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Abstract In this paper, we propose a smoothing augmented Lagrangian method for finding
a stationary point of a nonsmooth and nonconvex optimization problem. We show that any
accumulation point of the iteration sequence generated by the algorithm is a stationary point
provided that the penalty parameters are bounded. Furthermore, we show that a weak version
of the generalized Mangasarian Fromovitz constraint qualification (GMFCQ) at the accu-
mulation point is a sufficient condition for the boundedness of the penalty parameters. Since
the weak GMFCQ may be strictly weaker than the GMFCQ, our algorithm is applicable
for an optimization problem for which the GMFCQ does not hold. Numerical experiments
show that the algorithm is efficient for finding stationary points of general nonsmooth and
nonconvex optimization problems, including the bilevel program which will never satisfy
the GMFCQ.
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1 Introduction

In this paper, we consider a constrained optimization problem with inequality and equality
constraints:

(P) min f (x)

s.t. gi (x) ≤ 0, i = 1, . . . , p,

h j (x) = 0, j = p + 1, . . . , q.

Unless otherwise specified, we assume that the objective function and constraint functions
f, gi (i = 1, . . . , p), h j ( j = p + 1, . . . , q) : R

n → R are Lipschitz around the point of
interest.

The quadratic penalty method for problem (P) when all functions are smooth is an inexact
penalty method which locates stationary points of a sequence of smooth penalized problems:

min f (x) + c

2

p∑

i=1

max{0, gi (x)}2 + c

2

q∑

j=p+1

h2j (x),

and takes c ↑ ∞ to find the stationary point of the original constrained problem. How-
ever, when c is large, the penalized problems may become ill-conditioned and very difficult
to solve. The augmented Lagrangian method (see e.g. [21]), which is also known as the
method of multipliers, reduces the possibility of ill-conditioning by adding the estimates of
Lagrange multipliers into the penalty function. This method is also the basis for some high
quality software such as ALGENCAN [1] and LANCELOT [35]. The augmented Lagrangian
method was first proposed by Hestenes [29] and Powell [41] for equality constrained prob-
lems. Bertsekas [6] and Rockafellar [43,44] extended the method to inequality constrained
convex optimization problems and to nonconvex optimization problems respectively. The
Powell–Hestenes–Rockafellar (PHR) augmented Lagrangian function [29,41,44] (see [8]
for a comparison with other augmented Lagrangian functions) takes the form:

Gc
λ(x) := f (x) + 1

2c

p∑

i=1

(
max{0, λi + cgi (x)}2 − λ2i

) +
q∑

j=p+1

(
λ j h j (x) + c

2
(h j (x))

2
)
,

which is a sum of the standard Lagrangian function and the quadratic penalty function. Even
when the functions f, g and h are twice continuously differentiable, the PHR augmented
Lagrangian function is not twice continuously differentiable. To guarantee twice continu-
ous differentiability, an exponential-type augmented Lagrangian function was proposed in
[34,40,48]. The augmented Lagrangian functions were also used as merit functions for the
sequential quadratic programming (SQP) methods [10,11,13,26]. Other related researches
for augmented Lagrangian methods may be found in [21,27,28,30].

The boundedness of the penalty parameters is a basic requirement for the convergence
result in most exact penalty methods for constrained optimization, including the augmented
Lagrangian method. Rockafellar [43,44] showed that the augmented Lagrangian method is
an exact penalty method. However, to ensure the boundedness of the penalty parameters, it
has been common to make assumptions that the Linear Independence Constraint Qualifica-
tion (LICQ) holds at all feasible and infeasible accumulation points of the iteration sequence
(see e.g. [22]). In fact, the MFCQ holding at all feasible and infeasible accumulation points
of the iteration sequence is sufficient to ensure the boundedness of the penalty parameters
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(see e.g. [50]). The MFCQ is a strong condition since many problems such as the mathemat-
ical program with equilibrium constraints (MPEC), will never satisfy the MFCQ. Recently
some papers [2,3,9] studied the boundedness of the penalty parameters for the augmented
Lagrangian algorithm under the Constant Positive Linear Dependence (CPLD) constraint
qualification, the MFCQ and the LICQ. The CPLD condition was proposed by Qi and Wei
[42] and proved to be a constraint qualification by Andreani et al. [4]. Although the CPLD
condition is weaker than the MFCQ, it is still not reasonable to expect the CPLD condition
to hold for general MPECs [31].

In the case where all functions except one constraint function are smooth, Xu and Ye [50]
used a family of smoothing functions with gradient consistency properties to approximate the
nonsmooth function, applied the augmented Lagrangian method to the smoothing problems
and updated the smoothing parameter. The boundedness of the penalty parameters and hence
the global convergence of the algorithmwas shown under the assumptions that the nonsmooth
version of the MFCQ called the generalized MFCQ (GMFCQ) holds at all feasible and
infeasible accumulation points. Unfortunately GMFCQ never holds for bilevel programs
(see [53]) which was our main motivation to study an augmented Lagrange algorithm for
nonsmooth and nonconvex problems. It was observed that under the calmness condition [50],
the sequence of multipliers is very likely to be bounded and hence the smoothing augmented
Lagrangian algorithm is efficient for searching a stationary point of bilevel program.However
up to now, there is no proof that the calmness condition would guarantee the boundedness
of the penalty parameters. To cope with this difficulty, recently Xu et al. [51] proposed a
weaker version of the GMFCQ called the weak GMFCQ (WGMFCQ). It was shown in [51]
that although the GMFCQ will never hold for the bilevel program, the weaker version of the
GMFCQ may hold for bilevel programs.

In this paper, we extend the smoothing augmented Lagrange algorithm to the general
nonsmooth and nonconvex problem (P). We show that if either the exact penalty sequence is
bounded or if all feasible or infeasible accumulation points of the iteration sequence generated
by the algorithm satisfy the WGMFCQ, then any accumulation point is a stationary point
of the original problem (P). We apply the smoothing augmented Lagrangian method to the
bilevel program and verify that either the exact penalty sequence is bounded or theWGMFCQ
holds for all bilevel programs in this paper.

The rest of the paper is organized as follows. In Sect. 2, we present a summary of constraint
qualifications that will guarantee the global convergence of the algorithm. In Sect. 3, we pro-
pose a smoothing augmented Lagrangian algorithm for locating a stationary point of a general
nonsmooth and nonconvex optimization problem (P) and establish a convergence result for
the algorithm. In Sect. 4, we report our numerical experiments for some general nonsmooth
and nonconvex constrained optimization problems as well as some bilevel programs.

We adopt the following standard notation in this paper. For any two vectors a and b in
R
n , we denote by aT b their inner product. Given a function G : Rn → R

m , we denote its
Jacobian by ∇G(z) ∈ R

m×n and, if m = 1, the gradient ∇G(z) ∈ R
n is considered as a

column vector. For a matrix A ∈ R
n×m, AT denotes its transpose. In addition, we let N be

the set of nonnegative integers and exp[z] be the exponential function.

2 Constraint qualifications

The focus of this section is on constraint qualifications. Let ϕ : R
n → R be Lipschitz

continuous near x̄ . We denote the Clarke generalized gradient of ϕ at x̄ by ∂ϕ(x̄). Definition
of the Clarke generalized gradient and its properties can be found in [19,20].
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From now on for x̄ , a feasible solution of problem (P), we denote by I (x̄) := {i =
1, . . . , p : gi (x̄) = 0} the active set at x̄ .
Definition 2.1 (Stationary point) We call a feasible point x̄ of problem (P) a stationary point
if there exists a (normal) multiplier λ ∈ R

q such that

0 ∈ ∂ f (x̄) +
p∑

i=1

λi∂gi (x̄) +
q∑

j=p+1

λ j∂h j (x̄),

λi ≥ 0, λi gi (x̄) = 0, i = 1, . . . , p.

The above stationary condition is a Karush–Kuhn–Tucker (KKT) type necessary optimal-
ity condition. It holds at a locally optimal solution only under certain constraint qualifica-
tions. The Fritz John type necessary optimality condition, however, holds without constraint
qualification but has a multiplier attached to the objective function. When the multiplier cor-
responding to the objective function in the Fritz John type necessary optimality condition
vanishes, a multiplier is called an abnormal multiplier (see Clarke [19, p. 235]). The Fritz
John type necessary optimality condition is equivalent to saying that at an optimal solution,
either there exists a normal multiplier or there is a nonzero abnormal multiplier.Hence the
nonexistence of a nonzero abnormal multiplier would imply the existence of a normal mul-
tiplier. Therefore the following commonly used constraint qualification, under which any
locally optimal solution of problem (P) is a stationary point, follows naturally from the Fritz
John type necessary optimality condition [19, Theorem 6.1.1].

Definition 2.2 (NNAMCQ) We say that the no nonzero abnormal multiplier constraint qual-
ification (NNAMCQ) holds at a feasible point x̄ of problem (P) if

0 ∈
∑

i∈I (x̄)
λi∂gi (x̄) +

q∑

j=p+1

λ j∂h j (x̄) and λi ≥ 0, i ∈ I (x̄) 	⇒ λi = 0, λ j = 0.

(2.1)

When condition (2.1) holds, we say that the vectors

{vi , i ∈ I (x̄), vp+1, . . . , vq}
where vi ∈ ∂gi (x̄)(i ∈ I (x̄)), v j ∈ ∂h j (x̄)( j = p + 1, . . . , q) are positively linearly
independent. Jourani [32] showed that the NNAMCQ is equivalent to the GMFCQ to be
defined as follows.

Definition 2.3 (GMFCQ) A feasible point x̄ is said to satisfy the generalized Mangasarian-
Fromovitz constraint qualification (GMFCQ) for problem (P) if

(i) vp+1, . . . , vq are linearly independent, where v j ∈ ∂h j (x̄), j = p + 1, . . . , q;
(ii) there exists a direction d ∈ R

n such that

vTi d < 0, ∀vi ∈ ∂gi (x̄), i ∈ I (x̄),

vTj d = 0, ∀v j ∈ ∂h j (x̄), j = p + 1, . . . , q.

Although the NNAMCQ and the GMFCQ are equivalent, it is some times easier to verify the
NNAMCQ than the GMFCQ since verifying the NNAMCQ amounts to verifying the positive
linear independence of some vectors. In particular when there is no inequality constraints
or there are only two constraints, the positive linear independence is reduced to the linear
independence. We will explain this point using the examples in Sect. 4.
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In order to accommodate infeasible accumulation points in the numerical algorithm, we
now extend the NNAMCQ and the GMFCQ to infeasible points. Note that when x̄ is feasible,
ENNAMCQ and EGMFCQ reduce to NNAMCQ and GMFCQ respectively.

Definition 2.4 (ENNAMCQ) We say that the extended no nonzero abnormal multiplier con-
straint qualification (ENNAMCQ) holds at x̄ ∈ R

n if

0 ∈
p∑

i=1

λi∂gi (x̄) +
q∑

j=p+1

λ j∂h j (x̄) and λi ≥ 0, i = 1, . . . , p,

p∑

i=1

λi gi (x̄) +
q∑

j=p+1

λ j h j (x̄) ≥ 0

imply that λi = 0, λ j = 0.

Definition 2.5 (EGMFCQ) A point x̄ ∈ R
n is said to satisfy the extended generalized Man-

gasarian Fromovitz constraint qualification (EGMFCQ) for problem (P) if

(i) vp+1, . . . , vq are linearly independent, where v j ∈ ∂h j (x̄), j = p + 1, . . . , q ,
(ii) there exists a direction d such that

gi (x̄) + vTi d < 0, ∀vi ∈ ∂gi (x̄), i = 1, . . . , p,

h j (x̄) + vTj d = 0, ∀v j ∈ ∂h j (x̄), j = p + 1, . . . , q.

Since the ENNAMCQ and the EGMFCQmay be too strong for some problems to hold, in
[51] we have proposed two weaker constraint qualifications. These two new conditions are
defined for the nonsmooth problem (P) relatively with smoothing functions as to be defined
next.

Definition 2.6 Let g : Rn → R be a locally Lipschitz function. Assume that, for a given
ρ > 0, gρ : Rn → R is a continuously differentiable function. We say that {gρ : ρ > 0} is a
family of smoothing functions of g if limz→x, ρ↑∞ gρ(z) = g(x) for any fixed x ∈ R

n .

In order to guarantee the convergence to a stationary point, the smoothing function is required
to have the following property.

Definition 2.7 [18] We say that a family of smoothing functions {gρ : ρ > 0}
satisfies the gradient consistency property if lim supz→x, ρ↑∞ ∇gρ(z) is nonempty and
lim supz→x, ρ↑∞ ∇gρ(z) ⊆ ∂g(x) for any x ∈ R

n , where lim supz→x, ρ↑∞ ∇gρ(z) denotes
the set of all limiting points

lim sup
z→x, ρ↑∞

∇gρ(z) :=
{

lim
k→∞ ∇gρk (zk) : zk → x, ρk ↑ ∞

}
.

Rockafellar and Wets [45, Example 7.19 and Theorem 9.67] showed that for any locally
Lipschitz function g, one can always find a family of smoothing functions of g with the
gradient consistency property by the integral convolution:

gρ(x) :=
∫

Rn
g(x − y)φρ(y)dy =

∫

Rn
g(y)φρ(x − y)dy,

where φρ : Rn → R+ is a sequence of bounded, measurable functions with
∫
Rn φρ(x)dx = 1

such that the sets Bρ = {x : φρ(x) > 0} form a bounded sequence converging to {0} as
ρ ↑ ∞.What ismore, there aremany other smoothing functionswith the gradient consistency
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property which are not generated by the integral-convolution with bounded supports. The
reader is referred to [12,14,16,17] for more details.

Using the smoothing technique, one approximates the locally Lipschitz functions
f (x), gi (x), i = 1, . . . , p and h j (x), j = p + 1, . . . , q by families of smoothing functions

{ fρ(x) : ρ > 0}, {giρ(x) : ρ > 0}, i = 1, . . . , p and {h j
ρ(x) : ρ > 0}, j = p + 1, . . . , q

which satisfy the gradient consistency property. Based on the sequence of iteration points
generated by the smoothing SQP algorithm, in [51] we defined the new conditions as follows:

Definition 2.8 (WNNAMCQ) Let {xk} be a sequence of iteration points for problem (P) and
ρk ↑ ∞ as k → ∞. Suppose that x̄ is a feasible accumulation point of the sequence {xk}. We
say that the weakly no nonzero abnormal multiplier constraint qualification (WNNAMCQ)

based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, . . . , p, {h j
ρ(x) : ρ > 0}, j =

p + 1, . . . , q holds at x̄ provided that

0 =
∑

i∈I (x̄)
λivi +

q∑

j=p+1

λ jv j and λi ≥ 0, i ∈ I (x̄) 	⇒ λi = 0, λ j = 0,

for any K0 ⊆ K ⊆ N such that limk→∞,k∈K xk = x̄ and

vi = lim
k→∞,k∈K0

∇giρk (xk), i ∈ I (x̄),

v j = lim
k→∞,k∈K0

∇h j
ρk

(xk), j = p + 1, . . . , q.

Definition 2.9 (WGMFCQ) Let {xk} be a sequence of iteration points for problem (P) and
ρk ↑ ∞ as k → ∞. Let x̄ be a feasible accumulation point of the sequence {xk}. We say
that the weakly generalized Mangasarian Fromovitz constraint qualification (WGMFCQ)
based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, . . . , p, {h j

ρ(x) : ρ > 0}, j =
p + 1, . . . , q holds at x̄ provided the following conditions hold. For any K0 ⊆ K ⊆ N such
that limk→∞,k∈K xk = x̄ and any

vi = lim
k→∞,k∈K0

∇giρk (xk), i ∈ I (x̄)

v j = lim
k→∞,k∈K0

∇h j
ρk

(xk), j = p + 1, . . . , q,

(i) vp+1, . . . , vq are linearly independent;
(ii) there exists a direction d such that

vTi d < 0, for all i ∈ I (x̄),

vTj d = 0, for all j = p + 1, . . . , q.

The WNNAMCQ and the WGMFCQ can be extended to infeasible points [51].

Definition 2.10 (EWNNAMCQ) Let {xk} be a sequence of iteration points for problem (P)

and ρk ↑ ∞ as k → ∞. Let x̄ be a accumulation point of the sequence {xk}. We say that the
extended weakly no nonzero abnormal multiplier constraint qualification (EWNNAMCQ)

based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, . . . , p, {h j
ρ(x) : ρ > 0}, j =

p + 1, . . . , q holds at x̄ provided that
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0 =
p∑

i=1

λivi +
q∑

j=p+1

λ jv j and λi ≥ 0, i = 1, . . . , p, (2.2)

p∑

i=1

λi gi (x̄) +
q∑

j=p+1

λ j h j (x̄) ≥ 0. (2.3)

implies that λi = 0, λ j = 0 for any K0 ⊆ K ⊆ N such that limk→∞,k∈K xk = x̄ and

vi = lim
k→∞,k∈K0

∇giρk (xk), i = 1, . . . , p,

v j = lim
k→∞,k∈K0

∇h j
ρk

(xk), j = p + 1, . . . , q.

Definition 2.11 (EWGMFCQ) Let {xk} be a sequence of iteration points for problem (P)

and ρk ↑ ∞ as k → ∞. Let x̄ be a accumulation point of the sequence {xk}. We say that the
extended weakly generalized Mangasarian Fromovitz constraint qualification (EWGMFCQ)
based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, . . . , p, {h j

ρ(x) : ρ > 0}, j =
p + 1, . . . , q holds at x̄ provided that the following conditions hold. For any K0 ⊆ K ⊆ N
such that limk→∞,k∈K xk = x̄ and any

vi = lim
k→∞,k∈K0

∇giρk (xk), i = 1, . . . , p,

v j = lim
k→∞,k∈K0

∇hiρk (xk), j = p + 1, . . . , q,

(i) vp+1, . . . , vq are linearly independent;
(ii) there exists a nonzero direction d ∈ R

n such that

gi (x̄) + vTi d < 0, for all i = 1, . . . , p, (2.4)

h j (x̄) + vTj d = 0, for all j = p + 1, . . . , q. (2.5)

It was showed in [51] that the EWGMFCQ is equivalent to the EWNNAMCQ.

3 Smoothing augmented Lagrangian method

In this section, we propose a smoothing augmented Lagrangian algorithm and show its
convergence.

For each smoothing parameter ρ > 0, we use the PHR augmented Lagrangian function
to define the smoothing augmented Lagrangian function as follows:

Gλ,c
ρ (x) := fρ(x) + 1

2c

p∑

i=1

(
max{0, λi + cgiρ(x)}2 − λ2i

)

+
q∑

j=p+1

(
λ j h

j
ρ(x) + c

2
(h j

ρ(x))2
)

.

For each ρ > 0, c > 0, λ ∈ R
q , we consider the following penalized problem:

(Pλ,c
ρ ) min

x
Gλ,c

ρ (x).
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In the algorithm, we denote the residual function measuring the infeasibility and the com-
plementarity by

σλ
ρ (x) := max

{
|h j

ρ(x)|, j = p + 1, . . . , q, |min{λi ,−giρ(x)}|, i = 1, . . . , p
}

.

Since (Pλ,c
ρ ) is a smooth unconstrained optimization problem for each fixed ρ > 0, c >

0, λ ∈ R
q , we suggest to use a gradient descent method to find a stationary point of the

problem. Then we increase the smoothing parameter ρ, update the multiplier λ and increase
the penalty parameter c provided that the residual σλ

ρ (x) has sufficiently decreased.
Wewill show that any sequenceof the iterationpoints generatedby the algorithmconverges

to some stationary point of problem (P) when ρ goes to infinity and the penalty parameter c
is bounded. Furthermore, the EWNNAMCQ guarantees the boundedness of the sequence of
the penalty parameters.

We propose the following smoothing augmented Lagrangian algorithm.

Algorithm 3.1 Let {β, σ1} be constants in (0, 1) and {η̂, σ } be constants in (1,∞). Let
{εk} be a positive sequence converging to 0 and σk be a sequence approaching +∞ with
σkεk → ∞ as k → ∞. Choose an initial point x0 = x1 ∈ R

n, an initial smoothing
parameter ρ0 > 0, an initial penalty parameter c0 > 0 and an initial multiplier λ0 ∈ R

q .
Let constants λmin < 0 and λmax > 0 and take λ̄0 as the Euclidean projection of λ0 onto⊗p

i=1[0, λmax ] × ⊗q
i=p+1[λmin, λmax ]. Set k := 0.

Let λ1i = max{0, λ̄0i +c0giρ0(x
1)}, i = 1, . . . , p; λ1j = λ̄0j +c0h

j
ρ0(x

1), j = p+1, . . . , q

and take λ̄1 as the Euclidean projection of λ1 onto
⊗p

i=1[0, λmax ] × ⊗q
i=p+1[λmin, λmax ].

1. If ∇G λ̄k ,ck
ρk (xk+1) = 0 and σλk+1

ρk
(xk+1) = 0, terminate. Otherwise, set k = k + 1, and

go to Step 2.

2. Compute dk := −∇G λ̄k ,ck
ρk (xk). Let xk+1 := xk+αkdk ,whereαk := βlk , lk ∈ {0, 1, 2 . . .}

is the smallest number satisfying

G λ̄k ,ck
ρk

(xk+1) − G λ̄k ,ck
ρk

(xk) ≤ −αkσ1‖∇G λ̄k ,ck
ρk

(xk)‖2. (3.1)

If

‖∇G λ̄k ,ck
ρk

(xk+1)‖ < η̂ρ−1
k , (3.2)

set ρk+1 := σρk and go to Step 3. Otherwise, set k = k + 1 and repeat Step 2.
3. Set

λk+1
i = max{0, λ̄ki + ckg

i
ρk

(xk+1)}, i = 1, . . . , p; (3.3)

λk+1
j = λ̄kj + ckh

j
ρk

(xk+1), j = p + 1, . . . , q. (3.4)

Take λ̄k+1 as the Euclidean projection of λk+1 onto
⊗p

i=1[0, λmax ] × ⊗q
i=p+1[λmin, λmax ], and go to Step 4.

4. If

σλk+1

ρk
(xk+1) < εk, (3.5)

go to Step 1. Otherwise, set ck+1 := σk+1 + ck, k = k + 1 and go to Step 2.

To prove the convergence theorems we need the following lemma.
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Lemma 3.1 Suppose that Algorithm 3.1 does not terminate within finite iterations. Let {xk}
be a sequence generated by Algorithm 3.1 which has an accumulation point. Then there
exists an infinite subset K ⊆ N such that condition (3.2) holds for each k ∈ K and hence
limk→∞ ρk = +∞.

Proof Assume for a contradiction that for any large k, the condition (3.2) fails and thus there
exist k̄, ρ̄, λ̄ and c̄ such that when k ≥ k̄, ρk = ρ̄, λ̄k = λ̄ and ck = c̄.

We first show that there exists an infinite subset K1 ⊆ N such that

lim
k→∞,k∈K1

‖∇G λ̄,c̄
ρ̄ (xk)‖ = 0. (3.6)

To the contrary, suppose that there exists ε > 0 such that for sufficiently large k > k̄,

‖∇G λ̄,c̄
ρ̄ (xk)‖ > ε.

From (3.1), we have that for all k > k̄

G λ̄,c̄
ρ̄ (xk+1) − G λ̄,c̄

ρ̄ (xk) ≤ −αkσ1‖∇G λ̄,c̄
ρ̄ (xk)‖2 < −αkσ1ε

2. (3.7)

Since the Armijo line search in Step 2 only requires a small number of iterations, αk will

never approach to 0. It follows from (3.7) that G λ̄,c̄
ρ̄ (xk) → −∞ as k → ∞. But this is

impossible since G λ̄,c̄
ρ̄ (x) is continuous and {xk} has an accumulation point x∗. Therefore,

there exists an infinite subset K := {k − 1 : k ∈ K1} such that the condition (3.2) holds for
each k ∈ K . By the updating rule in Algorithm 3.1 we must have limk→∞ ρk = +∞. ��

Theorem 3.1 Suppose Algorithm 3.1 does not terminate within finite iterations. Let x∗ be
an accumulation point of the sequence {xk} generated by Algorithm 3.1. If {ck} is bounded,
then x∗ is a stationary point of problem (P).

Proof Without loss of generality, assume that limk→∞ xk = x∗. From the updating rule of
ck in the algorithm, the boundedness of {ck} is equivalent to saying that condition (3.5) holds
for sufficiently large k and thus limk→∞ σλk+1

ρk
(xk+1) = 0. It follows from the definition

of σλ
ρ (·) that |h j

ρk (x
k+1)| < εk, j = p + 1, . . . , q and giρk (x

k+1) < εk, i = 1, . . . , p for
sufficiently large k. Thus {λk} is bounded from the updating rule (3.3) and (3.4).

Since {giρ : ρ > 0}, i = 1, . . . , p, {h j
ρ : ρ > 0}, j = p + 1, . . . , q are families of

smoothing functions of gi , i = 1, . . . , p, h j , j = p + 1, . . . , q , taking limits as k → ∞ we
have h j (x∗) = 0, j = p + 1, . . . , q, gi (x∗) ≤ 0, i = 1, . . . , p. Let

μ
λ,c
ρ,i (x) := max{0, λi + cgiρ(x)}, i = 1, . . . , p,

μ
λ,c
ρ, j (x) := λ j + ch j

ρ(x), j = p + 1, . . . , q.

By calculation, we have

∇G λ̄k ,ck
ρk

(xk+1) = ∇ fρk (x
k+1) +

p∑

i=1

μ
λ̄k ,ck
ρk ,i

(
xk+1

)
∇giρk

(
xk+1

)

+
q∑

j=p+1

μ
λ̄k ,ck
ρk , j

(
xk+1

)
∇h j

ρk

(
xk+1

)
. (3.8)
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From the definition of μλ,c
ρ (·) and the updating rule (3.3)–(3.4), we have μ

λ̄k ,ck
ρk ,i

(xk+1) =
λk+1
i , i = 1, . . . , p and μ

λ̄k ,ck
ρk , j

(xk+1) = λk+1
j , j = p + 1, . . . , 1. Note that, by the

boundedness of {λk}, there is a subsequence K0 ⊆ N such that {λk}K0 is convergent. Let
λ∗ := limk→∞, k∈K0 λk .

By the gradient consistency property of fρ(·), giρ(·), i = 1, . . . , p and h j
ρ(·), j = p +

1, . . . , q , there exists a subsequence K̄0 ⊆ K0 such that

lim
k→∞, k∈K̄0

∇ fρk (xk) ∈ ∂ f (x∗),

lim
k→∞, k∈K̄0

∇giρk (xk) ∈ ∂gi (x
∗), i = 1, . . . , p,

lim
k→∞, k∈K̄0

∇h j
ρk

(xk) ∈ ∂h j (x
∗), j = p + 1, . . . , q.

From Lemma 3.1 and condition (3.2), we know that limk→∞ ∇G λ̄k ,ck
ρk (xk+1) = 0. Taking

limits in (3.8) as k → ∞, k ∈ K̄0, by the gradient consistency properties, we have

0 ∈ ∂ f (x∗) +
p∑

i=1

λ∗
i ∂gi (x

∗) +
q∑

j=p+1

λ∗
j∂h j (x

∗). (3.9)

The feasibility of x∗ follows from taking the limits in limk→∞ σλk+1

ρk
(xk+1) = 0. It follows

from (3.3) that λ∗
i ≥ 0, i = 1, . . . , p. We now show that the complementary slackness

condition holds. If gi (x∗) < 0 for certain i ∈ {1, . . . , p}, we have giρk (x
k+1) < 0 for

sufficiently large k since {giρ : ρ > 0} are families of smoothing functions of gi , i = 1, . . . , p.

Then λ∗
i = limk→∞, k∈K̄0

λk+1
i = 0 since limk→∞ σλk+1

ρk
(xk+1) = 0. Therefore x∗ is a

stationary point of problem (P) and the proof of the theorem is complete. ��
Theorem 3.2 Suppose Algorithm 3.1 does not terminate within finite iterations and
{xk, ρk, λk, ck} is a sequence generated by Algorithm 3.1. If for every K ⊆ N and x∗
such that limk→∞,k∈K xk = x∗, the EWNNAMCQ holds at x∗, then {ck} is bounded.
Proof Assume for a contradiction that {ck} is unbounded. Since x∗ is an arbitrary accumu-
lation point, we assume there exists an infinite index set K̃ ⊆ K such that condition (3.5)
fails for every k ∈ K̃ sufficiently large. Then for sufficiently large k ∈ K̃ , at least one of the
following conditions hold:

(a) there exists an index i1 ∈ {1, . . . , p} such that gi1ρk (xk+1) ≥ εk,

(b) there exists an index j1 ∈ {p + 1, . . . , q} such that |h j1
ρk (x

k+1)| ≥ εk .

By the gradient consistency property of fρ(·), giρ(·), i = 1, . . . , p and h j
ρ(·), j = p +

1, . . . , q , there exists a subsequence K̄ ⊆ K̃ such that

v0 := lim
k→∞, k∈K̄

∇ fρk (xk) ∈ ∂ f (x∗),

vi := lim
k→∞, k∈K̄

∇giρk (xk) ∈ ∂gi (x
∗), i = 1, . . . , p,

v j := lim
k→∞, k∈K̄

∇h j
ρk

(xk) ∈ ∂h j (x
∗), j = p + 1, . . . , q.

From the updating rule of ck , we have ckεk → +∞ as k → ∞. Thus by the definition

of μλ,c
ρ (·), under either case (a) or case (b), we have ‖μλ̄k ,ck

ρk (xk+1)‖ → ∞. There exists a

subsequence K̄0 ⊆ K̄ and μ ∈ R
q nonzero such that
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lim
k→∞,k∈K̄0

μ
λ̄k ,ck
ρk (xk+1)

‖μλ̄k ,ck
ρk (xk+1)‖

= μ.

It follows from the definition of μλ,c
ρ (·) that μi ≥ 0, i = 1, . . . , p.

Similarly as in Theorem 3.1, limk→∞ ∇G λ̄k ,ck
ρk (xk+1) = 0. Dividing by ‖μλ̄k ,ck

ρk (xk+1)‖
in both sides of (3.8) and letting k → ∞ in K̄0, we have

0 =
p∑

i=1

μivi +
q∑

j=p+1

μ jv j . (3.10)

We now show that
p∑

i=1

μi gi (x
∗) +

q∑

j=p+1

μ j h j (x
∗) ≥ 0 (3.11)

and consequently conditions (3.10) and (3.11) contradict with the assumption that the
EWNNAMCQ holds. We first show that μi gi (x∗) ≥ 0. If gi (x∗) < 0 for certain
i ∈ {1, . . . , p}, giρk (xk+1) < 0 for sufficiently large k since {giρ : ρ > 0} are families

of smoothing functions of gi , i = 1, . . . , p. Thus μi = limk→∞, k∈K̄0
μ

λ̄k ,ck
ρk ,i

(xk+1) = 0

by the definitions μλ,c
ρ (·) and the unboundedness of {ck}. Consequently we have μi = 0

if gi (x∗) < 0, for i ∈ {1, . . . , p}. Next we show that μ j h j (x∗) ≥ 0. Since ck → ∞ as
k → ∞, we have for sufficiently large k ∈ K̄0,

λ̄kj h
j
ρk

(xk+1) + ck(h
j
ρk

(xk+1))2 > 0.

Thus

μ j h j (x
∗) = lim

k→∞,k∈K̄0

μ
λ̄k ,ck
ρk , j

(xk+1)

‖μλ̄k ,ck
ρk (xk+1)‖

h j
ρk

(xk+1)

= lim
k→∞,k∈K̄0

λ̄kj h
j
ρk (x

k+1) + ck(h
j
ρk (x

k+1))2

‖μλ̄k ,ck
ρk (xk+1)‖

≥ 0

and hence (3.11) holds. The contradiction shows that {ck} is bounded. ��
The following corollary follows immediately from Theorems 3.1 and 3.2.

Corollary 3.1 Suppose that Algorithm 3.1 does not terminate within finite iterations. If the
EWNNAMCQ holds at any accumulation point of the sequence {xk} generated by Algorithm
3.1, then any accumulation point is a stationary point of problem (P).

4 Applications and numerical examples

In this section, we first test our algorithm on two general nonsmooth and nonconvex con-
strained optimization problems. Then we apply the algorithm to the bilevel programs.

Before presenting numerical examples, we first give some remarks on choosing the para-
meters in the algorithm. In the Armijo line search, a small σ1 gives the step-size too much
flexibility while increasing σ1 makes the search for step-size costly. σ1 = 0.8 is a good
selection from our experience.

Since we would like to increase ρk fast in the beginning of the algorithm and then let
ρk grow slowly to infinity, η̂ should be a large constant. In practice taking different initial
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parameter ρ0 usually leads to similar results. According to our experience, if a relatively
large initial parameter ρ0 is chosen, then a smaller σ should be taken to let ρk goes to infinity
slowly. We suggest to choose a relatively small ρ0 to guarantee a faster convergence rate.

λmax and λmin are upper and lower bounds for the projectedmultiplier λ̄ and can be chosen
arbitrarily. In the algorithm, we select λmax = 104 and λmin = −104. There are different
ways for choosing {εk} and {σk}. In our experiments, unless otherwise specified, we select
the sequences as εk := σ ′√

k
, σk := k2 for each k,where σ ′ > 0 is a small constant.

In numerical practise, it is impossible to obtain an exact ‘0’, thus we select some small
enough ε > 0, ε1 > 0 and change the update rule of ck to the case when

σλk+1

ρk
(xk+1) < max{εk, ε1} (4.1)

and terminate the algorithm when

∇G λ̄k ,ck
ρk

(xk+1) < ε and σλk+1

ρk
(xk+1) < ε1.

4.1 Illustrative examples for general problems

In this subsection, we illustrate Algorithm 3.1 by two general nonsmooth and nonconvex
constrained optimization problems.

The first task in designing a smoothing method is to find a family of smoothing functions
with the gradient consistency property for nonsmooth functions involved. Many nonsmooth
functions can be considered as a composition of a smooth function with a plus function
(t)+ := max{0, t}. Chen and Mangasarian [16] constructed smooth approximations to the
plus function by using the integral convolutionwith density functions as follows. Letφ : R →
R+ be a piecewise continuous density functionwithφ(s) = φ(−s) and

∫ +∞
−∞ |s|φ(s)ds < ∞.

Then ψμ(t) := ∫ +∞
−∞ (t − μs)+φ(s)ds, with μ ↓ 0 is a family of smoothing functions

of the plus function with the gradient consistency property. Choosing φ(s) := 2

(s2+4)
3
2

results in the so-called the Chen–Harker–Kanzow–Smale (CHKS) smoothing function of
(t)+ ([15,33,47]):

ψ1
μ(t) := 1

2

(
t +

√
t2 + 4μ2

)
.

Choosing φ(s) :=
{
0, if |s| > 1

2

1, if |s| ≤ 1
2 ,

results in the so-called uniform smoothing function of

(t)+:

ψ2
μ(t) :=

{
(t)+, if |t | >

μ
2

1
2μ(t + μ

2 )2, if |t | ≤ μ
2 .

Since |t | = (t)+ + (−t)+, approximating (t)+ by ψ2
μ(t) and (−t)+ by ψ2

μ(−t) respectively
results in the following smoothing function of |t | which is used frequently:

ψ3
μ(t) :=

{ |t |, if |t | >
μ
2

t2
μ

+ μ
4 , if |t | ≤ μ

2 .

Example 4.1 [23, Example 5.1] Consider the nonsmooth constrained optimization program
of minimizing a nonsmooth Rosenbrock function subject to an inequality constraint on a
weighted maximum value of the variables:
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min f (x, y) := 8|x2 − y| + (1 − x)2

s.t. g(x, y) := max{√2x, 2y} − 1 ≤ 0.

The unique optimal solution of the problem is (x̄, ȳ) = (
√
2
2 , 1

2 ).
Since the Clarke generalized gradient of the constraint function is

∂g(x, y) =

⎧
⎪⎨

⎪⎩

(
√
2, 0), if

√
2x > 2y

co{(√2, 0), (0, 2)}, if
√
2x = 2y

(0, 2), if
√
2x < 2y,

where co denotes the convex hull, we have (0, 0) /∈ ∂g(x, y),∀(x, y) which implies that the
ENNAMCQ is satisfied at every point in R

2. Our convergent theorem guarantees that any
accumulation point of the iteration sequence must be a stationary point.

Rewrite the objective function and the constraint function as

f (x, y) = 8
(
(x2 − y)+ + (−x2 + y)+

) + (1 − x)2,

g(x, y) = √
2x + (2y − √

2x)+ − 1.

Since (x2 − y)+ is a composition of the smooth function x2 − y with the plus function
and ∇(x2 − y) has full rank, by [12, Theorem 4.6], ψ1

μ(x2 − y) is a smoothing function of

(x2− y)+ with the gradient consistency property. Similarlyψ1
μ(−x2+ y) andψ1

μ(2y−√
2x)

are smoothing functions of (−x2 + y)+ and (2y − √
2x)+ with the gradient consistency

property respectively. Taking ρ = 1
4μ2 , it follows that

fρ(x, y) := 8
√

(x2 − y)2 + ρ−1 + (1 − x)2,

gρ(x, y) := 1

2

(√
2x + 2y +

√
(2y − √

2x)2 + ρ−1

)
− 1

form the family of smoothing functions for f (x, y) and g(x, y)with the gradient consistency
property.

In our test, we choose the initial point (x0, y0) = (0.5, 0.3) and the parameters β =
0.8, σ1 = 0.7, ρ0 = 100, c0 = 100, η̂ = 103, σ = 10, σ ′ = 10−3, λ0 = 100 and
ε = 10−5, ε1 = 10−6. The stopping criteria

∇G λ̄k ,ck
ρk

(xk+1) < ε and σλk+1

ρk
(xk+1) < ε1

holdwith (xk+1, yk+1) = (0.7071, 0.500), which is a good approximation of the true optimal
solution.

Example 4.2 [7, Example 5.1] Consider the nonsmooth constrained optimization program of
minimizing a nonsmoothRosenbrock function subject to one nonsmooth inequality constraint
and one linear equality constraint:

min f (x, y) := 8|x2 − y| + (1 − x)2

s.t. g(x, y) := x2 + |y| − 4 ≤ 0,

h(x, y) := x − √
2y = 0.

The unique optimal solution of the problem is (x̄, ȳ) = (
√
2
2 , 1

2 ).
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Note that ∇h(x, y) = (1,−√
2) and

∂g(x, y) =

⎧
⎪⎨

⎪⎩

(2x, 1), if y > 0

co{(2x, 1), (2x,−1)}, if y = 0

(2x,−1), if y < 0.

For all (x, y) in a sufficiently small neighbourhood of (x̄, ȳ), ∂g(x, y) = {(2x, 1)}. For each
(x, y) in a sufficiently small neighbourhood of (x̄, ȳ), the vectors {(2x, 1), (1,−√

2)} are
linearly independent, thus theENNAMCQholds.Our convergent theoremguarantees that any
accumulation point of the iteration sequence which is in a sufficiently small neighbourhood
of (x̄, ȳ) must be a stationary point.

Since |x2 − y| is a composition of the smooth function x2 − y with the absolute value
function and ∇(x2 − y) has full rank, by [12, Theorem 4.6], ψ3

μ(x2 − y) is a smoothing
function of |x2 − y| with the gradient consistency property. Similarly ψ3

μ(y) is a smoothing

function of |y| with the gradient consistency property respectively. Taking μ = 1
ρ
, it follows

that

fρ(x, y) := 8ψ3
ρ(x2 − y) + (1 − x)2,

gρ(x, y) := x2 + ψ3
ρ(y) − 4

form the family of smoothing functions for f (x, y) and g(x, y)with the gradient consistency
property respectively.

In our test, we choose the initial point (x0, y0) = (0.3, 0.2) and the parameters β =
0.8, σ1 = 0.7, ρ0 = 100, c0 = 100, η̂ = 5 × 103, σ = 10, σ ′ = 10−3, λ0 = (100, 100)
and ε = 5 × 10−4, ε1 = 10−5. The stopping criteria

∇G λ̄k ,ck
ρk

(xk+1) < ε and σλk+1

ρk
(xk+1) < ε1

hold with (xk+1, yk+1) = (0.70711, 0.50001), which is a good approximation of the true
optimal solution.

4.2 Applications to the bilevel program

In this subsection, we consider the simple bilevel program

(SBP) min F(x, y)

s.t. gi (x, y) ≤ 0, i = 1, . . . , l,

x ∈ R
n, y ∈ S(x),

where S(x) denotes the set of solutions of the lower level program

(Px ) min
y∈Y f (x, y),

where Y is a compact subset of Rm respectively, f, F, gi , i = 1, . . . , l : Rn × R
m → R are

continuously differentiable functions and f is twice continuously differentiable in variable
y.

The principal-agent problem [37] is one of the most important applications of the simple
bilevel program. Applications and recent developments of general bilevel programs where
the constraint set Y may depend on x can be found in [5,24,25,46,49].

When the lower level program is convex in variable y, it is common to replace the lower
level program by its first order conditions. For a general SBP where the lower level problem
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may not be convex, Mirrlees [37] pointed out that the first order approach is not valid to
solve (SBP) since the true optimal solution may not even be a stationary point of the problem
reformulated by the first order approach.

By using the value function of the lower level programdefined as V (x) := inf y∈Y f (x, y),
Ye and Zhu [53,54] studied the first order condition for the following equivalent formulation
under the partial calmness condition:

(VP) min F(x, y)

s.t. f (x, y) − V (x) = 0,

gi (x, y) ≤ 0, i = 1, . . . , l,

x ∈ R
n, y ∈ Y.

(4.2)

However, Ye and Zhu [55] illustrated that the partial calmness condition is still too strong
to hold for many bilevel problems (for example, the Mirrlees’ problem) and proposed a
new first order necessary optimality condition by considering the combined program with
both the first order condition of the lower level problem and the value function constraint.
For a general bilevel program, the lower level problem may have equality and/or inequality
constraints and the first order condition is the KKT condition. If the lower level has inequality
constraints, then the resulting combined program is a nonsmooth mathematical programwith
complementarity constraints and necessary conditions of Clarke, Mordukhovich and Strong
(C, M, S) type have been studied in Ye and Zhu [55] and Ye [52]. For the simple bilevel
program we consider in this paper the constraint of the lower level problem is a fixed set Y
independent of x . If Y can be represented by some equality and/or inequality constraints,
then one can use the KKT condition as the first order condition and the resulting combined
program can be studied using the result of previous section. However to concentrate the main
idea and simplify the exposition we assume that for any accumulation point (x̄, ȳ), ȳ lies in
the interior of the set Y . Moreover this assumption is not too strong since in practice usually
one has some idea on where the optimal solution lies and can enlarge the set Y so that the
optimal solution lies in the interior of Y . Taking this into consideration we should try to find
the stationary point of the following combined program:

(CP) min F(x, y)

s.t. f (x, y) − V (x) ≤ 0,

gi (x, y) ≤ 0, i = 1, . . . , l,

0 = ∇y f (x, y)

x ∈ R
n, y ∈ Y.

Since the value function V (x) is usually nonsmooth, the problems (VP) and (CP) are both
nonsmooth and nonconvex optimization problems. Note that for the stationary point whose
y component lies in the interior of set Y , the constraint y ∈ Y can be ignored and hence
it is a problem of the type we study in this paper. To develop a numerical algorithm for
problem (VP), Lin et al. [36] proposed to approximate the value function by its integral
entropy function:

γρ(x) := −ρ−1 ln

(∫

Y
exp[−ρ f (x, y)]dy

)

= V (x) − ρ−1 ln

(∫

Y
exp[−ρ( f (x, y) − V (x))]dy

)
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and proved that γρ(x) satisfies the gradient consistency property. The advantage of using the
integral entropy function to approximate the value function is that we do not need to evaluate
V (x) or its Clarke generalized gradient. This means that we do not need to solve the lower
level program during the iteration process of our smoothing algorithms.

XuandYe [50] proposed aprojected smoothing augmentedLagrangianmethod to solve the
combined program (CP). They showed that if the sequence of penalty parameters is bounded,
then any accumulation point is a stationary point of the combined program. Although it was
observed in [50] that the smoothing augmentedLagrangianmethod is efficient for the problem
(CP), no sufficient conditions were given under which the sequence of penalty parameters is
bounded. From the results in Sect. 3, we know that EWNNAMCQ is a sufficient condition
under which the sequence of penalty parameters for problem (CP) is bounded. In the rest of
this subsection, we apply Algorithm 3.1 to the combined program (CP), and verify that the
WNNAMCQ holds for all bilevel programs presented here except one.

Example 4.3 (Mirrlees’ problem) [37] Consider Mirrlees’ problem

min F(x, y) := (x − 2)2 + (y − 1)2

s.t. y ∈ S(x),

where S(x) is the solution set of the lower level program

min f (x, y) := −x exp[−(y + 1)2] − exp[−(y − 1)2]
s.t. y ∈ [−2, 2].

It was shown in [37] that the unique optimal solution is (x̄, ȳ) with x̄ = 1, ȳ ≈ 0.9575 .
In our test, we choose the initial point (x0, y0) = (0.5, 0.6) and the parameters β =

0.8, σ1 = 0.7, ρ0 = 100, c0 = 100, η̂ = 103, σ = 10, σ ′ = 10−3, λ0 = (100, 100) and
ε = 10−5, ε1 = 5 × 10−4. The stopping criteria

∇G λ̄k ,ck
ρk

(xk+1, yk+1) < ε and σλk+1

ρk
(xk+1, yk+1) < ε1

hold with (xk+1, yk+1) = (1.0004, 0.95749). It seems that the sequence converges to (x̄, ȳ).
Since

∇ f (xk+1, yk+1) − (∇γρk (x
k+1), 0) = (0.9755, 0),

∇(∇y f )(x
k+1, yk+1) = (0.08484, 1.7002),

it is easy to see that the vectors ∇ f (x̄, ȳ)− (limk→∞ ∇γρk (x
k+1), 0) and ∇(∇y f )(x̄, ȳ) are

linearly independent. Thus the WNNAMCQ holds at (x̄, ȳ) and our algorithm guarantees
that (x̄, ȳ) is a stationary point of (CP).

Example 4.4 [39, Example 3.3]

min F(x, y) := x2 − y

s.t. y ∈ argmin
y∈[0,3]

{ f (x, y) := ((y − 1 − 0.1x)2 − 0.5 − 0.5x)2}.

Mitsos et al. [39] found an approximate optimal solution for the problem to be (x̄, ȳ) =
(0.2106, 1.799).

In our test, we choose the initial point (x0, y0) = (0.3, 1.5) and the parameters β =
0.8, σ1 = 0.7, ρ0 = 100, c0 = 100, η̂ = 200, σ = 5, σ ′ = 10−2, λ0 = (100, 100) and
ε = 5 × 10−5, ε1 = 5 × 10−6. We select σk := k for each k. The stopping criteria
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Table 1 Example 4.4

k (xk , yk ) ∇ f (xk , yk ) − (∇γρk (x
k ), 0) σλk+1

ρk
(xk+1, yk+1) ck

663 (0.2145255,1.800723) (−7.188 × 10−5, −1.32 × 10−7) 3.426965 × 10−6 305

664 (0.2145255,1.800723) (−7.193 × 10−5, −7.557 × 10−8) 3.426966 × 10−6 305

665 (0.2145255,1.800723) (−7.222 × 10−5, −9.728 × 10−8) 3.426966 × 10−6 305

666 (0.2145255,1.800723) (−7.210 × 10−5, −7.155 × 10−8) 3.426966 × 10−6 305

667 (0.2145255,1.800723) (−7.233 × 10−5, −8.46 × 10−8) 3.426967 × 10−6 305

668 (0.2145255,1.800723) (−7.247 × 10−5, −7.339 × 10−8) 3.426967 × 10−6 305

669 (0.2145255,1.800723) (−7.26 × 10−5, −7.739 × 10−8) 3.426967 × 10−6 305

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

∇G λ̄k ,ck
ρk

(xk+1, yk+1) < ε and σλk+1

ρk
(xk+1, yk+1) < ε1

hold with (xk+1, yk+1) = (0.2145255, 1.800723).
Table 1 reports results of some iterations. From the table, it seems that (x̄, ȳ) ≈

(0.2145255, 1.800723) is a limit point of the iteration sequence (xk, yk). Since the sequence
∇ f (xk+1, yk+1) − (∇γρk (x

k+1), 0) tends to 0 as k → ∞, the WNNAMCQ may not hold at

(x̄, ȳ). However we observe that σλk+1

ρk
(xk+1, yk+1) also approaches 0. Therefore the feasi-

bility and the complementarity follow the gradient consistency property and the continuity of
functions. Moreover from the update rule (4.1), we do not update ck when σλk+1

ρk
(xk+1, yk+1)

is sufficiently small and hence ck is likely to be bounded. Therefore, the limit point should
be a stationary point of the bilevel program from Theorem 3.1.

Example 4.5 [38, Example 3.14] The bilevel program

min F(x, y) := (x − 1

4
)2 + y2

s.t. y ∈ argmin
y∈[−1,1]

{ f (x, y) := y3

3 − xy}.

has the optimal solution point (x̄, ȳ) = ( 14 ,
1
2 ) with an objective value of 1

4 .
In our test, we choose the initial point (x0, y0) = (0.3, 0.7) and the parameters β =

0.8, σ1 = 0.8, ρ0 = 100, c0 = 100, η̂ = 103, σ = 10, σ ′ = 10−3, λ0 = (100, 100) and
ε = 10−4, ε1 = 10−5. The stopping criteria

∇G λ̄k ,ck
ρk

(xk+1, yk+1) < ε and σλk+1

ρk
(xk+1, yk+1) < ε1

hold with (xk+1, yk+1) = (0.2500, 0.49999). It seems that the sequence converges to (x̄, ȳ).
Since

∇ f (xk+1, yk+1) − (∇γρk (x
k+1), 0) = (−0.0991,−9.09 × 10−6),

∇(∇y f )(x
k+1, yk+1) = (−1, 0.9998),

it is easy to see that the vectors ∇ f (x̄, ȳ)− (limk→∞ ∇γρk (x
k+1), 0) and ∇(∇y f )(x̄, ȳ) are

linearly independent. Thus the WNNAMCQ holds at (x̄, ȳ) and our algorithm guarantees
that (x̄, ȳ) is a stationary point of (CP).
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Example 4.6 [38, Example 3.20] The bilevel program

min F(x, y) := (x − 0.25)2 + y2

s.t. y ∈ argmin
y∈[−1,1]

{ f (x, y) := 1
3 y

3 − x2y}.

has the optimal solution point (x̄, ȳ) = ( 12 ,
1
2 ) with an objective value of 5

16 .
In our test, we choose the initial point (x0, y0) = (0.3, 0.2) and the parameters β =

0.8, σ1 = 0.8, ρ0 = 100, c0 = 100, η̂ = 103, σ = 10, σ ′ = 10−3, λ0 = (100, 100) and
ε = 10−5, ε1 = 5 × 10−5. The stopping criteria

∇G λ̄k ,ck
ρk

(xk+1, yk+1) < ε and σλk+1

ρk
(xk+1, yk+1) < ε1

hold with (xk+1, yk+1) = (0.5000, 0.49997). It seems that the sequence converges to (x̄, ȳ).
Since

∇ f (xk+1, yk+1) − (∇γρk (x
k+1), 0) = (−1.5,−2.8 × 10−5),

∇(∇y f )(x
k+1, yk+1) = (−1, 0.9999),

by continuity of the functions and the gradient consistency properties, it seems that the vectors
∇ f (x̄, ȳ) − (limk→∞ ∇γρk (x

k+1), 0) and ∇(∇y f )(x̄, ȳ) are linearly independent. Thus the
WNNAMCQ holds at (x̄, ȳ). Our algorithm guarantees that (x̄, ȳ) is a stationary point of
(CP).
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