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Abstract Motivated by robust (non-convex) quadratic optimization over convex quadratic
constraints, in this paper, we examine minimax difference of convex (dc) optimization over
convex polynomial inequalities. By way of generalizing the celebrated Farkas’ lemma to
inequality systems involving the maximum of dc functions and convex polynomials, we
show that there is no duality gap between a minimax DC polynomial program and its asso-
ciated conjugate dual problem. We then obtain strong duality under a constraint qualifica-
tion. Consequently, we present characterizations of robust solutions of uncertain general
non-convex quadratic optimization problems with convex quadratic constraints, including
uncertain trust-region problems.
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1 Introduction

In this paper, we consider the minimax difference of convex optimization problem,

P) inf [ Ir}ax filx) —h(x) :gi(x) <0, i=1,...,m]
xeR? | j=1,...,
where h : R" — R is a convex function, f; : R" - R, j =1,...,] and g : R" —
R, i = 1,2, ..., mareconvex polynomials. The minimax model (P) was motivated by robust

optimization of uncertain (not necessarily convex) quadratic functions, (x, Ax) + (a, x) +«,
over a convex set K, where the data (A, a, «) is assumed to be uncertain and it belongs to
an uncertainty set U. As an illustration, consider the simple case, where the uncertainty set
U is given by the convex hull of the set {(Aj,a;,a;) : j =1,2,...,1}, Ajaren xn
symmetric matrices, a; € R" and a; € R. The worst-case solution of the uncertain quadratic
minimization is obtained by solving the minimax problem

Aj i it
xmél{r{ljr_nlax {x jx) +{a; x)—i—otj}

It is a minimax dc-optimization problem of the form (P),

min max { x, (Aj + ply)x) + (aj, x) +ot.,-} — px, x)

xek j=1,...,
where p = max{0, max;—y . ;{—¥min(A;)}}, Ymin(A}) is the least eigenvalue of A;, A; +
o1, is positive semidefinite, f;(x) := (x, (A; + pl)x) +{a;, x) +aj,forj=1,...,land
h(x) = p(x, x) are convex polynomials.

Minimax optimization of this form arises, for instance, when solving uncertain quadratic
minimization problems with convex quadratic constraints, such as uncertain trust-region
problems by robust optimization (see Sect. 5). Moreover, the model (P) includes the minimax
polynomial optimization problems, examined recently in [13,15], where &2 = 0 and classes
of DC-optimization problems which have been extensively studied in the literature (see [4—
6,8,9,16] and other references therein).

We make the following key contributions to global non-convex optimization.

(i) We establish a generalization of the Farkas lemma by obtaining a complete dual char-
acterization of the implication

gilx) <0 i=1, ,m= mlax fix) —h(x) =0
in terms of conjugate functions without any qualifications. A numerical example is
given to show that such a qualification-free generalization may fail when the functions
gi’s are not polynomials. Consequently, we also obtain a form of S-procedure [18]
for non-convex quadratic systems. For a recent survey of generalizations of the Farkas
lemma, see [7] and S-procedure, see [18].

(i) As an application of our generalized Farkas’ lemma, we show that there is no duality gap
between (P) and its associated conjugate dual problem, which, in particular, establishes
that there is no duality gap between a dc polynomial program and its associated standard
conjugate dual program. We also obtain strong duality between the problems under a
normal cone constraint qualification, instead of the commonly used closed cone epigraph
constraint qualification (see [5,6,8,11,12,16]). We then derive necessary and sufficient
global optimality conditions for classes of problems including fractional programming
problems.
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(iii) Finally, we present complete dual characterizations of robust solutions of various classes
of non-convex quadratic optimization problems in the face of data uncertainty in the
objective as well as constraints. They include uncertain trust-region problems and non-
convex quadratic problems with convex quadratic constraints. For related recent results,
see [14,15], where conditions for robust solutions were given for minimax convex
quadratic problems or classes of non-convex problems with no uncertainty in the objec-
tive function. The DC approach presented in this work allowed us to treat general
non-convex quadratic objective functions.

The outline of the paper is as follows. In Sect. 2, we present basic definition and properties
of convex polynomials and conjugate functions. In Sect. 3, we present a generalized Farkas’s
lemma and its corresponding results for quadratic systems. In Sect. 4, we present duality
results for the minimax DC-optimization problems (P) and their applications to fractional
programming problems involving convex polynomials. In Sect. 5, we derive robust solution
characterizations of various classes of quadratic optimization problems.

2 Preliminaries

We begin this section by fixing notation and preliminaries of convex sets, functions and
polynomials. Throughout this paper, R” denotes the Euclidean space with dimension n. The
inner product in R” is defined by (x, y) := x”y for all x, y € R". The nonnegative orthant
of R" is denoted by R’ and is defined by R := {(x,...,x,) € R" : x; > 0}. We say
that the set A is convex whenever ua; + (1 — w)ar € A forall u € [0, 1], ay,a € A. The
convex hull of the set A is denoted by co(A). A function f : R” — R is said to be convex if
for all u € [0, 1],

JA=wx+py) <A =) fe)+unf(y)

forall x, y € R". The function f is said to be concave whenever — f is convex. The epigraph
of a function f, denoted by epif, is defined by epif := {(x,a) e R"* xR | f(x) < «}.

The conjugate of a convex function f : R” — R is defined by, for any u € R”, f*(u) =
SUP, cr {uTx - f(x)} and, for any x € R", f**(x) = sup,cpn {uTx - f*(x)}, respec-
tively. If f : R" — R is convex, then f = f**. For details, see [17,19,21]. The domain
of f*, denoted by dom f*, is defined by dom f* := {u € R"|f*(u) < oo}. The positive
semi-definiteness of an n x n matrix B, denoted by B > 0, is defined by (x, Bx) > 0, for
each x € R". If f; and f, : R” — R are convex functions, then for u € R”",

(fi + f2)"(w) = min {fi) + ffu—v}. )]

For details, see [17,19,21].
The following useful result of convex polynomial systems was given in [2] and will play
an important role later in the paper.

Lemma 2.1 [2] Let fo, fi1,..., fm be convex polynomials on R". Let C = {x €
R" : fitx) <0, i = 1,...,m} # @ Suppose that inf,cc fo(x) > —oo. Then,
argminyec fo(x) # 0.

The next lemma, given first in [13], follows easily from Lemma 2.1.
Lemma 2.2 Let fy, fi, ..., fm be convex polynomials on R". Then the set,

Q={yeRn+1:xe]R”, fi(x) <y, i=0,1,2,...,m}
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is closed and convex.

Proof Clearly, as f;’s are convex functions, 2 is a convex set. Let { y0 y1 ey yfn} C Qand
(y0 y1 ey ym) = (Y0, Vs v--» ym) as k — oo. By the definition of €2, for each &, there
exists x* € R” such that f; (x¥) < y Now, consider the optimization problem

(Po) mmxzoz| ..... [Z(Zz_yt filx) <z, i=0,1,. ]

Then, (Pp) is a convex polynomial optimization problem and 0 < inf(Pp) < Z;"ZO (yik -
y,~)2 — 0, as k — oo. Hence, inf (Pp) = 0 and by Lemma 2.1, inf (Pp) is attained, and so,
there exists x* € R” such that f; (x*) < y;. Thus, (yo, ¥1, ..., ym) € Q and Q is closed.

The following example shows that Lemma 2.2 may fail when all the functions involved
in 2 are not convex polynomials.

Example 2.1 Let f1(x1, x2) = /xl2 +x% —x1 and f>(x1,x2) = 1 — x». Then, f is not a
polynomial. Define the set C by
C:={yeR: xeR? fi(x) < y}.

Then, for each integer k > 1, (y’f, ) = Wk*+1—k,0) € Cas (fik, 1), frk,1)) <

(Vk*4+1 — k,0), and that (y{‘, = WkX+1—-k0 = (JkT+k 0) — (0,0) as
k — oo. However, (0,0) ¢ C because the system

,/xf +x§ —x1 <0

1—x<0
has no solution. Therefore, C is not closed. O

3 Generalized Farkas’ lemma

In this section, we present a generalization of Farkas’ lemma and a corresponding result
for quadratic inequality systems, called S-procedure [18]. The generalized Farkas’ lemma
holds without any regularity condition. Note that the simplex in R is given by A =

{serl i 6=1]

Theorem 3.1 (Generalized Farkas’ lemma) Let f; : R" — R, j=1,...,1, g : R" —
R,i = 1,2,...,m be convex polynomials and h : R" — R be a convex function. Let

={x eR":g(x)<0,i=1,...,m} be non-empty. Then, the following statements
are equivalent:

() g(x) <0i=1,...,m=maxj= 1 fj(x) —h(x) > 0;
(i) (Vu € domh*, € >0) (L eRY, pe A, veR"):

*

1 m *
) — (s (v)—(zxigi) (u—v)+e=0. @)
=1 i=1
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Proof [(i1)] = (i)] Note first, by the definition of a conjugate function, that (ii) is equivalent
to the condition that, for any u € domh*, € > 0, there exist A € R, v e R" and u € A
such that

1 m
h*(u) +xi£]1£" —(v, x) + Zﬂjfj(x) +xié1]1£" [—(u —v,x)+ zxigi(x)} +€>0,
j=1 i=1

which shows that for any x € R",

1 m
R* () = G, x) + Dy fi(0) + D higi(x) + € > 0.
j=1 i=1
Letx € K. Then, h*(u) — (u, x) + (le:l Mjfj) (x)+€>0,as >/ 2igi(x) <0.So,
for any u € domh™* and € > 0, there exists u € A such that for any x € K:

1
> fi @) € = (ux) — h* ().

Jj=1

.....

,,,,,

SUP, cdomp* L{tt, x) — A*(u)} = h(x). Thus (i) holds.
[(G)] = (ii)] Assume that (i) holds. Let u € domA™*. Then, from (i), for each x € K,

max fj(x) > h(x) > sup (v,x)—h"(v) > (u, x) — h*(u).
j=1....1 vedomh*

So, for each € > 0, max;—1,.; {fj(x) +h*@w) — (u,x)} +e€ > 0.For j € {1,...,1}, let
¢j(x) = fij(x)+h*(u) — (u, x) + €, for x € R". Define a set C by
C::{(y,z)eRlme:ElxeR” stogi) <y, j=1....1: gk <z, i:l,...,m}.
Since ¢j, j=1,...,land g;, i =1, ..., m are convex polynomials, C is a convex set. By
Lemma 2.2, C is closed.

Since max; ¢;(-) > 0, we have 0 ¢ C. By the strong separation theorem ([21, The-
oreml1.1.5]), there exist (y1,..., ¥, V1,...,vm) # 0, « € R, §o > 0 such that for all
(»,2)eC,

(0,0, V15 Vi V1 s 0m)) S <@+ 80 < {1y -5 Y255 Zm)
V15 s VIS VL, e Um))e

SinceC—f—R'_ﬁH C C,itfollows thaty; >0, j=1,...,/andv; >0, i =1,...,m and
for any (y, z) € C,

m
O<a<a+d<yyi+...vn+ ) v
i=1

As K # ), there exists xo € R" suchthat g;(xo) <0, i =1,...,mandso,if (y1,...,y) =
0, then 0 < @ < 0. This is a contradiction. So, 0 < (y1,...y) # 0.
o v; Co_ L Yi P
Let A; = —— >0,i=1,...,mand u; = —— >0,i=1,...,m.

Then, 3%, ;= Land 3% widpi(x) + 3™ Aigi(x) > 0, for any x € R", because
j=1MJ j=11J%J i=1
(D1(x)y ..., P1(x), g1(x), ..., gm(x)) € C for each x € R”". It shows that
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! m
D fiO + D higi() +hw) — (. ) + e > 0, 3)

j=1 i=1

So, for each u € domh* and for each € > 0, there exist A € R’} and i € A such that, for
each x € R",

1 m
h*(u) + € > (u, x) — Zujfj(x) +Zkigi(X) )
j=1 i=1

which gives us that

*

i m
h*(u) + € > Zujf_,' +Z?»igi (u).

j=1 i=1

Ontheotherhand,as f;, j =1,...,landg;, i = 1, ..., marereal-valued convex functions,
by (1), for u € domh*, there exists v € R” such that

l m * I m *
Dowifi+ D kg (u)zZujff(vH(ZAigi) (u —v).
j=1 i=1 j=1 i=1

So, we obtain,

1 * m *
W) = [ Domjfi (v)—(Zx,»g,-) (u—v)+e=>0.
j=I1 i=1
Hence (ii) holds. ]

The following example shows that generalized Farkas’s lemma may not hold for convex
constraint systems, g;(x) < 0,i =1, ..., m, that are not polynomials.

Example 3.1 (Failure of generalized Farkas’s lemma for non-polynomial convex constraint
systems) Let fi(x1,x2) = 1 —x2, fo(x1,%2) = —x1, h(x1,x2) = x5 and g (x1,x2) =

,/xlz +x% — x1. Then,

M2 .
Wy =7 fm=0
+00  otherwise.

Moreover, {x € R? : gi(x) < 0} = R4 x {0} and so, max{f](x), fa(x)} — h(x) > O for
each x € R4 x {0}; thus, the implication

g1(x) < 0= max{fi(x), f2(x)} —h(x) >0

holds. Now, we show that the statement (ii):

*

2
Yu € domh*, Ve >0, 3(L=0,ve R%, € A), h*u)— Z,ujfj (v)
j=1
—(Ag)*(u —v)+€>0,
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fails. To see this, let u = (0, 0) € domAh*. Then, h*(0, 0) = 0, 23:1 wifi(x) =pi(=x2)+
m2(—=x1)+pu1 and (Zﬁ:] wj fi)*(v) = sup, cp2{viX1+v2x2+1 X242 X1 — 1 }. Moreover,

*

g wi v = (—pp )
s _ = (—p2, =41

Zl wili) = +oo  otherwise.

]:

For A =0,

0 if w=1(0,0)

* —
(g™ (w) = +00 otherwise.

For . > 0, (Ag1)* (12, 1) = sup, gz {ax1 +p1xa — Ay/x7 +x3 +Ax1} = (i|x])* (a2 +
A, i1). Since uy + @1 = 1, we get that

(2 +2)2+(u1)?
AllD* 2+ Aopp =10 1 =<1
+o00  otherwise

= +00.

Hence, foru = 0,and € > 0, forany A > 0, we can see that (Ag1)*(—v) = 400, whenever
v = (—p2, —i1), and (2321 wj fi)*(v) = 400, whenever v # (—u2, —u1), and so (ii) of
Theorem 3.1 doesn’t hold. m]

The following example verifies our generalized Farkas’ lemma, involving convex poly-
nomial constraint systems.

Example 3.2 (Convex polynomial constraint systems and generalized Farkas’ lemma) Let

fi) =xf+xf, @) =03 =1, h(x) = /3] + 23, g1(0) = (1 = D> +x5 -1, g2(x) =
x1 and g3(x) = x1 + x2. Then f1, f>, g1, g2, g3 are convex polynomials, 4 is convex, but
is not a polynomial function. Moreover, h*(u) = §p(u), where §p is the indicator function
of the unit ball B in R?.

Let us consider (i) and (ii) as in the previous theorem. We can see that K := {x € R2:
gi(x) <0, i=1,2,3} ={(0,0)}. Then (i) holds.

Letd(x, u, 1) == 1 f1(x) + pa fo(x) + 3;_; Aigi(x) + h*(u) — (u, x). Then,

dx,u,2) = iy (8 +x3) + (=) (33 = 1) + 21 (G — D2+ x3 — 1) + 2oy
+ A3(x1 + x2) — u1xy — urxy.

Thus, d(x, u, &) = pix} +x7 (w1 +20) +x1(Ga + 43 =20 —uD) + (i + 1 — 1) x5 +
(A3 —up)xa + pup — 1.
For 11 > 0, we get

M+ A3 =24 —u)\?
d(x,u,k):u1x§+(\/m+k1x1+(2 3 ! 1))

2J/A1 + 1
(A3 —u2) )2 (()»2+k3—2)»1—u1))2
+ VT ) -
( ! roe 2VA + 1T = 21 + 1
n 2
_(w) T
2Vh +1—
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By the above calculation, for any u € R2, ¢ > 0, taking w1 = 1 and

Aoy =2x +up, A3 =0; if uy,u2) € B, u; >0, ury=0;

A3 =2A1 =uz, Ay =uy; if uy,u2) € B, u; >0, ux>0;

A =2(—uy +u2), Ao =2x1 +uy —uz, A3 =up; if (uy,up) € B, uy <0, ux>0;

)»1=Z%, Ay =2x1 +uy, A3 =0; if (uy,u2) € B, u; >0, ux<0;
2 2

)\1:4"14:“2, Ay =2h1 —up, Az =0: if (uj,u2) € B, u; <0, upy <0,

2 2
o loA3 =201 —u _ Az—up _ _
we get that ( ENET ) (2\/)\'_‘_1_#]) + 1 — 1 > —e and hence

2 3
inf jglujfj(x) + D higi(¥) + h* (W) — (u, x) +€ ¢ > 0.

i=1

So, we have,

*

1 m
R @) = [ Do wjfi+ D higi | w)+e€>0,
j=1 i=1

which is equivalent to

*

[ m *
h*(u) — Zl/vjfj (@—(Zkigi) (u—v)+e=>0.
j=I i=1

for some v € R? by (1). It verifies (ii). O

As a consequence of Theorem 3.1 we derive a form of the S-procedure for a quadratic
system without any qualification. The S-procedure is a commonly used technique in stability
analysis of nonlinear systems [18] and is a relaxation strategy for solving a quadratic inequal-
ity system or a quadratic optimization problem via a linear matrix inequality relaxation. Recall
that, for a matrix C, the least eigenvalue of C is denoted by ymin (C).

Theorem 3.2 (S-Procedure) Let By, ..., By, be symmetric and positive semidefinite n x n
matrices, ay, ...,a;, by, ...,by € R" and oy, ...,a;,B1,...,Pm € R. Let Ay, ..., A
be symmetric n x n matrices. Assume that ymin(Aj) < 0 for some j € {1,...,1}. Let

p =max;—1,. {—V¥min(A;)}. Then the following statements are equivalent:

(@) (x, Bix)+(bj, x)+p; <0, i=1,...,m = max;_1,__;(x, Ajx)+{a;, x)+a; > 0;
(i) (Vu e R", € >0) (I eRY, ueA)

2 (lezl wjAj+pln+ 200 MBi) Sy mjaj+ S b —u

I m T m llul | I =0.
(Zj=l njaj +Zi=l Aibj —u) 2( i1 MiBi t vy +Zj=] mjaj +€)
Proof Note that forany j =1, ...,/ we can write [11]
(x, Ajx) + (aj, x) = (x, (Aj + pL)x) + (aj, x) — pllx|[3. e

Then for any j € {1,...,[}, Aj + pl, is positive semidefinite. Let f;(x) = (x, (A; +
ply)x)+{aj, x)+ajforj=1,...,land h(x) = p||x||%.Thus, fi-j=1,...,land h are
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convex polynomials. We have h*(u) = ””H

from Theorem 3.1 by noting that

i m
D wifie+ (ingi)m () — {u,x) + €

=1 i=1

for any u € R”". Then, the conclusion follows

1 1

Z X (A +p[ )x +ZH/ aj, X +Z)\1i((sti-x>+<bivx>+:3i)

j=1 j=I

|||
T e +;Mjaj +e

ZO?

which is equivalent to for any u € domh* and € > 0 there exist A € R} and u € A such that
2 (lezl wiAj+ph) + 200 Bi) Yoy wjaj+ 30 hibi —u

T > 0.
(lezl wjaj+ 2350 dibi — ’4) 2 (Zm riBi + HMH + Z] 1Mo +6)

[m}

A special case of Theorem 3.1, where / = 1 is given in the following corollary which
gives us a form of Farkas’ lemma for different convex polynomials.

Corollary 3.1 (Qualification-free DC Farkas Lemma) Let h, f, gi : R" — R, i =
1,2,...,m be convex polynomials. Let K := {x € R" : gi(x) <0, i = 1,...,m} be
non-empty. Then the following statements are equivalent:

) gix) =0, i=1,....m = fx)=h);

(i) (Yu € domh*, € > 0) (Ir € RY, v e R") h*w)— f*(v)— (I, Aigi)*(u—v)+e
0.

v

Proof Applying Theorem 3.1 with [ = 1 and f; = f, we see that A = {1} and
the statement (ii) of Theorem 3.1 collapses to the statement that (Vu € domh*, € >
0) (I eRY, pefl}), veR"):

h*(u) — f*(v) — (zkig,-) u—v)+e=>0,
i=1

and so the conclusion follows. ]

When & = 0 in Theorem 3.1, we obtain a version of Farkas’s lemma for convex polyno-
mials, given in [15].

Corollary 3.2 [15] Let f;, gi : R" - R, j =1,...,landi = 1,2,...,m be convex
polynomials. Let K := {x € R" : gi(x) < 0, i = 1,...,m} be non-empty. Then the
following statements are equivalent:

() g(x)<0,i=1,...,m = max;—1__; fj(x) > 0;

(i) (Ve >0) (A eRY, peA): X wjfi()+ 20 2igi() +€=0.
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Proof Let h = 0. Then, domh* = {0} and Theorem 3.1 gives us that (i) is equivalent to the
statement that for each € > 0, there exist A € Rf,”_, i € A and v € R” such that

[ * m *
D ouifi (v)—(z?w'gi) (—v)+€=0.
j=1 i=1

Hence, by the conjugate duality Theorem (see [10]), we obtain that

l * m *
D uifi (U)_(z)\igi) (=v) +€
j=1 i=1

1 m *
max | - glﬂjfj (w)—(l;higi) (—w)t +e

o
A

IA

inf Zu,f,(x) + Zx,g,(x) +e.

xeR"?
i=1

Hence, if (i) holds then (ii) also holds. The converse implication (ii) = (i) follows by con-
struction. O

4 Duality and minimax optimization

4.1 Duality

In this subsection, we present duality results for the minimax DC optimization problem

..... 1 fj(x) —h(x)

(P) infyern max j—;

s.t. gilx)<0,i=1,...,m,
where 4 : R" — R is a convex function, f; : R" — R, j =1,...,/ and g; : R" —
R, i = 1,2,...,m are convex polynomials. The conjugate dual problem associated with

(P) is given by

1 * m *
(D) inf sup R — (D wifi ] @D rigi ) @—v
uedomh* )LERm JLEA  veRM Zl‘ I ; e

We first show that there is no duality gap between problems (P) and (D).

Theorem 4.1 (Zero duality gaps & minimax DC polynomial programs) Let f; : R" —
R, j=1,....L1letgi :R" > R, i =1,...,m be convex polynomials and h : R" — R be
a convex function. Let K = {x e R" : gi(x) <0, i =1,...,m} # @. Then,

*

1 m *
inf (P) = inf sup h*(u) — Z,u(,-fj (v) — (Z A,-g,-) (u—v)
j=1 i=1

uedomh* )LER’” JEA ,vER

Proof Letx € K. Then, by the definition of conjugate of 4,

max_fj(x) —h(x)= inf max Zujfj(x)—i—h(u) (u, x) } . 5)
j=1 ue

domh* p

.....
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Asx € K, foreach A € R, >/ | A;gi(x) < 0 and so, for each u € A,
I
D i Fi) + R @) = {u,x) = sup inf, [ZMJJJ(X)+Z)»zg,(x)+h*(u) (u, >’.
o )LER'”X )
(6)
It then follows from (5) and (6) that for x € K,

,,,,, uedomh*

jn}ax fi(x) —h(x) = inf maX|Z;LJf,(x)+h*(u) (u, )]

uedomh* peA AER'” xeRn 1
i

> inf max sup inf [Zujfj(x)-l—Z)wg,(x)-l—h (u) — (u, )’.

Now, by the definition of a conjugate function, we get that

inf max sup inf Zujf,(x)-l—z)wgz(x)-i-h (u) — (u, x)

uedomh* peA AeR" xeR 1
i=

*

i m
= inf max sup {h"(u) — ZMjfj"‘Z)\igi (u)

uedomh* peA AER"

*

/ m *
= inf max sup max {h*(u) — Zujfj (v) —(Z )»igi) (u—v)
j=1 i=1

uedomh* peA )LER'” veR”

The last equation is obtained by the sum-conjugate formula (1). Therefore,

inf (P) >ue‘1113£1h*21é1§)\s€1;£n max Z/L,f](x)-l-lzl:)wgz(x)-Fh () — (u, x) ¢,

which shows that

1 * m *
inf (P) > inf sup h*(u) — Z[Ljfj (v) — (Zkigi) (u —v)
j=1 i=1

uedomh* AERm JUEA, vER™

To see the reverse inequality, we may assume, without loss of generality, that inf (P) >
—00, otherwise the conclusion follows immediately. Since K # @, we have 7 := inf (P) € R.
Then, as max—;,..; fj(x) — (h(x) +7) > O forall x € K, by Theorem 3.1 we get that for
any € > 0, u € domh™, there exist L e R'Y, u € A, v € R" such that

1 * m *
() — Zujfj (v)—(Zkig,-) (u—v)y>1r—e.
j=1 i=1

Consequently

*

1 m *
inf sup h*(u) — Zujfj (v)—(ZAigi) u—v)y >1—e.
j=1 i=1

uedomh* AeR’_ﬁ,ueA,veR"

Since the above inequality holds for any € > 0, passing to the limit we obtain the desired
inequality, which concludes the proof. O
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The following example shows that zero duality gap between (P) and (D) may not hold for
convex constraints, g;(x) < 0,i =1, ..., m, that are not polynomials.

Example 4.1 (Non-zero-duality gaps for (P) with non-polynomial convex constraints) Con-

sider the problem

(EP;) min, cp2 max {1 —x3, —x1} — x3

s.t. ,/xlz—i—x%—xl <0,

where f1(x) = 1 — x3, fox) = —x1, h(x) = x% and gi(x) = ‘/xlz —|—x22 — x1. Then,
clearly, inf(EP;) = 1. On the other hand,

*

I
inf sup h*(u) — Z,ujfj (v) — (Ag)*(u —v)

uedomh™ 5 cp . ueA veR?

*

2
< sup RO = | D mjfi | @ = Ggn)*(=v)

reR,,ueA ,veR?

As we saw in Example 3.1, 2*(0,0) = 0 and

*

: pr it v = (—p2, —p1)
. | = (—p2, — /41
zM/ fi] W= ( 400 otherwise.

For A =0,

if w=1(0,0)

* —
(281" (w) = [—l—oo otherwise.

For A > 0, (Ag1)*(u2, 1) = +00. Therefore,

*

2
inf sup h*(u) — Zﬂjfj (v) — (Ag1)*(u — v)

uedomh™ ) cp. e veR?

*

2
< sup R O) = [ D mifi | @ —0g)*(—v) = —o0,

AeRy, ueA veR?
which shows that ! *
inf (EP;) =1 # inf sup R @) = D wifi | @)= 0g)*@—v)t =—o0.
ucdomh® ; o eA veR? i

[m}

We use the same constraint system as in Example 3.2 to verify that the zero-duality gap
property of a minimax DC program.

Example 4.2 (Verifying zero-duality gap for aminimax DC program). Consider the following

example
(EP,) mmxeRz max {x +x1, )c2 - 1} ‘/xl —|—x2

(x1—1D?+x3 <1
x1 <0
x1+x2 <0.
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From Example 3.2, we can see that

2 3
0> inf  sup rER: D iSO+ D kigi() Hh @)~ {u, ) =120
Hul‘*sl)\eRi,uEAz,teR j=1 i=1

. (A2 +r3=201 —up\’ M—u)
> inf sup — N ——) +tu1—-1¢.
HMH*SIAERi,me[O,I] 21 + 2JA + 1 — g
Note that ||u||« < 1, for u = (uy,uz). Then, uy,ur € [—1,1]. Taking pu; = 1, Ay =

2A1, A3 = |uz| and A1 — 400, we get

2 3
inf(EP,) = inf sup inf 4> ;50 + D higi(x) + h* () — (u,x) f =0
Hu“"il)\eRi,ueAz’(ERz o iml
2 3 *
= inf osup AT — [ Dopifi+ D higi | @)
j=1 i=1

Il =1 g3 ens
O

A special case of Theorem 4.1 where / = 1 shows that there is no duality gap between
a difference of convex program and its associated dual program whenever f, & and g;’s are
convex polynomials.

Corollary 4.1 (Zero duality gaps for DC polynomial programs) Leth, f, gi : R" — R, i =
1,2,...,m be convex polynomials. Let K := {x e R" : g;(x) <0, i = 1,...,m} be non-
empty. Then,

m *
inf —h = inf h ) — f*(v) — Aigi — .
inf{f(x) —h)}=inf Aeu@ff&w[ ) — f*(v) (; ,gl) (u v)]
Proof Applying Theorem 4.1 with / = 1 and f; = f, we see that A = {1} and then the
conclusion easily follows. O

Under the additional assumption that Nx (x) = Uj,20.1;¢ (x)=0{ 2oie1 2 Vi (X)), we

obtain the following strong duality theorem for (P), where Nk (x) is the normal cone in the
sense that Ny (x) = {w e R" : (w,y —x) <0, Vy € K}.
Theorem 4.2 (Strong Duality) Let f; : R" — R, j =1,...,1, ¢ : R" — R, i
1,...,m be convex polynomials and h : R" — R be a convex function. Let K = {x
R" @ gix) <0, i = 1,...,m} # @. Assume that inf(P) is finite, and Nk (x)
U046 y=0{2i=1 Ai V&i (X))}, for each x € K. Then

I m

*
1 m *
inf (P) = inf max h*(u) — i fi v) — rigi ) w—v
®) = dnf M 1770 Z,u;fj (v) (le zg,) (u =)
Proof Let f := max;—,. f;. Using the basic properties of conjugate function of &, we
have

inf (f(x) = h(0)} = inf [f(x)— sup {<u,x>—h*(u)}]

uedomh*

= inf inf {f(x) 4+ h*w) — (u, x)}

uedomh* xeK
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Let u € domh*. As inf(P) is finite, inf,cx { f(x) + 2*(u) — (u, x)} is also finite; thus,

1
inf L. h* —
inf max ; 1 fi(x) + h*(u) — (u, x)

is finite, where A = {6 € Rﬂr : lezl 8 = 1}. By the convex-concave minimax Theorem,

1

- o —

may inf Z;u,fj(x)+ () — (u, x)
j=

is finite, and so, there exists [t € A such that inf,cx [2321 i fj ) 4+ h*(u) — (u, x)] is
finite. Now, by Lemma 2.1, le=1 I fix)+ h*(u) — (u, x) attains its infimum. Then, there
exists X, € K such that 3 7, ;%) + h*(u) — (u.%,) = infrex {lezlﬁjfj(x)
+h*(u) — (u, x)}. The standard necessary optimality condition at X, gives us that 0 €
Z[j=1 iV fi(xy) —u + Nk (x,). Employing the assumed normal cone constraint quali-
fication, we can find A; > 0,i = 1,2, ..., m such that

! m
0=>"T;Vfi®)—u+ Y %Vegi(¥,) and %gi(x,) =0.
j=1 i=1

Since Zé:l Wi fi() = (u,-) 4+ 220, Aigi(-) is convex, for all x € R”

1 m l
DT ) + R @) = G, x) 4 D Rigi(x) = DT () + R ) — (1, %)

j=1 i=1 j=1
m
+ D higi(Fu).
i=1

Then,

[ m [
inf 3 TG00+ B @) — G x) + D Rigi(0) p = DT f Fa) + B ) — (4, %),
j=1 j=1

xeR"? ‘
i=1
(N
On the other hand, applying Theorem 4.1 by replacing f; (-) by f/ () = i) +h*w)—(u, -)
and h(-) by h(-) = 0 gives us

inf max . fj(x) = inf _ sup

xeK j=1,..., wedomh* L eR" ueA,veR"

1 * m *
R w) = [ D i fj <v>—(zx,-gi) (w—v)
j=1 i=1

inf max f;j(x) = inf sup
xekK j:1 ,,,,, 1 we{O} AER&,MEA,UER”
*

1 m *
R w) = | D i fi (v)—(ZAig,») (w—v)
j=1 i=1
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reRY, ueA | veR”

= sup | sup— Zujfj (v)—(zxigi) (—v)
i=1

= sup qinf Z,ujf](x)+z)ugz(x)+h (u) — (u, x)

reRY, ueA i—1
3)
Note that the equalig in (8) follows by Fenchel’s duality. As f(x,) = le=1 I fi(x,) and
infyex maxj—1; fj(x) = f(x,) + h*(w) — (u, X,), it follows from (7) and (8) that

[

Z £ ) + h* (u) — (u, %)

= inf Zu,fj(X)Jrh () - Z i8i ()

= max inf ZM,f,(x)JrZA,g,(xHh*(u) (u, x)

AERY A xeR"?
Rione i=1

So, we have

AeRT, ueA xeR? 1
1

min(f () +h*() = (u,x)} = _max__inf ’Zu,fj(x)JrzAzg,(xHh*(u) (u, >l.

Hence, by the definition of conjugate function and (1)
l m
min{ f(x) +A*(u) — (u, x)} = max h*(u) — i+ D> Aigi
mintf () +A"00 — e.x)) = max R0 = | D uifi+ D hisi | @

I * m *
= max h*(u) — f v) — rigi u—v
= e ™ 1@ ;u]f, (v) (; ,gl) (u—v)

As this is true for each u € domh™,

inf (P) = inf mln{f(x) +h*(u) — (u, x)}
uedomh*

1 m *
inf max h* () — . V) — \: o: v—
uedomh* AER™ ueA veR" (u) Z%:ufjf] (v) (; lgl) ( )

In the special case of (P) where [ = 1, Theorem 4.2 yields that

Inf {f(x) —h(x)}= inf max [h*(u)—f*(v)—(z?wgi) (u—v)}, (©))

uedomh* AeR’LveR”

whenever the normal cone constraint qualification, Nk (x) = U, 50, gi(x):O{Ztm:I
AiVgi(x)}, holds.
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Note that the normal cone constraint qualification of Theorem 4.2 is guaranteed by the
epigraph constraint qualification that the convex cone, | J AeRT: epi(>oL | Aigi)*, is closed.
The epigraph constraint qualification has extensively been used to study convex as well as
difference of convex optimization problems. For details, see [5,6,8,11,12,16]. Note also that
if the so-called Slater condition is satisfied in the sense that there exists xo € R” such that
gi(xp) < Oforalli = 1,...,m, then both the epigraph constraint qualification and the
normal cone constraint qualification hold. For details, see [12] and [10, Section 2.2].

‘We obtain a global optimality characterization directly from Theorem 4.2 under the normal
cone constraint qualification.

Corollary 4.2 (Global optimality characterization) Let f; : R" — R, j =1,...,[, g :
R" - R, i = 1,...,m be convex polynomials and h : R" — R be a convex function.
Let K = {x e R" : gi(x) <0, i =1,...,m} # (. Assume that inf(P) is finite, and
Ng(x) = UA,-zO,A,-g,-(x):O{Z;n:I AiVgi(x)} for each x € K. A feasible point x € K is a
solution of (P) if and only if, for any u € domh*, there exist A € R’} and ju € A such that

Zu,f,()+2x,gl<>+h W) — (u, ) — (Jmlax £i@® - h@) >0.  (10)
e S VA
Proof Note first from Theorem 4.2 that

*

l m *
inf (P) = inf max h*(u) — ifi] (v)— Aigi —v
= 8 e 0~ (St ) ©=(S) e
Using (1) and the definition of a conjugate function, we get that

*

1 m
inf(P) = inf  max 1A — [ D pifi+ D higi | @

uedomh* AeRY, ueA

l m
= inf max  inf h*(u)+Zujfj(x)+z)wgi(x)—(MMC)

€ re € eR
uedomh R HEA X i 1

[=] Assume that X € K is a solution of (P). Asmax j—; .. fj(X) — h(X) = inf (P), from
(11), we have for any u € domh*, there exist A € R} and u € A, such that for all x € R”",

h*(u)+ZM,f](X)+ZAzgz(X) (,x) = max f;00 = h@),

=1 - b

and so A% () + Xy iy £ + X0y Aigi () = (u, ) — (maxji ..o f;F) — h@) = 0.
Hence, (10) holds.

[«] Conversely, let X € K. Assume that for any u € domh*, there exist A € R} and
1 € A such that (10) holds. Then, for any u € domh*,

Aeﬁg_l{f‘l’jemigéﬂ ZM} fix) + lZ]:)»,g, x) + h* () — (u, x) > (j mlax £ - h(f))
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By (1),

inf (P)

1 m
inf max inf {A*w) + i fi(x) + rigi(x) — (u, x
foDE oA nf ) ;u,fx ) ; i8i(x) = {u, x)

> max fj(xX) —h(x),
j=1,..,1

which shows that X is a solution of (P). ]
We now give an example verifying our global optimality characterization.
Example 4.3 Consider the problem
(EP3) min, g2 max {x? + x1x2 + x12 + x%, xl2 — 3} — ()cl2 + x%)
s.t. x12+x22+4x1+350

szO.

Let fi(x;,x2) = ¥ + xix2 + xf + 13, fr(x1,x0) = xf = 3, fx1,x) =
max;—12 fj(x1, x2), h(x1,x2) = x%-}—x%, g1(x1,x2) = x12+x%+4x1 +3and g2(x1, x2) =
x2. Then f1, fa, h, g1, g are convex polynomials. Moreover, h*(uy, up) = %(u% + u%).
We can see that x = (—1, 0) is a solution of (EP3) and inf (EP3) = 1.

Let» = (4, 1), t; = 1. Then, for any u € R? and x € R?,

2
Ty fr (6) + (L= T2p) fo () + D higi (¥) + h* (u) — (u, x)
i=1

= Gur = x1) 2+ Gua—x2) + (4 = 17 42 (2 = 125 (1 + D2 + (11 +x2 + 1)
= D2+ (4 o+ 1)+ L2 41

So, for each u € domh*

2
oy fi(x) + (1 =Ty) f2(x) + ingi(X) +h* () — (u, x) — f(x) + h(x) = 0.
i=1

It verifies the optimality condition of Corollary 4.2. O

4.2 Minimax fractional programs

In this subsection, we derive global optimality characterizations for fractional programs,
involving convex polynomials.

Corollary 4.3 Let fj, j=1,...,landg; :R" — R, i = 1,2, ..., mbeconvexpolynomi-
als. Assume that f;(x) > O over the feasible set K :== {x e R" : g;(x) <0, i =1,...,m},

K # ¥ and the Slater condition holds. Let x € K and t = max;—| A

D and the Slater condition holds. LetX € K and t = maxj-y,.., TR Then, X is a
solution of

@y inf max |- ey <0, i=1.. . .ml.
xeR? j=1,...0 [ ||x]] 4+ 1 -

if and only if, for any u € R", |||l < 1, there exist .. € R'}, and i € A such that

1 m
DwifiC) + D higi() —F— (u,) = 0.
j=1 i=1
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Proof AT =max ..., {2 7= inf(FP)) € Ry if and only if,
ng( [jg}z,l.).(.,lfj(X) —fh(x)] =0. (12)

Let h(x) = ||x|| + 1. Then,

7 <1
+o00 otherwise.

(th)* (u) = [

By Corollary 4.2, x € K is a solution of (12), if and only if, for any u € dom(zh)*, there
exist A € R and u € A such that

! m
DifiO+ D kigi()+ (Fh)" ) — (u, ) = 0.
j=1 i=1

Thus, X € K is a solution of (FPy) if and only if, for any u € dom(¢h)*, there exist A € R’}
and p € A such that le:] wifi()+ 20 higi() =1 —(u,-) = 0. O

Now, consider the minimax fractional quadratic programs of the form

(FP,) inf max (x, Ajx)+{aj, x) +oj

Bix) (b x) 4B <0, i=1,....m},
DX T m e F e s B Ao+ ! "

where Ay, ..., Ay, By, ..., By, are symmetric and positive semidefinite n X n matrices,
a,...,ay, by, ....,bypy e R"and oy, ...,q;, Bi,..., Bm € R. The matrix C isn X n sym-
metric and positive definite, c € R" and § € R. As before, we assume that K := {x € R" :
(x, Bix)+ (bi, x)+ B <0, i=1,...,m} #0.

Corollary 4.4 For problem (FP;), assume that fj(x) = (x,Ajx) + {aj,x) + o >
0, h(x) = (x,Cx) + (c, x) + 8 > 0 over the feasible set K and the Slater condition holds.
EATHaj vy } Then
----- (x,Cx)+(c,x)+o ’

X is a solution of (FPy), if and only if, Yu € R", 3x e R}, u € A such that

(2 [le:l WjAj+ 20l ki Bi] I:z[j:l pjaj+ 250 hibi —u — ?C] )

_ _ > 0.
[(le-:] wiaj+ >0 Aibi —u — tc)T] 2 [le:l wioj + >0 AiBi + %(u, Cluy — t8:|

Proof Note that, inf(FP,) = 7 € R, if and only if, inf (P;) = 0, where

(Pr) xig{’, axlfj(x)—?h(x)]

j=1,...

= inf "max (x,Ajx) +(aj, x) +a; —f((x,Cx)—l—(c,x)—l—(S)]
xeK | j= 1

= xnellf< Lg}axl [(x, Ajx)+(aj,x) +aj —1({c,x) + 8)] — t{x, Cx)] .

Let fi(x) = [(x,Ajx)+(aj,x)+aj—7(c,x)+8)],j = 1,....0 and h(x) =
7(x, Cx). We have 7* (u) = 2 (u, C~'u).
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Then, X is a solution of (P%), if and only if, by Corollary 4.2, for any u € R", there
exist A € R and u € A such that

1 m
D [ Ajx) +aj.x) + oy — T (e x) +8)] + D i (x, Bix) + (bi. x) + B)
j=1 i=1
1

+E<u,c—1u> —{u,x) >0,

which is equivalent to
(2 (oA + 2 v [ myay + Xy by — u— ] )

_ _ > 0.
[(le=l mjaj+ 2Ly hibi —u — fC)T] 2 (le=l e + 200 hifi + %(u, Clu) — 15)

5 Robust solutions of uncertain quadratic problems

In this section, we present characterizations of robust solutions of classes of quadratic opti-
mization problems under data uncertainty.

We begin with a quadratic problem where the data of both the constraints and the objective
functions are uncertain. Note that for a (n x n) matrix 2, [[£2|spec is the spectral norm of

2 and is defined by [|2|[spec = v/ Amax (2T ). Consider the quadratic problem

(QP) infyern (x, Ax) + (a, x) +«
s.t. (x, Bix) +2(bj,x) +8 <0, i=1,...,m.

where the data (B;, b;, fi) € S" x R" xR, i = 1, ..., m are uncertain and belong to the

spectral norm uncertainty set
T -\ =T 5
bi Bi b B;

8;i > 0,and (A, a,«) € S" x R" x R is uncertain and it belongs to the uncertainty set

= s

W;=1(Bi, b, Bi) € S" xR" xR : ’

spec

!
V= [(Ao,ao,olo)+Zwk(Ak,ak,Otk) to=(w,...,0) € Rl],
k=1

w = Z;’:l rjvj, T € A, forsomel, p € N, vl P e RI_F and (Ag, ak, o) €
S"XxR'"xR, k=1,...,L
The robust counterpart of (QP), that finds a worst-case solution of (QP), is

(RQP) infycpn maxa,q,a)ev (X, Ax)+{a, x) +a
s.t. (x, Bix)+2(bj, x) +8i <0, Y(Bi.bj,B) e Wi, i=1,....m.

Note that the constraints are enforced for all (B;, b;, B;) in the uncertainty set W;, i =
1, ..., m.Following robust optimization [3, 14], an optimal solution of the robust counterpart
of an uncertain problem is a robust solution of the uncertain problem.

Let K :={x e R" : (x, Bix) +2(bi, x) +Bi <0, V(Bi, bi, Bi) eW;, i =1,...,m}.
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Theorem 5.1 (gharacterization of Robust Solutions) For problem (QP), assume that for
i =1,...,m, B; is positive semidefinite and the Slater condition holds. Let A; = Ag +

22:1 vl Ax, @ = ap + 25{:1 vé\ak anddj = o + Zizj\v)iakforj =1,...,p

Let p = max;—1,.. p{—Ymin(A;)}. Assume that ymin(A;) < O for some j € {1, ..., p}.
Then x* € K is a robust global minimizer of (QP), if and only if, for any u € R", there exist
A eRY, and ju € A such that

2 [Zﬁ;l wjAj+pIn+ 3 2i(Bi+5; ]n)] [Zle wjaj+230L )‘igi_u]
R _ T _ 2 . 11=0
[Zle mja+2 200, lihi—u] 2 [Z?"zl A (Bi+8:)+ 14l +20_ nja; —f}
13)

where t = max(A q,a)ev (X, Ax*) + (a, x*) +a.
Proof We first note that for each x € R”

max (x, Ax)+ {(a,x) +«
(A,a,a)eV

1 l 1
= max [<x, (A() + Zv,fAk)x> + <ao + ZUZak,x> + oo + Zviak] .
= r

k=1 k=1 k=1
Since Aj = Ao+ >h_y V{ Ak, @j = a0+ 4y viax and@; = g + >, vi ok, we have

ma LA , = ma , A ai, ail. 14
(A’a’Ot))(Ev(x xX)+(a,x) +a j:l,..).(,p{<x jx) +{aj, x) +a/} (14)
Note also that K C {x € R" : (x, (F,- + 8l~I,,) x) +2(b;, x) —|—Bl- +6<0,i=1,...,m}
because (B; + 81, bi, B; +8;) e W, i =1,...,m.

On the other hand, it is easy to check that, for each (B;, b;, Bi) € W;, all the eigen-

B; + 681, b oy
values of the matrix 7%+ e - (B} b’) are non-negative, and so,
b; Bi + i b Bi

Bi+6il, bi AY i, e :
ooz - (B} bi ) is a positive semidefinite matrix. Hence,

(x)T Bi +8il, b (Bi b,.) (x)
—T — — T > 0.
1 b; Bi + i b; Bi 1
This shows that {x € R" : (x, (B; + 8i1,) x) +2(b;, x) +B;+8 <0, i=1,...,m} C K.
Thus, K = {x € R" : (x, (Bi 4+ 8il,) x) +2(bj.x) +B; +8 <0, i=1,....m}.

Using (14) and the fact that K = {x € R" : (x, (B; + & l,) x) + 2(bj. x) + B; + 8 <
0, i =1,...,m}, the problem (RQP) can be written as

,,,,,

s.t. (x, (Ei —|—8iln)x)+2(5i,x) +Bi +6 <0,i=1,...,m.

The quadratic function (x, A\jx) + (@j,x) + & can be written as (x, (A\j + pI,,) x) +
(@j, x)+a; —pl|x||? where (x, (Aj + pl,) x)+(@;, x) +a;isconvex forany j = 1,..., p

.....

becomes
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infeep maxj—1_, {(x. (A; + pl) x) + (@, x) +@; — pllx|I*}
s.t. (x, (Bi +8iI,) x) + 2(bj,x) +B;+8 <0, i=1,....m
(15)

By Corollary 4.2, x* € K is a solution of (15) if and only if for any u € R”, there exist
A € Ry, u € A such that

P
Z (A; + ply) x) + @, x) +a;)
2
+ZAZ v, (Bi +5:1,) x) + 2(Br. x) +ﬂ,~+5i]+"j'p' — . x) 720,

(16)

as required.

Conversely, assume for any u € R", there exist . € Ry, u € A relation (13) holds. The
linear matrix inequality (13) can be equivalent to relation (16). Hence, x™* is a solution of
problem in (15) and then, x* is a robust global minimizer of (QP). ]

Let us consider the uncertain trust region problem as a special case of problem (QP)

(TP) inf cprr (x, Ax) + (a, x) + «
s.t. [lx —xoll <s,

a7

where the data (A, a, o) is uncertain and it belongs to the uncertainty set V), which is given
by

i 14
(Ao,ao,ao)—i-Za)k(Ak,ak,ak) o= (w],...,01) € R and 0 = Z‘Ejvj, TEA, T,
k=1 j=1
[, p € Nand vl P e RZJF.Weassumethats > 0 and xog € R".

The robust counterpart, that finds a worst-case solution of (TP), is

(RP) inf yerr maxa,q,a)ev (X, Ax) + {(a,x) +«
S.t. []x — x0l] <s.

Corollary 5.1 (Uncertain Trust-Region Problem) For problem (TP) with data uncertamty vV
as above, letAj = A0+Zk | vak, a; = ao—l—zk 1 vkak and leta; = ao—i—zk ! vkak
forj=1,...,p. Let p =max;—1,. p{— )/mm(A i)}

() If p > 0, then a feasible point x* of (TP) is a robust global minimizer of (TP) if and
only if, for any u € R", there exist . € Ry and . € A, such that
220 i &g+ ot 1| [0 @ = = 22x0

K , S R =0,
[Zf:l widj—u — ZAxo] 2 [A (Ilxoll* = 5) + %_t +27o Mjaj]

where t = max(A,q,q)ev (X, Ax*) + (a, x*) +a.
(i) If p < 0, then a feasible point x* of (TP) is a robust global minimizer of (TP) if and
only if, there exist . € Ry and u € A, such that
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2 I:Zf:l /,Lij + AL, I:z;;:l ,LLjZl\j —2)»)60]

>0,
[Z,L Mjaj—z/\xo] 2 [A (Ilxol 2 —s) + 3%, uja,-—i]
where t = maxA, q,q)ev (x*, Ax*) + (a, x*) +a.
Proof Note as before that for each x € R”
max (x, Ax)+ (a,x) +«
(A,a,a)eV
1 ) I ) I )
= nllax {<x, (Ag + Zv,{Ak)x> + <a0 + Zv,{ak, x> + o + szak] .
j=1l..p
k=1 k=1 k=1

Then, the problem (RP) becomes

infyepr max =1, , (x,Ajx)+ (@, x) +a;j
s.t. [lx — xpl] <s.

,,,,,

and the Slater condition holds.

(i) Assume that p > 0. Let

B b 1 —X0
W=1(B,b,B)ecS"xR"xR: - <0
[( P G b) - (L =) e ]

The constraint ||[x — xp|| < s is equivalent to the quadratic constraint (x, Bjx) +
2(b1,x) 4+ B1 < 0, where B = I, by = —xp and B = ||xo||> — s2. Applying
the previous theorem with m = 1, we obtain the required condition characterizing the
robust global minimizer.

(ii) If p < 0, then ypin(A;) > Oforall j =1, ..., p.Let f;(x) = (x, ij)—i-(ﬁj,x) +a;,
and i(x) = 0. Then f; is convex. By Corollary 4.2, the conclusion follows. O

A special case of (TP) occurs when (A, a,a) € Vi := cof(Aj,aj,a;j) € §" x R" x
R, j=1,..., p}, where co denotes the convex hull. The robust counterpart of (TP) in this
case is

(RPy) infrere maxa,q,0)cv, (X, Ax) +(a, x) +«a
s.t. [lx — xol] <s.

Corollary 5.2 (Polytope uncertainty) For the problem (TP) with the data uncertainty Vy, let
t = inf (TP) and let p = max{—ymin(A;): j=1,..., p}.

(1) If p > O, then a feasible point x* of (TP) is a robust global minimizer of (TP), if and
only if, for any u € R", there exist . € Ry and p € A, such that
2 [Zle wjAj+ (p+2) In] [z]p-zl Wjaj—u — 2Ax0]

T 2 — z O’
[0 wjaj—u—20x0] 2[3 (1xoll? =)+ 4 37 a7

where t = max4,a,a)ev; (X*, Ax*) + (a, x*) +a.
(i) If p < O, then a feasible point x* of (TP) is a robust global minimizer of (TP), if and
only if, there exist A € Ry and u € A such that

@ Springer



J Glob Optim (2016) 64:679-702 701

2 [Z?:l WiA;+Al, I:Zle p,jaj—Z)on:I
[z;’:l Mjaj—zxxo] 2 [k (Ilxol> = 5) + 3%, Mjaj—i]
where T = max4 q.q)ey, (X*, Ax*) + (a, x*) + a.
Proof Note that for each x € R", we have

max (x, Ax a, x o = max {x,A;x a;, x o;.
T (5 AX) @) Fo= max (x A )+ (e, x) +a;

The conclusion follows from the same line of arguments as in the proof of the previous
Corollary. O

We give an example illustrating Corollary 5.2(i).
Example 5.1 Consider the uncertain problem

minger —x2 4 ax
s.t. x2 — % <0,

where a is uncertain and it belongs to the uncertainty set VV =[—1, 1]. Its robust counterpart
is given by

(EP;) minyecp maxee(—1,1] {—x2 + ax}

2 1
S.t. XT — i < 0.
Then the problem (EP4) can be written as infycg max{—x? + x, —x% — x} =
infycg max{x, —x} — x2. We can chezck that inf (EP4) = 0.
Let h(x) = x2, we have h*(u) = % and let
5, 1 u?
d(x,u o) = p) + a0 +4(x* = )+ 7 = w.x)
1 u?
=xQui—1—-u +A(x2—f)+ .
(Zpr ) y 7
Then d can be written as
«, | ifuel=h 1, witha=0 and py = L
d = («/Xx—i—%) ifu>1, withA:WaO and pu; =1
2
(ﬁx—i—%) Cifu< =1, witha = CEEGI0R S g gy =0,

Hence, for any u € R?, there exist A € R4 and v € A such that d(x, u, A, ) > 0, which is
equivalent to the linear matrix inequality of Corollary 5.2 (i).
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