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Abstract The problem of minimizing a quadratic form over the unit simplex, referred to
as a standard quadratic optimization problem, admits an exact reformulation as a linear
optimization problem over the convex cone of completely positive matrices. This computa-
tionally intractable cone can be approximated in various ways from the inside and from the
outside by two sequences of nested tractable convex cones of increasing accuracy. In this
paper, we focus on the inner polyhedral approximations due to Yıldırım (Optim Methods
Softw 27(1):155–173, 2012) and the outer polyhedral approximations due to de Klerk and
Pasechnik (SIAM J Optim 12(4):875–892, 2002). We investigate the sequences of upper
and lower bounds on the optimal value of a standard quadratic optimization problem arising
from these two hierarchies of inner and outer polyhedral approximations. We give complete
algebraic descriptions of the sets of instances on which upper and lower bounds are exact
at any given finite level of the hierarchy. We identify the structural properties of the sets of
instances on which upper and lower bounds converge to the optimal value only in the limit.
We present several geometric and topological properties of these sets. Our results shed light
on the strengths and limitations of these inner and outer polyhedral approximations in the
context of standard quadratic optimization.
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e-mail: gsagol@ku.edu.tr

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-015-0269-4&domain=pdf


38 J Glob Optim (2015) 63:37–59

1 Introduction

In this paper, we study standard quadratic optimization problems given by

(StQP) ν(Q) := min
x∈Δn

xT Qx, (1)

where Q ∈ S and S denotes the set of n × n real symmetric matrices, x ∈ R
n , and Δn

denotes the unit simplex in R
n given by

Δn := {x ∈ R
n+: eT x = 1},

where e ∈ R
n is the vector of all ones and R

n+ denotes the nonnegative orthant in R
n .

Standard quadratic optimization problems arise in a variety of applications (see, e.g. [2]).
Despite its seemingly simple structure, the problem (StQP) encompasses several interesting
problem classes. For instance, it is well-known that the problem of minimizing a nonhomo-
geneous quadratic function over the unit simplex can be reformulated in the form of (StQP)
using the following identity:

xT Qx + 2cT x = xT (Q + ecT + ceT )x, for each x ∈ Δn .

Similarly, any quadratic optimization problem over a polytope can, in theory, be formulated
as an instance of (StQP) by representing each feasible point as a convex combination of
the vertices of the polytope (see, e.g., [4]). In the resulting alternative formulation, each
component of x corresponds to the weight of a different vertex. Therefore, the dimension n
is equal to the number of vertices of the polytope. Clearly, such a reformulation is not viable
if there is an exponential number of vertices as in box-constrained quadratic optimization
problems.

Since the maximum stable set problem admits a formulation in the form of (StQP) [14],
it follows that (StQP) is in general an NP-hard problem.

An instance of problem (1) can be equivalently reformulated as the following instance of
a linear optimization problem over the cone of completely positive matrices [4]:

ν(Q) = min{〈Q, X〉: 〈E, X〉 = 1, X ∈ C}, (2)

where 〈A, B〉 = trace(AB) = ∑n
i=1

∑n
j=1 Ai j Bi j for A, B ∈ S, E = eeT ∈ S is the matrix

of all ones, and C ⊆ S is the cone of the completely positive matrices given by

C := conv{uuT : u ∈ R
n+},

where conv{·} denotes the convex hull. The dual cone of C with respect to the trace inner
product 〈·, ·〉 is the cone of copositive matrices given by

C∗ :=
{
X ∈ S: uT Xu ≥ 0 for all u ∈ R

n+
}

.

Since (StQP) is in general an NP-hard problem, the convex optimization problem (2) is
in general intractable. Indeed, the computational complexity is now hidden in the conic con-
straint X ∈ C, for which themembership problem is NP-hard [10]. Similarly, themembership
problem for the dual cone C∗ is also NP-hard [10,15].

Despite the fact that the convex reformulation (2) of the problem (StQP) does not seem
to be helpful from the computational complexity point of view, it offers a new perspective
as the difficulty is now shifted to the convex cones C and C∗. In fact, Burer [7] established
more generally that, under mild assumptions, every optimization problem with a quadratic
objective function, linear equality constraints, and a mix of nonnegative and binary variables
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admits an exact reformulation as a linear optimization problem over the cone C. Therefore,
there has recently been a considerable research activity towards a better understanding of the
cones C and C∗. Many of these studies propose different ways of approximating each of these
two cones by a sequence of tractable convex cones of increasing accuracy (see, e.g., [3,5,6,8,
12,13,16–18,20]). Such sequences therefore yield approximation hierarchies for the cones C
and C∗. By replacing the difficult conic constraints with the sequences of increasingly more
accurate tractable approximations, one can obtain a sequence of increasingly tighter bounds
on the optimal value of a linear optimization problem over the cones of completely positive
or copositive matrices.

In this paper, we focus on two approximation hierarchies, each of which is comprised of
a sequence of polyhedral cones of increasing accuracy. The first approximation hierarchy,
defined originally in the context of standard quadratic optimization byBomze and deKlerk [3]
and later extended to a hierarchy that consists of nested cones by Yıldırım [20], is motivated
by exploiting necessary conditions for copositivity of a matrix. By duality, these conditions
translate into a hierarchy of inner polyhedral approximationsIr , r = 0, 1, . . . of the cone C of
completely positivematrices, with the property that I0 ⊆ I1 ⊆ · · · ⊆ C and cl (∪r∈NIr ) = C,
where cl(·) denotes the closure. Exploiting a sequence of sufficient conditions for copositivity
of a matrix, de Klerk and Pasechnik [8] proposed another hierarchy, which, by duality, yields
a sequence of outer polyhedral approximations Or , r = 0, 1, . . . of the cone C, with the
property that O0 ⊇ O1 ⊇ · · · ⊇ C and ∩r∈NOr = C.

We study these two particular approximation hierarchies for the following reasons. First,
each of the two approximation hierarchies is composed of polyhedral cones. Therefore,
replacing the difficult conic constraint X ∈ C in (2) with X ∈ Ir (resp., with X ∈ Or ),
where r ∈ N, gives rise to a linear programming problem with O(nr+2) variables [3,20],
whose optimal value yields an upper (resp., lower) bound on the optimal value ν(Q). In the
particular case of standard quadratic optimization, both upper and lower bounds at any level
of the hierarchy reduce to an optimization problem over an increasingly larger finite set (see
Sects. 2.1 and 2.2). These observations make these two particular approximation hierarchies
more amenable to analysis in comparison with the other approximation hierarchies, most of
which give rise to semidefinite programming problems (e.g., [12,13,16,17]) that are consid-
erably more difficult to analyze theoretically. Second, these two approximation hierarchies
lead to a polynomial-time approximation scheme for standard quadratic optimization [3,20]
(see Sect. 2.3). As such, they constitute a natural choice for studying approximations of
standard quadratic optimization problems.

In this paper, we investigate the upper and lower bounds arising from these inner and
outer polyhedral approximations in the context of standard quadratic optimization. We give
complete algebraic descriptions of the sets of the instances of (StQP) for which the upper
bound or the lower bound is already exact at any given finite level r ∈ N of the corresponding
hierarchies (see Theorems 2 and 4). We identify the structural properties of the sets of
instances onwhich upper and lower bounds converge to the optimal value only in the limit (see
Proposition 2 and Theorem 3). Furthermore, we present several geometric and topological
properties of these sets (see Proposition 1, Corollary 1, Propositions 8 and 9).

We remark that our perspective in this paper, in general, is not algorithmic in the sense that
some of our algebraic descriptions may not necessarily translate into an efficient method for
deciding, for a given instance of (StQP), whether the upper and/or the lower bound is exact
at a given level of the corresponding hierarchies. Rather, our main objective is to further our
understanding of the strengths and limitations of these particular inner and outer polyhedral
approximations of the cone C in the context of standard quadratic optimization. We believe
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that the insights obtained from our results may be useful for the construction of improved
polyhedral approximation hierarchies.

The paper is organized as follows. We define our notation in Sect. 1.1. In Sect. 2, we
describe the inner and outer polyhedral approximations of the cone of completely positive
matrices. Section 3 is devoted to some preliminary results. In Sect. 4, we present algebraic
descriptions of the sets of instances on which the upper bound is exact at any given finite level
of the hierarchy. We identify the structural properties of the instances on which the upper
bound converges to the optimal value in the limit. We also discuss several geometric and
topological properties of these sets. The corresponding results for lower bounds are given in
Sect. 5. We conclude the paper in Sect. 6.

1.1 Notation

We denote by R
n and R

n+ the n-dimensional Euclidean space and the nonnegative orthant,
respectively. We use Nn and Q

n for the set of n-dimensional nonnegative integer vectors and
the set of rational vectors, respectively. The unit simplex is represented by Δn ⊂ R

n . The
space of n × n real symmetric matrices is denoted by S. We reserve calligraphic uppercase
letters to denote subsets of S. The cones of completely positive and copositive matrices in
S are denoted by C and C∗, respectively. We use N to denote the cone of componentwise
nonnegative n×n real symmetric matrices. The set of n×n symmetric matrices with rational
entries is represented by Q. The i th unit vector in R

n is denoted by ei , i = 1, . . . , n. We
use e = ∑n

i=1 ei and E = eeT to represent the n-dimensional vector of all ones and the
n × n matrix of all ones, respectively. We reserve I ∈ S for the identity matrix. Given
x ∈ R

n , Diag(x) ∈ S denotes the diagonal matrix whose diagonal entries are given by the
components of x . Similarly, for M ∈ S, diag(M) ∈ R

n represents the vector composed of
the diagonal entries of M . The closure and the convex hull of a set are denoted by cl(·) and
conv(·), respectively. For a given instance of (StQP), we denote the optimal value by ν(Q)

and the set of optimal solutions by Ω(Q) ⊆ Δn . LetU ⊆ {1, . . . , n} and V ⊆ {1, . . . , n} be
two nonempty index sets with |U | = u and |V | = v. Given x ∈ R

n , we denote by xU ∈ R
u

the restriction of x to its components indexed by U . Similarly, for a given M ∈ S, MUV

denotes the u × v submatrix of M whose rows and columns are indexed by the sets U and
V , respectively.

2 Polyhedral approximation hierarchies

In this section, we give a detailed description of the two hierarchies of inner and outer
polyhedral approximations of the cone of completely positive matrices.

2.1 Inner polyhedral approximations

Let us define the following sequence of increasingly larger finite subsets of the unit simplex
(see [3,20]):

Δr
n :=

r⋃

k=0

Λk
n, r = 0, 1, . . . , (3)

where

Λk
n := {x ∈ Δn : (k + 2)x ∈ N

n}, k = 0, 1, . . . (4)

123



J Glob Optim (2015) 63:37–59 41

Consider the following sequence of sets:

Ir :=
⎧
⎨

⎩

∑

d∈Δr
n

λd dd
T : λd ≥ 0 for each d ∈ Δr

n

⎫
⎬

⎭
, r = 0, 1, . . .

Since Δr
n is a finite set for each r ∈ N, each set Ir is a polyhedral cone. Furthermore, this

sequence of cones satisfies [20, Theorem2.2]

I0 ⊆ I1 ⊆ · · · ⊆ C, and cl

(
⋃

r∈N
Ir
)

= C.

Therefore, replacing the difficult conic constraint X ∈ C in (2) with X ∈ Ir , we obtain
the following linear programming problem whose optimal value yields an upper bound on
ν(Q):

ur (Q) := min {〈Q, X〉: 〈E, X〉 = 1, X ∈ Ir } , r = 0, 1, . . .

As already observed in [20] (see also [3]), it follows directly from the definition of Ir that
ur (Q) can be equivalently expressed as a minimization problem over a finite set:

ur (Q) = min
d∈Δr

n

dT Qd, r = 0, 1, . . . (5)

Since |Δr
n | = O(nr+2) (see [3,20]), ur (Q) can be computed in polynomial time for each

fixed r ∈ N.

2.2 Outer polyhedral approximations

Consider the following sequence of sets (see [3,8]):

Or :=
⎧
⎨

⎩

∑

d∈Λr
n

βd

(
(r + 2)ddT − Diag(d)

)
:βd ≥ 0 for all d ∈ Λr

n

⎫
⎬

⎭
, r = 0, 1, . . .

Similarly, since Λr
n is a finite set, Or is a polyhedral cone for each r ∈ N. By [8, Theorem

3.3],

C ⊆ · · · ⊆ O1 ⊆ O0 = N , and C =
⋂

r∈N
Or .

In a similar manner, replacing the difficult conic constraint X ∈ C in (2) with X ∈ Or

gives rise to the following linear programming problem, whose optimal value yields a lower
bound on ν(Q):

lr (Q) := min{〈Q, X〉: 〈E, X〉 = 1, X ∈ Or }, r = 0, 1, . . .

Using the definition ofOr , the lower bound lr (Q) can similarly be stated as the following
minimization problem over a finite set (see also [3,20]):

lr (Q) =
(
r + 2

r + 1

)

min
d∈Λr

n

(

dT Qd −
(

1

r + 2

)

dT diag(Q)

)

,

= 1

(r + 1)(r + 2)
min

z∈(r+2)Λr
n

(zT Qz − zT diag(Q)), r = 0, 1, . . . (6)

Similarly, for each fixed r ∈ N, lr (Q) can be computed in polynomial time since |Λr
n | =

O(nr+2) (see [3]).
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2.3 Error bounds and the maximum stable set problem

Given an instance of (StQP), the two sequences {lr (Q)} and {ur (Q)}, r ∈ N, give rise
to increasingly tighter lower and upper bounds, respectively, on the optimal value ν(Q).
Yıldırım [20] established that

ur (Q) − lr (Q) ≤ 1

r + 1

(

max
i=1,...,n

Qii − ν(Q)

)

, r = 0, 1, . . . ,

which implies that these bounds lead to a polynomial-time approximation scheme for standard
quadratic optimization (see also [3] for a slightly different result).

The bounds lr (Q) and ur (Q) have closed form expressions for the maximum stable set
problem [3,17,20], whichwe review next. LetG be a simple, undirected graphwith n vertices
and m edges. A subset S of vertices of G is called a stable set if no two vertices in S are
connected by an edge. The maximum stable set problem is that of finding the stable set with
the largest cardinality in G. The size of the largest stable set, denoted by α(G), is called the
stability number of G.

Motzkin and Straus [14] established that the maximum stable set problem can be formu-
lated as an instance of (StQP) as

1

α(G)
= ν(I + AG) = min

x∈Δn
xT (I + AG)x, (7)

where AG ∈ S denotes the vertex adjacency matrix of G.
For the maximum stable set problem, the upper bounds have the following simple closed

form expressions [20]:

ur (I + AG) =
{

1
r+2 , if r < α(G) − 2,
1

α(G)
, otherwise.

(8)

Similarly, the lower bounds have the following more complicated closed form expres-
sions [3,17,20]:

lr (I + AG) =
{
0, if r ≤ α(G) − 2,
(s2)α(G)+st

(r+2
2 )

, otherwise, (9)

where s and t are nonnegative integers that satisfy r + 2 = sα(G) + t with 0 ≤ t < α(G)

and the convention that
(s
2

) = 0 if s = 0 or s = 1.
In the context of the maximum stable set problem, it follows from (8) that the upper

bound matches the optimal value at level r = max{0, α(G) − 2} of the inner approximation
hierarchy. Similarly, if G is a complete graph, then l0(Q) = ν(Q) = 1/α(G) = 1, where
Q = I + AG by (9). It follows that both inner and outer approximations are already exact
at level 0 in this case. On the other hand, if α(G) ≥ 2, then lr (Q) < ν(Q) = 1/α(G) for
each r ∈ N (see [17]), which implies that the lower bound matches the optimal value only in
the limit. Therefore, the upper and lower bounds exhibit different behaviors in terms of finite
convergence in the context of the maximum stable set problem.

In this paper, we are interested in understanding the behavior of upper and lower bounds
that arise from the completely positive reformulation of general standard quadratic opti-
mization problems. In particular, we give complete algebraic descriptions of the instances
of (StQP) for which ur (Q) = ν(Q) (see Theorem 2) or lr (Q) = ν(Q) (see Theorem 4)
for any given r ∈ N. We aim to identify structural properties of the instances of (StQP)
for which ur (Q) > ν(Q) (see Proposition 2) or lr (Q) < ν(Q) (see Theorem 3) for all
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r ∈ N. Furthermore, we present several geometric and topological properties of these sets
(see Proposition 1, Corollary 1, Propositions 8 and 9).

3 Preliminaries

In this section, we collect some preliminary results about (StQP). We then establish some
basic properties of upper and lower bounds.

We first review the optimality conditions of (StQP).

Theorem 1 Given an instance of (StQP), let x∗ ∈ Ω(Q) with the optimal value ν(Q) =
(x∗)T Qx∗. Define

P := { j ∈ {1, . . . , n}: x∗
j > 0}, and Z := { j ∈ {1, . . . , n}: x∗

j = 0}. (10)

Then, x∗ satisfies

QPP x∗
P = ν(Q)eP , QZPx

∗
P ≥ ν(Q)eZ .

Proof The assertion directly follows from the KKT conditions. 
�
Next, given an instance of (StQP), we present several basic results about the optimal value

ν(Q) and the upper and lower bounds.

Lemma 1 Let Q, Q1, Q2 ∈ S.
(i) l0(Q) = min1≤i≤ j≤n Qi j .
(ii) If Q ∈ N , then ur (Q) ≥ ν(Q) ≥ lr (Q) ≥ 0 for each r = 0, 1, . . .
(iii) If Q1 − Q2 ∈ N , then ν(Q1) ≥ ν(Q2), ur (Q1) ≥ ur (Q2), and lr (Q1) ≥ lr (Q2) for

each r = 0, 1, . . .
(iv) For any μ ∈ R+ and any r ∈ N, ν(μQ) = μν(Q), lr (μQ) = μlr (Q), and ur (μQ) =

μur (Q).
(v) For any λ ∈ R and any r ∈ N, ν(Q + λE) = ν(Q) + λ, lr (Q + λE) = lr (Q) + λ, and

ur (Q + λE) = ur (Q) + λ.

Proof (i) By (4), Λ0
n = {ei : i = 1, . . . , n} ∪ {(1/2)(ei + e j ) : 1 ≤ i < j ≤ n}. The

assertion follows from this observation and (6).
(ii) This is a direct consequence of part (i) and the monotonicity of the lower bounds.
(iii) Let Q1 − Q2 ∈ N . For any x ∈ Δn , we have xT (Q1 − Q2)x ≥ 0, which implies that

xT Q1x ≥ xT Q2x . Therefore,

ν(Q1) = min
x∈Δn

xT Q1x ≥ min
x∈Δn

xT Q2x = ν(Q2).

Since Δr
n ⊂ Δn , we can argue similarly for upper bounds by simply replacing x ∈ Δn

above with d ∈ Δr
n and using (5). Considering lower bounds, note that lr (Q1−Q2) ≥ 0

by part (ii) for each r = 0, 1, . . . By (6),

dT (Q1 − Q2)d −
(

1

r + 2

)

dT diag(Q1 − Q2) ≥ 0, for all d ∈ Λr
n, r = 0, 1, . . . ,

which, after rearranging, yields

dT Q1d −
(

1

r + 2

)

dT diag(Q1) ≥ dT Q2d −
(

1

r + 2

)

dT diag(Q2),
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for each d ∈ Λr
n, r = 0, 1, . . . Minimizing both sides of the inequality over d ∈ Λr

n ,
we obtain lr (Q1) ≥ lr (Q2) for each r = 0, 1, . . .

(iv) This is a trivial consequence of (6), (5), and the hypothesis that μ ∈ R+.
(v) Let λ ∈ R. For any x ∈ Δn , xT (Q + λE)x = xT Qx + λ, which implies that

ν(Q + λE) = ν(Q) + λ. Similarly, by (5), we obtain ur (Q + λE) = ur (Q) + λ

since Δr
n ⊂ Δn .

For any d ∈ Λr
n, r = 0, 1, . . ., we have

dT (Q + λE)d −
(

1

r + 2

)

dT diag(Q + λE) =
(

dT Qd −
(

1

r + 2

)

dT diag(Q)

)

+ λ

(
r + 1

r + 2

)

,

where we used dT Ed = dT diag(E) = eT d = 1 by (4). It follows from (6) that
lr (Q + λE) = lr (Q) + λ.


�
4 Upper bounds

In this section, we focus on the upper bounds ur (Q). We first give a complete algebraic
description of the set of instances of (StQP) for which the upper bound matches the optimal
value at any given finite level of the inner approximation hierarchy. We next discuss some
interesting properties of this set. Finally, we identify the structural properties of the instances
for which the upper bound is exact at a finite level of the hierarchy and for which the upper
bound converges to the optimal value only in the limit.

Let us define the following sets:

Ur := {Q ∈ S: ur (Q) = ν(Q)}, r = 0, 1, . . . (11)

Due to the monotonicity of the upper bounds, we readily obtain

U0 ⊆ U1 ⊆ · · · ⊆ S.

We first give complete algebraic descriptions of the sets Ur .
Theorem 2 For each r ∈ N, we have

Ur =
⋃

d∈Δr
n

Vd , (12)

where
Vd := {Q ∈ S: dT Qd ≤ xT Qx, for each x ∈ Δn}, d ∈ Δr

n . (13)

Proof Let us fix r ∈ N. By (11) and (5), Q ∈ Ur if and only if

ν(Q) = ur (Q) = min
d∈Δr

n

dT Qd,

which holds if and only if there exists some d ∈ Δr
n ∩ Ω(Q), or equivalently Q ∈ Vd for

some d ∈ Δr
n . The relation (12) follows. 
�

The next proposition presents several geometric properties of the sets Ur .
Proposition 1 For each r ∈ N, Ur is a closed cone given by the union of a finite number
of nonempty, closed, and convex cones. Furthermore, Ur contains the line {λE : λ ∈ R} for
each r ∈ N.
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Proof For any x ∈ R
n , note that xT Qx = 〈Q, xxT 〉. Therefore, for each r ∈ N and each

d ∈ Δr
n , Vd is closed and convex since it is given by the intersection of an infinite number of

closed half spaces in S. Clearly, Vd is a cone.
For each r ∈ N, the set Ur is a closed cone since it is given by the union of a finite number

of closed cones. Finally, for any λ ∈ R and any d ∈ Δr
n , we have λE ∈ Vd . Therefore, Ur

contains the line {λE : λ ∈ R} for each r ∈ N. 
�
For any r ∈ N, it follows from Proposition 1 that Q + λE ∈ Ur for any λ ∈ R whenever

Q ∈ Ur . Note, however, that the cones Ur are in general nonconvex. It is easy to verify that
ei (ei )T ∈ U0 for each i = 1, . . . , n. However, I = ∑n

i=1 ei (ei )
T /∈ U0 for any n ≥ 3.

Remark 1 For any r ∈ N and any d ∈ Δr
n , the unique global minimizer of the quadratic

function (x − d)T (x − d) is given by d . If we define Qd := I − edT − deT ∈ S, it follows
that xT Qdx = xT x −2dT x = (x −d)T (x −d)−dT d ≥ −dT d = dT Qd d for any x ∈ Δn ,
with equality if and only if x = d . Therefore, Ω(Qd) = {d} and Qd ∈ Vd by (13). Since
Δr

n ⊂ Δr+1
n by (3), it follows from Proposition 1 that Ur ⊂ Ur+1 for each r ∈ N, i.e., the set

Ur+1 is strictly larger than the set Ur for each r ∈ N.

Remark 2 Let G = (V, E) be a simple, undirected graph, where |V | = n. Consider the
formulation (7) of the maximum stable set problem on G as an instance of (StQP), where
Q = I + AG . By (8), ur (I + AG) = ν(I + AG) for r ≥ α(G) − 2, which implies that
I + AG ∈ Ur for each r ≥ α(G) − 2. It follows that, for any simple, undirected graph
G = (V, E), we have I + AG ∈ Un−2.

Let us next define
U :=

⋃

r∈N
Ur , and U∞ := S\U . (14)

Note that the set U consists of all instances of (StQP) for which the upper bound matches
the optimal value at some finite level of the inner approximation hierarchy. For instance,
it follows from Remark 2 that, for any simple, undirected graph G = (V, E), we have
I + AG ∈ U . We next present several structural properties of the instances in the sets U and
U∞.

Proposition 2 The following relations are satisfied:

(i) U = {Q ∈ S:Ω(Q) ∩ Q
n �= ∅} and U∞ = {Q ∈ S: Ω(Q) ∩ Q

n = ∅}.
(ii) Q ⊆ U .

Proof (i) The first relation follows from the fact that Q ∈ Ur if and only if Δr
n ∩Ω(Q) �= ∅

and the relation ∪r∈NΔr
n = Q

n ∩ Δn . The second relation is an immediate consequence
of the first one and (14).

(ii) Vavasis [19] proved that any quadratic optimization problem with rational data, which
is bounded below, has a rational optimal solution. The assertion directly follows from
this result and part (i).


�
For a given Q ∈ S, Proposition 2(i) identifies an important structural property of the

corresponding instance of (StQP) in order for the upper bounds to be exact at some finite
level of the inner approximation hierarchy. An easy sufficient condition for membership in U
is presented in Proposition 2(ii), which implies that, for a given Q ∈ S, a necessary condition
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for Q ∈ U∞ is that Q has irrational entries. Note, however, that this condition is not sufficient
since, for any Q ∈ Q, we have μQ ∈ U for any μ ∈ R+ by Proposition 1.

The next corollary presents an important topological property of the setU and immediately
follows from Proposition 2(ii) and the fact that cl(Q) = S.
Corollary 1 We have cl(U) = S.

It follows from Corollary 1 that, for any Q ∈ S, either the upper bound is exact at some
finite level of the hierarchy or there exists an arbitrarily small perturbation of Q for which the
upper bound is exact at a finite level. Therefore, the set U is a dense subset of the set S. This
result reveals the strength of the inner approximation hierarchy of the completely positive
cone in the context of standard quadratic optimization.

Finally, the next example illustrates that U∞ �= ∅ for any n ≥ 2.

Example 1 Similar to Remark 1, let d ∈ Δn\Qn and define Qd := I − edT − deT ∈ S.
Then, Ω(Qd) = {d} and Ω(Qd) ∩ Q

n = ∅. By Proposition 2(i), Qd ∈ U∞.

5 Lower bounds

In this section, we focus on the behavior of lower bounds lr (Q). Our analysis of lower bounds
is considerably more involved since the expression (6) is more complicated in comparison
with (5).

Similar to Ur , let us define the following sets:

Lr := {Q ∈ S: lr (Q) = ν(Q)}, r = 0, 1, . . . (15)

Since the lower bounds are monotonically nondecreasing, we obtain

L0 ⊆ L1 ⊆ · · · ⊆ S.

Similarly, let
L :=

⋃

r∈N
Lr , and L∞ := S\L. (16)

This section is organized as follows. In Sect. 5.1, we give a simple algebraic description
of the set L0 (see Proposition 3) and present its geometric properties (see Corollary 2). Two
auxiliary sets S1 and S2 are introduced in Sect. 5.2, which are later used to identify structural
properties of the instances in the setsL andL∞ (see Theorem3 andProposition 8) in Sect. 5.3.
We give complete algebraic descriptions of the sets Lr (see Theorem 4) and present several
geometric properties of these sets (see Proposition 9) in Sect. 5.4. Finally, we close this
section by discussing the relations among the sets Lr , L, Ur , and U (see Proposition 11).

5.1 Characterization of L0

First, we focus on the set L0. To that end, given an instance of (StQP) and any γ ∈ R,
replacing Q ∈ S with Q + γ E in (StQP) shifts the optimal value by γ by Lemma 1(v) ,
i.e., ν(Q + γ E) = ν(Q) + γ , while Ω(Q + γ E) = Ω(Q). In particular, the shifted matrix
obtained with γ = −min1≤i≤ j≤n Qi j = −l0(Q) will play an important role and we define
it below for future reference:

Qs := Q − l0(Q)E . (17)

Note that Qs ∈ N and l0(Qs) = 0 by Lemma 1(i).
Next, we give a simple algebraic description of the set L0.
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Proposition 3 Q ∈ L0 if and only if there exists an index k ∈ {1, . . . , n} such that Qkk =
min1≤i≤ j≤n Qi j . Therefore,

L0 =
n⋃

k=1

{
Q ∈ S: Qkk ≤ Qi j , 1 ≤ i ≤ j ≤ n

}
. (18)

Proof Suppose that Q ∈ L0. Then, l0(Q) = ν(Q) = min1≤i≤ j≤n Qi j by Lemma 1(i). Sup-
pose, for a contradiction, thatQkk > l0(Q) for each k = 1, . . . , n. By (17),mink=1,...,n Qs

kk >

0. Since Qs ∈ N , for any x ∈ Δn , we have

xT Qsx ≥
n∑

j=1

Qs
j j x

2
j ≥

(

min
k=1,...,n

Qs
kk

)
⎛

⎝
n∑

j=1

x2j

⎞

⎠ ≥ mink=1,...,n Qs
kk

n
> 0,

where we used minx∈Δn

∑n
j=1 x

2
j = 1/n to derive the third inequality. Together with

Lemma 1(v), we obtain that ν(Qs) = ν(Q) − l0(Q) > 0, contradicting our hypothesis.
Conversely, given Q ∈ S, suppose that there exists an index k ∈ {1, . . . , n} such that

Qkk = min1≤i≤ j≤n Qi j . It is easy to verify that ek ∈ Ω(Q). Therefore, ν(Q) = Qkk =
min1≤i≤ j≤n Qi j = l0(Q) by Lemma 1(i), which implies that Q ∈ L0. 
�

The following corollary presents some geometric properties of the setL0 and immediately
follows from (18).

Corollary 2 The set L0 is a closed cone given by the union of n polyhedral cones and
contains the line {λE : λ ∈ R}.

Weremark that the setL0 is in general nonconvex since ei (ei )T ∈ L0 for each i = 1, . . . , n,
while I = ∑n

i=1 ei (ei )
T /∈ L0 for any n ≥ 2.

5.2 Two auxiliary sets

In this section, we will define two auxiliary sets that will subsequently be helpful in the
description of the sets L and L∞. To that end, we first define two index sets.

For a given Q ∈ S, we have eTk Qek = Qkk ≥ ν(Q) for each k = 1, . . . , n. Therefore,
each Q ∈ S induces the following partition of the indices:

U := {k ∈ {1, . . . , n}: Qkk = ν(Q)}, V := {k ∈ {1, . . . , n}: Qkk > ν(Q)}. (19)

We next define the following two auxiliary sets, which partition the set S:

S1 :=
{

Q ∈ S: min
k=1,...,n

Qkk = ν(Q)

}

= {Q ∈ S:U �= ∅}, (20)

S2 :=
{

Q ∈ S: min
k=1,...,n

Qkk > ν(Q)

}

= {Q ∈ S:U = ∅}. (21)

Note that Q ∈ S1 if and only if Ω(Q) ∩ {e1, . . . , en} �= ∅. Therefore,

S1 =
n⋃

k=1

Vek , (22)

where Vek is defined as in (13).
The next proposition presents some geometric properties of the set S1 and its relation with

the set L0.
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Proposition 4 S1 is a closed cone given by the union of a finite number of nonempty, closed,
and convex cones. Furthermore,

L0 ⊆ S1.

Proof The assertions directly follow from the definition (13), (22), and Proposition 3. 
�

We now turn our attention to the set S2. The following proposition is one of the main
results of this section.

Proposition 5 We have S2 ⊆ L∞, i.e., for a given Q ∈ S, if mink=1,...,n Qkk > ν(Q), then
Q ∈ L∞.

Proof Let Q ∈ S2 and let x∗ ∈ Ω(Q). Let the index sets P and Z be defined as in (10).
Note that |P| ≥ 1 since x∗ ∈ Δn . First, we claim that |P| ≥ 2. Clearly, |P| = 1 if and
only if x∗ = ek for some k ∈ {1, . . . , n}, in which case Q ∈ S1 by (22), contradicting our
hypothesis.

By Theorem 1,
QPP x∗

P = ν(Q)eP . (23)

Fixing k ∈ P and considering the corresponding equation above, we obtain

∑

j∈P

Qkj x
∗
j = ν(Q).

Since Qkk > ν(Q) and x∗ ∈ Δn , it follows that there exists some l ∈ P such that l �= k and
Qkl < ν(Q).

Let us denote the smallest face of Δn that contains x∗ by F , i.e., F = conv{ei : i ∈ P}.
We make the following claim. For each r ∈ N, there exists qr ∈ Λr

n ∩ F such that

fr (q
r ) :=

(
r + 2

r + 1

)

(qr )T Q(qr ) −
(

1

r + 1

)

(qr )T diag(Q) < ν(Q), r = 0, 1, . . .

(24)

We will prove our claim by induction on r . For r = 0, we define q0 = (1/2)(ek + el),
where k ∈ P and l ∈ P are as defined above. Clearly, q0 ∈ Λ0

n ∩ F and

f0(q
0) = 2(q0)T Q(q0) − (q0)T diag(Q) = Qkl < ν(Q),

by the choice of k ∈ P and l ∈ P . This establishes (24) for r = 0.
Suppose now that there exists some qr ∈ Λr

n ∩ F that satisfies (24) for some r ∈ N. We
will show that we can construct qr+1 ∈ Λr+1

n ∩ F that satisfies (24) for r + 1.
Let us define zr = (r + 2)qr . By the induction hypothesis,

fr (q
r ) = 1

(r + 1)(r + 2)

(
(zr )T Q(zr ) − (zr )T diag(Q)

)
< ν(Q). (25)

For each j ∈ P , let us define w j := zr + e j . We have

(
1

r + 3

)

w j =
(
r + 2

r + 3

)

qr +
(

1

r + 3

)

e j ∈ Λr+1
n ∩ F, for each j ∈ P.
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We will show that there exists some j ′ ∈ P such that qr+1 = (1/(r + 3))w j ′ satisfies
(24) for r + 1. To that end,

(w j )T Q(w j ) − (w j )T diag(Q) = (zr )T Q(zr ) + 2(zr )T Qe j

+ Q j j − (zr )T diag(Q) − Q j j ,

= (zr )T Q(zr ) − (zr )T diag(Q) + 2(zr )T Qe j , j ∈ P.

Let us now focus on the term (zr )T Qe j . Observe that qr = (1/(r + 2))zr ∈ F by the
induction hypothesis and e j ∈ F since j ∈ P . Therefore, (zr )T Qe j = (zrP )T QPP (e j )P for
each j ∈ P . Multiplying both sides by x∗

j and summing over j ∈ P , we obtain

∑

j∈P

x∗
j

(
(zrP )T QPP (e j )P

)
= (zrP )T QPP

⎛

⎝
∑

j∈P

x∗
j (e j )P

⎞

⎠ ,

= (zrP )T QPP x∗
P ,

= ν(Q)((zrP )T eP ),

= (r + 2)ν(Q),

wherewe used (23) in the third line and the definition of zr in the last line. Since
∑

j∈P x∗
j = 1

and x∗ ≥ 0, there exists some j ′ ∈ P such that (zrP )T QPP (e j ′)P = (zr )T Qe j ′ ≤ (r +
2)ν(Q). By defining qr+1 = (1/(r + 3))w j ′ , we obtain

fr+1(q
r+1) =

(
r + 3

r + 2

)

(qr+1)T Q(qr+1) −
(

1

r + 2

)

(qr+1)T diag(Q),

= 1

(r + 2)(r + 3)

(
(w j ′)T Q(w j ′) − (w j ′)T diag(Q)

)
,

= 1

(r + 2)(r + 3)

(
(zr )T Q(zr ) − (zr )T diag(Q) + 2(zr )T Qe j ′

)
,

≤ 1

(r + 2)(r + 3)

(
(zr )T Q(zr ) − (zr )T diag(Q) + 2(r + 2)ν(Q)

)
,

<
1

(r + 2)(r + 3)
((r + 1)(r + 2)ν(Q) + 2(r + 2)ν(Q)) ,

=
(
r + 1

r + 3

)

ν(Q) +
(

2

r + 3

)

ν(Q),

= ν(Q),

where we used the choice of j ′ in the first inequality and the induction hypothesis (25) in the
second one. Since lr (Q) ≤ fr (qr ) by (6), it follows from (24) that lr (Q) < ν(Q) for each
r ∈ N. Therefore, Q ∈ L∞. 
�
Example 2 Consider an instance of (StQP) in which Qs is a diagonal matrix with strictly
positive diagonal entries. Note that this class includes all instances of (StQP) in which Q
itself is a strictly positive diagonal matrix. Let β = ∑n

i=1(1/Q
s
ii ). It is easy to verify that the

unique optimal solution x∗ ∈ Ω(Q) is given by x∗
j = (1/Qs

j j )/β, j = 1, . . . , n. Therefore,

by (22), Q /∈ S1 for any n ≥ 2. It follows from Proposition 5 that Q ∈ L∞ for any n ≥ 2.

Remark 3 Let G = (V, E) be a simple, undirected graph, where |V | = n. Consider the
formulation (7) of themaximum stable set problem onG as an instance of (StQP), where Q =
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I + AG . If G is a complete graph, then Q = E , which implies that Q ∈ L0 by Corollary 2.
Therefore, l0(Q) = 1/α(G) = 1. On the other hand, if α(G) ≥ 2, then mink=1,...,n Qkk =
1 > ν(Q) = 1/α(G), which implies that Q ∈ S2 by (21). By Proposition 5, Q ∈ L∞. It
follows that the relation lr (Q) < ν(Q) established in [17] is a special case of Proposition 5.

The following result, which is an immediate consequence of Proposition 5 and (22),
presents an important relation between the sets L and S1.
Corollary 3 We have L ⊆ S1, where L and S1 are defined as in (16) and (20), respectively.
Therefore, for a given Q ∈ S, if Q ∈ L, then Ω(Q) ∩ {e1, . . . , en} �= ∅.

Corollary 3 presents a necessary condition for Q ∈ L. An interesting question is whether
this condition is sufficient, i.e., whether we have L = S1. The next two examples answer this
question in the negative for different reasons.

Example 3 Consider an instance of (StQP), where

Q =
⎡

⎣
1 2 2
2 2 0
2 0 2

⎤

⎦ .

One can verify that ν(Q) = 1 and Ω(Q) = {e1, (e2 + e3)/2}, which implies that Q ∈ S1 by
(22). In this example,U = {1} and V = {2, 3}. Let us focus on QVV . Note that ν(QVV ) = 1,
which implies that, for n = 2, QVV ∈ L∞ by Proposition 5. Therefore, for any r ∈ N,
lr (QVV ) < ν(QVV ) = 1. It follows that

lr (Q) =
(
r + 2

r + 1

)

min
d∈Λr

n

(

dT Qd −
(

1

r + 2

)

dT diag(Q)

)

,

≤
(
r + 2

r + 1

)

min
d∈Λr

n : d1=0

(

dT Qd −
(

1

r + 2

)

dT diag(Q)

)

,

= lr (QVV ) < 1,

for any r ∈ N. Therefore, Q ∈ L∞, i.e., Q ∈ S1\L.
Example 4 Consider an instance of (StQP), where

Q =
⎡

⎣
1 1 1
1 3 0
1 0 3

⎤

⎦ .

Q is positive definite. It is easy to verify that ν(Q) = 1 and Ω(Q) = {e1}, which implies
that Q ∈ S1 by (22). Similarly, U = {1} and V = {2, 3}. We claim that Q /∈ L. Let us fix
r ∈ N and define dr :=

(
1

r+2

)
[r, 1, 1]T ∈ Λr

n . By (6),

lr (Q) ≤
(
r + 2

r + 1

)(

dTr Qdr −
(

1

r + 2

)

dTr diag(Q)

)

,

= r2 + 4r + 6 − (r + 6)

(r + 1)(r + 2)
,

= r2 + 3r

r2 + 3r + 2
< 1,

which implies that lr (Q) < ν(Q) for each r ∈ N. Therefore, Q ∈ L∞, i.e., Q ∈ S1\L.
Note that ν(QVV ) = 3/2 > 1 = ν(Q) on this instance.
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5.3 Structural properties of L and L∞

In this section, our goal is to identify the structural properties of the instances in the sets L
and L∞. We first generalize Examples 3 and 4 in an attempt to further our understanding of
the set S1\L (see Propositions 6 and 7). We then use these observations to present our main
result in Theorem 3, which establishes the structural properties of the instances inL and L∞.
Finally, Proposition 8 presents a relation between the sets L and S1.

We first present a useful property of the instances in the set S1\L.
Lemma 2 For any Q ∈ S1\L, there exists k ∈ {1, . . . , n} such that Qkk > ν(Q), i.e., we
have V �= ∅, where V is defined as in (19).

Proof Let Q ∈ S1\L. Suppose, for a contradiction, that V = ∅. Then, {e1, . . . , en} ⊆ Ω(Q)

since U = {1, . . . , n}. By Theorem 1, we have Qi j ≥ Qii = ν(Q) for each 1 ≤ i ≤ j ≤ n.
Therefore, Q ∈ L0 by Proposition 3, which contradicts our hypothesis since L0 ⊆ L. 
�

It follows from the proof of Lemma 2 that

Qi j ≥ ν(Q) for each i ∈ U, j = 1, . . . , n. (26)

The next proposition gives a sufficient condition for membership in S1\L and generalizes
Example 3.

Proposition 6 Let Q ∈ S1 be such that V �= ∅. If ν(QVV ) = ν(Q), where V is defined as
in (19), then Q ∈ S1\L.
Proof The assertion follows from the observation that QVV ∈ L∞ for n = |V | by Proposi-
tion 5 and a similar argument as in Example 3. 
�

The next proposition presents another sufficient condition for membership in S1\L,
thereby generalizing Example 4.

Proposition 7 Let Q ∈ S1 be such that |V | ≥ 2, where V is defined as in (19). Suppose that
there exist indices i ∈ U, j ∈ V , k ∈ V , and j �= k such that

Qi j = Qik = ν(Q), Q jk < ν(Q). (27)

Then, Q ∈ S1\L.
Proof Suppose that Q ∈ S1 satisfies the hypothesis and let us fix r ∈ N. We define d ∈ Λr

n
as follows:

di = r

r + 2
, d j = 1

r + 2
, dk = 1

r + 2
,

and all remaining entries of d are set to 0. By (6),

lr (Q) ≤
(
r + 2

r + 1

)(

dT Qd −
(

1

r + 2

)

dT diag(Q)

)

,

= ν(Q)(r2 + 3r) + 2Q jk

r2 + 3r + 2
< ν(Q),

where we used (27) to derive the last inequality. It follows that Q /∈ L. 
�
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We remark that the sufficient conditions of Propositions 6 and 7, in general, are not implied
by one another. Indeed, the instance in Example 3 satisfies only the sufficient condition of
Proposition 6, whereas the instance in Example 4 satisfies only that of Propositon 7 with
i = 1, j = 2, and k = 3.

Recall that Q ∈ S1 if and only if Ω(Q) ∩ {e1, . . . , en} �= ∅. Motivated by the sufficient
conditions of Propositions 6 and 7, let us define the following subset of S1.

S ′
1 := {Q ∈ S1: V �= ∅ and ν(QVV ) = ν(Q)} ∪ {Q ∈ S1: ∃ i ∈ U, ∃ j ∈ V,

∃ k ∈ V such that j �= k, Qi j = Qik = ν(Q), Q jk < ν(Q)}. (28)

The next theorem, which is one of the main results of Sect. 5, establishes the relationships
between the sets L and L∞ and the sets S1, S ′

1, and S2.

Theorem 3 The following relations are satisfied:

1. L = S1\S ′
1 = {Q ∈ S: Ω(Q) ∩ {e1, . . . , en} �= ∅}\S ′

1,
2. L∞ = S2 ∪ S ′

1 = {Q ∈ S:Ω(Q) ∩ {e1, . . . , en} = ∅} ∪ S ′
1,

where S ′
1 is defined as in (28).

Proof Note that S1 ∪S2 = L∪L∞ = S and S1 ∩S2 = L∩L∞ = ∅ by (16), (20), and (21).
By Propositions 5, 6 and 7, we obtain S ′

1 ∪S2 ⊆ L∞. Taking the complements of both sides
yields L ⊆ S1\S ′

1. Therefore, both assertions will be proved by showing that any one of
these two inclusions in fact holds with equality. We will show that the latter inclusion holds
with equality by showing that the reverse inclusion S1\S ′

1 ⊆ L is satisfied.
Let Q ∈ S1\S ′

1. Let us define the following index sets:

W1 := {
( j, k): j ∈ V, k ∈ V, j �= k, Q jk < ν(Q)

}
, (29)

W2 := {
( j, k): j ∈ V, k ∈ V, j �= k, Q jk ≥ ν(Q)

}
. (30)

If W1 = ∅, then it follows from (26), (30), and (28) that Qi j ≥ ν(Q) for 1 ≤ i ≤ j ≤ n
and Qkk = ν(Q) for some k = 1, . . . , n. Therefore, Q ∈ L0 by Proposition 3, which implies
that Q ∈ L, establishing the reverse inclusion.

We will henceforth assume that W1 �= ∅. In this case, it follows from (28) that

βi jk := max{Qi j , Qik} > ν(Q), for each i ∈ U, ( j, k) ∈ W1.

We also define

β := min
i∈U ; ( j,k)∈W1

βi jk > ν(Q), and ρ := β − ν(Q) > 0. (31)

Next, we will establish a lower bound on lr (Q) for each r ∈ N. Let us fix r ∈ N. Recall
that lr (Q) is given by

lr (Q) = 1

(r + 1)(r + 2)
min

z∈(r+2)Λr
n

(zT Qz − zT diag(Q)), r = 0, 1, . . . .

We can rewrite the expression in the parentheses on the right-hand side as

zT Qz − zT diag(Q) =
∑

i∈U

∑

j∈U
Qi j zi z j −

∑

i∈U
Qii zi + 2

∑

i∈U

∑

k∈V
Qik zi zk

+
∑

j∈V

∑

k∈V
Q jk z j zk −

∑

j∈V
Q j j z j . (32)
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Next, we will derive lower bounds on the terms on the right-hand side of (32). For a given
z ∈ (r + 2)Λr

n , let us define
∑

j∈V
z j = η,

so that
∑

i∈U zi = r + 2 − η.
By (26),

∑

i∈U

∑

j∈U
Qi j zi z j −

∑

i∈U
Qii zi =

∑

i∈U
Qii zi (zi − 1) +

∑

i∈U

∑

j∈U\{i}
Qi j zi z j ,

≥ ν(Q)

⎛

⎝

(
∑

i∈U
zi

)2

−
∑

i∈U
zi

⎞

⎠ ,

= (r + 2 − η)(r + 1 − η)ν(Q), (33)

where we used z ∈ N
n to derive the inequality.

Similarly,
∑

j∈V

∑

k∈V
Q jk z j zk −

∑

j∈V
Q j j z j =

∑

j∈V
Q j j z j (z j − 1) +

∑

( j,k)∈W1

Q jkz j zk +
∑

( j,k)∈W2

Q jkz j zk .

By (29) and (30), we obtain the following lower bounds.

∑

j∈V

∑

k∈V
Q jk z j zk −

∑

j∈V
Q j j z j ≥

⎧
⎨

⎩

ν(Q)η(η − 1), if z j zk = 0
for all ( j, k) ∈ W1,

η(η − 1)lη−2(QVV ), otherwise,
(34)

where the second part follows from the definition of lr (QVV ) and the fact that zV ∈ (r +
2)Λη−2

|V | . Note that, in the second case, zV should have at least two positive components,
which implies that η ≥ 2.

Finally,

∑

i∈U

∑

k∈V
Qik zi zk =

∑

i∈U
zi

(
∑

k∈V
Qik zk

)

.

Note that Qik ≥ ν(Q) for each i ∈ U and k ∈ V by (26). Furthermore, if there exists
( j ′, k′) ∈ W1 such that z j ′ zk′ > 0, then
∑

k∈V
Qik zk =

∑

k∈V \{ j ′,k′}
Qikzk + Qi, j ′ z j ′ + Qi,k′ zk′ ≥ ν(Q)η + ρ, for each i ∈ U,

since max{Qi, j ′ , Qi,k′ } ≥ ν(Q) + ρ by (31) for each i ∈ U . Therefore,

∑

i∈U

∑

k∈V
Qik zi zk ≥

⎧
⎨

⎩

(r + 2 − η) (ν(Q)η + ρ) , if z j zk > 0
for some ( j, k) ∈ W1,

ν(Q)(r + 2 − η)η, otherwise,
(35)

Using these lower bounds, we consider the following five cases:
Case 1: If

∑
j∈V z j = η = 0, then z j = 0 for each j ∈ V . By (32) and (33),

zT Qz − zT diag(Q) ≥ (r + 2)(r + 1)ν(Q).

123



54 J Glob Optim (2015) 63:37–59

Case 2: If
∑

j∈V z j = η = 1, then it follows from (32), (33), (34), and (35) that

zT Qz − zT diag(Q) ≥ (r + 2)(r + 1)ν(Q).

Case 3: If
∑

j∈V z j = η = r + 2, then zi = 0 for each i ∈ U . By (32) and (34),

zT Qz − zT diag(Q) ≥ (r + 2)(r + 1)min{ν(Q), lr (QVV )}.
Case 4a: If 2 ≤ ∑

j∈V z j = η ≤ r +1 and z j zk = 0 for each ( j, k) ∈ W1, then it follows
from (32), (33), (34), and (35) that

zT Qz − zT diag(Q) ≥ (r + 2)(r + 1)ν(Q).

Case 4b: If 2 ≤ ∑
j∈V z j = η ≤ r + 1 and there exists ( j, k) ∈ W1 such that z j zk > 0,

then, by (32), (33), (34), and (35),

zT Qz−zT diag(Q) ≥ (r+2−η)(r + 1 + η)ν(Q)+η(η−1)lη−2(QVV ) + 2ρ(r + 2 − η).

It follows from the five cases above that

lr (Q) ≥ min

{

ν(Q), lr (QVV ), min
η∈{2,...,r+1} h(Q, η, r)

}

, (36)

where

h(Q, η, r) := (1 − λη,r )ν(Q) + λη,r lη−2(QVV ) + 2ρ(r + 2 − η)

(r + 1)(r + 2)
, (37)

and

λη,r := η(η − 1)

(r + 1)(r + 2)
.

We next establish that the second and the third terms in (36) are at least as large as ν(Q)

for all sufficiently large values of r .
For any Q̂ ∈ S1 with V �= ∅, we have

ν(Q̂V V ) = min{xT Q̂x : eT x = 1, x ≥ 0, xi = 0, i ∈ U } ≥ ν(Q̂).

By (28), we therefore have ν(QVV ) > ν(Q) for any Q ∈ S1\S ′
1. Since limr→∞ lr (QVV ) =

ν(QVV ), there exists r̂ ∈ N such that

lr (QVV ) ≥ ν(Q), for all r > r̂ . (38)

Therefore, the second term in (36) is at least as large as ν(Q) for all r > r̂ . Let us next focus
on the third term in (36) for r > r̂ . Note that it suffices to consider only η ∈ {2, . . . , r̂ + 2}
for the range of the minimum since h(Q, η, r) > ν(Q) for all η > r̂ + 2 by (38).

Let us now fix η ∈ {2, . . . , r̂ + 2} and consider the last term in (36) as a function of r . We
claim that there exists rη ∈ N such that

h(Q, η, r) ≥ ν(Q), for all r ≥ rη, (39)

where h is defined as in (37). Indeed, h(Q, η, r) can be rewritten as

ν(Q) + 2ρ(r + 2 − η) − η(η − 1)
(
ν(Q) − lη−2(QVV )

)

(r + 1)(r + 2)
.

Therefore, there exists rη ∈ N such that the second term is nonnegative for all r ≥ rη, which
establishes (39).
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It follows from (38), (39), and (36) that

lr (Q) = ν(Q), for all r ≥ r∗,

where

r∗ := max

{

r̂ + 1, max
η∈{2,...,r̂+2}

rη

}

< ∞.

Therefore, Q ∈ L, which implies that S1\S ′
1 ⊆ L. The proof is complete. 
�

For illustrative purposes, we present the following example.

Example 5 Let

Q(ρ) :=
⎡

⎣
1 1 + ρ 1 + ρ

1 + ρ 3 0
1 + ρ 0 3

⎤

⎦ .

For any ρ ≥ 0, ν(Q(ρ)) = 1 and Ω(Q(ρ)) = e1, which implies that Q(ρ) ∈ S1. We
have U = {1} and V = {2, 3}. Note that Q(0) ∈ S ′

1 by Example 4. On the other hand, for
any ρ > 0, Q(ρ) ∈ S1\S ′

1, which implies that Q ∈ L by Theorem 3. Our computational
experiments reveal that Q(1) ∈ L5 and Q(0.1) ∈ L48.

Example 5 illustrates that L, in general, is not a closed set. Our next result gives a descrip-
tion of the closure of L.

Proposition 8 We have

cl(L) = S1 = {Q ∈ S:Ω(Q) ∩ {e1, . . . , en} �= ∅}.
Proof By Corollary 3, L ⊆ S1. Note that S1 is a closed set by Proposition 4. Therefore,
cl(L) ⊆ S1.

Conversely, let Q ∈ S1. Therefore, there exists some i ∈ {1, . . . , n} such that ei ∈ Ω(Q).
Let us define the following sequence:

Qk := Q + 1

k

(
eeT − ei (ei )

T
)

, k = 1, 2, . . .

Clearly, limk→∞ Qk = Q. We will show that Qk ∈ L for each k = 1, 2, . . . Let us fix k.
Since Qk − Q ∈ N , ν(Qk) ≥ ν(Q) by Lemma 1(iii). Furthermore, (ei )T Qkei = ν(Q) ≥
ν(Qk), which implies that ν(Qk) = ν(Q) and ei ∈ Ω(Qk). Therefore, Qk ∈ S1 for each
k = 1, 2, . . .Since ei ∈ Ω(Q), we have Qi j ≥ ν(Q) and Q j j ≥ ν(Q) for each j = 1, . . . , n.
By the definition of Qk , U = {i}, V = {1, . . . , n}\{i}. We have

ν((Qk)VV ) = min
x∈Δn : xi=0

{

xT Qx + 1

k

}

≥ ν(Q) + 1

k
> ν(Q) = ν(Qk),

which implies that the condition of Proposition 6 cannot be satisfied. Since (Qk)i j > ν(Q) for
each j ∈ V , the condition of Proposition 7 cannot be satisfied either. Therefore, Qk /∈ S ′

1, i.e.,
Qk ∈ S1\S ′

1. By Theorem 3, Qk ∈ L for each k = 1, 2, . . ., which implies that Q ∈ cl(L).

�

By Proposition 8, Q(0) ∈ cl(L)\L in Example 5. Note that cl(L) ⊂ S in general. For
instance, I /∈ cl(L) since I /∈ S1 for any n ≥ 2.
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5.4 Description of Lr

In this section, we give complete algebraic descriptions of the sets Lr . In particular, our next
result generalizes Proposition 3.

Theorem 4 For any r = 0, 1, . . ., we have

Lr :=
n⋃

k=1

Lk
r , (40)

where

Lk
r :=

{

Q ∈ S: Qkk ≤ 1

(r + 1)(r + 2)

(
zT Qz − zT diag(Q)

)
, for all z ∈ (r + 2)Λr

n

}

,

for k = 1, . . . , n.

Proof Let us fix r ∈ N and let Q ∈ Lr . By Corollary 3 and (16), Lr ⊆ S1, which implies
that

ν(Q) = min
k=1,...,n

Qkk = lr (Q) = 1

(r + 1)(r + 2)
min

z∈(r+2)Λr
n

(zT Qz − zT diag(Q)).

Therefore, Q ∈ Lr if and only if Q ∈ Lk
r for some k ∈ {1, . . . , n}. 
�

Recall that Lk
r is defined by O(nr+2) inequalities for each k = 1, . . . , n. Therefore, it

follows from Theorem 4 that, for any fixed r ∈ N, one can check in polynomial time if
Q ∈ Lr . On the other hand, Theorem 3 does not yield an algorithmic procedure for checking
if Q ∈ L.

Our next result establishes some geometric properties of the sets Lr .

Proposition 9 For any r = 0, 1, . . ., the set Lr is given by the union of n polyhedral cones.

Proof Since Λr
n is a finite set, Lk

r is a polyhedral cone for each r ∈ N and k = 1, . . . , n. The
assertion directly follows from (40). 
�

We next establish an interesting connection between the behavior of lower bounds and the
stability number of a certain associated graph. Given M ∈ N , we define the sparsity graph
GM associated with M as follows. There are n vertices labeled 1, . . . , n and vertex i and
vertex j are connected by an edge if Mi j > 0, 1 ≤ i < j ≤ n. The next result establishes
a connection between the stability number of the sparsity graph of the matrix Qs and the
behavior of lower bounds lr (Q).

Proposition 10 Let Q ∈ S\L0 and let G = GQs denote the sparsity graph of Qs with stabil-
ity number α(G). Then, lr (Q) = min1≤i≤ j≤n Qi j < ν(Q) for each r = 0, 1, . . . , α(G) − 2
and lr (Q) > min1≤i≤ j≤n Qi j for each r ≥ α(G) − 1. Therefore,

Q /∈ Lr , for each r = 0, 1, . . . , α(G) − 2. (41)

Proof Given Q ∈ S\L0, let G = GQs denote the sparsity graph of Qs and let AG ∈ S
denote the adjacency matrix of G. First, we claim that there exists some 1 ≤ i < j ≤ n such
that Qs

i j = 0. By Proposition 3, Q ∈ L0 if and only if Qs ∈ N given by (17) has a diagonal
entry equal to zero. Therefore, for each Q /∈ L0, mink=1,...,n Qs

kk > 0 and Qs
i j = 0 for some
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1 ≤ i < j ≤ n. It follows that {i, j} is a stable set in G by definition of the sparsity graph.
Therefore, α(G) ≥ 2.

We now define the following two matrices.

Q∗ :=
(

min
1≤i≤ j≤n: Qs

i j>0
Qs

i j

)

(I + AG) , Q∗ :=
(

max
1≤i≤ j≤n

Qs
i j

)

(I + AG) .

Clearly, we have Q∗ ∈ N , Q∗ ∈ N , Qs − Q∗ ∈ N , and Q∗ − Qs ∈ N . By Lemma 1(iii),

lr (Q∗) ≤ lr (Q
s) ≤ lr (Q

∗), for each r = 0, 1, . . . .

Note that each of Q∗ and Q∗ is a positive multiple of I + AG . By Lemma 1(iv), we have
(

min
1≤i≤ j≤n: Qs

i j>0
Qi j

)

lr (I + AG) ≤ lr (Q
s) ≤

(

max
1≤i≤ j≤n

Qs
i j

)

lr (I + AG).

The assertion now follows directly from (17), Lemma 1(v), and (9). The relation (41) follows
immediately. 
�
Example 6 Consider an instance of (StQP) in which

Q = Qs =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 2 2 . . . 2
2 n 0 . . . 0
2 0 n . . . 0
...

...
...

. . .
...

2 0 0 . . . n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

is an n × n arrowhead matrix, where n ≥ 3. It is easy to verify that ν(Q) = 1 and Ω(Q) =
{e1}. Therefore, U = {1} and V = {2, . . . , n}. By (28) and Theorem 3, Q ∈ L. We have
α(G) = n − 1, where G = GQ denotes the sparsity graph of Q. By Proposition 10, we
have lr (Q) = min1≤i≤ j≤n Qi j = 0 for each r = 0, 1, . . . , n − 3 and lr (Q) > 0 for each
r ≥ n − 2. It follows that Q /∈ Lr for each r = 0, 1, . . . , n − 3.

5.5 Relations among different sets

In this section,we summarize the relations among all the important sets defined in the previous
sections.

Proposition 11 The following relations are satisfied:

L0 ⊆ L1 ⊆ · · · ⊆ L ⊆ cl(L) = S1 ⊆ U0 ⊆ U1 ⊆ · · · ⊆ U ⊆ cl(U) = S,

where Lr , L, S1, Ur , and U are defined as in (15), (16), (20), (11), and (14), respectively.

Proof By Corollary 3, Proposition 4, and Proposition 1, we obtain L ⊆ S1 ⊆ U0 since
{e1, . . . , en} ⊆ Δ0

n . The last equality follows from Corollary 1. The remaining inclusions
follow from the definitions (15), (16), (11), and (14). 
�

It is worth noticing the significant difference between the sets L and U . For any n ≥ 2,
cl(L) is strictly contained in the set U0, which is the smallest set in the sequence of the
sets Ur . On the other hand, recall that cl(U) = S by Corollary 1. Therefore, for the par-
ticular polyhedral approximation hierarchies considered in this paper, it follows that upper
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and lower bounds exhibit quite different behaviors in terms of finite convergence in the con-
text of standard quadratic optimization. In particular, our results reveal that inner polyhedral
approximations, which give rise to upper bounds, are considerably stronger than outer poly-
hedral approximations in terms of finite convergence in the context of standard quadratic
optimization.

We close this section by briefly commenting on the instances of (StQP) for which the
upper and lower bounds coincide at a finite level of the hierarchy. From a computational
point of view, this class of instances is especially important since equality of upper and lower
bounds yields a certificate of optimality. We therefore define the following sets:

Er := {Q ∈ S: lr (Q) = ur (Q)} = Lr ∩ Ur = Lr , r = 0, 1, . . . ,

where the last equality follows from Proposition 11. Therefore, the algebraic description of
such instances are precisely given by Theorem 4.

6 Concluding remarks

In this paper, we investigated the sequences of copositive optimization based upper and lower
bounds on the optimal value of a standard quadratic optimization problem.We gave complete
algebraic descriptions of the sets of instances for which the upper and/or the lower bound is
exact at a finite level of the hierarchy. We identified the structural properties of the sets of
instances for which the upper and/or the lower bound converges to the optimal value only in
the limit. We discussed several geometric and topological properties of these sets.

For the particular polyhedral approximation hierarchies considered in this paper, an impor-
tant consequence of our analysis is that the upper bounds seem to be more well-behaved in
comparison with the lower bounds. Note that the extreme rays of inner polyhedral approxi-
mations Ir , which give rise to upper bounds, are given by ddT , where d ∈ Δr

n and the extreme
rays of the cone C of completely positive matrices are given by rank one matrices xxT , where
x ∈ R

n+\{0} (see, e.g., [1]). It follows that the set of extreme rays of Ir is a subset of the set of
extreme rays of C. On the other hand, the outer polyhedral approximationsOr are generated
by the matrices (r + 2)ddT −Diag(d), where d ∈ Λr

n . For d = ei ∈ Λr
n , the corresponding

matrix is a multiple of ei (ei )T , i = 1, . . . , n, which is also an extreme ray of C. However, for
each d ∈ Λr

n\{ei : i = 1, . . . , n}, it is easy to construct aw ∈ R
n\{0} such thatwT d = 0 and

〈(r +2)ddT −Diag(d), wwT 〉 < 0, which implies that (r +2)ddT −Diag(d) /∈ C. Together
with our analysis, this observation suggests that only a few faces of Or in fact coincide with
those of C whereas most of the faces ofOr do not support the cone C. Our results, combined
with the recent progress on the facial structure of the cone C (see, e.g., [9,11]), may serve as
a basis for the construction of tighter polyhedral outer approximations.
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