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Abstract In this paper we extend the notion of a Lorentz cone in a Euclidean space as
follows: we divide the index set corresponding to the coordinates of points in two disjoint
classes. By definition a point belongs to an extended Lorentz cone associated with this
division, if the coordinates corresponding to one class are at least as large as the norm of the
vector formed by the coordinates corresponding to the other class. We call a closed convex
set isotone projection set with respect to a pointed closed convex cone if the projection onto
the set is isotone (i.e., order preserving) with respect to the partial order defined by the
cone. We determine the isotone projection sets with respect to an extended Lorentz cone.
In particular, a Cartesian product between an Euclidean space and any closed convex set in
another Euclidean space is such a set. We use this property to find solutions of general mixed
complementarity problems recursively.
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Mixed complementarity problems · Picard iteration · Fixed point

Mathematics Subject Classification 90C33 · 47H07 · 47H99 · 47H09

1 Introduction

If K ⊂ R
m is a closed convex cone, K ∗ the dual cone of K , and F : K → R

m a mapping,
then the nonlinear complementarity problem NCP(F, K ) defined by K and f is the problem
of finding an x∗ ∈ K such that F(x∗) ∈ K ∗ and 〈x∗, F(x∗)〉 = 0. Some problems of
economics, physics and engineering can be modelled by complementarity problems and they
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occur in constraint qualifications for mathematical programming too [1]. It is known that x∗
is a solution of the nonlinear complementarity problem NCP(F, K ) if and only if x∗ is a
fixed point of the mapping K � x 	→ PK (x − F(x)), where PK is the projection mapping
onto K [1]. Therefore, if the sequence {xn}n∈N of the Picard iteration

xn+1 = PK (xn − F(xn)), (1)

is convergent to x∗ ∈ K and the mapping F is continuous, then a simple limiting process in
(1) yields that x∗ is a fixed point of the mapping K � x 	→ PK (x − F(x)), or equivalently a
solution of the nonlinear complementarity problemdefined by K and F (see Proposition 1.5.8
[1]). Therefore, several papers dealt with conditions of convergence for recursions similar to
(1), as for example [2–12]. However, neither of these works used the partial ordering defined
by a cone for showing the convergence of the corresponding iterative scheme. Instead, they
used as a tool theBanachfixedpoint theoremand assumedKachurovskii-Minty-Browder type
monotonicity (see [13–16]) and global Lipschitz properties of F . We will provide conditions
for the convergence of (1) in R

p × R
q (p, q > 0) in terms of the partial order defined by the

extended Lorentz cone (5), when K = R
p × C , where C is a general closed convex cone in

R
q . Although also based on the idea of isotonicity of the projection, our results are for a much

wider family of cones than the isotone projection cones considered in [17–19] (nevertheless
we acknowledge that the class of isotone projection cones contain cones important from the
practical point of view, such as the monotone cone [20] and the monotone nonnegative cone
[21], which cannot be written as a direct product K = R

p ×C with p > 0). The isotonicity
property of a projection was also used by Nishimura and Ok [22] for studying the solvability
of variational inequalities and related equilibrium problems. We would like to emphasize
that the ordered vector structures are becoming more and more important in studying various
fixed point and related equilibrium problems (see the book [23] of Carl and Heikkilä and the
references therein).

The structure of the paper is as follows: In the section “Preliminaries”wewill recall several
definitions and fix the terminology. In particular, we will define the notion of K -isotone
mappings with respect to a pointed closed cone K . In Sect. 4, we will extend the notion
of Lorentz cones (also called “second order cones” or “icecream cones” in the literature)
and show in Theorem 2 that the projection mapping PK onto K = R

p × C , where C is
a closed convex set (in particular any closed convex cone) is L-isotone with respect to the
extended Lorentz cone L (5). This isotonicity property will be crucial in Theorem 3 of
Sect. 6 (and Proposition 2 on which this theorem is based) to generate an iteration which is
convergent to a solution of a general mixed complementarity problem (extension of themixed
complementarity problem considered by Facchinei and Pang in [1] from the nonnegative
orthant to a general closed convex cone), without any restriction on the closed convex cone
defining this problem. Section 5 has a transitional role from the nonlinear complementarity
problems to the mixed complementarity problems, in the sense that the isotonicity properties
of Sect. 4 will be used directly in Sect. 5 for nonlinear complementarity problems on which
the mixed complementarity problems of Sect. 6 are based. In Sect. 7 we will give an example
for Theorem 3. The Appendix is of independent interest with the purpose of convincing the
reader that the family of K -isotone mappings (used in the condition “I − F is K -isotone“
of Proposition 2 and in the corresponding condition of Theorem 3) is very wide, and later
sections can be read without it.

We note that Theorem 2 determines all sets K ⊂ R
p × R

q (p, q > 0) with PK L-
isotone [where L is the extended Lorentz cone defined by (5)], family which contains the
sets K = R

p×C , whereC is a closed convex set. Theorem 2 is interesting in its ownway and
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may be useful in a wider context, for more general equilibrium problems and other problems
where isotonicity occurs or can be used as a tool.

2 Preliminaries

Denote by N the set of nonnegative integers. Letm be a positive integer. Identify R
m with the

set of column vectors with real components. The canonical scalar product inR
m is defined by

〈x, y〉 = x
y, for any x, y ∈ R
m . Let ‖ · ‖ be the norm corresponding to the scalar product

〈·, ·〉, that is, ‖x‖ = √〈x, x〉, for any x ∈ R
m .

For any m positive integer denote

R
m+ =

{
x = (x1, . . . , xm)
 ∈ R

m : x1 ≥ 0, . . . , xm ≥ 0
}

and call it the nonnegative orthant of R
m . Let p, q positive integers. Define the Cartesian

product R
p × R

q as the pair of vectors (x, u), where x ∈ R
p and u ∈ R

q . Any vector

(x, u) ∈ R
p × R

q can be identified with the vector
(
x
, y
)
 ∈ R

p+q . The scalar product
in R

p × R
q is given by

〈(x, u), (y, v)〉 = 〈x, y〉 + 〈u, v〉.
The affine hyperplanewith the normal u ∈ R

m \{0} and through a ∈ R
m is the set defined

by
H(u, a) = {x ∈ R

m : 〈x − a, u〉 = 0}. (2)

An affine hyperplane H(u, a) determines two closed halfspaces H−(a, u) and H+(u, a) of
R
m , defined by

H−(u, a) = {x ∈ R
m : 〈x − a, u〉 ≤ 0},

and

H+(u, a) = {x ∈ R
m : 〈x − a, u〉 ≥ 0}.

An affine hyperplane through the origin will be simply called hyperplane.
Let V be a real vector space. A set K ⊂ V is called a convex cone if it is invariant with

respect to the linear structure of V, that is, αx + βy ∈ K , whenever x, y ∈ K and α, β ≥ 0.
It is easy to show that every convex cone is a convex set.

A convex cone K ⊂ R
m which is a closed set is called a closed convex cone. A closed

convex cone K ⊂ R
m is called pointed if K ∩ (−K ) = {0}, where 0 is the origin of R

m , that
is, the vector with all entries zero.

Let K ⊂ R
m be a closed convex cone. Then, the set

K ∗ = {
x ∈ R

m : 〈x, y〉 ≥ 0, ∀y ∈ K
}

is called the dual of K and it is easy to see that it is a closed convex cone. It is known
that (K ∗)∗ = K . The closed convex cone K is called subdual if K ⊂ K ∗ and self-dual if
K = K ∗.

Let K ⊂ R
m be a pointed closed convex cone. Denote≤K the partial order relation defined

by x ≤K y ⇐⇒ y − x ∈ K and call it the partial order relation defined by K . The relation
≤K is reflexive, transitive, antisymmetric and compatible with the linear structure of R

m in
the sense that x ≤K y implies that t x + z ≤K ty + z, for any z ∈ R

m and any t ∈ R+.
Moreover, ≤K is continuous at 0 in the sense that if xn → x when n → ∞ and 0 ≤K xn for
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any n ∈ N, then 0 ≤K x . Conversely any reflexive, transitive and antisymmetric relation ≤
which is compatible with the linear structure of R

m and it is continuous at 0 is defined by a
pointed closed convex cone. More specifically, ≤=≤K , where K = {x ∈ R

m : 0 ≤ x} is a
pointed closed convex cone.

For any closed convex set C denote by PC the metric projection mapping onto C that is
the mapping defined by

R
m � x 	→ PCx = argmin{‖y − x‖ : y ∈ C}.

It can be shown (see [24]) that PC is a well defined point to point mapping from R
m to R

m .
From the definition above it easily follows that

Py+C x = y + PC (x − y) (3)

for any x, y ∈ R
m . It is also known that PC is nonexpansive (see [24]), that is,

‖PC (x) − PC (y)‖ ≤ ‖x − y‖, (4)

for any x, y ∈ R
m .

Let K ⊂ R
m be a pointed closed convex cone. The mapping F : R

m → R
m is called

K -isotone if x ≤K y implies F(x) ≤K F(y).
The nonempty closed convex set C ⊆ R

m is called K -isotone projection set if PC is
K -isotone.

The setΩ ⊂ R
m is called K -bounded from below (K -bounded from above) if there exists

a vector y ∈ R
m such that y ≤K x (x ≤K y), for all x ∈ Ω . In this case y is called a lower

K -bound (upper K -bound) of Ω . If y ∈ Ω , then y is called the K -least element (K -greatest
element) of Ω .

Let I ⊂ N be an unbounded set of nonnegative integers. The sequence {xn}n∈I is called
K -increasing (K -decreasing) if xn1 ≤K xn2 (xn2 ≤K xn1 ), whenever n1 ≤ n2.

The sequence {xn}n∈I is called K -bounded from below (K -bounded from above) if the
set {xn : n ∈ I} is K -bounded from below (K -bounded from above).

A closed convex cone K is called regular if any K -increasing sequence which is K -
bounded from above is convergent. It is easy to show that this is equivalent to the convergence
of any K -decreasing sequence which is K -bounded from below. It is known (see [25]) that
any pointed closed convex cone in R

m is regular.

3 Isotonicity of the projection with respect to extended Lorentz cones

For a, b ∈ R
m denote a ≥ b if all components of a are at least as large as the corresponding

components of b, or equivalently b ≤R
m+ a. Let p, q be positive integers. Denote by e ∈ R

p

the vector whose all components are 1. Let

L = {
(x, u) ∈ R

p × R
q : x ≥ ‖u‖e} (5)

and
M = {

(x, u) ∈ R
p × R

q : 〈x, e〉 ≥ ‖u‖, x ≥ 0
}
. (6)

Proposition 1 M = L∗.

Proof Let (x, u) ∈ L and (y, v) ∈ M be arbitrary. Then, by using the Cauchy–Schwarz
inequality, we get
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〈(x, u), (y, v)〉 = 〈x, y〉 + 〈u, v〉 ≥ 〈‖u‖e, y〉 + 〈u, v〉
= ‖u‖ 〈e, y〉 + 〈u, v〉 ≥ ‖u‖‖v‖ + 〈u, v〉 ≥ 0.

Hence, M ⊂ L∗. Conversely, let (x, u) ∈ L∗ be arbitrary. We have (ei , 0) ∈ L . Hence
0 ≤ 〈

(x, u), (ei , 0)
〉 = 〈

x, ei
〉 + 〈u, 0〉 = xi . Thus, x ≥ 0. We also have (e,−u/‖u‖) ∈ L .

Hence 0 ≤ 〈(x, u), (e,−u/‖u‖)〉 = 〈x, e〉−‖u‖. Thus, 〈x, e〉 ≥ ‖u‖. Therefore, (x, u) ∈ M
which implies L∗ ⊂ M . ��
Remark 1 The extended Lorentz cone L defined by (5) is a pointed closed convex (and
hence regular) cone. The cone L (or L∗ [26]) is a polyhedral cone if and only if q = 1.
If q = 1, then the minimal number of generators of L is (p + 2)(1 − δp1) + 2δp1, where
δ denotes the Kronecker symbol. If q = 1, p = 1, then a minimal set of generators of
L is {(1, 1), (1,−1)}, and if q = 1, p > 1, then a minimal set of generators of L is
{(e, 1), (e,−1), (ei , 0) : i = 1, . . . , p}. If q = 1, then L∗ is a p + 1 dimensional polyhedral
cone with the minimal number of generators 2p and a minimal set of generators of L∗ is
{(ei , 1), (ei ,−1) : i = 1, . . . , p}. If q = 1 and p > 1, then note that the number of generators
of L and L∗ coincide if and only if they are 2 or 3-dimensional cones. The cone L is a subdual
cone and L is self-dual if and only if p = 1, that is, L is the q +1-dimensional Lorentz cone.
L is a self-dual polyhedral cone if and only if p = q = 1.

We will prove only the subduality of L and the condition for its self-duality, because the
other assertions are easy to verify. Let (x, u) ∈ L . It is easy to see that x ≥ 0. Equation
(5) multiplied scalarly by e gives 〈x, e〉 ≥ p‖u‖ ≥ ‖u‖, which implies that (x, u) ∈ M ,
where M is the cone given by (6). Hence, by Proposition 1, it follows that (x, u) ∈ L∗. In
conclusion, L is subdual. If p = 1, then L is the q + 1, dimensional Lorentz cone and hence
it is self-dual. Suppose that p > 1. Let u ∈ R

q such that 1 < ‖u‖ < p. Then, Proposition
1 and Eq. (6) implies that (e, u) ∈ L∗. On the other hand, Eq. (5) shows that (e, u) /∈ L .
Hence, L is self-dual if and only if p = 1.

Consider L defined by (5). It is easy to see that L is a pointed closed convex cone. Due to
the fact that for L is the q + 1-dimensional Lorentz cone for p = 1 (see Remark 1), we will
call L the extended Lorentz cone.

Recall that an affine hyperplane H is called tangent to a closed convex set C ⊂ R
m at a

point x ∈ C if it is the unique supporting affine hyperplane to C at x (see pages 100 and 169
of [26]).

The following result has been shown in [27].

Theorem 1 The closed convex set C ⊂ R
m with nonempty interior is a K -isotone projection

set if and only if it is of the form

C = ∩i∈NH−(ui , ai ),

where each affine hyperplane H(ui , ai ) is tangent to C and it is a K -isotone projection set.

Lemma 1 Let K ⊂ R
m be a closed convex cone and H ⊂ R

m be a hyperplane with a unit
normal vector a ∈ R

m. Then, H is a K -isotone projection set if and only if

〈x, y〉 ≥ 〈a, x〉 〈a, y〉 ,

for any x ∈ K and y ∈ K ∗.

Proof Since PH is linear, it follows that PH is isotone if and only if

PHx = x − 〈a, x〉 a ∈ K , (7)
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for any x ∈ K . By the definition of the dual cone and (K ∗)∗ = K , it follows that relation (7)
is equivalent to

〈x, y〉 = 〈a, x〉 〈a, y〉 + 〈x − 〈a, x〉 a, y〉 ≥ 〈a, x〉 〈a, y〉 ,

for any x ∈ K and y ∈ K ∗. ��

The next lemma follows easily from (3):

Lemma 2 Let z ∈ R
m, K ⊂ R

m be a closed convex cone and C ⊂ R
m be a nonempty

closed convex set. Then, C is a K -isotone projection set if and only if C + z is a K -isotone
projection set.

Theorem 2

1. Let K = R
p × C, where C is an arbitrary nonempty closed convex set in R

q and L be
the extended Lorentz cone defined by (5). Then, K is an L-isotone projection set.

2. Let p = 1, q > 1 and K ⊂ R
p × R

q be a nonempty closed convex set. Then, K is an
L-isotone projection set if and only if K = R

p × C, for some C ⊂ R
q nonempty closed

convex set.
3. Let p, q > 1, and

K = ∩�∈NH−(γ �, β�) ⊂ R
p × R

q ,

where γ � = (a�, u�) is a unit vector. Then, K is an L-isotone projection set if and only
if for each � one of the following conditions hold:

(a) The vector a� = 0.
(b) The vector u� = 0, and there exists i �= j such that a�

i = √
2/2, a�

j = −√
2/2 and

a�
k = 0, for any k /∈ {i, j}.

Proof 1. Suppose that K = R
p × C , where C is a closed convex set in R

q . Let
(x, u), (y, v) ∈ R

p × R
q such that (x, u) ≤L (y, v). Then, the nonexpansitivity (4)

of the projection implies

y − x ≥ ‖v − u‖e ≥ ‖PCv − PCu‖e.
Thus, (y, PCv)−(x, PCu) ∈ L .Hence, PK (x, u) = (x, PCu) ≤L (y, PCv) = PK (y, v).

2. The cone becomes a Lorentz cone of dimension at least 3. This item was proved in
[27,28].

3. By Theorem 1 and Lemma 2, we can suppose without loss of generality that K is a
hyperplane. Let γ = (a, u) be the unit normal vector of K . Suppose that one of the
following conditions hold

(a) The vector a = 0.
(b) The vector u = 0, and there exists i �= j such that ai = √

2/2, a j = −√
2/2 and

ak = 0, for any k /∈ {i, j}.
We need to show that K is an L-isotone projection set. If (a) holds, then this follows
easily from item 1. Hence, suppose that (b) holds. By Lemma 1 we need to show that

〈ζ, ξ 〉 ≥ 〈γ, ζ 〉 〈γ, ξ 〉 , (8)

for any ζ := (x, v) ∈ L and ξ := (y, w) ∈ L∗. Condition (8) is equivalent to
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〈x, y〉 + 〈v,w〉 ≥ 1

2
(xi − x j )(yi − y j ),

or to
1

2
(xi + x j )(yi + y j ) +

∑
k /∈{i, j}

xk yk + 〈v,w〉 ≥ 0. (9)

Hence, it is enough to show (9). By (x, u) ∈ L , (y, w) ∈ L∗ and the Cauchy-Schwarz
inequality, we get

1

2
(xi + x j )(yi + y j ) +

∑
k /∈{i, j}

xk yk + 〈v,w〉 ≥ 1

2
(‖v‖ + ‖v‖)(yi + y j )

+
∑

k /∈{i, j}
‖v‖yk + 〈v,w〉 = ‖v‖ 〈y, e〉 + 〈v,w〉 ≥ ‖v‖‖w‖ + 〈v,w〉 ≥ 0.

Conversely, suppose that K is an L-isotone projection set. By Lemma 1, condition (8)
holds. Let x ∈ R

p
+ and v ∈ R

q . Then, by (5), (6) and Proposition 1, it is easy to check
that ζ := (‖v‖e, v) ∈ L , ξ := (‖v‖x,−〈e, x〉 v) ∈ L∗ and 〈ζ, ξ 〉 = 0. Hence, condition
(8) implies

0 ≥ (〈a, e〉 ‖v‖ + 〈u, v〉)(〈a, x〉 ‖v‖ − 〈e, x〉 〈u, v〉). (10)

If in (10) x = e and we choose v �= 0 such that 〈u, v〉 = 0, then we get 0 ≥ 〈a, e〉 ‖v‖2,
and hence 〈a, e〉 = 0. Hence, (10) becomes

0 ≥ 〈u, v〉 (〈a, x〉 ‖v‖ − 〈e, x〉 〈u, v〉). (11)

First, suppose that u �= 0. Let vn ∈ R
q be a sequence of points such that ‖vn‖ = 1,

〈u, vn〉 > 0 and limn→+∞ 〈u, vn〉 = 0. Let n be an arbitrary positive integer. If in
(11) we choose λ > 0 sufficiently large such that x := a + λe ≥ 0 and v = vn , we get
0 ≥ 〈u, vn〉 (‖a‖2−λp 〈u, vn〉), or equivalently ‖a‖2 ≤ λp 〈u, vn〉. By letting n → +∞
in the last inequality, we obtain ‖a‖2 ≤ 0, or equivalently a = 0.

Next, suppose that u = 0. Let x, y ∈ R
p
+ and w ∈ R

q such that 〈x, y〉 = 0, 〈y, e〉 ≥ ‖w‖.
Then, by (5), (6) and Proposition 1, it is easy to check that ζ := (x, 0) ∈ L , ξ := (y, w) ∈ L∗
and 〈ζ, ξ 〉 = 0. Hence, Eq. (8) implies

0 ≥ 〈a, x〉 〈a, y〉 , (12)

for any x, y ∈ R
p
+ with 〈x, y〉 = 0. Let x = er and y = es , where r �= s. Then, (12) becomes

aras ≤ 0. This together with 〈e, a〉 = 0 and 1 = ‖γ ‖2 = ‖a‖2 gives that ∃i �= j such that
ai = √

2/2, a j = −√
2/2 and ak = 0, ∀k /∈ {i, j}.

��

4 Complementarity problems

Recall the notion of a complementarity problem and the corresponding Picard iteration (1)
from the Introduction. It is natural to seek convergence conditions for xn . This will be done
by finding cones L and conditions to be imposed on F such that the sequence {xn}n∈N to
be L-increasing and L-bounded from above. These conditions will imply that {xn}n∈N is
convergent and its limit is a solution of NCP(F, K ). Denote by I the identity mapping.

Lemma 3 Let K ⊂ R
m be a closed convex cone, F : R

m → R
m be a continuous mapping

and L be a pointed closed convex cone. Consider the sequence {xn}n∈N defined by (1).
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Suppose that the mappings PK and I − F are L-isotone, x0 ≤L x1, and there exists a
y ∈ R

m such that xn ≤L y, for all n ∈ N sufficiently large. Then, {xn}n∈N is convergent and
its limit x∗ is a solution of NCP(F, K ).

Proof Since the mappings PK and I − F are L-isotone, the mapping x 	→ PK ◦ (I − F) is
also L-isotone. Then, by using (1) and a simple inductive argument, it follows that {xn}n∈N is
L-increasing. Since any pointed closed convex cone in R

m is regular, {xn}n∈N is convergent
and hence its limit x∗ is a solution of NCP(F, K ).

Remark 2

1. The condition x0 ≤L x1 in Lemma 3 is satisfied when x0 ∈ K ∩ F−1(−L). Indeed, if
x0 ∈ K ∩ F−1(−L), then −F(x0) ∈ L and x0 ∈ K . Thus x0 ≤L x0 − F(x0), and hence
by the isotonicity of PK we obtain x0 = PK (x0) ≤L PK (x0 − F(x0)) = x1.

2. The condition x0 ≤L x1 in Lemma 3 is satisfied when x0 = 0 and −F(0) ∈ L . Indeed,
this is a particular case of the previous item.

Proposition 2 Let L be a pointed closed convex cone, K ⊂ R
m be a closed convex cone such

that K∩L �= ∅ and F : R
m → R

m be a continuousmapping. Consider the sequence {xn}n∈N
defined by (1). Suppose that the mappings PK and I − F are L-isotone and x0 = 0 ≤L x1.
Let

Ω = K ∩ L ∩ F−1(L) = {x ∈ K ∩ L : F(x) ∈ L}
and

Γ = {x ∈ K ∩ L : PK (x − F(x)) ≤L x} .

Consider the following assertions:

(i) Ω �= ∅,
(ii) Γ �= ∅,
(iii) The sequence {xn}n∈N is convergent and its limit x∗ is a solution of NCP(F, K ).

Moreover, x∗ is the L-least element of Γ and a lower L-bound of Ω .

Then, Ω ⊂ Γ and (i) �⇒ (ii) �⇒ (iii).

Proof Let usfirst prove thatΩ ⊂ Γ . Indeed, let y ∈ Ω . Since PK is L-isotone, y−F(y) ≤L y
implies PK (y − F(y)) ≤L PK (y) = y, which shows that y ∈ Γ . Hence, Ω ⊂ Γ . Thus,
(i) �⇒ (ii) is trivial now.
(ii) �⇒ (iii):
Suppose that Γ �= ∅. Since the mappings PK and I − F are L-isotone, the mapping
PK ◦ (I − F) is also L-isotone. Similarly to the proof of Lemma 3, it can be shown that
{xn}n∈N is L-increasing. Let y ∈ Γ be arbitrary but fixed. We have x0 = 0 ≤L y. Now,
suppose that xn ≤L y. Since the mapping PK ◦ (I − F) is L-isotone, xn ≤L y implies
that xn+1 = PK (xn − F(xn)) ≤L PK (y − F(y)) ≤L y. Thus, we have by induction that
xn ≤L y for all n ∈ N. Then, Lemma 3 implies that {xn}n∈N is convergent and its limit
x∗ ∈ K ∩ L is a solution of NCP(F, K ). Since x∗ is a solution of NCP(F, K ), we have
that PK (x∗ − F(x∗)) = x∗ and hence x∗ ∈ Γ .

Therefore, x∗ is the L-least element of Γ . Since Ω ⊂ Γ , x∗ is a lower L-bound of Ω .
��

We note that from the second item of Remark 2, it follows that condition x0 = 0 ≤L x1

of Proposition 2 holds if x0 = 0 and −F(0) ∈ L . We also remark that since the definition
of Ω does not contain the projection onto K , (for a given F and K ) it is easier to show that
Γ �= ∅ by first showing that Ω �= ∅.
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5 Mixed complementarity problems

The following lemma extends the mixed complementarity problem in [1] by replacing R
q
+

with an arbitrary nonempty closed convex cone in R
q .

Lemma 4 Let K = R
p×C, where C is an arbitrary nonempty closed convex cone inR

q . Let
G : R

p×R
q → R

p, H : R
p×R

q → R
q and F = (G, H) : R

p×R
q → R

p×R
q . Then, the

nonlinear complementarity problem NCP(F, K ) is equivalent to themixed complementarity
problem MiCP(G, H,C, p, q) defined by

G(x, u) = 0, C � u ⊥ H(x, u) ∈ C∗.

Proof It follows easily from the definition of the nonlinear complementarity problem
NCP(F, K ), by noting that K ∗ = {0} × C∗. ��

By using the notations of Lemma 4, the Picard iteration (1) can be rewritten as:
{
xn+1 = xn − G(xn, un),
un+1 = PC (un − H(xn, un)),

(13)

where G(xn, un) = G(xn, un) and H(xn, un) = H(xn, un). Consider the partial order
defined by the extended Lorentz cone defined by (5). Then, we obtain the following theorem.

Theorem 3 Let K = R
p × C, where C is a closed convex cone, K ∗ be the dual of K ,

G : R
p × R

q → R
p and H : R

p × R
q → R

q be continuous mappings, F = (G, H) :
R

p × R
q → R

p × R
q , and L be the extended Lorentz cone defined by (5). Let x0 = 0 ∈ R

p,
u0 = 0 ∈ R

q and consider the sequence {(xn, un)}n∈N defined by (13). Let x, y ∈ R
p and

u, v ∈ R
q . Suppose that y − x ≥ ‖v − u‖e implies

y − x − G(y, v) + G(x, u) ≥ ‖v − u − H(y, v) + H(x, u)‖e,
and x1 ≥ ‖u1‖e (in particular this holds when −G(0, 0) ≥ ‖H(0, 0)‖e). Let

Ω = {(x, u) ∈ R
p × C : x ≥ ‖u‖e, G(x, u) ≥ ‖H(x, u)‖e}

and

Γ = {(x, u) ∈ R
p × C : x ≥ ‖u‖e, G(x, u) ≥ ‖u − PC (u − H(x, u))‖e}.

Consider the following assertions:

(i) Ω �= ∅,
(ii) Γ �= ∅,
(iii) The sequence {(xn, un)}n∈N is convergent and its limit (x∗, u∗) is a solution of

MiC P(G, H,C, p, q). Moreover, (x∗, u∗) is a lower L-bound of Ω and the L-least
element of Γ .

Then, Ω ⊂ Γ and (i) �⇒ (ii) �⇒ (iii).

Proof First observe that K ∩ L �= ∅. By using the definition (5) of the extended Lorentz
cone, it is easy to verify that

Ω = K ∩ L ∩ F−1(L) = {z ∈ K ∩ L : F(z) ∈ L}
and

Γ = {z ∈ K ∩ L : PK (z − F(z)) ≤L z} .
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Let x, y ∈ R
p and u, v ∈ C . Since y − x ≥ ‖v − u‖e implies

y − x − G(y, v) + G(x, u) ≥ ‖v − u − H(y, v) + H(x, u)‖e,
it follows that I−F is L-isotone. Also, x1 ≥ ‖u1‖emeans that (x0, u0) = (0, 0) ≤L (x1, u1)
(in particular if −G(0, 0) ≥ ‖H(0, 0)‖e, or equivalently −F(0, 0) ∈ L , then by the second
item of Remark 2, it follows that (x0, u0) = (0, 0) ≤L (x1, u1)). Hence, by Theorem 2,
Proposition 2 (withm = p+q) andLemma4, it follows thatΩ ⊂ Γ and (i) �⇒ (ii) �⇒ (iii).

��

6 An example

Let L be the extended Lorentz cone defined by (5). On the conditions of Theorem 3, suppose
that C = {(u1, u2) ∈ R

2 : u2 ≥ u1, u1 ≥ 0} and K = R
2 × C . Let f1(x, u) = 1/12(x1 +

‖u‖ + 12) and f2(x, u) = 1/12(x2 + ‖u‖ − 7.2). Then it is easy to show that these two
functions are L-monotone. Let w1 = (1, 1, 1/6, 1/3) and w2 = (1, 1, 1/3, 1/6) so w1 and
w2 is in L . For any two vectors (x, u) and (y, v) in K , suppose (x, u) ≤L (y, v), we have
y1 − x1 ≥ ‖v − u‖ ≥ ‖u‖ − ‖v‖. Hence,

f1(y, v) − f1(x, u) = 1

12
(y1 − x1 − (‖u‖ − ‖v‖)) ≥ 0.

Similarly we can prove that if (x, u) ≤L (y, v), then f2(y, v) − f2(x, u) ≥ 0. Since K is
convex, and w1, w2 ∈ L , if (x, u) ≤L (y, v) holds, then

( f1(y, v) − f1(x, u))w1 + ( f2(y, v) − f2(x, u))w2 ∈ L .

Thus, f1(x, u)w1 + f2(x, u)w2 ≤L f1(y, v)w1 + f2(y, v)w2. Therefore, the mapping
f1w1 + f2w2 is L-isotone. Hence, choose the function

G(x, u) =
(
11

12
x1 − 1

12
x2 − 1

6
‖u‖ − 2

5
,− 1

12
x1 + 11

12
x2 − 1

6
‖u‖ − 2

5

)
,

H(x, u) =
(
u1 − 1

72
x1 − 1

36
x2 − 1

24
‖u‖ + 1

30
, u2 − 1

36
x1 − 1

72
x2 − 1

24
‖u‖ − 7

30

)
,

so that to have

(x−G, u−H) = f1w
1+ f2w

2 =
(
f1 + f2, f1 + f2,

1

6
f1 + 1

3
f2,

1

3
f1 + 1

6
f2

)
(14)

L-isotone, where G, H , f1 and f2 are considered at the point (x, u). It is necessary to check
that all the conditions in Theorem 3 are satisfied. First, since

−G(0, 0; 0, 0) = ( f1(0, 0; 0, 0) + f2(0, 0; 0, 0), f1(0, 0; 0, 0) + f2(0, 0; 0, 0))
= (0.4, 0.4)

and ‖H(0, 0; 0, 0)‖ = √
2/6, it is clear that −G(0, 0; 0, 0) ≥ ‖H(0, 0; 0, 0)‖e. Next, we

will show that Ω is not empty. Consider the vector (x̄, ū) = (31, 31, 3, 4) ∈ K . Obviously,
x̄ = (31, 31) ≥ √

32 + 42e, and since

G(31, 31, 3, 4) = (31, 31) − ( f1 + f2, f1 + f2) = (24.6, 24.6)

and

H(31, 31, 3, 4) = (3, 4) −
(
1

6
f1 + 1

3
f2,

1

3
f1 + 1

6
f2

)
=

(
23

15
,
34

15

)
,
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where the functions f1 and f2 are considered at the point (x̄, ū) = (31, 31, 3, 4), it is
straightforward to check thatG(31, 31, 3, 4) ≥ ‖H(31, 31, 3, 4)‖e. Thus, (x̄, ū) ∈ Ω , which
shows that Ω �= ∅.

Now, we begin to solve the MiCP(G, H,C, p, q). Suppose that (x, u) is its solution.
Since G(x, u) = 0, and

x − G(x, u) = ( f1 + f2, f1 + f2),

where fi = fi (x, u), i = 1, 2, we have x1 = x2 = f1 + f2. Moreover, since

x1 = 1

12
(x1 + x2) + 1

6
‖u‖ + 0.4,

we get

x1 = x2 = 1

5
‖u‖ + 12

25
. (15)

The perpendicularity u ⊥ H(x, u) implies

〈u, H(x, u)〉 = u1

(
u1 − 1

6
f1 − 1

3
f2

)
+ u2

(
u2 − 1

3
f1 − 1

6
f2

)
= 0.

Thus,

u21 + u22 = ‖u‖2 = f1

(
1

6
u1 + 1

3
u2

)
+ f2

(
1

3
u1 + 1

6
u2

)
. (16)

We will find all nonzero solutions on the boundary of C .
Case1: u1 = u2, u1 > 0. Then, ‖u‖ = √

2u1 = √
2u2. Hence, from (16), we get

2u1 = 1

2
( f1 + f2).

By (15), we can conclude

u1 = u2 = 120 + 6
√
2

995
, (17)

which implies that

(x, u) =
(
480 + 24

√
2

995
,
480 + 24

√
2

995
,
120 + 6

√
2

995
,
120 + 6

√
2

995

)
. (18)

Case 2: u1 = 0, i.e., ‖u‖ = u2. Equation (16) can be transformed into

u2

(
u2 − 1

3
f1 − 1

6
f2

)
= 0. (19)

By using (16) again, we get u2 = 4/15, so u = (0, 4/15) and

(x, u) =
(

8

15
,
8

15
, 0,

4

15

)
. (20)

If the Picard iteration shown in (13) is applied and (0, 0, 0, 0) is the starting point, then we
obtain

⎧⎪⎪⎨
⎪⎪⎩

xn+1 = xn − G(xn, un) = ( f1(xn, un) + f2(xn, un))e,
un+1 = PC (un − H(xn, un))

= PC

(
1

6
f1(x

n, un) + 1

3
f2(x

n, un),
1

3
f1(x

n, un) + 1

6
f2(x

n, un)

)
,

(21)
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where f ni = fi (xn, un), i = 1, 2. So, we have xn+1
1 = xn+1

2 . As we start from (0, 0, 0, 0),

x j
1 = x j

2 ≥ 0 for all j ∈ N. Furthermore, define the set S by

S =
{
(x, u) ∈ R

2 × R
2 : 0 ≤ x1 = x2 <

8

15
, u1 = 0, 0 ≤ u2 <

4

15

}
. (22)

Wewill prove by induction that (xn, un) ∈ S, for all n ∈ N.We have (x0, u0) = (0, 0, 0, 0) ∈
S, and we need to show that as long as (xn, un) ∈ S, (xn+1, un+1) defined by (21) is in S.
Indeed, by using the above analysis, xn1 = xn2 . Byu

n
1 = 0,‖un‖ = un2. If 0 ≤ xn1 = xn2 < 8/15

and 0 ≤ un2 < 4/15, we have

0 < xn+1
1 = xn+1

2 = f1(x
n, un) + f2(x

n, un) = 1

6
(xn1 + un2) + 2

5

<
1

6

(
4

15
+ 8

15

)
+ 2

5
= 8

15
.

On the other hand, it can be deduced that,

un − H(xn, un) =
(

1

24
(xn1 + un2) − 1

30
,
1

24
(xn1 + un2) + 7

30

)
.

Then, the first entry of un − H(xn, un) is smaller than (1/24)(8/15 + 4/15) − 1/30 = 0
and the second entry is positive and smaller than (1/24)(8/15 + 4/15) + 7/30 = 4/15.
Thus, the projection of it to C must be on the line {(u1, u2) : u1 = 0, u2 ≥ 0}. Moreover,
un+1
2 = (un − H(xn, un))2 < 4

15 . Hence, by Eq. (21),

un+1 = (un+1
1 , un+1

2 ) = PC (un − H(xn, un)) =
(
0,

1

3
f1(x

n, un) + 1

6
f2(x

n, un)

)
.

Therefore, Eq. (21) can be transformed into
⎧⎪⎪⎨
⎪⎪⎩

xn+1
1 = xn+1

2 = 1

6

(
xn1 + un2 + 12

5

)

un+1
2 = 1

24

(
xn1 + un2 + 28

5

) (23)

Observing that

xn+1
1 = 4un+1

2 − 8

15
, (24)

andby substituting (24) (withn+1 replaced byn) into (23)1,wegetu
n+1
2 = (5/24)un2+19/90

and xn+1
1 = (5/24)xn1 + 19/45. Hence,

⎧⎪⎪⎨
⎪⎪⎩

xn+1
1 − 8

15
= 5

24

(
xn1 − 8

15

)
=

(
5

24

)n (
x11 − 8

15

)
,

un+1
2 − 4

15
= 5

24

(
un2 − 4

15

)
=

(
5

24

)n (
u12 − 4

15

)
.

(25)

Therefore, when n goes to infinity, the sequence (xn, un) converges to (8/15, 8/15, 0, 4/15)
which is a solution shown in Case 2.
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7 Conclusions

In this paper we extended the notion of Lorentz cones and showed that the projection onto
a set given as the Cartesian product between an Euclidean space and any closed convex
set C in another Euclidean space is isotone with respect to the partial order defined by an
extended Lorentz cone L (or shortly is an L-isotone projection set). When C is a closed
convex cone we used this property to show a Picard type iteration which is convergent to a
solution of a general mixed complementarity problem, and we have given some examples.
We also determined the family of all L-isotone projection sets, which contain the Cartesian
products described above.

In the future we plan to extend the iterative idea of this paper for more general equilibrium
problems. Our iterative idea may also work when C is a general closed convex set which is
not a closed convex cone, or more generally for any L-isotone projection set described in
Theorem 2. This would lead to particular types of variational inequalities (and other related
equilibrium problems) worth to be investigated.

A more ambitious plan would be to find all pairs of closed convex cones (K , L) with L
pointed (or more generally pairs of closed convex sets (K , L)with L a pointed closed convex
cone) in a Euclidean space such that K is L-isotone. Although this plan seems utopistic any
positive step in this direction would reveal fundamental connections between the geometric
and order structure of the Euclidean space, and could lead to interesting applications to
complementarity problems (variational inequalities).

Acknowledgments The authors are grateful for the referee’s comments which contributed to the quality of
this paper.

Appendix: How large is the family of K -isotone mappings?

The remaining sections can be read without this one, which is entirely for the purpose of
convincing the reader that the family of K -isotone mappings which occur in the condition
“I − F is K -isotone” of Proposition 2 and the corresponding condition in Theorem 3 is very
wide.

Let K , S ⊂ R
m be pointed closed convex cones such that K ⊂ S. The function f : R

m →
R is called K -monotone if x ≤K y implies f (x) ≤ f (y). Both the K -monotone functions
and the K -isotone mappings form a cone. If f1, . . . , f� : R

m → R are K -monotone and
w1, . . . , w� ∈ K , then it is easy to see that the mapping F : R

m → R
m defined by

F(x) = f1(x)w
1 + · · · + f�(x)w

� (26)

is K -isotone. It is obvious that any S-monotone function is also K -monotone. Hence, if
f1, . . . , f� : R

m → R are S-monotone, then the mapping F defined by (26) is K -isotone.
The pointed closed convex cone S is called simplicial if there exists linearly independent
vectors u1, . . . , um ∈ R

m such that

S = cone{u1, . . . , um} := {λ1u1 + · · · + λmu
m : λ1, . . . , λm ≥ 0}. (27)

The vectors u1, . . . , um are called the generators of S and we say that S is generated by
u1, . . . , um . It can be shown that the dual S∗ of a simplicial cone S is simplicial. Moreover,
if U := (u1, . . . , um) (that is an m × m matrix with columns u1, . . . , um) and (U
)−1 =
(v1, . . . , vm), then S∗ = cone{v1, . . . , vm} [29]. Let {e1, e2, . . . , em} be the set of standard
unit vectors in R

m . The cone R
m+ = {λ1e1 + · · · + λmem : λ1, . . . , λm ≥ 0} is called the
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nonnegative orthant. Let S be the simplicial cone defined by (27). If f : R
m → R is R

m+-
monotone, then f̂ : R

m → R defined by f̂ (x1u1 + · · · + xmum) = f (x1e1 + · · · + xmem) is
S-monotone. If g1, . . . , gm : R → R are monotone increasing, then obviously g : R

m → R

defined by
g(x1u

1 + · · · + xmu
m) = g1(x1) + · · · + gm(xm) (28)

is S-monotone. Moreover, if f : R
m → R is S-monotone and ψ : R → R is monotone

increasing, then it is straightforward to see that ψ ◦ f is also S-monotone. Hence, if all
mappings fi in (26) are formed by using a combination of (28), the previous property and
the conicity of the S-monotone functions, then the mapping F defined by (26) is K -isotone
for any pointed closed convex cone K contained in S. For any such cone K it is easy to
construct a simplicial cone S which contains K . From the definition of the dual of a cone it
follows that R

m = {0}∗ = (K ∩ (−K ))∗ = K ∗ + (−K )∗ = K ∗ − K ∗. Thus, the smallest
linear subspace of R

m containing K ∗ is R
m and hence the interior of K ∗ is nonempty (see

[26]). Therefore, there exist m linearly independent vectors in K ∗, that is, K ∗ contains a
simplicial cone T . Let S be the dual of T . Then, obviously K ⊂ S.

The above constructions show that for any pointed closed convex cone the family of K -
isotone mappings, used in Proposition 2 and Theorem 3 is very wide. Moreover, there may
be many K -isotone mappings which are not of the above type. This topic is worth to be
investigated in the future.
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