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Abstract The problem of minimizing a quadratic form over the unit simplex, referred to
as a standard quadratic optimization problem, admits an exact reformulation as a linear
optimization problem over the convex cone of completely positive matrices. This computa-
tionally intractable cone can be approximated in various ways from the inside and from the
outside by two sequences of nested tractable convex cones of increasing accuracy. In this
paper, we focus on the inner polyhedral approximations due to Yildirim (Optim Methods
Softw 27(1):155-173, 2012) and the outer polyhedral approximations due to de Klerk and
Pasechnik (SIAM J Optim 12(4):875-892, 2002). We investigate the sequences of upper
and lower bounds on the optimal value of a standard quadratic optimization problem arising
from these two hierarchies of inner and outer polyhedral approximations. We give complete
algebraic descriptions of the sets of instances on which upper and lower bounds are exact
at any given finite level of the hierarchy. We identify the structural properties of the sets of
instances on which upper and lower bounds converge to the optimal value only in the limit.
We present several geometric and topological properties of these sets. Our results shed light
on the strengths and limitations of these inner and outer polyhedral approximations in the
context of standard quadratic optimization.
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1 Introduction

In this paper, we study standard quadratic optimization problems given by
(StQP) v(Q) := min x” Ox, (1)
xeA,

where Q € S and S denotes the set of n x n real symmetric matrices, x € R”, and A,
denotes the unit simplex in R” given by

Ay ={x e R'j_:eTx =1},

where e € R" is the vector of all ones and R} denotes the nonnegative orthant in R".

Standard quadratic optimization problems arise in a variety of applications (see, e.g. [2]).
Despite its seemingly simple structure, the problem (StQP) encompasses several interesting
problem classes. For instance, it is well-known that the problem of minimizing a nonhomo-
geneous quadratic function over the unit simplex can be reformulated in the form of (StQP)
using the following identity:

xT0x +2c"x =xT(Q + ec” +ceT)x, foreachx € A,.

Similarly, any quadratic optimization problem over a polytope can, in theory, be formulated
as an instance of (StQP) by representing each feasible point as a convex combination of
the vertices of the polytope (see, e.g., [4]). In the resulting alternative formulation, each
component of x corresponds to the weight of a different vertex. Therefore, the dimension n
is equal to the number of vertices of the polytope. Clearly, such a reformulation is not viable
if there is an exponential number of vertices as in box-constrained quadratic optimization
problems.

Since the maximum stable set problem admits a formulation in the form of (StQP) [14],
it follows that (StQP) is in general an NP-hard problem.

An instance of problem (1) can be equivalently reformulated as the following instance of
a linear optimization problem over the cone of completely positive matrices [4]:

v(Q) =min{(Q, X):(E, X) =1, X eC}, 2)

where (A, B) = trace(AB) = > 1, Z?=1 A;ijBijforA, B € S,E = ee! € Sis the matrix
of all ones, and C C S is the cone of the completely positive matrices given by

. T.
C :=conv{uu' :u € R} },

where conv{-} denotes the convex hull. The dual cone of C with respect to the trace inner
product (-, -) is the cone of copositive matrices given by

c* = {X eS:u'Xu>0 forallu e Ri}

Since (StQP) is in general an NP-hard problem, the convex optimization problem (2) is
in general intractable. Indeed, the computational complexity is now hidden in the conic con-
straint X e C, for which the membership problem is NP-hard [10]. Similarly, the membership
problem for the dual cone C* is also NP-hard [10,15].

Despite the fact that the convex reformulation (2) of the problem (StQP) does not seem
to be helpful from the computational complexity point of view, it offers a new perspective
as the difficulty is now shifted to the convex cones C and C*. In fact, Burer [7] established
more generally that, under mild assumptions, every optimization problem with a quadratic
objective function, linear equality constraints, and a mix of nonnegative and binary variables
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admits an exact reformulation as a linear optimization problem over the cone C. Therefore,
there has recently been a considerable research activity towards a better understanding of the
cones C and C*. Many of these studies propose different ways of approximating each of these
two cones by a sequence of tractable convex cones of increasing accuracy (see, e.g., [3,5,6,8,
12,13,16-18,20]). Such sequences therefore yield approximation hierarchies for the cones C
and C*. By replacing the difficult conic constraints with the sequences of increasingly more
accurate tractable approximations, one can obtain a sequence of increasingly tighter bounds
on the optimal value of a linear optimization problem over the cones of completely positive
or copositive matrices.

In this paper, we focus on two approximation hierarchies, each of which is comprised of
a sequence of polyhedral cones of increasing accuracy. The first approximation hierarchy,
defined originally in the context of standard quadratic optimization by Bomze and de Klerk [3]
and later extended to a hierarchy that consists of nested cones by Yildirim [20], is motivated
by exploiting necessary conditions for copositivity of a matrix. By duality, these conditions
translate into a hierarchy of inner polyhedral approximations Z,, r = 0, 1, ... of the cone C of
completely positive matrices, with the property that Zp € Z; C --- € Candcl (U,enZy) =C,
where cl(-) denotes the closure. Exploiting a sequence of sufficient conditions for copositivity
of a matrix, de Klerk and Pasechnik [8] proposed another hierarchy, which, by duality, yields
a sequence of outer polyhedral approximations O,, r = 0, 1, ... of the cone C, with the
property that Op © O1 2 --- 2 C and N,enO, = C.

We study these two particular approximation hierarchies for the following reasons. First,
each of the two approximation hierarchies is composed of polyhedral cones. Therefore,
replacing the difficult conic constraint X € C in (2) with X € Z, (resp., with X € O,),
where r € N, gives rise to a linear programming problem with O (n"*2) variables [3,20],
whose optimal value yields an upper (resp., lower) bound on the optimal value v(Q). In the
particular case of standard quadratic optimization, both upper and lower bounds at any level
of the hierarchy reduce to an optimization problem over an increasingly larger finite set (see
Sects. 2.1 and 2.2). These observations make these two particular approximation hierarchies
more amenable to analysis in comparison with the other approximation hierarchies, most of
which give rise to semidefinite programming problems (e.g., [12,13,16,17]) that are consid-
erably more difficult to analyze theoretically. Second, these two approximation hierarchies
lead to a polynomial-time approximation scheme for standard quadratic optimization [3,20]
(see Sect. 2.3). As such, they constitute a natural choice for studying approximations of
standard quadratic optimization problems.

In this paper, we investigate the upper and lower bounds arising from these inner and
outer polyhedral approximations in the context of standard quadratic optimization. We give
complete algebraic descriptions of the sets of the instances of (StQP) for which the upper
bound or the lower bound is already exact at any given finite level r € N of the corresponding
hierarchies (see Theorems 2 and 4). We identify the structural properties of the sets of
instances on which upper and lower bounds converge to the optimal value only in the limit (see
Proposition 2 and Theorem 3). Furthermore, we present several geometric and topological
properties of these sets (see Proposition 1, Corollary 1, Propositions 8 and 9).

We remark that our perspective in this paper, in general, is not algorithmic in the sense that
some of our algebraic descriptions may not necessarily translate into an efficient method for
deciding, for a given instance of (StQP), whether the upper and/or the lower bound is exact
at a given level of the corresponding hierarchies. Rather, our main objective is to further our
understanding of the strengths and limitations of these particular inner and outer polyhedral
approximations of the cone C in the context of standard quadratic optimization. We believe
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that the insights obtained from our results may be useful for the construction of improved
polyhedral approximation hierarchies.

The paper is organized as follows. We define our notation in Sect. 1.1. In Sect. 2, we
describe the inner and outer polyhedral approximations of the cone of completely positive
matrices. Section 3 is devoted to some preliminary results. In Sect. 4, we present algebraic
descriptions of the sets of instances on which the upper bound is exact at any given finite level
of the hierarchy. We identify the structural properties of the instances on which the upper
bound converges to the optimal value in the limit. We also discuss several geometric and
topological properties of these sets. The corresponding results for lower bounds are given in
Sect. 5. We conclude the paper in Sect. 6.

1.1 Notation

We denote by R" and R’| the n-dimensional Euclidean space and the nonnegative orthant,
respectively. We use N and Q" for the set of n-dimensional nonnegative integer vectors and
the set of rational vectors, respectively. The unit simplex is represented by A, C R”". The
space of n x n real symmetric matrices is denoted by S. We reserve calligraphic uppercase
letters to denote subsets of S. The cones of completely positive and copositive matrices in
S are denoted by C and C*, respectively. We use N to denote the cone of componentwise
nonnegative n x n real symmetric matrices. The set of n x n symmetric matrices with rational
entries is represented by Q. The ith unit vector in R” is denoted by ¢;, i = 1,...,n. We
use e = > ' e¢; and E = eel to represent the n-dimensional vector of all ones and the
n x n matrix of all ones, respectively. We reserve I € S for the identity matrix. Given
x € R", Diag(x) € S denotes the diagonal matrix whose diagonal entries are given by the
components of x. Similarly, for M € S, diag(M) € R”" represents the vector composed of
the diagonal entries of M. The closure and the convex hull of a set are denoted by cl(-) and
conv(-), respectively. For a given instance of (StQP), we denote the optimal value by v(Q)
and the set of optimal solutions by £2(Q) € A,.LetU € {l,...,n}and V C {1,...,n} be
two nonempty index sets with |U| = u and |V| = v. Given x € R", we denote by xy € R*
the restriction of x to its components indexed by U. Similarly, for a given M € S, Myy
denotes the # x v submatrix of M whose rows and columns are indexed by the sets U and
V, respectively.

2 Polyhedral approximation hierarchies

In this section, we give a detailed description of the two hierarchies of inner and outer
polyhedral approximations of the cone of completely positive matrices.

2.1 Inner polyhedral approximations

Let us define the following sequence of increasingly larger finite subsets of the unit simplex
(see [3,20]):

,
A= JaAL r=o0.1,..., 3)
k=0
where
A= fx e Ay (k+2)x €N}, k=0,1,... )
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Consider the following sequence of sets:

I, = deddT:deOforeachdeAz , r=0,1,...
deAl

Since A is a finite set for each r € N, each set Z, is a polyhedral cone. Furthermore, this
sequence of cones satisfies [20, Theorem?2.2]

IS €---CC, and cl(UIr)zc_

reN

Therefore, replacing the difficult conic constraint X € C in (2) with X € Z,, we obtain
the following linear programming problem whose optimal value yields an upper bound on

v(Q):
u(Q) :=min{(Q, X):(E, X)=1, XeZ,}, r=0,1,...

As already observed in [20] (see also [3]), it follows directly from the definition of Z, that
u,(Q) can be equivalently expressed as a minimization problem over a finite set:

ur(Q):[?eliAn’dTQd’ r=0,1,... 3)

Since |A)| = O (n"*?) (see [3,20]), u,(Q) can be computed in polynomial time for each
fixed r € N.

2.2 Outer polyhedral approximations

Consider the following sequence of sets (see [3,8]):

O, =1 B ((r+2)ddT —Diag(d)):ﬁd >0forallde A%}, r=0,1,...
de Al

Similarly, since A/, is a finite set, O, is a polyhedral cone for each r € N. By [8, Theorem
3.3],
CS- COICO=N, and C=[)O,.
reN

In a similar manner, replacing the difficult conic constraint X € C in (2) with X € O,
gives rise to the following linear programming problem, whose optimal value yields a lower
bound on v(Q):

1(Q) :=min{{Q, X): (E,X)=1, XeO,), r=0,1,...

Using the definition of O, the lower bound /. (Q) can similarly be stated as the following
minimization problem over a finite set (see also [3,20]):

o (r+2) . Ty (1 T4
L(Q) = (rﬂ);% (d 0d (r+2)d dlag(Q)),

! 1 T T 4
T+ D+ - —0.1,...
r+ D@+ 2) ze(?}-l?)/};(z Qz—z dlag(Q))’ r 0,1, (6)

Similarly, for each fixed r € N, [.(Q) can be computed in polynomial time since |A]| =
0" +?) (see [3]).
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2.3 Error bounds and the maximum stable set problem

Given an instance of (StQP), the two sequences {/,(Q)} and {u,(Q)}, r € N, give rise
to increasingly tighter lower and upper bounds, respectively, on the optimal value v(Q).
Yildirim [20] established that

ur(Q) — 1 (Q) < L ( max Qj; — v(Q)) , r=01,...,
r+1 \i=l,...n
which implies that these bounds lead to a polynomial-time approximation scheme for standard
quadratic optimization (see also [3] for a slightly different result).

The bounds /- (Q) and u,(Q) have closed form expressions for the maximum stable set
problem [3,17,20], which we review next. Let G be a simple, undirected graph with n vertices
and m edges. A subset S of vertices of G is called a stable set if no two vertices in S are
connected by an edge. The maximum stable set problem is that of finding the stable set with
the largest cardinality in G. The size of the largest stable set, denoted by «(G), is called the
stability number of G.

Motzkin and Straus [14] established that the maximum stable set problem can be formu-
lated as an instance of (StQP) as

1
—— =v(I + Ag) = min x” (I + Ag)x, )
a(G) X€A
where Ag € S denotes the vertex adjacency matrix of G.

For the maximum stable set problem, the upper bounds have the following simple closed
form expressions [20]:

L ifr <a(G) -2,

(I + Ag) = [ e . ®)
PR otherwise.

Similarly, the lower bounds have the following more complicated closed form expres-
sions [3,17,20]:

0, ifr <a(G) -2,
(I + Ag) = { (3)a(G)+st
GO
where s and ¢ are nonnegative integers that satisfy r +2 = sa(G) + ¢ with 0 <t < «(G)
and the convention that (;) =0ifs=0o0rs =1.

In the context of the maximum stable set problem, it follows from (8) that the upper
bound matches the optimal value at level » = max{0, «(G) — 2} of the inner approximation
hierarchy. Similarly, if G is a complete graph, then /p(Q) = v(Q) = 1/a(G) = 1, where
Q =1+ Ag by (9). It follows that both inner and outer approximations are already exact
at level O in this case. On the other hand, if «(G) > 2, then [, (Q) < v(Q) = 1/a(G) for
each r € N (see [17]), which implies that the lower bound matches the optimal value only in
the limit. Therefore, the upper and lower bounds exhibit different behaviors in terms of finite
convergence in the context of the maximum stable set problem.

In this paper, we are interested in understanding the behavior of upper and lower bounds
that arise from the completely positive reformulation of general standard quadratic opti-
mization problems. In particular, we give complete algebraic descriptions of the instances
of (StQP) for which u,(Q) = v(Q) (see Theorem 2) or [, (Q) = v(Q) (see Theorem 4)
for any given r € N. We aim to identify structural properties of the instances of (StQP)
for which u,(Q) > v(Q) (see Proposition 2) or [,(Q) < v(Q) (see Theorem 3) for all

(C))

otherwise,
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r € N. Furthermore, we present several geometric and topological properties of these sets
(see Proposition 1, Corollary 1, Propositions 8 and 9).

3 Preliminaries

In this section, we collect some preliminary results about (StQP). We then establish some
basic properties of upper and lower bounds.
We first review the optimality conditions of (StQP).

Theorem 1 Given an instance of (StQP), let x* € §2(Q) with the optimal value v(Q) =
)T Qx*. Define
P:={je {1,...,n}:x;‘ >0}, and Z:={j € {1,...,n}:x;‘ =0}. (10)
Then, x* satisfies
Oppxp =v(Qep, Qzpxp = v(Qez.

Proof The assertion directly follows from the KKT conditions. O

Next, given an instance of (StQP), we present several basic results about the optimal value
v(Q) and the upper and lower bounds.

Lemmal Ler Q, Q1, Q2 € S.

(i) 1o(Q) = minj<i<j<n Qij-

(ii) If Q € N, then u,(Q) > v(Q) > 1,(Q) > 0 foreachr =0,1,...

(iti) If Q1 — Q2 € N, then v(Q1) = v(Q2), u,(Q1) = u,(Q2), and [,(Q1) > 1,(Q2) for
eachr =0,1,...

(iv) Forany p € Ry and anyr € N, v(uQ) = uv(Q), I, (nQ) = ul-(Q), and u, (nQ) =
pur(Q).

(v) Forany A € Randanyr €e Ny v(Q+LE) =v(Q)+ XA [, (Q+AE) =1,(Q) + A, and
ur(Q +AE) = ur (Q) + A

Proof (i) By (4), A2 ={e :i=1...,nfU{(1/2)(e; +e¢;) : 1 <i < j < n}. The
assertion follows from this observation and (6).
(ii) This is a direct consequence of part (i) and the monotonicity of the lower bounds.
(iii) Let Q1 — Q> € N. For any x € A,, we have xT(Q1 — Q2)x > 0, which implies that
xT Oix > xTng. Therefore,

v(Q1) = min x” Q1x > min x” Qox = v(Q).
xeA, xX€Ay
Since Al, C A,, we can argue similarly for upper bounds by simply replacing x € A,

above withd € A}, and using (5). Considering lower bounds, note that /. (Q1 — Q») > 0
by part (ii) foreachr =0, 1, ... By (6),

1
dT(Q1 — 02)d — (m) ddiag(Q) — 02) =0, foralld e A, r=0,1,...,

which, after rearranging, yields

1 1
d’01d — (m) d"diag(Q1) > dT Qrd — (m) d"diag(Q>),
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foreachd € A}, r =0, 1, ... Minimizing both sides of the inequality over d € A},
we obtain [, (Q1) > [,(Q») foreachr =0, 1, ...

(iv) This is a trivial consequence of (6), (5), and the hypothesis that . € R..

(v) Let A € R. Forany x € A,, x(Q + AE)x = xT Qx + A, which implies that
v(Q + AE) = v(Q) + A. Similarly, by (5), we obtain u,(Q + AE) = u,(Q) + A
since A, C A,,.

Foranyd € A7, r =0,1, ..., we have

n’

dT(Q + 1E)d — (L) d"diag(Q + AE) = (dT 0d — (L) deiag(Q))
r+2 r+2

) (r + l) ’
r+2
where we used d” Ed = dTdiag(E) = e¢’d = 1 by (4). It follows from (6) that
L(Q+AE) =1(Q) + A

m}

4 Upper bounds

In this section, we focus on the upper bounds u,(Q). We first give a complete algebraic
description of the set of instances of (StQP) for which the upper bound matches the optimal
value at any given finite level of the inner approximation hierarchy. We next discuss some
interesting properties of this set. Finally, we identify the structural properties of the instances
for which the upper bound is exact at a finite level of the hierarchy and for which the upper
bound converges to the optimal value only in the limit.

Let us define the following sets:

ri={0 € S:u(Q)=v(Q)}, r=0,1,... (11)
Due to the monotonicity of the upper bounds, we readily obtain
UcU S-S 8.
We first give complete algebraic descriptions of the sets U,

Theorem 2 For each r € N, we have

U= J va. (12)

deA]

where
Vi:=1{0 € 8:d" Qd < x"Qx, foreachx € A,}, de A. (13)

Proof Letus fix r € N. By (11) and (5), Q € U, if and only if
v(Q) = ur(Q) = min d” Qd,
deAy,
which holds if and only if there exists some d € A} N £2(Q), or equivalently Q € V, for
some d € Al . The relation (12) follows. O
The next proposition presents several geometric properties of the sets U4,

Proposition 1 For each r € N, U, is a closed cone given by the union of a finite number
of nonempty, closed, and convex cones. Furthermore, U, contains the line {AE : . € R} for
eachr € N.
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Proof For any x € R”, note that x” Qx = (Q, xxT). Therefore, for each r € N and each
d € A}, V, is closed and convex since it is given by the intersection of an infinite number of
closed half spaces in S. Clearly, V; is a cone.

For each r € N, the set U4, is a closed cone since it is given by the union of a finite number
of closed cones. Finally, for any A € R and any d € A/, we have AE € V. Therefore, U,
contains the line {AE : A € R} foreachr € N. O

For any r € N, it follows from Proposition 1 that Q + AE € U, for any A € R whenever
Q € U,. Note, however, that the cones U/, are in general nonconvex. It is easy to verify that
ei(e))T € Uy foreachi =1,...,n. However, I = >""_, e;(e;)T ¢ U for any n > 3.

Remark 1 For any r € N and any d € A}, the unique global minimizer of the quadratic
function (x — d)' (x — d) is given by d. If we define Q4 :=1 — edlT — deT € S, it follows
thatxT Qux = xTx =2dTx = (x —=d) T (x —d)—dTd > —dTd = dT Q4 d forany x € A,
with equality if and only if x = d. Therefore, 2(Qy4) = {d} and Q4 € V,; by (13). Since
Al C Afl“ by (3), it follows from Proposition 1 that U, C U, for each r € N, i.e., the set
U, 41 1s strictly larger than the set U, for each r € N.

Remark 2 Let G = (V, E) be a simple, undirected graph, where |V| = n. Consider the
formulation (7) of the maximum stable set problem on G as an instance of (StQP), where
O =14Ag.-By(8),u,(I + Ag) = v(Il + Ag) for r > a(G) — 2, which implies that
I + Ag € U, for each r > a(G) — 2. It follows that, for any simple, undirected graph
G =(V,E),wehave I + Ag € Uy, ».

Let us next define
U:=|Ju, and U :=S\U. (14)
reN
Note that the set I/ consists of all instances of (StQP) for which the upper bound matches
the optimal value at some finite level of the inner approximation hierarchy. For instance,
it follows from Remark 2 that, for any simple, undirected graph G = (V, E), we have
I + A € U. We next present several structural properties of the instances in the sets ¢/ and
Uso.

Proposition 2 The following relations are satisfied:

(i) U={0 €S:2(0)NQ" £ B} andUso = {Q € S: 2(Q) N Q" = B}.
(i) Q CU.

Proof (i) The first relation follows from the fact that Q € U, if and only if A}, N §2(Q) # ¥
and the relation U,ey A}, = Q" N A,,. The second relation is an immediate consequence
of the first one and (14).
(i1) Vavasis [19] proved that any quadratic optimization problem with rational data, which
is bounded below, has a rational optimal solution. The assertion directly follows from
this result and part (i).
O

For a given Q € S, Proposition 2(i) identifies an important structural property of the
corresponding instance of (StQP) in order for the upper bounds to be exact at some finite
level of the inner approximation hierarchy. An easy sufficient condition for membership in ¢/
is presented in Proposition 2(ii), which implies that, for a given Q € S, a necessary condition
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for Q € Uy is that Q has irrational entries. Note, however, that this condition is not sufficient
since, for any Q € Q, we have uQ € U for any u € R by Proposition 1.

The next corollary presents an important topological property of the setZ/ and immediately
follows from Proposition 2(ii) and the fact that cl(Q) = S.

Corollary 1 We have cl(U) = S.

It follows from Corollary 1 that, for any Q € S, either the upper bound is exact at some
finite level of the hierarchy or there exists an arbitrarily small perturbation of Q for which the
upper bound is exact at a finite level. Therefore, the set U/ is a dense subset of the set S. This
result reveals the strength of the inner approximation hierarchy of the completely positive
cone in the context of standard quadratic optimization.

Finally, the next example illustrates that Uy, # @ for any n > 2.

Example 1 Similar to Remark 1, let d € A,\Q" and define Qg := I — ed” — de” € S.
Then, 2(Qg4) = {d} and £2(Q4) N Q" = @. By Proposition 2(i), Q4 € Uxo.

5 Lower bounds

In this section, we focus on the behavior of lower bounds /,- (Q). Our analysis of lower bounds
is considerably more involved since the expression (6) is more complicated in comparison
with (5).

Similar to U, let us define the following sets:

Ly ={0eS:1(Q)=v(Q)}, r=0,1,... (15)
Since the lower bounds are monotonically nondecreasing, we obtain
LoS Ly S-S 8.

Similarly, let
£:=JL, and Lo :=S\L. (16)
reN
This section is organized as follows. In Sect. 5.1, we give a simple algebraic description
of the set Ly (see Proposition 3) and present its geometric properties (see Corollary 2). Two
auxiliary sets Sy and Sy are introduced in Sect. 5.2, which are later used to identify structural
properties of the instances in the sets £ and L (see Theorem 3 and Proposition 8) in Sect. 5.3.
We give complete algebraic descriptions of the sets £, (see Theorem 4) and present several
geometric properties of these sets (see Proposition 9) in Sect. 5.4. Finally, we close this
section by discussing the relations among the sets £, £, U, and U (see Proposition 11).

5.1 Characterization of L

First, we focus on the set £g. To that end, given an instance of (StQP) and any y € R,
replacing Q € S with Q + y E in (StQP) shifts the optimal value by y by Lemma 1(v) ,
ie, v(Q+yE)=v(Q)+ y,while 2(Q + yE) = £2(Q). In particular, the shifted matrix
obtained with y = —min;<;<;<, Qij = —lo(Q) will play an important role and we define
it below for future reference:

Q' =0 —-1(QE. a7

Note that Q° € N and [p(Q*) = 0 by Lemma 1(i).
Next, we give a simple algebraic description of the set L.
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Proposition 3 Q € Lo if and only if there exists an index k € {1, ..., n} such that Qxr =
minj<;<j<u Q;j. Therefore,
n
Lo=|J{QeS:0u=<0y 1<i<j=<n} (18)
k=1

Proof Suppose that Q € L. Then, [p(Q) = v(Q) = min|<;<;<, Q;; by Lemma 1(i). Sup-
pose, for a contradiction, that Qx > lp(Q) foreachk =1, ..., n.By(17),ming—1,.__, Oy, >
0. Since Q° € N, for any x € A,,, we have

n n . s
, . ) . ming—y,.., Q
T 2 2 et Qi
Qx> 0% X7 = (kznannn Q2k> > x| = ——=t = s,
Jj=1

.....

where we used minges 3", x2 = 1/n to derive the third inequality. Together with
n j=17"j q y g

Lemma 1(v), we obtain that v(Q*) = v(Q) — lp(Q) > 0, contradicting our hypothesis.
Conversely, given Q € S, suppose that there exists an index k € {1, ..., n} such that

Okk = minj<;<j<p Qjj. It is easy to verify that e € $2(Q). Therefore, vV(Q) = Qi =

minj<j<j<p Qij = lo(Q) by Lemma 1(i), which implies that Q € L. ]

The following corollary presents some geometric properties of the set £y and immediately
follows from (18).

Corollary 2 The set Lo is a closed cone given by the union of n polyhedral cones and
contains the line {AE: A € R}.

We remark that the set £ is in general nonconvex since e; (e;)T € Loforeachi =1, ..., n,
while I = X" e;(e;)T ¢ Lo forany n > 2.

5.2 Two auxiliary sets

In this section, we will define two auxiliary sets that will subsequently be helpful in the
description of the sets £ and L. To that end, we first define two index sets.

For a given Q € S, we have ekT Qer = Qrx = v(Q) foreach k = 1,..., n. Therefore,
each Q € S induces the following partition of the indices:

U:={kefl,....,n}: Qu =v(Q)}, V:i={kell,...,n}: Qu > v(0)}. 19)

We next define the following two auxiliary sets, which partition the set S:

Sy = ‘QES: kzn?iankk:V(Q)] ={QeSU #0}, (20)

.....

S = [Q esS: kirrllin Okk > v(Q)] ={QeS:U =0} (21)

Note that Q € S; if and only if 2(Q) N{ey, ..., ey} # . Therefore,
n
St = Ve (22)
k=1

where V,, is defined as in (13).
The next proposition presents some geometric properties of the set Sy and its relation with
the set L.
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Proposition 4 S; is a closed cone given by the union of a finite number of nonempty, closed,
and convex cones. Furthermore,

Ly C ;.
Proof The assertions directly follow from the definition (13), (22), and Proposition 3. O

We now turn our attention to the set S». The following proposition is one of the main
results of this section.

Proposition 5 We have S» C Lo, i.e., fora given Q € S, if ming—1,.. , OQkk > v(Q), then
0 € Lo

Proof Let Q € S and let x* € §2(Q). Let the index sets P and Z be defined as in (10).
Note that |P| > 1 since x* € A,. First, we claim that |P| > 2. Clearly, |P| = 1 if and
only if x* = e for some k € {1, ..., n}, in which case Q € S; by (22), contradicting our
hypothesis.

By Theorem 1,

Oppxp =v(Qep. (23)

Fixing k € P and considering the corresponding equation above, we obtain

> 0ujx; =v(0).

JjeP

Since Qg > v(Q) and x* € A, it follows that there exists some [ € P such that / # k and

Ou < v(Q).

Let us denote the smallest face of A, that contains x* by F, i.e., F = conv{e;:i € P}.
We make the following claim. For each r € N, there exists ¢” € A/ N F such that

ry . r+2 T ry _ 1 T 3: _
fr(q") == (f‘_l)(q ) 0(@q") (7r+1)(61 ) diag(Q) <v(Q), r=0,1,...
(24)

We will prove our claim by induction on r. For r = 0, we define ¢° = (1/2)(ex + ¢;),
where k € P and [ € P are as defined above. Clearly, ¢° € Ag N F and

fo@® =247 0" — (¢ diag(Q) = Qu < v(Q),

by the choice of k € P and [ € P. This establishes (24) for r = 0.

Suppose now that there exists some ¢” € AJ, N F that satisfies (24) for some r € N. We
will show that we can construct ¢"*! € A’T! N F that satisfies (24) for r + 1.

Let us define z” = (r 4+ 2)¢". By the induction hypothesis,

ry __ 1 T N _ (-"\T g5
76D = oy (@06 — @) dieg@) <v@). @9

For each j € P, let us define w/ := 7" + ¢;. We have

1 ; r+2 1 1 .
(r+3)wf:(r+3>qr+(m)ej e ALtINF, foreach j e P.
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We will show that there exists some j’ € P such that q’+1 = (/(r+ 3))wj/ satisfies
(24) for r + 1. To that end,

)" Q') — (w)) diag(Q) = ") Q") + 2" Qe;
+0j; — (&) diag(Q) — Q.
= @0 — (&) diag(Q) +2(z')" Qej, j € P.
Let us now focus on the term (z")7 Qe;. Observe that ¢" = (1/(r + 2))z" € F by the

induction hypothesis and e¢; € F since j € P. Therefore, (z’)Ter = (z;,)T QOpp(ej)p for
each j € P. Multiplying both sides by x;‘f and summing over j € P, we obtain

> (@ Crrtenr) = @) 0pp [ Do xienr |
jepP jepP
= ()" Qppx},
V(Q)((Zp) ep).
= (r +2)v(Q),

where we used (23) in the third line and the definition of z" in the last line. Since jep x}‘ =1

and x* > 0, there exists some j° € P such that (z;,)TQpp(ej/)P = (ZF)Ter, < (r+
2)v(Q). By defining ¢"+! = (1/(r + 3))w/’, we obtain
+3 1 )
fra1(g™th) = (: +2) @ 0@ — (m) (¢") diag(0Q).
1

T+ +3)
— ; r\T ry _ (T q; T .
TR ) ((Z) 0(z") — (z)" diag(Q) + 2(z") er),
S
T rr+2)(r+3)

(@7 0w’ - ') diag(0))

(7 0@ = ) diag(Q) + 20 +2)v(0)).

1
< m ((r + D(r +2)v(Q) +2(r +2)v(Q)) ,

A+ 1 2
= (l’ T 3) v(Q) + (m) v(Q),
=v(0),

where we used the choice of j’ in the first inequality and the induction hypothesis (25) in the
second one. Since [, (Q) < f,(¢") by (6), it follows from (24) that [, (Q) < v(Q) for each
r € N. Therefore, Q € L. O

Example 2 Consider an instance of (StQP) in which Q° is a diagonal matrix with strictly
positive diagonal entries. Note that this class includes all instances of (StQP) in which Q
itself is a strictly positive diagonal matrix. Let 8 = >, (1/Q%,). Itis easy to verify that the
unique optimal solution x* € £2(Q) is given by x;‘.‘ = (I/Q‘}j)/,B, j =1,...,n. Therefore,

by (22), O ¢ S for any n > 2. It follows from Proposition 5 that Q € L4 for any n > 2.

Remark 3 Let G = (V, E) be a simple, undirected graph, where |V| = n. Consider the
formulation (7) of the maximum stable set problem on G as an instance of (StQP), where Q =
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I 4+ Ag. If G is a complete graph, then Q = E, which implies that Q € L by Corollary 2.

1 > v(Q) = 1/a(G), which implies that O € S, by (21). By Proposition 5, Q € L. It
follows that the relation /. (Q) < v(Q) established in [17] is a special case of Proposition 5.

The following result, which is an immediate consequence of Proposition 5 and (22),
presents an important relation between the sets £ and Sj.

Corollary 3 We have L C Sy, where L and S are defined as in (16) and (20), respectively.
Therefore, for a given Q € S, if Q € L, then 2(Q) N{e1, ..., ey} # 0.

Corollary 3 presents a necessary condition for O € £. An interesting question is whether
this condition is sufficient, i.e., whether we have £ = S;. The next two examples answer this
question in the negative for different reasons.

Example 3 Consider an instance of (StQP), where

122
0=1220
2 0 2
One can verify that v(Q) = 1 and £2(Q) = {e1, (e2 + €3)/2}, which implies that Q € S; by
(22). Inthis example, U = {1} and V = {2, 3}. Letus focuson Qyy. Note that v(Qyy) = 1,
which implies that, for n = 2, Qyy € Lo by Proposition 5. Therefore, for any r € N,
1, (Qvy) < v(Qyy) = 1. It follows that

_ r+2 . T _ 1 T 4
I (Q) = (r+l)c}21/{:q (d Qd (7r+2)d d1ag(Q)),

r+2 . T 1 -
—(——)d"4a
= (r+1)deﬁfql331=o (d od (r+2)d lag(Q)),

=1LQvy) <1,
for any r € N. Therefore, Q € L, i.e., Q € S1\L.

Example 4 Consider an instance of (StQP), where
111
O=1]|130
1 03
Q is positive definite. It is easy to verify that v(Q) = 1 and £2(Q) = {e;}, which implies

that Q € S1 by (22). Similarly, U = {1} and V = {2, 3}. We claim that Q ¢ L. Let us fix

r € N and define d, := (ﬁ) r,1,117 € A By (6),

r+2 T 1 T 4
11(Q) < (r - 1) (d, Qd, — (m) d! chag(Q)),

rP24+4r+6—(r+6)
r+ D@ +2)
r2 4+ 3r
P42
which implies that [, (Q) < v(Q) for each r € N. Therefore, Q € L, i.e.,, O € S1\L.
Note that v(Qyy) = 3/2 > 1 = v(Q) on this instance.

)

’
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5.3 Structural properties of £ and L

In this section, our goal is to identify the structural properties of the instances in the sets £
and L. We first generalize Examples 3 and 4 in an attempt to further our understanding of
the set S1\ L (see Propositions 6 and 7). We then use these observations to present our main
result in Theorem 3, which establishes the structural properties of the instances in £ and L.
Finally, Proposition 8 presents a relation between the sets £ and Sj.

We first present a useful property of the instances in the set Sy\ L.

Lemma 2 For any Q € S1\L, there exists k € {1, ..., n} such that Q. > v(Q), i.e., we
have V # (), where V is defined as in (19).

Proof Let Q € S\ L. Suppose, for a contradiction, that V = . Then, {ey, ..., e,} C £2(Q)
since U = {1, ..., n}. By Theorem 1, we have Q;; > Q;; =v(Q) foreach1 <i < j <n.
Therefore, Q € Ly by Proposition 3, which contradicts our hypothesis since Lo C L. O

It follows from the proof of Lemma 2 that
Qij >v(Q) foreach iU, j=1,...,n. (26)

The next proposition gives a sufficient condition for membership in S\ £ and generalizes
Example 3.

Proposition 6 Let Q € S| be such that V.# @. If v(Qvyv) = v(Q), where V is defined as
in (19), then Q € S1\L.

Proof The assertion follows from the observation that Qyy € Lo, for n = |V| by Proposi-
tion 5 and a similar argument as in Example 3. O

The next proposition presents another sufficient condition for membership in Sj\L,
thereby generalizing Example 4.

Proposition 7 Let Q € S| be such that |V| > 2, where V is defined as in (19). Suppose that
there exist indicesi e U, j € V, k € V, and j # k such that

Qij = Qix =v(Q), Qjr <v(Q). 27
Then, Q € S1\L.

Proof Suppose that Q € S satisfies the hypothesis and let us fix » € N. We define d € A},
as follows:
r 1 1

d=——, di=——, di=
! r+2 / r+2 k

and all remaining entries of d are set to 0. By (6),

r+2 T _ 1 T
Q) < (r—i—l) (d od (7r+2)d dlag(Q)),

(@ +3r) +205
o r243r42 <v(@).

where we used (27) to derive the last inequality. It follows that O ¢ L. O
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We remark that the sufficient conditions of Propositions 6 and 7, in general, are not implied
by one another. Indeed, the instance in Example 3 satisfies only the sufficient condition of
Proposition 6, whereas the instance in Example 4 satisfies only that of Propositon 7 with
i=1,j=2and k =3.

Recall that Q € S if and only if 2(Q) N{ey, ..., e,} # . Motivated by the sufficient
conditions of Propositions 6 and 7, let us define the following subset of Sj.

S;:={0eS:V#Pandv(Qyy) =v(QIU{Q eS:TieU, TjeV,
dk e Vsuchthat j #k, Q;; = Qix =v(0), Qjx <v(Q)}. (28)

The next theorem, which is one of the main results of Sect. 5, establishes the relationships
between the sets £ and L and the sets Sy, Si, and S.

Theorem 3 The following relations are satisfied:

1L L=8\S| ={Q €8:2(0) Nfel,..., e} #INS,
2 Loo=8US| ={0e8:2(Q)N{er,...,en} =BIUS],

where S} is defined as in (28).

Proof Notethat S|US) = LULy =S and S| NSy = LN Lo = Dby (16), (20), and (21).
By Propositions 5, 6 and 7, we obtain S| US> € L. Taking the complements of both sides
yields £ € S1\S;. Therefore, both assertions will be proved by showing that any one of
these two inclusions in fact holds with equality. We will show that the latter inclusion holds
with equality by showing that the reverse inclusion §{\S] C £ is satisfied.

Let O € S1\Sj. Let us define the following index sets:

Wi={(.k:jeV, keV, j#k Qu<vwQ)}, (29)
Wo = {(jky:jeV, keV, j#k Qju=v(Q). (30)

If Wi = 0, then it follows from (26), (30), and (28) that Q;; > v(Q) for1 <i < j <n
and Qx = v(Q) forsome k = 1, ..., n. Therefore, Q € Ly by Proposition 3, which implies
that Q € L, establishing the reverse inclusion.

We will henceforth assume that Wy # (. In this case, it follows from (28) that

Bijk :=max{Q;;, Qi} > v(Q), foreachi e U, (j, k) € Wj.
We also define

B:=_ min  Bijx>v(Q), and p:=p—v(Q)>0. (31)
ieU; (j,k)yeW;

Next, we will establish a lower bound on /. (Q) for each r € N. Let us fix r € N. Recall

that /. (Q) is given by
L) = ——— min (T 0z diag(Q), r=0,1
' (r+ D(r +2) zer+2)4;, ; NS B

We can rewrite the expression in the parentheses on the right-hand side as

"0z — 7" diag(Q) = Z z 0ijzizj — Z Qiizi +2 Z Z QikZik

ieU jeU ieU ieU keV
+ZZijZjZk—ZQj/’Zj. (32)
jeV keV jev
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Next, we will derive lower bounds on the terms on the right-hand side of (32). For a given
z € (r +2) A}, let us define

Dz=mn

jev
sothat Dy zi =7 +2—1.
By (26),
D> Oijzizi— D Quzi = Quzizi =D+ > D Qijzizj,
ieU jeU ieU ieU ieU jeU\{i}
2
> v(0Q) (Zz,-) =D,
ieU ieU
=r+2-n0r+1-nvQ), (33)
where we used z € N” to derive the inequality.
Similarly,
ZZ Qjkzjzk — Z ijZj=z Qjizjzj— D+ Z Qjkzjzk + Z Qjkzjzk-
jevkev jev jev (j.kyew (j.k)eW,
By (29) and (30), we obtain the following lower bounds.
v(Q)n(n — 1), ifzjze =0
S 0pzja— Y Qjjzi = forall (j,k) € Wi,  (34)
jevkev jev n(n — Dly—2(Qvv), otherwise,

where the second part follows from the definition of /,(Qyy) and the fact that zy € (r +

2)A|”V_|2. Note that, in the second case, zy should have at least two positive components,
which implies that n > 2.
Finally,

D> Ouzizk= Dz (Z Qika)-
ieU keV ieU keV
Note that Q;x > v(Q) for each i € U and k € V by (26). Furthermore, if there exists
(j', k') € Wy such that zjrz; > 0, then
> Ouz= Y, Quzk+ Qijzjy+ Qiwzw = v(Qn+p, foreachi e U,
kev keV\{j' .k}

since max{Q; j, Q; x'} = v(Q) + p by (31) for each i € U. Therefore,

r+2-—n0@n+p), ifzjz >0
Zz Qirzizk = for some (j, k) € Wi, (35)
ieU kev v(Q)(r +2—=n)n, otherwise,

Using these lower bounds, we consider the following five cases:
Case 1: If Zjev zj =n =0, then z; = 0 foreach j € V. By (32) and (33),

70z — T diag(Q) = (r +2)(r + DHV(Q).
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Case 2: If Zjev zj = n = 1, then it follows from (32), (33), (34), and (35) that
2" Qz — " diag(Q) = (r + 2)(r + DV(Q).
Case 3: If Zjev zj =n=r+2,thenz; =0foreachi € U. By (32) and (34),

27 Qz — ZTdiag(Q) = (r +2)(r + D) min{v(Q), I, (Qvv)}.

Case4a: 1f2 < Zjev zj =n <r+1landz;zx = 0foreach (j, k) € Wy, then it follows
from (32), (33), (34), and (35) that

2" 0z — 2" diag(Q) = (r +2)(r + DH(Q).

Case 4b: 1If 2 < Zjev zj =n < r + 1 and there exists (j, k) € Wj such that z;zx > 0,
then, by (32), (33), (34), and (39),

" Qz—z"diag(Q) = (r4+2—m(r + 1+ mMv(Q)+n(n—Dly—2(Qvv) +2p(r +2 — ).

It follows from the five cases above that

[-(Q) > min [V(Q), I(Qvy), min h(Q, n,r)] ; (36)
ne{2,...,r+1}
where 200 42 )
1 pr -1
h(Q,n, 1) == (1 = Ay Iv(Q) + Ay rly—2(Qvv) + T2 (37
and

. nm—1
T+ D +2)
We next establish that the second and the third terms in (36) are at least as large as v(Q)

for all sufficiently large values of r.
For any Q € S; with V # ), we have

v(Qvy) =min{x” Qx:efx =1, x >0, x; =0, i € U} > v(Q).
By (28), we therefore have v(Qyy) > v(Q) forany O € S; \Si. Since lim; . o0 [ (Qyy) =

v(Qvyyv), there exists 7 € N such that

L(Qvy) > v(Q), forallr > r. (38)

Therefore, the second term in (36) is at least as large as v(Q) for all r > 7. Let us next focus
on the third term in (36) for r > 7. Note that it suffices to consider only n € {2, ..., 7 + 2}
for the range of the minimum since 4(Q, n,r) > v(Q) for all n > 7 + 2 by (38).

Letus now fix n € {2, ..., 7 + 2} and consider the last term in (36) as a function of . We
claim that there exists r, € N such that

h(Q,n,r) 2 v(Q), forallr >ry, (39)
where £ is defined as in (37). Indeed, #(Q, n, r) can be rewritten as

2000 +2=n) —n(n — 1) (v(Q) — [h—2(Qvv))
D+ "+ D +2) '

Therefore, there exists r,, € N such that the second term is nonnegative for all r > r;, which
establishes (39).
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It follows from (38), (39), and (36) that
L(Q) =v(Q), forallr >r*,

where
r* := max [f—l—l, max  r,;{ < 00.
ne{2,...,r+2}
Therefore, Q € £, which implies that S{\S| € L. The proof is complete. O

For illustrative purposes, we present the following example.

Example 5 Let

1 14+p 1+p
Q) =|1+p 3 0
I+p O 3

For any p > 0, v(Q(p)) = 1 and £2(Q(p)) = er, which implies that Q(p) € S;. We
have U = {1} and V = {2, 3}. Note that Q(0) € Si by Example 4. On the other hand, for
any p > 0, Q(p) € S1\S;, which implies that Q € £ by Theorem 3. Our computational
experiments reveal that Q(1) € £5 and Q(0.1) € Lyg.

Example 5 illustrates that £, in general, is not a closed set. Our next result gives a descrip-
tion of the closure of L.

Proposition 8 We have
cd(L)y=81={0eS:2(0Q)N{e1,...,en} #9}.

Proof By Corollary 3, £ C S;. Note that S is a closed set by Proposition 4. Therefore,
cl(L) € .

Conversely, let Q € S;. Therefore, there exists somei € {1, ..., n}suchthate; € £2(Q).
Let us define the following sequence:

(o) ::Q—i—%(eeT—ei(e,-)T), k=1,2,...

Clearly, limy— 00 Qr = Q. We will show that Qy € £ foreach k = 1,2, ... Let us fix k.
Since Qx — Q € N, v(Qx) > v(Q) by Lemma 1(iii). Furthermore, (e Qrei = v(Q) >
v(Qr), which implies that v(Qy) = v(Q) and ¢; € 2(Qy). Therefore, Q; € S; for each
k=1,2,...Sincee; € 2(Q),wehave Q;; > v(Q)and Q;; > v(Q)foreachj =1,...,n.
By the definition of Qy, U = {i}, V = {1, ..., n}\{i}. We have

. 1 1

v((Qr)vy) = min [XTQX + *] >v(Q) + — > v(Q) = v(Qk),
XEAL X;= k k

which implies that the condition of Proposition 6 cannot be satisfied. Since (Qy);; > v(Q) for

each j € V,the condition of Proposition 7 cannot be satisfied either. Therefore, Oy ¢ Si ,i.e.,

Or €S \Si. By Theorem 3, Qi € L foreach k = 1, 2, ..., which implies that Q € cl(£).

O

By Proposition 8, Q(0) € cl(£)\L£ in Example 5. Note that cI(£) C S in general. For
instance, I ¢ cl(£) since I ¢ Sy for any n > 2.
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5.4 Description of L,

In this section, we give complete algebraic descriptions of the sets £,. In particular, our next
result generalizes Proposition 3.

Theorem 4 Foranyr =0, 1, ..., we have

n

L=k, (40)

k=1

where
1

£k = S: <7(T - — 70 di ), Iz DAL,
r ’QE Ork < ciheao 0z —z diag(Q)), forallz € (r +2)A,

fork=1,...,n.

Proof Letus fix r € Nand let Q € L,. By Corollary 3 and (16), £, € S;, which implies
that

! (ZT 0Oz — sziag(Q)).

v(Q) (oin O =1,(0) T Dr T2 ze(lfll?m,r,
Therefore, Q € L, if and only if Q € E’; for some k € {1, ...,n}. ]
Recall that £’r‘ is defined by O(n” +2) inequalities for each k = 1, ..., n. Therefore, it

follows from Theorem 4 that, for any fixed r € N, one can check in polynomial time if
Q € L,. On the other hand, Theorem 3 does not yield an algorithmic procedure for checking
itQeL.

Our next result establishes some geometric properties of the sets £,.

Proposition 9 Foranyr =0, 1, ..., the set L, is given by the union of n polyhedral cones.
Proof Since A}, is a finite set, lllr‘ is a polyhedral cone foreachr € Nandk =1, ..., n. The
assertion directly follows from (40). ]

‘We next establish an interesting connection between the behavior of lower bounds and the
stability number of a certain associated graph. Given M € N, we define the sparsity graph
Gy associated with M as follows. There are n vertices labeled 1, ..., n and vertex i and
vertex j are connected by an edge if M;; > 0, 1 <i < j < n. The next result establishes
a connection between the stability number of the sparsity graph of the matrix Q° and the
behavior of lower bounds /, (Q).

Proposition 10 Let Q € S\Loandlet G = G gs denote the sparsity graph of Q* with stabil-
ity number o(G). Then, [, (Q) = min|<j<j<p Qij < v(Q) foreachr =0,1,...,a(G) —2
and [,(Q) > min|<;<j<u Q;j for eachr > a(G) — 1. Therefore,

Q&L foreachr =0,1,...,a(G)—2. (41)

Proof Given Q € S\Ly, let G = G s denote the sparsity graph of Q° and let Ag € S
denote the adjacency matrix of G. First, we claim that there exists some 1 <i < j < nsuch
that ij = 0. By Proposition 3, Q € Ly if and only if Q% € A given by (17) has a diagonal
entry equal to zero. Therefore, for each Q ¢ Lo, ming—1,..» Oy, > 0 and ij = 0 for some

.....
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1 <i < j < n.Itfollows that {i, j} is a stable set in G by definition of the sparsity graph.
Therefore, x(G) > 2.
We now define the following two matrices.

O« ::( min Q‘;j)(l +Ag), OF:= ( max Qf]) I+ Ag).
1§i§j§n:Q';j>0 I<i<j<n
Clearly, we have O, € N, Q* € N, Q° — Q, € N, and O* — Q° € N. By Lemma 1(iii),
1.(0s) <1.(Q°) <1.(Q%), foreachr=0,1,....
Note that each of Q* and Q. is a positive multiple of I + Ag. By Lemma 1(iv), we have
( min Qij)lr(l + Ag) < 1,(Q°) < ( max Q‘fj) I+ Ag).
1§i§j§n:Q‘fj>O I<i<j<n

The assertion now follows directly from (17), Lemma 1(v), and (9). The relation (41) follows
immediately. O

Example 6 Consider an instance of (StQP) in which

122 ... 2

2n 0 ...0

200 ... n
is an n x n arrowhead matrix, where n > 3. It is easy to verify that v(Q) = 1 and £2(Q) =
{e1}. Therefore, U = {1} and V = {2, ..., n}. By (28) and Theorem 3, Q € L. We have
a(G) = n — 1, where G = G denotes the sparsity graph of Q. By Proposition 10, we

have [,(Q) = min|<;<j<, Q;jj = Oforeachr =0,1,...,n — 3 and [,(Q) > 0 for each
r >n — 2. Itfollows that Q ¢ L, foreachr =0,1,...,n — 3.

5.5 Relations among different sets

In this section, we summarize the relations among all the important sets defined in the previous
sections.

Proposition 11 The following relations are satisfied:
LoCL S CLCAL)=S1CU CU C---CUCcdU) =S,
where L, L, S1, Uy, and U are defined as in (15), (16), (20), (11), and (14), respectively.

Proof By Corollary 3, Proposition 4, and Proposition 1, we obtain £ C S| € Uy since
{e1,...,en} C Ag. The last equality follows from Corollary 1. The remaining inclusions
follow from the definitions (15), (16), (11), and (14). ]

It is worth noticing the significant difference between the sets £ and /. For any n > 2,
cl(£) is strictly contained in the set Uy, which is the smallest set in the sequence of the
sets U,. On the other hand, recall that cl((/) = S by Corollary 1. Therefore, for the par-
ticular polyhedral approximation hierarchies considered in this paper, it follows that upper
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and lower bounds exhibit quite different behaviors in terms of finite convergence in the con-
text of standard quadratic optimization. In particular, our results reveal that inner polyhedral
approximations, which give rise to upper bounds, are considerably stronger than outer poly-
hedral approximations in terms of finite convergence in the context of standard quadratic
optimization.

We close this section by briefly commenting on the instances of (StQP) for which the
upper and lower bounds coincide at a finite level of the hierarchy. From a computational
point of view, this class of instances is especially important since equality of upper and lower
bounds yields a certificate of optimality. We therefore define the following sets:

& ={0e€S:L(Q)=u,(Q)} =L NU =L,, r=0,1,...,

where the last equality follows from Proposition 11. Therefore, the algebraic description of
such instances are precisely given by Theorem 4.

6 Concluding remarks

In this paper, we investigated the sequences of copositive optimization based upper and lower
bounds on the optimal value of a standard quadratic optimization problem. We gave complete
algebraic descriptions of the sets of instances for which the upper and/or the lower bound is
exact at a finite level of the hierarchy. We identified the structural properties of the sets of
instances for which the upper and/or the lower bound converges to the optimal value only in
the limit. We discussed several geometric and topological properties of these sets.

For the particular polyhedral approximation hierarchies considered in this paper, an impor-
tant consequence of our analysis is that the upper bounds seem to be more well-behaved in
comparison with the lower bounds. Note that the extreme rays of inner polyhedral approxi-
mations Z,, which give rise to upper bounds, are given by dd”, where d € A7 and the extreme
rays of the cone C of completely positive matrices are given by rank one matrices xx” , where
x € R} \{0} (see, e.g., [1]). It follows that the set of extreme rays of Z, is a subset of the set of
extreme rays of C. On the other hand, the outer polyhedral approximations O, are generated
by the matrices (r + 2)ddT — Diag(d), where d € A},. Ford = e; € A}, the corresponding
matrix is a multiple of e; (e)T,i =1,...,n, whichis also an extreme ray of C. However, for
eachd € A)\{e; : i =1, ..., n},itiseasy to constructaw € R"\{0} such that wld = 0and
((r +2)dd” —Diag(d), wwT) < 0, which implies that (r +-2)dd” — Diag(d) ¢ C. Together
with our analysis, this observation suggests that only a few faces of O, in fact coincide with
those of C whereas most of the faces of O, do not support the cone C. Our results, combined
with the recent progress on the facial structure of the cone C (see, e.g., [9,11]), may serve as
a basis for the construction of tighter polyhedral outer approximations.
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