J Optim Theory Appl 162:548–558 2014), a sufficient and necessary condition for
the nonemptiness and boundedness of solution sets is established. Basing on this result,
some new characterizations of nonemptiness and boundedness of solution sets for vector
variational inequalities are proved. Compared with the known results in Huang et al. (2014),
the key assumption that K∞ ∩ (F(K ))w◦

C = {0} is not required in finite dimensional spaces.
Furthermore, the corresponding result of Huang et al. (2014) is extended to the case of infinite
dimensional spaces. Some examples are also given to illustrated the main results.
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1 Introduction

The concept of vector variational inequality (VVI), which was first introduced by Giannessi
[2] in finite dimensional spaces, has wide applications in many problems such as finance,
economics, transportation, optimization, operations research and engineering sciences. It is
known that (VVI) is closely related to vector optimization problem (VOP). In recent years,
various kinds of vector variational inequalities (VVIs) and vector optimization problems
(VOPs) have been intensively studied in a general setting by many authors, see for example
[2–8] and the references therein. An important and interesting topic for (VVIs) and (VOPs)
is to study the nonemptiness and boundedness properties of solution sets, because it is an
important condition to guarantee the convergence of some algorithms for solving monotone-
type variational inequalities and optimization problems.

Some authors have studied the characterizations of nonemptiness and boundedness of
solution sets for (VVIs) and (VOPs) by using the asymptotic analysis methods. For instance,
Hu and Fang [9] investigate conditions for nonemptiness and compactness of the solution
sets of pseudomonotone (VVIs) in finite dimensional spaces. Deng [10,11] presents various
characterizations of the nonemptiness and boundedness of solution sets of convex (VOP)
in finite dimensional spaces and reflexive Banach spaces, respectively. Huang et al. [12]
characterize the nonemptiness and compactness of solution set of convex (VOP) with cone
constraints in terms of the level-boundedness of the component functions of the objective
on the perturbed sets of the original constraint set. For more related works, we refer the
readers to [13–15] and the references therein. On the other hand, several characterizations of
nonemptiness and compactness of the solution sets for vector equilibrium problems (V EPs),
which include (VVIs) and (VOPs) as special cases, have been studied in [16,17].

Flores-Bazán and Vera [18] show that the characterization of the nonemptiness and com-
pactness of solution sets for convex (VOP) can be expressed by that of the nonemptiness and
compactness of the solution sets of a family of scalar optimization problems. This character-
ization is different with those obtained in the works mentioned above. Then it is natural and
interesting to ask whether a parallel result of Flores-Bazán and Vera [18] still hold true for
(VVIs).

Huang et al. [1] consider this problem in finite dimensional spaces and answer that the
nonemptiness and compactness of the solution sets for (VVI) can also be characterized in
termsof the nonemptiness and compactness of the solution sets of a family of scalar variational
inequalities, but a much stringent assumption of K∞ ∩ (F(K ))w◦

C = {0} is indispensable.
Inspired and motivated the papers [1] and [18], we further study the the nonemptiness and

compactness of solution sets for VVI in finite and infinite dimensional spaces, respectively.
First, in finite dimensional spaces, by using the connectedness property of C∗0, we show
that the characterization of nonemptiness and compactness of solution set for VVI can be
expressed as that of nonemptiness and boundedness of solution sets for a family of scalar
variational inequalities, without the key assumption that K∞ ∩ (F(K ))w◦

C = {0} required in
[1]. Then,we extend this characterization of nonemptiness and compactness to case of infinite
dimensional spaces, under some suitable assumptions. Compared with the precious results
obtained in [1], our results don’t require the key assumption that K∞ ∩ (F(K ))w◦

C = {0}.
Furthermore, we would like to point out that the proof method here, which based on the
connectedness property of C∗0, is topological and different with the previous methods of
asymptotic analysis in [1] and [18] for the problems of (VVIs) and (VOPs).

The paper is organized as follows. In Sect. 2, we introduce some basic notations and pre-
liminary results. In Sect. 3, by using a topological method, we establish the nonemptiness and
compactness of solution set for (VVI) in finite and infinite dimensional spaces, respectively.
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2 Preliminaries

Throughout this paper, unless otherwise specified, we always assume that X is a reflexive
Banach space with dual space X∗, Y is a normed space with dual space Y ∗ and C ⊂ Y is a
closed, convex and pointed cone with intC �= ∅, where intC denotes the interior of C in Y .
Let e ∈ intC be any given point. We define the dual cone C∗ of C by

C∗ := {
x∗ ∈ Y ∗ : 〈x∗, x〉 ≥ 0, ∀x ∈ C

}

and the set C∗0 with respect to C∗ by

C∗0 := {
x∗ ∈ C∗ : 〈x∗, e〉 = 1

}
.

Clearly, C∗0 is a convex subset of C∗ and so is path-connected and connected. Moreover,
Lemma 3.4 of [1] showed that C∗0 is a w∗-compact base of C∗. As defined in Definition 3.1
of [1], a subset D1 ⊂ C∗ is said to be a base of C∗ iff, 0 /∈ D1 and C∗ ⊂ ∪t≥0t D1.

Let K ⊂ X be a nonempty, closed and convex subset and F : K → 2L(X,Y ) be a set-valued
mapping, where L(X, Y ) denotes the family of all continuous linear mappings from X to Y .
Consider the following set-valued vector variational inequality associated with (K , F):

VVI(K , F) find x ∈ K and u ∈ F(x) such that 〈u, y − x〉 /∈ −intC, ∀y ∈ K .

Correspondingly, consider the scalar variational inequality associated with (K , F) and
ξ ∈ C∗0:

(VI)ξ (K , F) find x ∈ K and u ∈ F(x) such that 〈ξ(u), y − x〉 ≥ 0, ∀y ∈ K

and the dual variational inequality of (VI)ξ (K , F) which is defined as

(DVI)ξ (K , F) find x ∈ K such that 〈ξ(v), y − x〉 ≥ 0, ∀y ∈ K , v ∈ F(y).

We denote the solution sets of (VVI)(K , F), (VI)ξ (K , F) and (DVI)ξ (K , F) by
SVVI(K , F), SVIξ (K , F) and SDVIξ (K , F), respectively. In view of Theorem 2.1 of [7],
it is known that

SVVI(K , F) =
⋃

ξ∈C∗0
SVIξ (K , F).

Now we introduce some basic notations in convex analysis. The recession cone of K is
defined by

K∞ :=
{
d ∈ X : ∃tk → +∞, xk ∈ K such that

xk
tk

⇀ d

}
.

From [19], we know that K∞ can also be determined by the following formula

K∞ := {d ∈ X : x0 + td ∈ K ,∀t > 0, ∀x0 ∈ K }.
The negative polar cone K− of K is defined by

K− := {
x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0, ∀x ∈ K

} = −K ∗.

The barrier cone of K is defined by

barr(K ) :=
{
x∗ ∈ X∗ : sup

x∈K
〈
x∗, x

〉
< ∞

}
.
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A nonempty subset K ⊂ X is said to be well-positioned if, there exist x0 ∈ X and g ∈ X∗
such that

〈g, x − x0〉 ≥ ‖x − x0‖, ∀x ∈ K .

In view of Theorem 2.1 of [20], it is showed that K is well-positioned if and only if
int (barr(K )) �= ∅. Also, some other characterizations of the class of well-positioned sets
are presented in [20]. In the following, we illustrate an example in infinite dimensional spaces
including a well-positioned set, which can be founded in [21].

Example 2.1 Let X be a normed space with dual space X∗. The well-known Bishop-Phelps
cone Kg in functional analysis and optimization theory with respect to g ∈ X∗, is defined
by

Kg := {x ∈ X : 〈g, x〉 ≥ ‖x‖} .

Then, for any nonempty subset K ⊂ X with 0 ∈ K and K ⊂ Kg , we know K is well-
positioned in X .

From Example 2.1, it is easy to see that the following cone K of l2, defined by

K := {
x = (η1, η2, . . . , ηn, . . .) ∈ l2 : 2η1 ≥ ‖x‖} ,

is well-positioned, by taking g = (2, 0, 0, . . .) ∈ (l2)∗ = l2. Also, any nonempty subset
K1 ⊂ K is well-positioned.

The following lemma which follows from Proposition 2.1 of [20] plays an important role
in our proof.

Lemma 2.1 If a nonempty, closed and convex subset K ⊂ X is well-positioned (or
int (barr(K )) �= ∅), then there exists no sequence {xn} ⊂ K with ‖xn‖ → ∞ such that
xn‖xn‖ ⇀ 0.

Using Lemma 2.1, now we illustrate an example in infinite dimensional spaces which is
not a well-positioned set, which can be founded in [14].

Example 2.2 Let X = l2 and K = {x = (η1, η2, . . . , ηn, . . .) ∈ l2 : |ηn | ≤ n,∀n ∈ N }.
We show that K is not a well-positioned set in l2. Suppose to the contrary that K is a
well-positioned set. Taking xn = nen ∈ K , where en has 1 on the n-th coordinate and zeros
elsewhere. Clearly, we have ‖xn‖ = n and xn‖xn‖ = en . Since en ⇀ 0, it follows that xn‖xn‖ ⇀ 0,

which is a contradiction with Lemma 2.1. Therefore, K is not a well-positioned set in l2.

In [17], the authors propose the concepts of weak and strong C-polar cones associated
with a set L ⊂ L(X, Y ), which are defined by

Lw◦
C := {x ∈ X : 〈l, x〉 /∈ intC, ∀l ∈ L}

and

Ls◦
C := {x ∈ X : 〈l, x〉 ∈ −C, ∀l ∈ L},

respectively. Theweak and strongC-polar cones are useful to discuss the solvability of vector
variational inequalities [9] and vector equilibrium problems [17].

Definition 2.1 Let F : K → 2L(X,Y ) be a set-valued mapping with nonempty values and
C ⊂ Y is a closed, convex and pointed cone with intC �= ∅. F is said to be
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(i) C-monotone on K iff, for any (x, u), (y, v) ∈ graph(F), one has

〈v − u, y − x〉 ∈ C;
(ii) C-pseudomonotone on K iff, for any (x, u), (y, v) ∈ graph(F), one has

〈u, y − x〉 /∈ −intC ⇒ 〈v, y − x〉 ∈ C;
(iii) scalar C-pseudomonotone on K iff, for any ξ ∈ C∗ \ {0} and for any (x, u), (y, v) ∈

graph(F), one has

〈ξ(u), y − x〉 ≥ 0 �⇒ 〈ξ(v), y − x〉 ≥ 0.

Remark 2.1 (i) Obviously, a C-monotone mapping is scalar C-pseudomonotone.
(ii) A scalar C-pseudomonotone mapping is weaker than C-pseudomonotone mapping.

Indeed, for any ξ ∈ C∗\{0} and for any (x, u), (y, v) ∈ graph(F) satisfying 〈ξ(u),

y − x〉 ≥ 0, we have 〈u, y − x〉 /∈ −intC and so 〈v, y − x〉 ∈ C, which yields that
〈ξ(v), y − x〉 ≥ 0.

Definition 2.2 A topological space E is said to be connected iff, it is not the union of two
disjoint nonempty open sets. Moreover, E is said to be path-connected iff, any two points of
E can be joined by a path.

The following lemma, which gives an equivalent characterization of connected spaces,
plays an important role in our proof.

Lemma 2.2 A topological space E is connected if and only if the only subsets of E which
are both open and closed are E and ∅ (empty set).

Definition 2.3 Let F : K → 2L(X,Y ) be a set-valued mapping with nonempty values. F is
said to be

(i1) upper semicontinuous on K iff, for every x ∈ K and every neighborhood N (F(x)) of
F(x), there exists a neighborhood N (x) of x such that F(N (x)) ⊂ N (F(x));

(ii) lower semicontinuous on K iff, for every x ∈ K , u ∈ F(x) and every neighborhood
N (u) of u, there exists a neighborhoodN (x) of x such that F(x ′)∩N (u) �= ∅ for every
x ′ ∈ N (x).

The following lemma, which establishes the nonemptiness and boundedness property of
solution set for scalar variational inequality V Iξ (K , F), is due to Theorem 3.2 of [14].

Lemma 2.3 Let X be a reflexive Banach space, Y be a norm space and K ⊂ X be a
nonempty, closed and convex subset with int (barr(K )) �= ∅. Let ξ ∈ C∗0 be any given
point. Let F : K → 2L(X,Y ) be a set-valued mapping with nonempty, compact and convex
values. Suppose that F is scalar pseudomonotone and upper semicontinuous on K . Then the
following two conclusions are equivalent:

(i) SV Iξ (K , F) is nonempty and bounded;
(ii) K∞ ∩ [ξ(F(K ))]− = {0}.
Particularly, if X is finite dimensional, then the condition that int (barr(K )) �= ∅ can be
omitted.

In finite dimensional spaces case, Huang et al. [1] show that the nonemptiness and bound-
edness property of solution set for VV I (K , F) can be characterized by that of a family of
scalar variational inequalities. We list some main results as follows (see Theorems 3.1 and
3.3 of [1]).
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Lemma 2.4 Let K ⊂ R
n be a nonempty, closed and convex subset and Y be a norm space.

Let F : K → 2L(Rn ,Y ) be a set-valued mapping with nonempty, compact and convex values.
Suppose that F is scalar pseudomonotone and upper semicontinuous on K . Consider the
following two statements:

(i) for any ξ ∈ C∗0, SV Iξ (K , F) is nonempty and compact;
(ii) SV V I (K , F) is nonempty and compact.

Then (i)⇒(ii). If in addition that K∞ ∩ (F(K ))w◦
C = {0}, then (i)⇔(ii).

Remark 2.2 In the proof of [1], the assumption that K∞ ∩ (F(K ))w◦
C = {0} is indispensable

to ensure the equivalence between (i) and (ii).

The following lemma shows that the condition of
⋃

ξ∈C∗0(K∞ ∩ [ξ(F(K ))]−) = {0} is
weaker than that of K∞ ∩ (F(K ))w◦

C = {0}.
Lemma 2.5 The following conclusions hold:

(i)
⋃

ξ∈C∗0 [ξ(F(K ))]− ⊂ (F(K ))w◦
C ;

(ii) K∞ ∩ (F(K ))w◦
C = {0} ⇒ ⋃

ξ∈C∗0(K∞ ∩ [ξ(F(K ))]−) = {0}.
Proof (i) For any d /∈ (F(K ))w◦

C , there exists some x0 ∈ K and y0 ∈ F(K ) such that

〈y0, d〉 ∈ int C.

Then, for any ξ ∈ C∗0, we have 〈ξ(y0), d〉 > 0 and so

d /∈
⋃

ξ∈C∗0
[ξ(F(K ))]−,

which implies that
⋃

ξ∈C∗0 [ξ(F(K ))]− ⊂ (F(K ))w◦
C .

(ii) The conclusion (ii) follows directly from (i). This complete the proof. ��
The following example shows that the inclusion

⋃
ξ∈C∗0 [ξ(F(K ))]− ⊂ (F(K ))w◦

C in
Lemma 2.5 may be proper and the inverse of implication (ii) may not be true.

Example 2.3 Let

X = R, K = R
+, C = R

2+, e = (1, 1) ∈ int C, F(x) =
{

(0, 1 − x), 0 ≤ x ≤ 1,
(x − 1, 0), x > 1.

Then C∗0 = {(x1, x2) : x1 + x2 = 1, x1, x2 ≥ 0}. By a simple computation, we have
⋃

ξ∈C∗0
[ξ(F(K ))]− = (−∞, 0]

and (F(K ))w◦
C = R, which shows the inclusion in (i) may be strict.

Moreover, since K∞ = R
+, we obtain that
⋃

ξ∈C∗0
(K∞ ∩ [ξ(F(K ))]−) = {0}

and

K∞ ∩ (F(K ))w◦
C = R

+,

which means the reverse implication in (ii) is not true.
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3 Nonemptiness and boundedness of solution sets for (VVI)

In this section, we study the characterizations of nonemptiness and boundedness of solution
sets for VV I (K , F) in finite and infinite dimensional spaces, respectively.

First, when the space X is finite dimensional, we obtain the following Theorem 3.1,
which shows that the characterization of nonemptiness and boundedness of solution set for
VV I (K , F) can be expressed as that of nonemptiness and boundedness of solution sets for
a family of scalar variational inequality, without the assumption that K∞ ∩ (F(K ))w◦

C = {0}.
Theorem 3.1 Let X be a finite dimensional space and K be a closed convex subset of X.
Let Y be a normed space. Let F : K → 2L(X,Y ) be scalar C-pseudomonotone and upper
semicontinuous with nonempty, compact and convex values. Then SVVI(K , F) is nonempty
and bounded if and only if for any ξ ∈ C∗0, SVIξ (K , F) is nonempty and bounded.

Proof Suppose that for any ξ ∈ C∗0, SVIξ (K , F) is nonempty and bounded. Then for any
ξ ∈ C∗0, K∞ ∩ [ξ(F(K ))]− = {0}. We claim that SVVI(K , F) is nonempty and bounded.
The nonemptiness of SVVI(K , F) is obvious. We only need to claim that SVVI(K , F) is
bounded. Otherwise, there exists a sequence xn ∈ SVVI(K , F) such that ‖xn‖ → +∞.
Since xn ∈ SVVI(K , F), there exists un ∈ F(xn) such that

〈un, x − xn〉 /∈ −intC, ∀x ∈ K

and so there exists ξn ∈ C∗0 such that

〈ξn(un), x − xn〉 ≥ 0, ∀x ∈ K .

By the pseudomonotonicity of F , it follows that

〈ξn(v), x − xn〉 ≥ 0, ∀x ∈ K , v ∈ F(x)

and so 〈
ξn(v),

x

‖xn‖ − xn

‖xn‖
〉

≥ 0, ∀x ∈ K , v ∈ F(x). (3.1)

Since in finite dimensional spaces C∗0 is a w∗-compact base of C and ‖ xn
‖xn‖‖ = 1, without

loss of generality, we can assume that w∗-limn→∞ ξn = ξ0 ∈ C∗0 and limn→∞ xn
‖xn‖ = d ∈

K∞. Clearly, d �= 0. Letting n → ∞ in (3.1), we obtain that

〈ξ0(v), d〉 ≤ 0, ∀x ∈ K , v ∈ F(x)

and so
d ∈ K∞ ∩ (ξ0(F(K )))−.

Note that d �= 0, this is a contradiction with K∞ ∩ [ξ0(F(K ))]− = {0}.
Conversely. Suppose that SV V I (K , F) is nonempty and bounded, we claim that

SV Iξ (K , F) is nonempty and bounded for any ξ ∈ C∗0. Define a set A as follows

A := {
ξ ∈ C∗0 : SV Iξ (K , F) is nonempty and bounded

}
.

Clearly, A is nonempty and A ⊂ C∗0. We claim that A is both open and closed in C∗0. First,
we claim that A is open in C∗0. Otherwise, there exists ξ0 ∈ A and a sequence ξn ∈ C∗0
with ξn → ξ0 such that ξn /∈ A. This implies that

K∞ ∩ [ξn(F(K ))]− �= {0}
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and so there exists dn ∈ K∞ ∩ [ξn(F(K ))]− with ‖dn‖ = 1. Since ‖dn‖ = 1, without loss
of generality, we may assume that dn → d0 ∈ K∞\{0}. Since dn ∈ K∞ ∩ [ξn(F(K ))]−, we
have

〈dn, ξn(v)〉 ≤ 0, ∀x ∈ K , v ∈ F(x).

Letting n → ∞, we have

〈d0, ξ0(v)〉 ≤ 0, ∀x ∈ K , v ∈ F(x)

and so
d0 ∈ K∞ ∩ (ξ0(F(K )))−.

Note that d0 �= 0, we have SVIξ0(K , F) is not nonempty and bounded, which contradicts
with the fact that ξ0 ∈ A. Thus, the set A is open in C∗0.

Next, we claim that A is closed in C∗0. Let ξn ∈ A with ξn → ξ0. We claim that ξ0 ∈ A.
Since ξn ∈ A, we have SVIξn (K , F) is nonempty and bounded. Let xn ∈ SVIξn (K , F). Since
SVIξn (K , F) ⊂ SVVI(K , F) and SVVI(K , F) is bounded, clearly {xn} is bounded. Without
loss of generality, we may assume that xn → x0 ∈ K . Since xn ∈ SVIξn (K , F), there exists
xn ∈ K , un ∈ F(xn) and ξn ∈ C∗0 such that

〈ξn(un), x − xn〉 ≥ 0, ∀x ∈ K .

By the pseudomonotonicity of F , it follows that

〈ξn(v), x − xn〉 ≥ 0, ∀x ∈ K , v ∈ F(x)

Letting n → ∞, we yields that

〈ξ0(v), x − x0〉 ≥ 0, ∀x ∈ K , v ∈ F(x).

This implies that x0 is a solution of dual variational inequality (DVI)ξ0(K , F), i.e., x0 ∈
SDVIξ0(K , F) and so x0 ∈ SVIξ0(K , F) by Proposition 1 in [13]. Thus, SVIξ0(K , F) is
nonempty. Moreover, the boundedness of SVVI(K , F) implies that SVIξ0(K , F) is bounded.
This yields that ξ0 ∈ A and so A is closed in C∗0.

From the above discussion, we know that A ⊂ C∗0 and A is both open and closed in C∗0.
Since the base C∗0 of C is connected, from Lemma 2.2 we further obtain that A = C∗0,
which means that for any ξ ∈ C∗0, SVIξ (K , F) is nonempty and bounded. This completes
the proof. ��
Remark 3.1 Theorem 3.1 presents a new proofmethod to characterizes the nonemptiness and
boundedness of solution set for VVI(F, K ) in finite dimensional spaces. The proof method
employed here is basing on the connectedness of of C∗0 and the openness and closeness for
the subset A ⊂ C∗0. Lemma 2.2 is critical, which allows us to show that A = C∗0 and so for
any ξ ∈ C∗0, SVIξ (K , F) is nonempty and bounded.

Remark 3.2 (i) In Theorem 3.3 of [1], Huang, Fang and Yang obtain a corresponding result
of Theorem 3.1 in finite dimensional spaces with the assumption that K∞ ∩ (F(K ))w◦

C =
{0}. We do not require this condition here.

(ii) The proof method is topological and it is different with the previous methods in [1,18]
where some asymptotic analysis techniques are used.

As a consequence of Theorem 3.1, we have the following result which establishes some
characterizations for SVVI(K , F) being nonempty and bounded in finite dimensional spaces.
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Theorem 3.2 Let X be a finite dimensional space and K be a closed convex subset of X .
Let Y be a normed space. Let F : K → 2L(X,Y ) be scalar C-pseudomonotone and upper
semicontinuous with nonempty, compact and convex values. Then the following statements
are equivalent.

(i) SVVI(K , F) is nonempty and bounded;
(ii) For any ξ ∈ C∗0, SV Iξ (K , F) is nonempty and bounded;
(iii)

⋃
ξ∈C∗0(K∞ ∩ [ξ(F(K ))]−) = {0}.

Proof The conclusion follows directly from Theorem 3.1 and Lemma 2.3. This completes
the proof. ��

The following example is used to illustrate Theorems 3.1 and 3.2.

Example 3.1 Let

X = R, K = R
+, C = R

2+, e = (1, 1) ∈ int C, F(x) = (F1(x), F2(x)), ∀x ∈ K ,

where F1(x) = x2 for any x ∈ K and F2(x) =
{
0, 0 ≤ x ≤ 1,
x2 − 1, x > 1.

Then K∞ = R
+ and C∗0 = {(x1, x2) : x1 + x2 = 1, x1, x2 ≥ 0}. It is not hard to verify

that F is scalarR2+-pseudomonotone and upper semicontinuous with nonempty, compact and
convex values. Thus, all the conditions of Theorem 3.1 are satisfied. By a simple computation,
we have

SV V I (K , F) = [0, 1]
and

SVIξ (K , F) =
⎧
⎨

⎩

[0, 1], ξ = (0, 1),
{0}, ξ = (1, 0),
{0}, otherwise.

Furthermore, we obtain that

[ξ(F(K ))]− = −R+, ∀ξ ∈ C∗0

and so
⋃

ξ∈C∗0
(K∞ ∩ [ξ(F(K ))]−) = {0}.

From the above discussion, we know that the conclusions of Theorems 3.1 and 3.2 hold.

When the space X is infinite dimensional, a similar result of Theorem 3.1 can also
be obtained under some additional assumptions that C∗0 is a compact base of C∗ and
int (barrK ) �= ∅.
Theorem 3.3 Let X be a reflexive Banach space and K be a closed convex subset of X
with int (barrK ) �= ∅. Let Y be a normed space. Let F : K → 2L(X,Y ) be scalar C-
pseudomonotone and upper semicontinuous with nonempty, compact and convex values.
Suppose that C∗0 is a compact base of C∗. Then SVVI(K , F) is nonempty and bounded if
and only if for any ξ ∈ C∗0, SV Iξ (K , F) is nonempty and bounded.
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Proof Suppose that for any ξ ∈ C∗0, SVIξ (K , F) is nonempty and bounded. Then for any
ξ ∈ C∗0, K∞ ∩ [ξ(F(K ))]− = {0}. We claim that SVVI(K , F) is nonempty and bounded.
The nonemptiness of SV V I (K , F) is obvious. We only need to claim that SVVI(K , F) is
bounded. Otherwise, there exists a sequence xn ∈ SVVI(K , F) such that ‖xn‖ → +∞.
Since xn ∈ SVVI(K , F), there exists un ∈ F(xn) such that

〈un, x − xn〉 /∈ −intC, ∀x ∈ K .

Then there exists ξn ∈ C∗0 such that

〈ξn(un), x − xn〉 ≥ 0, ∀x ∈ K .

By the pseudomonotonicity of F , we have

〈ξn(v), x − xn〉 ≥ 0, ∀x ∈ K , v ∈ F(x)

and so 〈
ξn(v),

x

‖xn‖ − xn

‖xn‖
〉

≥ 0, ∀x ∈ K , v ∈ F(x). (3.2)

Since C∗0 is compact and ‖ xn
‖xn‖‖ = 1, without loss of generality, we can assume that

ξn → ξ0 ∈ C∗0 and xn
‖xn‖ ⇀ d ∈ K∞. By Lemma 2.1, d �= 0. Letting n → ∞ in (3.2), we

obtain that
〈ξ0(v), d〉 ≤ 0, ∀x ∈ K , v ∈ F(x)

and so
d ∈ K∞ ∩ (ξ0(F(K )))−

with d �= 0, which is a contradiction.
Conversely. Suppose that SVVI(K , F) is nonempty and bounded, we claim that

SVIξ (K , F) is nonempty and bounded for any ξ ∈ C∗0. Define a set A ⊂ C∗0 as follows

A := {ξ ∈ C∗0 : SVIξ (K , F) is nonempty and bounded}.
Clearly, A is nonempty and A ⊂ C∗0. We claim that A is both open and closed in C∗0. First,
we claim that A is open in C∗0. Otherwise, there exists ξ0 ∈ A and a sequence ξn ∈ C∗0
with ξn → ξ0 such that ξn /∈ A. This means that

K∞ ∩ [ξn(F(K ))]− �= {0}
and so there exists dn ∈ K∞ ∩ [ξn(F(K ))]− such that ‖dn‖ = 1. Since C∗0 is compact
and ‖dn‖ = 1, without loss of generality, we may assume that dn ⇀ d0 ∈ K∞\{0}. Since
dn ∈ K∞ ∩ [ξn(F(K ))]−, we have

〈dn, ξn(v)〉 ≤ 0, ∀x ∈ K , v ∈ F(x).

Letting n → ∞, we have

〈d0, ξ0(v)〉 ≤ 0, ∀x ∈ K , v ∈ F(x)

and so
d0 ∈ K∞ ∩ (ξ0(F(K )))−

with d0 �= 0. This implies that SVIξ0(K , F) is not nonempty and bounded, which contradicts
with the fact that ξ0 ∈ A. Thus, the set A is open in C∗0.

Next, we claim that A is closed in C∗0. Let ξn ∈ A with ξn → ξ0. We claim that ξ0 ∈ A.
Since ξn ∈ A, we have SVIξn (K , F) is nonempty and bounded. Let xn ∈ SVIξn (K , F). Since
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SVIξn (K , F) ⊂ SVVI(K , F) and SVVI(K , F) is bounded, clearly {xn} is bounded. Without
loss of generality, we may assume that xn ⇀ x0 ∈ K . Since xn ∈ SVIξn (K , F), there exists
xn ∈ K , un ∈ F(xn) and ξn ∈ C∗0 such that

〈ξn(un), x − xn〉 ≥ 0, ∀x ∈ K .

By the pseudomonotonicity of F , it follows that

〈ξn(v), x − xn〉 ≥ 0, ∀x ∈ K , v ∈ F(x).

Letting n → ∞, we obtain that

〈ξ0(v), x − x0〉 ≥ 0, ∀x ∈ K , v ∈ F(x).

This implies that x0 ∈ SDVIξ0(K , F) and so x0 ∈ SVIξ0(K , F)byProposition 1 in [13]. Thus,
SVIξ0(K , F) is nonempty. Then, the boundedness of SVVI(K , F) implies that SVIξ0(K , F)

is bounded. This yields that ξ0 ∈ A and so A is closed.
Then using a similar discussion as in Theorem 3.1, we obtain that for any ξ ∈ C∗0,

SVIξ (K , F) is nonempty and bounded. This completes the proof. ��
From Theorem 3.3, we have the following conclusion.

Theorem 3.4 Let X be a reflexive Banach space and K be a closed convex subset of X
with int (barrK ) �= ∅. Let Y be a normed space. Let F : K → 2L(X,Y ) be scalar C-
pseudomonotone and upper semicontinuous with nonempty, compact and convex values.
Suppose that C∗0 is a compact base of C∗. Then the following statements are equivalent.

(i) SVVI(K , F) is nonempty and bounded;
(ii) For any ξ ∈ C∗0, SVIξ (K , F) is nonempty and bounded;
(iii)

⋃
ξ∈C∗0(K∞ ∩ [ξ(F(K ))]−) = {0}.

Proof The conclusion follows directly from Theorem 3.3 and Lemma 2.3. This completes
the proof. ��

The following example is used to illustrate Theorems 3.3 and 3.4.

Example 3.2 Let

X = l2, K := {x = (η1, η2, . . . , ηn, . . .) ∈ l2 : 2η1 ≥ ‖x‖, ηn ≥ 0,∀n ∈ N }
and

C = R
2+, e = (1, 1) ∈ int C, F(x) = (F1(x), F2(x)), ∀x ∈ K ,

where F1(x) := x for each x ∈ K and F2(x) := (η21, η
2
2, . . . , η

2
n, . . .) for each x =

(η1, η2, . . . , ηn, . . .) ∈ K . Then for any ξ = (ξ1, ξ2) ∈ C∗\{0}, the mapping ξ1F1 + ξ2F2
is monotone and so F = (F1, F2) is C-pseudomonotone and upper semicontinuous on K
with weakly compact convex values. Moreover, from Example 2.1, we know that K is a
well-positioned set in l2 and so int (barrK ) �= ∅. Thus, all the conditions of Theorem 3.4
are satisfied. By a simple computation, we have

SVVI(K , F) = {0}
and

SVIξ (K , F) = 0, ∀ξ ∈ C∗0.
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Since K is a cone, then K∞ = K . Furthermore, we obtain that

K∞ ∩ [ξ(F(K ))]− = K ∩ [ξ(F(K ))]− = {0}, ∀ξ ∈ C∗0

and so
⋃

ξ∈C∗0
(K∞ ∩ [ξ(F(K ))]−) = {0}.

From the above discussion, we know that all the conclusions of Theorems 3.3 and 3.4 hold.

The following example shows that the assumption of int (barrK ) �= ∅ (i.e., the well-
positionedness of K ) in Theorem 3.4 can not be dropped (in the setting of infinite dimensional
spaces).

Example 3.3 Let

X = l2, K = {x = (η1, η2, . . . , ηn, . . .) ∈ l2 : |ηn | ≤ n, ∀n ∈ N }
and

C = R
2+, e = (1, 1) ∈ int C, F(x) = (F1(x), F2(x)), ∀x ∈ K ,

where F1(x) := NK (x) ∩ B = ∂dK (x) for each x ∈ K (here, B denotes the closed unit ball
in X), and F2(x) := x for each x ∈ K . It is not hard to see that K is an unbounded closed
convex set. Moreover, for any ξ = (ξ1, ξ2) ∈ C∗\{0}, the mapping ξ1F1 + ξ2F2 is monotone
and so F = (F1, F2) is C-pseudomonotone and upper semicontinuous on K with weakly
compact convex values. As pointed out in Example 2.2, K is not a well-positioned set in l2

and so int (barrK ) = ∅. Now we show that K∞ = {0}. Otherwise, there exists some d ∈ l2

with d �= 0 such that

x0 + td ∈ K , ∀t > 0, ∀x0 ∈ l2.

If t > 0 large enough, it is a contradiction with |ηn | ≤ n and so K∞ = {0}.
Since K∞ = {0} (here 0 denotes the zero point in l2), we have

⋃

ξ∈C∗0
(K∞ ∩ [ξ(F(K ))]−) = {0},

which means that conclusion (iii) of Theorem 3.4 holds.
However, by a simple computation, we obtain that

SVVI(K , F) = K

and

SVIξ (K , F) =
⎧
⎨

⎩

{0}, ξ = (0, 1),
K , ξ = (1, 0),
{0}, otherwise,

which implies that conclusions (i) and (ii) of Theorem 3.4 doesn’t hold.
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