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Abstract Nonnegative matrix factorization (NMF) provides a lower rank approximation of
a matrix by a product of two nonnegative factors. NMF has been shown to produce clustering
results that are often superior to those by other methods such as K-means. In this paper,
we provide further interpretation of NMF as a clustering method and study an extended
formulation for graph clustering called Symmetric NMF (SymNMF). In contrast to NMF
that takes a data matrix as an input, SymNMF takes a nonnegative similarity matrix as an
input, and a symmetric nonnegative lower rank approximation is computed. We show that
SymNMF is related to spectral clustering, justify SymNMF as a general graph clustering
method, and discuss the strengths and shortcomings of SymNMF and spectral clustering. We
propose two optimization algorithms for SymNMF and discuss their convergence properties
and computational efficiencies. Our experiments on document clustering, image clustering,
and image segmentation support SymNMF as a graph clustering method that captures latent
linear and nonlinear relationships in the data.
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1 Introduction

Dimension reduction and clustering are two of the key tasks in machine learning and data
analytics. Suppose a collection of n data items with m features is represented in a matrix
X ∈ R

m×n . In a low rank approximation, we are given a desired reduced rank k which is
typically much smaller than m and n, and we are to find C ∈ R

m×k and G ∈ R
n×k such that

the difference between X and the product CGT is minimized as

X ≈ CGT . (1)

This minimization problem can be formulated using various difference or distance measures.
In this paper, we will focus on the Frobenius norm based minimization, i.e.

min
C,G

‖X − CGT ‖F . (2)

In nonnegative Matrix factorization (NMF), nonnegativity is imposed on the factors C
and G, i.e. we are to solve

min
C≥0,G≥0

‖X − CGT ‖2F , (3)

whereC ∈ R
m×k+ , G ∈ R

n×k+ , andR+ denotes the set of nonnegative real numbers. TheNMF
can be defined for any matrix, but it makes more sense to consider NMF when the matrix X
is nonnegative. Throughout this paper, we will assume that X ∈ R

m×n+ is nonnegative.
NMF has been shown to be an effective method in numerous applications [11,20,25,29,

35]. In this paper, we will focus on the role of NMF as a clustering method. Note that NMF
is posed as a constrained low rank approximation method, and accordingly, is a method for
dimension reduction. However, dimension reduction and clustering are closely related. The
following interpretation of the results of the low rank approximation illustrates this point: We
consider the columns of C are the new basis for the reduced k-dimensional space for X , and
each column of GT provides the k-dimensional representation of the corresponding column
of X in the space spanned by the columns of C .

In the case of singular value decomposition (SVD), the columns of C are ordered in a
way that the first column is the most dominant vector (the leading left singular vector) that
captures the largest variation in the data, and the next column is the second most dominant
vector and orthogonal to the leading singular vector, etc. Therefore, the columns of C do
not “equally” represent the column space spanned by the data matrix X . In addition, the
two factors C and GT can have negative elements, and thus it will be difficult to interpret
the i-th column of GT as a “proportion distribution” with which the i-th data item has the
component in the corresponding basis vector in C . On the other hand, the columns of C in
NMF cannot have negative signs, and accordingly cannot “cancel out” some directions that
the more dominant columns of C may represent. Accordingly, the columns of C more or
less “equally” represent the data set and each column in the factor GT can be viewed as a
distribution with which the i-th data item has the component in the corresponding column of
C . Since we can use GT to derive an assignment of the n data points into k groups, clustering
can be viewed as a special type of dimension reduction. The NMF gives a soft clustering
result as explained above but we can also interpret the result as a hard clustering by assigning
the i-th data point to the j-th cluster when the largest element among all components of the
i-th column of GT lies in the j-th position. For example, when NMF is applied to document
clustering, the basis vectors in C represent k topics, and the coefficients in the i-th column
of GT indicate the degrees of membership for xi , the i-th document. NMF is well-known for
the interpretability of the latent space it finds [38].
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Another way to illustrate the capability of NMF as a clustering method is by observing its
relationship to the objective function of the classical K-means clustering, which is arguably
the most commonly used clustering method:

min
n∑

i=1

‖xi − cgi ‖22, (4)

where x1, . . . , xn are the columns of X, c1, . . . , ck are the k centroids, and gi = j when the
i-th data point is assigned to the j-th cluster (1 ≤ j ≤ k). Consider K-means formulated as
a dimension reduction problem [30]:

min
G∈{0,1}n×k ,G1k=1n

‖X − CGT ‖2F , (5)

where 1k ∈ R
k×1, 1n ∈ R

n×1 are column vectors whose elements are all 1’s. In the formu-
lation (5), columns of C are the cluster centroids, and the single nonzero element in each
column of GT indicates the clustering assignment.

NMF as a clustering method has been proved to be superior to K-means on many types
of data, including documents [64], images [8], and microarray data [27]. Although K-means
and NMF have the same objective function ‖X − CGT ‖2F with different constraints, i.e.
G ∈ {0, 1}n×k,G1k = 1n in the case of K-means, and C ≥ 0 and G ≥ 0 in the case
of NMF, each has its best performance on different kinds of data sets. In order to apply
NMF to the appropriate data sets, we must know the limitation of its capability in clustering.
Most clustering methods have a clearly defined objective function to optimize such as (5)
and (3). However, clustering is difficult to formulate mathematically in order to discover the
hidden pattern [33]. Each clustering method has its own conditions under which it performs
well. For example, K-means assumes that data points in each cluster follow a spherical
Gaussian distribution [18]. In contrast, the NMF formulation (3) provides a better low-rank
approximation of the data matrix X than the K-means formulation (5).

If k ≤ rank(X), since rank(X) ≤ nonnegative-rank(X) [4] and the low rank approxima-
tion by NMF gives a smaller objective function value when the columns of C (the cluster
representatives) are linearly independent, it is for the best interest of NMF to produce linearly
independent cluster representatives. This explains our earlier discovery that NMF performs
well when different clusters correspond to linearly independent vectors [34]. The following
artificial example illustrates this point. See Fig. 1, where the two cluster centers are along the
same direction therefore the two centroid vectors are linearly dependent. While NMF still
approximates all the data points well in this example, no two linearly independent vectors
in a two-dimensional space can represent the two clusters shown in Fig. 1. Since K-means
and NMF have different conditions under which each of them does clustering well, they may
generate very different clustering results in practice. We are motivated by Fig. 1 to mention
that the assumption of spherical K-means is that data points in each cluster follow a von
Mises–Fisher distribution [3], which is similar to the assumption of NMF.

Therefore, NMF, originally a dimension reduction method, is not always a preferred
clustering method. The success of NMF as a clustering method depends on the underlying
data set, and its most success has been around document clustering [17,30,41,52,55,64]. In a
document data set, data points are often represented as unit-length vectors [47] and embedded
in a linear subspace. For a term-document matrix X , a basis vector c j is interpreted as the
term distribution of a single topic. As long as the term distributions of k topics are linearly
independent, which are usually the case, NMF can extract the ground-truth clusters well.
However, NMF has not been as successful in image clustering. For image data, it was shown
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Fig. 1 An example with two ground-truth clusters, with different clustering results

that a collection of images tends to form multiple 1-dimensional nonlinear manifolds [60],
one manifold for each cluster. This does not satisfy NMF’s assumption on cluster structures,
and therefore NMF may not identify correct clusters.

In this paper, we study a more general formulation for clustering based on NMF, called
Symmetric NMF (SymNMF), where an n × n nonnegative and symmetric matrix A is given
as an input instead of a nonnegative data matrix X . The matrix A contains pairwise similarity
values of a similarity graph, and is approximated by a lower rank matrix HHT instead of
the product of two lower rank matrices CGT . High-dimensional data such as documents
and images are often embedded in a low-dimensional space, and the embedding can be
extracted from their graph representation. We will demonstrate that SymNMF can be used
for graph embedding and clustering and often performs better than spectral methods in terms
of multiple evaluation measures for clustering.

The rest of this paper is organized as follows. In Sect. 2, we review previous work on
nonnegative factorization of a symmetric matrix and introduce the novelty of the directions
proposed in this paper. In Sect. 3, we present our new interpretation of SymNMF as a clus-
tering method. In Sect. 4, we show the difference between SymNMF and spectral clustering
in terms of their dependence on the spectrum. In Sects. 5 and 6, we propose two algo-
rithms for SymNMF: A Newton-like algorithm and an alternating nonnegative least squares
(ANLS) algorithm, and discuss their efficiency and convergence properties. In Sect. 7, we
report experiment results on document and image clustering that illustrate that SymNMF is
a competitive method for graph clustering. In Sect. 8, we apply SymNMF to image segmen-
tation and show the unique properties of the obtained segments. In Sect. 9, we discuss future
research directions.

2 Related work

In SymNMF, we look for the solution H ∈ R
n×k+ ,

min
H≥0

f (H) = ‖A − HHT ‖2F , (6)

given A ∈ R
n×n+ with AT = A and k. The integer k is typically much smaller than n. In

our graph clustering setting, A is called a similarity matrix: The (i, j)-th entry of A is the
similarity value between the i-th and j-th nodes in a similarity graph, or the similarity value
between the i-th and j-th data items.
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The above formulation has been studied in a number of previous papers. Ding et al. [15]
transformed the formulation of NMF (3) to a symmetric approximation ‖A−HHT ‖2F where
A is a positive semi-definite matrix, and showed that it has the same form as the objective
function of spectral clustering. Li et al. [41] used this formulation for semi-supervised cluster-
ing where the similarity matrix was modified with prior information. Zass and Shashua [69]
converted a completely positive matrix [5] to a symmetric doubly stochastic matrix A and
used the formulation (6) to find a nonnegative H for probabilistic clustering. They also gave
a reason why the nonnegativity constraint on H was more important than the orthogonality
constraint in spectral clustering. He et al. [23] approximated a completely positive matrix
directly using the formulation (6) with parallel update algorithms. In all of the above work, A
was assumed to be a positive semi-definitematrix. Other relatedwork that imposed additional
constraints on H includes [2,65,66].

The SymNMF formulation has also been applied to non-overlapping and overlapping
community detection in real networks [45,50,62,71,72]. For example, Nepusz et al. [50]
proposed a formulation similar to (6) with sum-to-one constraints to detect soft commu-
nity memberships; Zhang et al. [72] proposed a binary factorization model for overlapping
communities and discussed the pros and cons of hard/soft assignments to communities. The
adjacency matrix A involved in community detection is often an indefinite matrix.

Catral et al. [9] studied whether WHT is symmetric and W = H , when W and H are
the global optimum for the problem minW,H≥0 ‖A − WHT ‖2F where A is nonnegative and
symmetric. Ho [24] in his thesis related SymNMF to the exact SymNMF problem A = HHT .
Both of their theories were developed outside the context of graph clustering, and their topics
are beyond the scope of this paper. Ho [24] also proposed a 2n-block coordinate descent
algorithm for (6). Compared to our two-block coordinate descent framework described in
Sect. 6, Ho’s approach introduced a dense n × n matrix which destroys the sparsity pattern
in A and is not scalable.

Almost all the work mentioned above employed multiplicative update algorithms to opti-
mize their objective functions with nonnegativity constraints. However, this type of algo-
rithms does not have the property that every limit point is a stationary point [22,42], and
accordingly their solutions are not guaranteed to be local minima. In fact, the results of mul-
tiplicative update algorithms (e.g. [16]) only satisfy part of the KKT condition, but do not
satisfy all the components of the KKT condition, for example, the sign of the gradient vector.
In the three papers [24,50,71] that used gradient descent methods for optimization that did
reach stationary point solutions, they performed the experiments only on graphs with up to
thousands of nodes.

In this paper, we study the formulation (6) from different angles:

1. We focus on amore general casewhere A is a symmetric indefinitematrix and represents a
general graph. Examples of such an indefinite matrix include a similarity matrix for high-
dimensional data formed by the self-tuning method [70] as well as the pixel similarity
matrix in image segmentation [56]. Real networks have additional structures such as the
scale-free properties [59], and we will not include them in this work.

2. We focus on hard clustering and will give an intuitive interpretation of SymNMF as a
graph clustering method. Hard clustering offers more explicit membership and easier
visualization than soft clustering [72]. Unlike [15], we emphasize the difference between
SymNMF and spectral clustering instead of their resemblance.

3. We propose two optimization algorithms that converge to stationary point solutions for
SymNMF, namely Newton-like algorithm and ANLS algorithm. We also show that the
new ANLS algorithm scales better to large data sets.
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4. In addition to experiments on document and image clustering, we apply SymNMF to
image segmentation using 200 images in the Berkeley Segmentation Data Set [1]. To the
best of our knowledge, our work represents the first attempt for a thorough evaluation of
nonnegativity-based methods for image segmentation.

Overall, we conduct a comprehensive study of SymNMF in this paper, covering from
foundational justification for SymNMF for clustering, convergent and scalable algorithms,
to real-life applications for text and image clustering as well as image segmentation. The
Newton-like algorithm and some of the analysis of spectral clustering was first proposed in
our previous work [34]. We include them in this paper for completeness.

3 Interpretation of SymNMF as a graph clustering method

Just as the nonnegativity constraint in NMFmakes it interpretable as a clustering method, the
nonnegativity constraint H ≥ 0 in (6) also gives a natural partitioning aswell as interpretation
of SymNMF. Now we provide an intuitive explanation of why this formulation is expected
to extract cluster structures.

Figure 2 shows an illustrative example of SymNMF, where we have rearranged the rows
and columns of A without loss of generality. If a similarity matrix has cluster structures
embedded in it, several diagonal blocks (two diagonal blocks in Fig. 2) with large similarity
values will appear. In order to approximate this similarity matrix with low-rank matrices and
simultaneously extract cluster structures, we can approximate these diagonal blocks sepa-
rately because each diagonal block indicates one cluster. As shown in Fig. 2, it is straightfor-
ward to use an outer product hhT to approximate a diagonal block. Because h is a nonnega-
tive vector, it serves as a cluster membership indicator: Larger values in h indicate stronger
memberships to the cluster corresponding to the diagonal block. When multiple such outer
products are added up together, they approximate the original similarity matrix, and each
column of H represents one cluster. Due to the nonnegativity constraints in SymNMF, only
“additive”, or “non-subtractive”, summation of rank-1 matrices is allowed to approximate
both diagonal and off-diagonal blocks.

On the contrary, Fig. 3 illustrates the result of low-rank approximation of A without non-
negativity constraints. In this case, when usingmultiple hhT outer products to approximate A,
cancellations of positive and negative numbers are allowed. Without nonnegativity enforced
on h’s, the diagonal blocks need not be approximated separately by each term hhT . The
elements in a vector h can have any sign (+, 0,−) and magnitude, though the summation of
all hhT terms, i.e. HHT , can approximate the large diagonal blocks and small off-diagonal
blocks well. Thus, h cannot serve as a cluster membership indicator. In this case, the rows
of the low-rank matrix H contain both positive and negative numbers and can be used for
graph embedding. In order to obtain hard clusters, we need to post-process the embedded

Fig. 2 An illustration of SymNMF formulation minH≥0 ‖A −HHT ‖2F . Each cell is a matrix entry. Colored
region has larger values than white region. Here n = 7 and k = 2. (Color figure online)
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Fig. 3 An illustration of min ‖A−HHT ‖2F or minHHT =I ‖A−HHT ‖2F . Each cell is a matrix entry.Colored
region has larger magnitudes than white region. Magenta cells indicate positive entries, green indicating
negative. Here n = 7 and k = 2. (Color figure online)

data points such as applying K-means clustering. This reasoning is analogous to the contrast
between NMF and SVD [38].

SymNMF is flexible in terms of choosing similarities between data points. We can choose
any similarity measure that describes the cluster structure well. In fact, the formulation of
NMF (3) can be related to SymNMF when A = XT X in (6) [15]. This means that NMF
implicitly chooses inner products as the similarity measure, which is not always suitable to
distinguish different clusters.

4 SymNMF and spectral clustering

4.1 Objective functions

Spectral clustering represents a large class of graph clustering methods that rely on eigen-
vector computation [10,51,56]. Now we will show that spectral clustering and SymNMF
are closely related in terms of the graph clustering objective but fundamentally different in
optimizing this objective.

Many graph clustering objectives can be reduced to a trace maximization form [13,36]:

max trace(H̃ T AH̃), (7)

where H̃ ∈ R
n×k (to be distinguished from H in the SymNMF formulation) satisfies H̃ T H̃ =

I, H̃ ≥ 0, and each row of H̃ contains one positive entry and at most one positive entry due
to H̃ T H̃ = I . Clustering assignments can be drawn from H̃ accordingly.

Under the constraints on H̃ T H̃ = I, H̃ ≥ 0, we have [15]:

max trace
(
H̃ T AH̃

)

⇔ min trace(AT A) − 2trace
(
H̃ T AH̃

)
+ trace(I )

⇔ min trace

[(
A − H̃ H̃ T

)T (
A − H̃ H̃ T

)]

⇔ min ‖A − H̃ H̃ T ‖2F .

This objective function is the same as (6), except that the constraints on the low-rankmatrices
H and H̃ are different. The constraint on H̃ makes the graph clustering problemNP-hard [56],
therefore a practical method relaxes the constraint to obtain a tractable formulation. In this
respect, spectral clustering and SymNMF can be seen as two different ways of relaxation:
While spectral clustering retains the constraint H̃ T H̃ = I , SymNMF retains H̃ ≥ 0 instead.
These two choices lead to different algorithms for optimizing the same graph clustering
objective (7), which are shown in Table 1.
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Table 1 Algorithmic steps of spectral clustering and SymNMF clustering

Spectral clustering SymNMF

Objective minĤ T Ĥ=I ‖A − Ĥ Ĥ T ‖2F minH≥0 ‖A − HHT ‖2F
Step 1 Obtain the global optimal

Ĥn×k by
computing k leading
eigenvectors of A

Obtain a solution H using an
optimization algorithm

Step 2 Scale each row of Ĥ (No need to scale rows of H )

Step 3 Apply a clustering algorithm
to the the rows of Ĥ , a
k-dimensional embedding

The largest entry in each row
of H indicates the clustering
assignments

4.2 Spectral clustering and the spectrum

Normalized cut is a widely-used objective for spectral clustering [56]. Nowwe describe some
scenarios where optimizing this objective may have difficulty in identifying correct clusters
while SymNMF could be potentially better.

Although spectral clustering is a well-established framework for graph clustering, its
success relies only on the properties of the leading eigenvalues and eigenvectors of the
similarity matrix A. It was pointed out in [51,58] that the k-dimensional subspace spanned
by the leading k eigenvectors of A is stable only when |λk(A)−λk+1(A)| is sufficiently large,
where λi (A) is the i-th largest eigenvalue of A. Now we show that spectral clustering could
fail when this condition is not satisfied but the cluster structure may be perfectly represented
in the block-diagonal structure of A. Suppose A is composed of k = 3 diagonal blocks,
corresponding to three clusters:

A =
⎡

⎣
A1 0 0
0 A2 0
0 0 A3

⎤

⎦ . (8)

If we construct A as in the normalized cut, then each of the diagonal blocks A1, A2, A3

has a leading eigenvalue 1. We further assume that λ2(Ai ) < 1 for all i = 1, 2, 3 in exact
arithmetic. Thus, the three leading eigenvectors of A correspond to the diagonal blocks
A1, A2, A3 respectively. However, when λ2(A1) and λ3(A1) are so close to 1 that it cannot
be distinguished from λ1(A1) in finite precision arithmetic, it is possible that the computed
eigenvalues λ̃ j (Ai ) satisfy λ̃1(A1) > λ̃2(A1) > λ̃3(A1) > max(λ̃1(A2), λ̃1(A3)). In this
case, three subgroups are identified within the first cluster; the second and the third clusters
cannot be identified, as shown inFig. 4where all the data points in the second and third clusters
are mapped to (0, 0, 0). Therefore, eigenvectors computed in a finite precision cannot always
capture the correct low-dimensional graph embedding.

Now we demonstrate the above scenario using a concrete graph clustering example. Fig-
ure 5 shows (a) the original data points; (b) the embedding generated by spectral clustering;
and (c, d) plots of the similarity matrix A. Suppose the scattered points form the first cluster,
and the two tightly-clustered groups correspond to the second and third clusters. We employ
the widely-used Gaussian kernel [61] and normalized similarity values [56]:
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Fig. 4 Three leading
eigenvectors of the similarity
matrix in (8) when λ̃3(A1) >

max(λ̃1(A2), λ̃1(A3)). Here we
assume that all the block diagonal
matrices A1, A2, A3 have size
3×3. Colored region has nonzero
values. (Color figure online)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Graph 2: Original

Cluster1
Cluster2
Cluster3

(a)

−0.5

0

0.5

1 0
0.5

1

0

0.5

1

Graph 2: New Representation in Eigenvectors

(b)

50 100 150 200 250 300

50

100

150

200

250

300 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)
20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

0

0.005

0.01

0.015

0.02

(d)

Fig. 5 A graph clustering example with three clusters (original data from [70]). a Data points in the original
space. For illustration’s purpose, we use two-dimensional data points; however, the Gaussian kernel (9) maps
them into a high-dimensional space. b 3-dimensional embedding of the data points as rows of three leading
eigenvectors. cBlock-diagonal structure of A. dBlock-diagonal structure of the submatrix of A corresponding
to the two tightly-clustered groups in (a). Note that the data points in both a and b aremarkedwith ground-truth
labels

ei j = exp

(
−‖xi − x j‖22

σ 2

)
,

Ai j = ei j d
−1/2
i d−1/2

j , (9)

where xi ’s are the two-dimensional data points, di = ∑n
s=1 eis(1 ≤ i ≤ n), and σ is a

parameter set to 0.05 based on the scale of data points. In spectral clustering, the rows of
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Table 2 Leading eigenvalues of
the similarity matrix based on
Fig. 5 with σ = 0.05

1st 1.000000000000001

2nd 1.000000000000000

3rd 1.000000000000000

4th 0.999999999998909

−1 −0.5 0 0.5
−1

−0.5

0

0.5

1
Spectral clustering (accuracy: 0.37954)

(a)
−1 −0.5 0 0.5

−1

−0.5

0

0.5

1
SymNMF (accuracy: 0.88779)
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Fig. 6 Clustering results for the example in Fig. 5: a Spectral clustering, b SymNMF

the leading eigenvectors determine a mapping of the original data points, shown in Fig. 5b.
In this example, the original data points are mapped to three unique points in a new space.
However, the three points in the new space do not correspond to the three clusters in Fig. 5a.
In fact, out of the 303 data points in total, 290 data points are mapped to a single point in the
new space.

Let us examine the leading eigenvalues, shown in Table 2, where the fourth largest eigen-
value of A is very close to the third largest eigenvalue. This means that the second largest
eigenvalue of a cluster, say λ2(A1), would be easily identified as one of λ1(A1), λ1(A2), and
λ1(A3). The mapping of the original data points shown in Fig. 5b implies that the computed
three largest eigenvalues come from the first cluster. This example is a noisier case of the
scenario in Fig. 4.

On the contrary, we can see from Fig. 5c, d that the block-diagonal structure of A is clear,
though the within-cluster similarity values are not on the same scale. Figure 6 shows the
comparison of clustering results of spectral clustering and SymNMF in this case. SymNMF
is able to separate the two tightly-clustered groups more accurately.

4.3 A condition on SymNMF

How does the spectrum of A possibly influence SymNMF?We have seen that the solution of
SymNMFrelies on the block-diagonal structure of A, thus it does not suffer from the situations
in Sect. 4.2 where the eigengap between the k-th and (k + 1)-th eigenvalues is small. We
will also see in later sections that algorithms for SymNMF do not depend on eigenvector
computation. However, we do emphasize a condition that SymNMF must satisfy in order to
make the formulation (6) valid. This condition is related to the spectrum of A, specifically the
number of nonnegative eigenvalues of A. Note that A is only assumed to be symmetric and
nonnegative, and is not necessarily positive semi-definite, therefore may have both positive
and negative eigenvalues. On the other hand, in the approximation ‖A − HHT ‖F , HHT is
always positive semi-definite and has rank at most k, therefore HHT would not be a good
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Algorithm 1 Framework of the Newton-like algorithm for SymNMF: minH≥0 f (x) = ‖A−
HHT ‖2F
1: Input: number of data points n, number of clusters k, n×n similarity matrix A, reduction factor 0 < β < 1,

acceptance parameter 0 < σ < 1, and tolerance parameter 0 < μ << 1
2: Initialize x , x(0) ← x
3: repeat
4: Compute scaling matrix S
5: Step size α = 1
6: while true do
7: xnew = [x − αS∇ f (x)]+
8: if f (xnew) − f (x) ≤ σ∇ f (x)T (xnew − x) then
9: break
10: end if
11: α ← βα

12: end while
13: x ← xnew
14: until ‖∇P f (x)‖ ≤ μ‖∇P f (x(0))‖
15: Output: x

approximation if A has fewer than k nonnegative eigenvalues. We assume that A has at least
k nonnegative eigenvalues when the given size of H is n × k.

This condition on A could be expensive to check. Here, by a simple argument, we claim
that it is practically reasonable to assume that this condition is satisfied given a similarity
matrix. Again, we use the similarity matrix A in (8) as an example. Suppose we know the
actual number of clusters is three, and therefore H has size n× 3. Because A is nonnegative,
each of A1, A2, A3 has at least one nonnegative eigenvalue according to Perron–Frobenius
theorem [4], and A has at least three nonnegative eigenvalues. In a real data set, A may
become much noisier with small entries in the off-diagonal blocks of A. The eigenvalues
are not dramatically changed by a small perturbation of A according to matrix perturbation
theory [58], hence Awould also have at least k nonnegative eigenvalues if its noiseless version
does. In practice, the number of positive eigenvalues of A is usually much larger than that of
negative eigenvalues, which is verified in our experiments.

5 A Newton-like algorithm for SymNMF

In this section, we will present an optimization algorithm to compute SymNMF where
A is nonnegative and symmetric. The objective function in (6) is a fourth-order non-convex
function with respect to the entries of H , and has multiple local minima. For this type of
problem, it is difficult to find a global minimum; thus a good convergence property we can
expect is that every limit point is a stationary point [7]. We could directly apply standard
gradient search algorithms, which lead to stationary point solutions; however, they suffer
from either slow convergence or expensive computation cost.

5.1 Algorithm framework

First, we introduce our notations for clarity. Let H = [h1, . . . , hk] ∈ R
n×k+ . A vector x

of length nk is used to represent the vectorization of H by column, i.e. x = vec(H) =
[hT1 , . . . , hTk ]T ∈ R

nk×1+ . For simplicity, functions applied on x have the same notation as
functions applied on H , i.e. f (x) ≡ f (H). [·]+ denotes the projection to the nonnegative
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Table 3 Comparison of PGD and PNewton for solving minH≥0 ‖A − HHT ‖2F , H ∈ R
n×k+

Projected gradient descent (PGD) Projected Newton (PNewton)

Scaling matrix S(t) = Ink×nk S(t) =
(
∇2
E f (x(t))

)−1

Convergence Linear (zigzagging) Quadratic

Complexity O(n2k)/iteration O(n3k3)/iteration

orthant, i.e. replacing any negative element of a vector to be 0. Superscripts denote iteration
indices, e.g. x (t) = vec(H (t)) is the iterate of x in the t-th iteration. For a vector v, vi denotes
its i-th element. For a matrix M, Mi j denotes its (i, j)-th entry; and M[i][ j] denotes its (i, j)-
th n × n block, assuming that both the numbers of rows and columns of M are multiples of
n. M � 0 refers to positive definiteness of M . We define the projected gradient ∇P f (x) at
x as [43]:

(
∇P f (x)

)

i
=

{
(∇ f (x))i , if xi > 0;[
(∇ f (x))i

]+
, if xi = 0.

(10)

Algorithm 1 describes a framework of gradient search algorithms applied to SymNMF,
based on which we developed our Newton-like algorithm. This description does not specify
iteration indices, but updates x in-place. The framework uses the “scaled” negative gradient
direction as search direction. Except the scalar parameters β, σ, μ, the nk×nk scaling matrix
S(t) is the only unspecified quantity. Table 3 lists two choices of S(t) that lead to different
gradient search algorithms: projected gradient descent (PGD) [43] and projected Newton
(PNewton) [7].

PGD sets S(t) = I throughout all the iterations. It is known as one of steepest descent
methods, and does not scale the gradient using any second-order information. This strategy
often suffers from the well-known zigzagging behavior, thus has slow convergence rate [7].
On the other hand, PNewton exploits second-order information provided by the Hessian
∇2 f (x (t)) as much as possible. PNewton sets S(t) to be the inverse of a reduced Hessian at
x (t). The reduced Hessian with respect to index set R is defined as:

(∇2
R f (x))i j =

{
δi j , if i ∈ R or j ∈ R;(∇2 f (x)

)
i j , otherwise, (11)

where δi j is the Kronecker delta. Both the gradient and the Hessian of f (x) can be computed
analytically:

∇ f (x) = vec
(
4(HHT − A)H

)
,

(∇2 f (x)
)
[i][ j] = 4

(
δi j (HH

T − A) + h j h
T
i + (hTi h j )In×n

)
.

We introduce the definition of an index set E that helps to prove the convergence of Algorithm
1 [7]:

E = {i |0 ≤ xi ≤ ε, (∇ f (x))i > 0} , (12)

where ε depends on x and is usually small (0 < ε < 0.01) [26]. In PNewton, S(t) is
formed based on the reduced Hessian ∇2

E f (x (t)) with respect to E . However, because the
computation of the scaled gradient S(t)∇ f (x (t)) involves the Cholesky factorization of the
reduced Hessian, PNewton has a very large computational complexity of O(n3k3), which
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is prohibitive. Therefore, we propose a Newton-like algorithm that exploits second-order
information in an inexpensive way.

5.2 Improving the scaling matrix

The choice of the scaling matrix S(t) is essential to an algorithm that can be derived from the
framework described in Algorithm 1. We propose two improvements on the choice of S(t),
yielding new algorithms for SymNMF. Our focus is to efficiently collect partial second-order
information but meanwhile still effectively guide the scaling of the gradient direction. Thus,
these improvements seek a tradeoff between convergence rate and computational complexity,
with the goal of accelerating SymNMF algorithms as an overall outcome.

Our design of new algorithmsmust guarantee the convergence. Since the algorithm frame-
work still follows Algorithm 1, we would like to know what property of the scaling matrix
S(t) is essential in the proof of the convergence result of PGD and PNewton. This property
is described by the following lemma:

Definition 1 A scaling matrix S is diagonal with respect to an index set R, if Si j = 0,∀i ∈
R and j 
= i [6].

Lemma 1 Let S be a positive definite matrix which is diagonal with respect to E . If x ≥ 0
is not a stationary point, there exists ᾱ > 0 such that f

([x − αS∇ f (x)]+)
< f (x),∀0 <

α < ᾱ. (modified from [6])

Lemma 1 states the requirement on S(t), which is satisfied by the choices of S(t) in both PGD
and PNewton. It guides our development of new ways to choose S(t).

5.2.1 Improvement 1: fewer Hessian evaluations

A commonmethod for reducing computation cost related to S(t) is to periodically update S(t)

or evaluate S(t) only at the 1st iteration (chord method) [26]. However, this method cannot
be directly used in the framework of Algorithm 1, because S(t) is not necessarily diagonal
with respect to E(t) if E(t) 
= E(1), and the requirement for convergence is violated.

Our way to delay the update of S(t) is to evaluate S(t) only when E(t) changes. More
precisely,

S(t) =

⎧
⎪⎪⎨

⎪⎪⎩

S(t−1), if E(t) = E(t−1);(∇2
E f (x (t))

)−1
, if E(t) 
= E(t−1)

and ∇2
E f (x (t)) � 0;

Ink×nk, otherwise.

(13)

Note that because f (x) is non-convex, we have to set S(t) = I when ∇2
E f (x (t)) is not

positive definite, which can be checked during its Cholesky factorization. We expect that this
improvement can reduce the number of Hessian evaluations and Cholesky factorizations.

5.2.2 Improvement 2: cheaper Hessian evaluations

The second improvement in choosing S(t) is inspired by the recently proposed coordinate
gradient descent (CGD) method for solving covariance selection [68]. When CGD is directly
applied to SymNMF, it updates one column of H in each iterationwhile the other columns are
fixed, and the search direction is typically determined by solving a quadratic programming
problem. The CGD method introduces additional overhead when determining the search
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direction; however, it implies a possibility of using second-order information without evalu-
ating the entire Hessian.

Inspired by the incremental update framework of CGD, we propose to choose S(t) to be
a block-diagonal matrix in our batch update framework in Algorithm 1. Specifically,

S(t)
[i][ j] =

⎧
⎪⎪⎨

⎪⎪⎩

0, if i 
= j;(∇2
E f (x (t))[i][ j]

)−1
, if i = j

and ∇2
E f (x (t))[i][ j] � 0;

In×n, otherwise.

(14)

Intuitively speaking, the i-th n × n diagonal block of S(t) corresponds to variables in the
i-th column of H , and S(t) only involves second-order information within each column of
H . This choice of S(t) has two advantages over the choice in PNewton algorithm: First, the
computational complexity in each iteration is O(n3k), much lower than the complexity of
PNewton if k is not too small. Second, we can exploit partial second-order information even
though the n diagonal blocks of ∇2

E f (x (t)) are not all positive definite, whereas PNewton
requires the positive definiteness of all the n diagonal blocks as a necessary condition.

Our final strategy for solving SymNMF (6) is to combine Improvement 1 and Improve-
ment 2. Note that the requirement on S(t) described in Lemma 1 is satisfied in both of the
improvements, and also in their combination. Thus, convergence is guaranteed in all of these
variations.

6 An ANLS algorithm for SymNMF

In this section, we propose another optimization algorithm for SymNMF that converges
to stationary points, a necessary condition for local minima. The algorithm is based on an
alternative formulation of SymNMF, where it becomes straightforward to use the two-block
coordinate descent framework that has been shown efficient for standard NMF [28,29,31,
32,43].

6.1 Two-block coordinate descent framework

We first briefly review the two-block coordinate descent framework [28,29,32,43] for stan-
dard NMF problems shown in (3):

min
C≥0,G≥0

‖X − CGT ‖2F ,

which has our desired convergence property that every limit point is a stationary point.
Separating the unknowns in C and G in the NMF formulation (3) into two blocks, we obtain
the following subproblems:

1. Fix G and solve minC≥0 ‖GCT − XT ‖2F .
2. Fix C and solve minG≥0 ‖CGT − X‖2F .
Each subproblem is a nonnegative least squares problemwith multiple right-hand sides (NLS
for short), and many efficient procedures have been developed to solve NLS, e.g. active-set
method [28,37], blockpivoting [31,32], PGD[43], etc. Thekey requirement in this framework
is to obtain the optimal solution in each subproblem (see more discussions in [28]). This way,
the original NMF formulation (3) has been reduced to an alternating NLS problem (ANLS
for short).
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Algorithm 2 Framework of the ANLS algorithm for SymNMF: minW,H≥0 ‖A−WHT ‖2F +
α‖W − H‖2F
1: Input: number of data points n, number of clusters k, n × n similarity matrix A, regularization parameter

α > 0, and tolerance parameter 0 < μ << 1
2: Initialize H
3: repeat
4: W ← H

5: Solve an NLS problem: H ← argminH≥0

∥∥∥∥

[
W√
α Ik

]
HT −

[
A√

αWT

]∥∥∥∥
F

6: until ‖∇P g(W, H)‖F ≤ μ‖∇P g(W (0), H (0))‖F
7: Output: H

6.2 A nonsymmetric formulation for SymNMF

In SymNMF, it is difficult to separate the nk unknowns in a straightforward way as in NMF,
because the two factors H and HT contain the same set of unknowns. We propose to re-
formulate SymNMF in the context of NMF [24]:

min
W,H≥0

g(W, H) = ‖A − WHT ‖2F + α‖W − H‖2F , (15)

where A still represents the n × n similarity matrix, W, H are two low-rank factors of size
n × k, and α > 0 is a scalar parameter for the tradeoff between the approximation error and
the difference ofW and H . Here we force the separation of unknowns by associating the two
factors with two different matrices. If α has a large enough value, the solutions of W and H
will be close enough so that the clustering results will not be affected whether W or H are
used as the clustering assignment matrix.

The nonsymmetric formulation can be easily cast into the two-block coordinate descent
framework after some restructuring. In particular, we have the following subproblems for
(15):

min
W≥0

∥∥∥∥

[
H√
α Ik

]
WT −

[
A√

αHT

]∥∥∥∥
F

, (16)

min
H≥0

∥∥∥∥

[
W√
α Ik

]
HT −

[
A√

αWT

]∥∥∥∥
F

, (17)

where 1k ∈ R
k×1 is a column vector whose elements are all 1’s, and Ik is the k × k identity

matrix. Note that we have assumed A = AT . Solving subproblems (16) and (17) in an
alternate fashion will lead to a stationary point solution, as long as an optimal solution is
returned for every NLS subproblem encountered. We simplify and summarize this algorithm
in Algorithm 2.

If W and H are expected to indicate more distinct cluster structures, sparsity constraints
on the rows of W and H can also be incorporated into the nonsymmetric formulation easily,
by adding L1 regularization terms [27,28]:

min
W,H≥0

g̃(W, H) = ‖A − WHT ‖2F + α‖W − H‖2F + β

n∑

i=1

‖wi‖21 + β

n∑

i=1

‖hi‖21, (18)

where α, β > 0 are regularization parameters, wi , hi are the i-th rows of W, H respectively,
and ‖·‖1 denotes vector 1-norm. Consequently, the two subproblems for (18) in the two-block
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coordinate descent framework are:

min
W≥0

∥∥∥∥∥∥

⎡

⎣
H√
α Ik√
β1Tk

⎤

⎦WT −
⎡

⎣
A√

αHT

0

⎤

⎦

∥∥∥∥∥∥
F

, (19)

min
H≥0

∥∥∥∥∥∥

⎡

⎣
W√
α Ik√
β1Tk

⎤

⎦ HT −
⎡

⎣
A√

αWT

0

⎤

⎦

∥∥∥∥∥∥
F

. (20)

We can even use just one L1 regularization term in (18), that is, β
∑n

i=1 ‖wi‖21 or
β

∑n
i=1 ‖hi‖21, since W and H are sufficiently close; however, using one or two L1 reg-

ularization terms does not make much difference computationally.

6.3 Implementation

Now we describe an efficient implementation of the ANLS algorithm for SymNMF. Our
algorithm reduces to solving the NLS problem in line 5 of Algorithm 2. Consider a form
of NLS with simplified notation: minG≥0 ‖CGT − X‖2F . In many algorithms for NLS, the
majority of time cost comes from the computation of CTC and XTC . For example, in the
active-set method [28] and block pivoting method [31,32], we need to form the normal
equation:

CTCGT = CT X.

In PGD [43], we need to compute the gradient:

∇G = 2G(CTC) − 2XTC.

Formore details of these algorithms forNLS, please refer to the original papers [28,31,32,43].
Our strategy to solve the NLS problem in Algorithm 2 is to precompute CTC and XTC :

CTC = WTW + α Ik, XTC = ATW + αW

without forming X =
[

A√
αWT

]
directly. Though this change sounds trivial, it is very costly

to form X directly when A is large and sparse, especially when A is stored in the “compressed
sparse column” format such as inMatlab and the Pythonscipy package. In our experiments,
we observed that our strategy had considerable time savings in the iterative Algorithm 2.

For choosing the parameter α, we can gradually increase α from 1 to a very large number,
for example, by setting α ← 1.01α. We can stop increasing α when ‖W − H‖F/‖H‖F is
negligible (say, <10−8).

Theoretically, both the Newton-like algorithm and the ANLS algorithm are valid algo-
rithms for SymNMF for any nonnegative and symmetricmatrix A. In practice, however, when
a similarity matrix A is very sparse and the efficiencies of these two algorithms become very
different. The Newton-like algorithm does not take into account the structure of SymNMF
formulation (6), and a sparse input matrix A cannot contribute to speeding up the algorithm
because of the formation of the dense matrix HHT in intermediate steps. On the contrary,
in the ANLS algorithm, many algorithms for the NLS subproblem [28,31,32,43] can often
benefit from the sparsity of similaritymatrix A automatically. This benefit comes from sparse-
dense matrix multiplication inside these algorithms such as AH as well as the absence of
large dense matrices such asHHT . Therefore, we recommend using the ANLS algorithm for
a sparse input matrix A.
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7 Experiments on document and image clustering

In this section, we show the performances of SymNMF on a number of text and image
data sets, and compare SymNMF with the standard forms and variations of NMF, spectral
clustering, and K-means. The SymNMF formulation is a nonconvex minimization problem.
If we apply Newton-like algorithm or ANLS algorithmwhich is described in Sects. 5 and 6 to
SymNMF, then it can find a local minimal solution but may not find a global one. Hence we
need a global optimizationmethod.Our proposedglobal optimizationmethod for experiments
on document and image clustering is based on a multistart global optimization algorithm [44,
53,54] that combines random sampling with a local search procedure. That is, we choose 20
initial points uniformly within the nonnegative orthant and a local search procedure is applied
to every initial point for improving it. We use Newton-like algorithm and ANLS algorithm
for our local search method. Throughout the experiments, we use Matlab 7.9 (R2009b) with
an Intel Xeon X5550 quad-core processor and 24GB memory.

7.1 Data preparation

Weconstruct a sparse graph for eachdata set.Using sparse graphsmakes large-scale clustering
possible in terms of efficiency.We take the following three steps to form the similarity matrix:

1. Construct a complete graph. The edge weights between graph nodes are defined accord-
ing to the type of data set.

– For text data, all the document vectors are normalized to have unit 2-norm. The edge
weight is the cosine similarity between two document vectors:

ei j = xTi x j , (i 
= j). (21)

– For image data, the self-tuning method [70] is used:

ei j = exp

(
−‖xi − x j‖22

σiσ j

)
, (i 
= j), (22)

where each data point has a local scale σi , as opposed to a global scale σ in (9). σi
is set to be the Euclidean distance between xi and its k̂-th neighbor. We use k̂ = 7 as
suggested in [70].

Note that we enforce self-edge weights eii = 0 (1 ≤ i ≤ n) in all cases [51].
2. Sparsify the graph.We only keep the edges that connect a node to its q nearest neighbors.

More precisely, let

N (i) = {
j |x j is one of the q nearest neighbors of xi , j 
= i

}
. (23)

Edge weights in the sparse graph are defined as:

êi j =
{
ei j , if i ∈ N ( j)or j ∈ N (i);
0, otherwise.

(24)

We choose q = �log2 n� + 1 as suggested in [61].
3. Form the similarity matrix. We compute the normalized similarity values as in the nor-

malized cut [51]:
Ai j = êi j d

−1/2
i d−1/2

j , (25)

where di = ∑n
s=1 êis (1 ≤ i ≤ n).
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Note that the similarity matrix A constructed as above is symmetric, nonnegative, and
usually indefinite.

7.2 Data sets

Document clustering was conducted on the following labeled corpuses: 1. TDT21 contains
10,212 news articles from various sources (e.g. NYT, CNN, VOA) in 1998. 2. Reuters2

contains 21,578 news articles from the Reuters newswire in 1987. 3. From the newly-released
Reuters news collection RCV13 [40] that contains over 800,000 articles in 1996–1997, we
selected the training set containing 23,149 articles. Labels are assigned according to a topic
hierarchy, and we only considered leaf topics as valid labels. 4. The research paper collection
NIPS14-164 contains 420 NIPS papers in 2001–2003 [21], which are associated with labels
indicating the technical area (algorithms, learning theory, vision science, etc). For all these
data sets, documents with multiple labels are discarded in our experiments. In addition,
clusters representing different topics are highly unbalanced in size. We selected the largest
20, 20, 40, 9 clusters from these data sets respectively. While TDT2 and the two Reuters data
sets were well maintained, the NIPS data set was extracted from PS and PDF files, resulting
in very noisy texts, which can be seen from the list of terms available online (see footnote
4). For example, its vocabulary includes many symbols frequently used in formulas which
are not semantically meaningful.

Image clustering was conducted on object and face recognition data sets: 1. COIL-205

contains gray-scale images of 20 objects, rescaled to 64×64 size. The viewpoints are equally
spaced in the entire 360◦ range, resulting in 72 images for each object. 2. ORL6 contains
400 face images of 40 persons with different facial expressions and slightly-varing pose. 3.
FromExtendedYaleB7 face data set (with the originalYaleB data included) [39], we selected
2,414 frontal face images of 38 persons, with different illumination conditions. 4. From PIE8

face data set [57], we selected 232 frontal face images of 68 persons, with different facial
expressions. Compared to other variations in PIE data set such as illumination and lighting
conditions, different facial expressions represent more variations in faces and the images
are embedded in multiple manifolds [60]; moreover, only 3–4 images are available for each
person, which makes clustering more challenging. Though ORL and the selected subset of
PIE are not large-scale, they share the same characteristics: High variations within each class,
with a handful of images per class. For all the image data sets, the identity information of
the objects or faces is used as ground-truth labels. The statistics of the processed document
and image data sets are summarized in Table 4.

7.3 Algorithms for comparison

We experimented with a large variety of clustering algorithms for a comprehensive compar-
ison. The algorithms in our experiment can be divided into four categories:

1 http://projects.ldc.upenn.edu/TDT2/.
2 http://www.daviddlewis.com/resources/testcollections/reuters21578/.
3 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm.
4 http://robotics.stanford.edu/~gal/data.html.
5 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
6 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
7 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
8 http://www.ri.cmu.edu/research_project_detail.html?project_id=418&menu_id=261.
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Table 4 Data sets used in
experiments

Data set Dimension # Data points # Clusters

TDT2 26,618 8,741 20

Reuters 12,998 8,095 20

RCV1 20,338 15,168 40

NIPS14-16 17,583 420 9

COIL-20 64 × 64 1,440 20

ORL 69 × 84 400 40

Extended YaleB 56 × 64 2,414 38

PIE-expression 64 × 64 232 68

1. K-means variants (All these K-means variants include a batch-update phase and an
additional online-update phase in each run [18]. We use both phases.)

– Standard K-means (KM) The input matrix is constructed as follows. For text data,
each column of the tf-idf matrix X [47] is scaled to have unit 2-norm; in addition,
X is transformed into its normalized-cut weighted version XD−1/2 [64], where D is
defined in Sect. 3 with ei j = xTi x j . For image data, each column of X is scaled to
the [0, 1] interval.

– Spherical K-means (SKM) Unlike standard K-means that uses Euclidean distance
as the dissimilarity measure, spherical K-means uses 1 − cos(xi , x j ); therefore any
scaling of columns of X does not take effect. Spherical K-means was proposed for
document clustering, where cosine similarity is often a better measure than Euclidean
distance [14]. Asmentioned in Sect. 1, we believe that spherical K-means has a closer
relationship to NMF than standard K-means.

– Kernel K-means (KKM) Kernel K-means is a graph clustering method based on K-
means. We use the weighted kernel K-means algorithm described in [13,36] that
minimizes the normalized cut objective. Because K is generally indefinite, the con-
dition for convergence is violated.We terminate the algorithm as soon as the objective
function value stops decreasing.

2. NMF variants

– NMF We use the ANLS algorithm with block pivoting method for NMF [31,32].
The same input matrix as in standard K-means is used. The hard clustering result is
indicated by the largest entry in each row of H .

– GNMF Cai et al. [8] proposed Graph-regularized NMF (GNMF) by adding a graph-
theoretic penalty term to (3) that takes neighboring relationship into account, so that
the resulting method is better at clustering on manifolds. We use the algorithm and
the parameters suggested in [8]. The input matrix is constructed in the same way
as in standard K-means. However, the neighboring relationship based on the sparse
graph is generated using the original data matrix, i.e. without the scaling of each xi .
The clustering result is obtained by treating the rows of H as graph embedding and
applying spherical K-means to the embedded points.

3. Spectral clustering variants

– NJW algorithm (SpNJW) This refers to the algorithm proposed in Ng et al. [51]. The
rows of the k leading eigenvectors of A, where each row is normalized to have unit
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2-norm, are used as the graph embedding of data points. Standard K-means is used in
the final step to obtain clustering results, which is initialized by randomly choosing
k samples as centroids.

– YS algorithm (SpYS) This refers to the algorithm proposed in Yu and Shi [67]. The
clustering results are obtained by finding the optimal orthogonal transformation of
H̃ = D−1/2H into a partition matrix [67], where columns of H are the k leading
eigenvectors of A.

4. SymNMF We observed that the Newton-like algorithm for SymNMF gives better clus-
tering quality on image data (more details in Sect. 7.5). On text data, however, the
Newton-like algorithm is not efficient enough due to large problem sizes, and only the
ANLS algorithm is applicable. When reporting the results, we use the general name
“SymNMF” to refer to the algorithm of choice.

For the Newton-like algorithm (Algorithm 1), we use parameters β = 0.1, σ = 0.1.
We also empirically observe that choosing ε in (12) to be a fixed value 10−16 makes the
Newton-like algorithm faster while having little influence on the clustering quality. For the
ANLS algorithm, we solve the formulation (15), i.e. without sparsity constraints on W, H
(Algorithm 2). We empirically observe that it is sufficient to use a fixed parameter α = 1 in
(15) to obtain a negligible ‖W − H‖F/‖H‖F . Note that the choice of a large enough value
of α should be aligned with the scale of the similarity values in A. In our experiments, the
matrix A contains normalized similarity values (25), thus the maximum possible value in A
is 1, and most of the entries of A are smaller than 1. Finally, in both of our algorithms, the
tolerance parameterμ in the stopping criteria is set to 10−4 and the maximum iteration count
is set to 10,000 so that the outputs are stationary points.

For each data set, we run each algorithm 20 times with different random initializations
and the known number of clusters k as input. Algorithms in the same category have the same
initializations. In other words, the multistart global optimization method is applied with the
described method in each category as for a local search procedure. Although the data sets are
labeled, the labels are used only when evaluating the clustering quality, not by the clustering
algorithms.

7.4 Clustering quality

Weuse clusteringaccuracy, the percentageof correctly clustered itemsgivenby themaximum
bipartite matching, to evaluate the clustering quality (see more details in [64]). The average
and maximum clustering accuracy over the 20 runs are shown in Tables 5 and 6, respectively.
The maximum clustering accuracy for an algorithm is determined by the solution with the
smallest objective function value among the 20 runs. We have the following observations:

1. SpYS and SymNMF achieves the highest clustering quality more frequently than other
methods. Note that SpYSwas proposed as amore principledway to obtain hard clustering
than SpNJW, from the k leading eigenvectors of A [67]. Conceptually, both SpYS and
SymNMF facilitate interpretation of the low-rank matrix that is used to approximate the
graph similarity matrix, so that we can obtain hard clustering results directly from the
low-rank matrix. However, comparing Tables 5 and 6, we observe that by employing the
multistart global optimizationmethod and picking the solutionwith the smallest objective
function value, SpYS achieves higher accuracy than the average for four out of eight data
sets, while SymNMF and SpNJW achieve higher accuracy than the average for 5 data
sets, implying that the objective functions in SymNMF and SpNJW are slightly better
proxies for the clustering problem than that in SpYS.
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Table 5 Average clustering accuracy for document and image data sets

KM SKM KKM NMF GNMF SpNJW SpYS SymNMF

TDT2 0.6711 0.6755 0.6837 0.8505 0.7955 0.7499 0.9050 0.8934

Reuters 0.4111 0.3332 0.3489 0.3731 0.4460 0.3114 0.4986 0.5094

RCV1 0.3111 0.3888 0.3831 0.3797 0.3592 0.2723 0.2743 0.2718

NIPS14-16 0.4602 0.4774 0.4908 0.4918 0.4908 0.4987 0.5026 0.5086

COIL-20 0.6184 0.5611 0.2881 0.6312 0.6304 0.6845 0.7899 0.7258

ORL 0.6499 0.6500 0.6858 0.7020 0.7282 0.7127 0.7752 0.7798

Extended YaleB 0.0944 0.0841 0.1692 0.1926 0.2109 0.1862 0.2254 0.2307

PIE-expression 0.7358 0.7420 0.7575 0.7912 0.8235 0.7966 0.7375 0.7517

ALL 0.4940 0.4890 0.4759 0.5515 0.5606 0.5265 0.5886 0.5839

For each data set, the highest accuracy and any other accuracy within the range of 0.01 from the highest
accuracy are marked bold
The average metrics over all the data sets are marked italic

Table 6 Maximum clustering accuracy for document and image data sets

KM SKM KKM NMF GNMF SpNJW SpYS SymNMF

TDT2 0.7878 0.7531 0.7502 0.8761 0.8439 0.8046 0.9060 0.9059

Reuters 0.5001 0.3047 0.3828 0.3839 0.4053 0.3096 0.4985 0.4957

RCV1 0.3392 0.3956 0.3844 0.3762 0.3682 0.2695 0.2743 0.2771

NIPS14-16 0.5071 0.4833 0.5048 0.5000 0.4786 0.4952 0.5024 0.5048

COIL-20 0.6917 0.6125 0.3569 0.6653 0.6590 0.7347 0.7986 0.7847

ORL 0.6675 0.6500 0.7125 0.7200 0.7225 0.7700 0.7725 0.7900

Extended YaleB 0.0903 0.0816 0.1785 0.1980 0.2171 0.1864 0.2299 0.2307

PIE-expression 0.7759 0.7586 0.7629 0.7845 0.8190 0.8060 0.7888 0.7543

ALL 0.5450 0.5049 0.5041 0.5630 0.5642 0.5470 0.5964 0.5929

For each data set, the highest accuracy and any other accuracy within the range of 0.01 from the highest
accuracy are marked bold
The average metrics over all the data sets are marked italic

2. GNMF in our experiments does not show as dramatic improvement over SpNJW as
the results reported in [8] where only maximum clustering accuracy was reported. One
possible reason is that in [8], full graphs with cosine similarity are used, whereas we
use sparse graphs and different similarity measures for better scalability and clustering
quality (Sect. 7.1).

3. The K-means variants give exceedingly high accuracy on the RCV1 data set. We need
more study to have a good explanation of their performances, for example, in what cases
cosine dissimilarity is a better choice of distance measure than Euclidean distance. Note
that RCV1 is the only data set where spherical K-means has the highest accuracy, and
also the only data set where NMF performs better than almost all the other low-rank
approximation methods (GNMF, SpNJW, SpYS, SymNMF). This consistency corrob-
orated with our observation that spherical K-means has a closer relationship to NMF
than standard K-means, and seems to explain why spherical K-means is often used as an
initialization strategy for NMF [63].
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Fig. 7 Convergence behaviors of SymNMF algorithms, generated from a single run on COIL-20 data set with
the same initialization

7.5 Convergence and efficiency of SymNMF algorithms

We mentioned in Sect. 7.3 that the ANLS algorithm for SymNMF handles large data sets
more efficiently, and the Newton-like algorithm achieves higher clustering accuracy. Here
we discuss this tradeoff between efficiency and quality. The different properties exhibited by
the two algorithms can be attributed to their different convergence behaviors, though both
algorithms converge to stationary point solutions. In Fig. 7, we use COIL-20 data set to
study their convergence by plotting the objective function f (H) and the projected gradient
‖∇P f (H)‖F throughout the iterations. As we could expect, f (H) is non-increasing in both
algorithms; on the contrary, ‖∇P f (H)‖F is not guaranteed to drop in every iteration but is
used to check stationarity.

The Newton-like algorithm shows a divergent behavior in the initial stage of iterations,
because the formulation (6) is nonconvex and the search step degrades to a steepest descent
direction. However, when the intermediate iterate becomes close to a local minimum, the
Hessian matrix becomes positive definite and the second-order information begins to help
guide the search. Thus after this point, the algorithm converges very quickly to an accurate
stationary point. In contrast, the ANLS algorithm shows a quick drop in both ‖∇P f (H)‖F
and f (H) when the algorithm starts. However, near the final stage, it converges slowly to
the appointed stationarity level. Overall, the Newton-like algorithm produces more accurate
solutions and better clustering quality; however, it is overall less efficient than the ANLS
algorithm due to heavier computational cost per iteration. We compare their clustering qual-
ity and timing performance in Table 7, with μ = 10−4 in the stopping criterion in both
algorithms.

8 Image segmentation experiments

In this section, we explore the application of SymNMF to image segmentation. Image seg-
mentationmethods have been heavily relying on spectral clustering [1,12,19,46,48].Wewill
demonstrate that SymNMF produces segmentation results that are closer to human-marked
boundaries compared to spectral clustering. To the best of our knowledge, this is the first
systematic evaluation of SymNMF applied to image segmentation.
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Table 7 Clustering accuracy and timing of the Newton-like and ANLS algorithms for SymNMF

Newton-like algorithm ANLS algorithm

Accuracy Time (s) Accuracy Time (s)

COIL-20 0.7258 53.91 0.7195 8.77

ORL 0.7798 4.30 0.7713 1.97

Extended YaleB 0.2307 163.6 0.2296 23.47

PIE-expression 0.7517 13.48 0.6836 4.43

Experiments are conducted on image data sets with parameter μ = 10−4 and the reported measures are
averaged over 20 random runs

8.1 Overview

Image segmentation is an important task in computer vision that organizes an image into a
non-overlapping set of closed regions. It can be viewed as a graph clustering problem: The
input is a nonnegative and symmetric matrix that contains similarity values between pairs of
pixels; the output is a clustering of pixels where each cluster corresponds to a region.

In the graph represented by a pixel similarity matrix A, a pixel is only connected to the
pixels within some neighborhood. Thus, the input matrix A is typically a sparse matrix.
The similarity value between two neighboring pixels can be computed based on brightness,
color, and texture cues [46,48]. The similarity value characterizes the discontinuity along the
line connecting the two pixels and can be trained by a logistic model using human-marked
boundaries as ground-truth [19].

Spectral clustering is one of the most common methods that solve the graph clustering
problem in image segmentation. Aswe explained in Sects. 3 and 4, because eigenvectors con-
tain both positive and negative numbers in general, they cannot be used as cluster indicators
directly. A variety of methods have been proposed to post-process the graph embedding—the
continuous-valued eigenvectors—to obtain closed regions. In contrast, the low-rank matrix
H in the solution of SymNMF can not only be used as graph embedding, but also derive
graph clustering results directly.

In the current paper, our focus is the gain in segmentation quality by replacing spectral
clusteringwith SymNMF.We follow the steps in an early paper [19] to construct the similarity
matrix as well as post-process the graph embedding when the produced low-rank matrix is
viewed as graph embedding. The post-processing steps are:

1. Run K-means on the embedded points to generate an oversegmentation of an image.
The oversegmentations are called superpixels and denoted as o1, . . . , oK , where K is an
integer larger than the rank k of the low-rank matrix.

2. Build a contracted graph on the superpixels and represent it by a K ×K similarity matrix
W . The edge weight between the I -th and J -th superpixels (1 ≤ I, J ≤ K ) is defined
as:

WI J =
∑

i∈oI

∑

j∈oJ
Ai j . (26)

3. Recursively split the contracted graph to produce a hierarchy of regions [46].

We note that the baseline segmentation algorithm [19] used in our comparison between
spectral clustering and SymNMF is not the best algorithm to date (for example, see [1]).
However, we chose this baseline algorithm in order to simplify the experiment setting and
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make the comparison more visible. In our current workflow, both spectral and SymNMF
use the same similarity matrix as an input; the resulting low-rank matrices are interpreted
as either graph embedding to produce a hierarchy of regions or graph clustering to produce
a flat partitioning of an image into regions. With more recent segmentation algorithms such
as [1], the low-rank matrices would be interpreted in a more sophisticated way so that we
do not know which component of the segmentation algorithm contributes to the gain in
segmentation quality. We expect that the comparison result shown in this section will carry
on to other segmentation algorithms.

8.2 Data and software

We use the Berkeley Segmentation Data Set 5009 (BSDS500) [1] and choose the 200 color
images used in [19]. The size of the original images is 481 × 321. We resized the images to
240 × 160 to be consistent with the experiments in [19,48].

We compute the pixel similarity matrices and post-process the embedded points using the
Berkeley Segmentation Engine.10 We use the default settings: The number of eigenvectors
in spectral clustering k (and also the lower rank in SymNMF) is set to 16; the number of
oversegmentations K is set to 51. The neighborhood of a pixel is modified from default to a
round disk centered at the pixel with radius of 20 pixels. The resulting similarity matrix has
size n × n where n = 38,400 and 44 million nonzeros. The same similarity matrix is given
as an input to both spectral clustering and SymNMF.

8.3 Evaluation methods

The evaluation of segmentation results is based on the evaluation of boundary detection. In
the experiments on document and image clustering, solving SymNMF and interpreting the
low-rank result matrix as a cluster indicator yield a hard clustering of items. In order to eval-
uate SymNMF in the context of image segmentation and compare its performance with that
of spectral clustering, we introduce our way to transform the hard clustering results to soft
boundaries. First, we generate a probability of boundary (Pb) image from multiple segmen-
tations of an image. Second, we evaluate the Pb image against human-marked boundaries.

– We consider the following four ways to obtain multiple segmentations:

1. Spectral-Embed Compute the eigenvectors associated with the 16 largest eigen-
values and treat themas a graph embedding.Generate a hierarchy of regions following
the procedures in Sect. 8.1. Each level of the hierarchy determines a segmentation of
the image.

2. SymNMF-Embed Solve SymNMF with k = 16 and treat the rows of H as a graph
embedding. Generate a hierarchy of regions following the procedures in Sect. 8.1.
Each level of the hierarchy determines a segmentation of the image.

3. Spectral-NJW For each k = 2, 3, . . . , 16, compute the eigenvectors associated
with the k largest eigenvalues, denoted as a matrix Ĥ ∈ R

n×k . Apply K-means to
the rows of each matrix Ĥ , and the clustering result corresponds to a segmentation.

4. SymNMF-Clust Solve SymNMF with k = 2, 3, . . . , 16 and treat each matrix H as
a cluster indicator. For each k, the clustering result corresponds to a segmentation.
Spectral-Embed and SymNMF-Embed produces 50 segmentations for each
image. Spectral-NJW and SymNMF-Clust produces 15 segmentations for each

9 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html.
10 http://www.cs.berkeley.edu/~fowlkes/BSE/.
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Fig. 8 Examples of the original images and Pb images from BSDS500. Pixels with brighter color in the Pb
images have higher probability to be on the boundary. a Original, b Spectral-Embed, c Spectral-NJW,
d SymNMF-Embed, e SymNMF-Clust

image. The Pb value of a pixel is defined as the proportion of times the pixel lies on
the boundary determined by the regions in a segmentation. Note that Spectral-
NJW and SymNMF-Clust do not enforce hierarchies in their segmentations. Among
these fourways of post-processing, onlySpectral-Embedwas used for evaluation
against human-marked boundaries in existing work.

– The data set includes a couple of human-marked boundaries for each image for evaluation.
The Pb image has values in the [0, 1] interval. We can produce a binary boundary image
using a threshold value t (0 < t < 1). Then the precision P is calculated as the fraction
of true boundary pixels among all the detected boundary pixels; the recall R is calculated
as the fraction of detected boundary pixels among all the true boundary pixels. The
F-measure is defined as 2PR/(P + R). We can draw a precision-recall curve using a
series of threshold values (see more details in [49]). The best F-measure on this curve is
regarded as a summary performance metric.

8.4 Results

We show the precision-recall curves for Spectral-Embed,SymNMF-Embed,Spectral-
NJW, and SymNMF-Clust in Fig. 8. Using the best F-measure as the summary metric, both
SymNMF versions have better segmentation quality than either of the spectral clustering
methods.

SymNMF-Embed is much better than Spectral-Embed in the high-recall low-precision
area, with the highest recall approaching 0.8.

123



570 J Glob Optim (2015) 62:545–574

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Recall

P
re

ci
si

on

Precision−recall curves

 

 

[F=0.5772] Spectral−Embed @(0.524,0.643) t=0.55
[F=0.6000] SymNMF−Embed @(0.570,0.634) t=0.67
[F=0.5836] Spectral−NJW @(0.496, 0.709) t=0.16
[F=0.5942] SymNMF−Clust @(0.510,0.711) t=0.16

Fig. 9 Precision-recall curves for image segmentation
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Fig. 10 Illustration of different graph embeddings produced by spectral clustering and SymNMF for the
third color image in Fig. 8. a The rows of the first three eigenvectors Ĥ ∈ R

n×3 are plotted. b The rows
of H ∈ R

n×3+ in the result of SymNMF with k = 3 are plotted. Each dot corresponds to a pixel. a spectral
clustering, b SymNMF

SymNMF-Clust is much better than Spectral-Embed in the high-precision low-recall
area, and consistently better than Spectral-Embed along the curve. When the threshold
value t is close to 1, we can be much more confident about the detected regions using
SymNMF-Clust than using Spectral-Embed.

SymNMF-Clust is onlymarginally better thanSpectral-NJW, but is consistently better
along the precision-recall curve.

Figure 9 shows several exemplar images from the BSDS500 data set. The segmenta-
tion results are consistent with our findings in the precision-recall curve. We notice that
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Spectral-Embed often subdivides a large flat area with uniform colors into multiple
regions (grass, sky, etc.). This is a well-known problem of image segmentation methods that
rely on K-means to post-process the eigenvectors, and the reason is that the embedded points
for the pixels in those areas vary smoothly [1]. On the contrary,SymNMF-Clust often leaves
those areas intact, which implies that the low-rank matrix generated by SymNMF is a better
cluster indicator. Figure 10 shows the pixels plotted in the lower dimensional space produced
by spectral clustering and SymNMF for a single image, which seems to support our reason-
ing above. We also notice that SymNMF-Clust tends to identify a few very small regions
that correspond to noise in an image. This means that setting k larger than needed will not
degrade its segmentation quality. If we remove the regions whose areas are smaller than some
threshold, we will see that many of the remaining regions correspond to meaningful objects.

In summary, we can use SymNMF-Clust to detect salient objects and use SymNMF-
Embed to discover more detailed segments.

9 Conclusion

In this paper, we studied SymNMF: minH≥0 ‖A − HHT ‖2F as a graph clustering method
that is suitable for clustering data points embedded in linear and nonlinear manifolds. Our
method extends the applicability of NMF to more general cases, where data relationship is
not described by distances in vector space but by similarity values in a latent space. Unlike
previous work on SymNMF that imposed various additional constraints on the matrix H ,
we showed that with nonnegativity constraints only, H can be well interpreted as a cluster
indicatormatrix.We justified SymNMF to be a valid graph clusteringmethod by showing that
it originates from the same formulation as spectral clustering but relaxes the constraint on H
differently. While spectral clustering methods require post-processing the eigenvector-based
data representation to obtain hard clusters, SymNMF does not depend on the spectrum and
finds cluster memberships directly from H . Compared to previous work on the extension of
NMF to a positive semi-definite and nonnegative matrix, our approach only assumes that A
is symmetric and nonnegative.

We developed two algorithms for SymNMF, a Newton-like algorithm and anANLS-based
algorithm, which should be used in different cases for best practices but both guaranteed to
converge to stationary point solutions. We discussed the tradeoff between clustering quality
and efficiency when choosing an algorithm for SymNMF. On one hand, the Newton-like
algorithm often produces more accurate solutions and higher-quality clustering results, but
is more appropriate when the problem size n is small, e.g. n < 3,000. On the other hand, the
ANLS algorithm is especially efficient for a sparse inputmatrix A and is scalable to very large
data sets, e.g. n ≈ 106. For large-scale clustering, we have to construct a sparse similarity
matrix instead of a dense one. For example, with n = 105 data points, it is difficult to store
a dense similarity matrix (∼75GB) into the main memory of a contemporary machine.

We have shown the promise of SymNMF in document clustering and image clustering.
We also conducted a comprehensive evaluation of SymNMF for image segmentation on 200
natural images. Overall, we developed a general framework in this paper, one with minimal
constraints and flexible enough for extension. One limitation of our formulation is that an
indefinite matrix A could be approximated by a positive semi-definite matrixHHT . Its effect
requires further study; however, we have not seen evidences that the clustering performance
degraded due to this limitation. The proposed algorithms can be easily parallelized, for
example, in the Newton-like algorithm, the evaluation and Cholesky factorization of different
diagonal blocks of theHessian can run in parallel; and in theANLSalgorithm, the nonnegative
least squares problem with different right-hand sides can be made parallel as well.
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